qemu/target/s390x/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU S390x KVM implementation
   3 *
   4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
   5 * Copyright IBM Corp. 2012
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include <sys/ioctl.h>
  23
  24#include <linux/kvm.h>
  25#include <asm/ptrace.h>
  26
  27#include "cpu.h"
  28#include "s390x-internal.h"
  29#include "kvm_s390x.h"
  30#include "sysemu/kvm_int.h"
  31#include "qemu/cutils.h"
  32#include "qapi/error.h"
  33#include "qemu/error-report.h"
  34#include "qemu/timer.h"
  35#include "qemu/units.h"
  36#include "qemu/main-loop.h"
  37#include "qemu/mmap-alloc.h"
  38#include "qemu/log.h"
  39#include "sysemu/sysemu.h"
  40#include "sysemu/hw_accel.h"
  41#include "sysemu/runstate.h"
  42#include "sysemu/device_tree.h"
  43#include "exec/gdbstub.h"
  44#include "exec/ram_addr.h"
  45#include "trace.h"
  46#include "hw/s390x/s390-pci-inst.h"
  47#include "hw/s390x/s390-pci-bus.h"
  48#include "hw/s390x/ipl.h"
  49#include "hw/s390x/ebcdic.h"
  50#include "exec/memattrs.h"
  51#include "hw/s390x/s390-virtio-ccw.h"
  52#include "hw/s390x/s390-virtio-hcall.h"
  53#include "hw/s390x/pv.h"
  54
  55#ifndef DEBUG_KVM
  56#define DEBUG_KVM  0
  57#endif
  58
  59#define DPRINTF(fmt, ...) do {                \
  60    if (DEBUG_KVM) {                          \
  61        fprintf(stderr, fmt, ## __VA_ARGS__); \
  62    }                                         \
  63} while (0)
  64
  65#define kvm_vm_check_mem_attr(s, attr) \
  66    kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
  67
  68#define IPA0_DIAG                       0x8300
  69#define IPA0_SIGP                       0xae00
  70#define IPA0_B2                         0xb200
  71#define IPA0_B9                         0xb900
  72#define IPA0_EB                         0xeb00
  73#define IPA0_E3                         0xe300
  74
  75#define PRIV_B2_SCLP_CALL               0x20
  76#define PRIV_B2_CSCH                    0x30
  77#define PRIV_B2_HSCH                    0x31
  78#define PRIV_B2_MSCH                    0x32
  79#define PRIV_B2_SSCH                    0x33
  80#define PRIV_B2_STSCH                   0x34
  81#define PRIV_B2_TSCH                    0x35
  82#define PRIV_B2_TPI                     0x36
  83#define PRIV_B2_SAL                     0x37
  84#define PRIV_B2_RSCH                    0x38
  85#define PRIV_B2_STCRW                   0x39
  86#define PRIV_B2_STCPS                   0x3a
  87#define PRIV_B2_RCHP                    0x3b
  88#define PRIV_B2_SCHM                    0x3c
  89#define PRIV_B2_CHSC                    0x5f
  90#define PRIV_B2_SIGA                    0x74
  91#define PRIV_B2_XSCH                    0x76
  92
  93#define PRIV_EB_SQBS                    0x8a
  94#define PRIV_EB_PCISTB                  0xd0
  95#define PRIV_EB_SIC                     0xd1
  96
  97#define PRIV_B9_EQBS                    0x9c
  98#define PRIV_B9_CLP                     0xa0
  99#define PRIV_B9_PCISTG                  0xd0
 100#define PRIV_B9_PCILG                   0xd2
 101#define PRIV_B9_RPCIT                   0xd3
 102
 103#define PRIV_E3_MPCIFC                  0xd0
 104#define PRIV_E3_STPCIFC                 0xd4
 105
 106#define DIAG_TIMEREVENT                 0x288
 107#define DIAG_IPL                        0x308
 108#define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
 109#define DIAG_KVM_HYPERCALL              0x500
 110#define DIAG_KVM_BREAKPOINT             0x501
 111
 112#define ICPT_INSTRUCTION                0x04
 113#define ICPT_PROGRAM                    0x08
 114#define ICPT_EXT_INT                    0x14
 115#define ICPT_WAITPSW                    0x1c
 116#define ICPT_SOFT_INTERCEPT             0x24
 117#define ICPT_CPU_STOP                   0x28
 118#define ICPT_OPEREXC                    0x2c
 119#define ICPT_IO                         0x40
 120#define ICPT_PV_INSTR                   0x68
 121#define ICPT_PV_INSTR_NOTIFICATION      0x6c
 122
 123#define NR_LOCAL_IRQS 32
 124/*
 125 * Needs to be big enough to contain max_cpus emergency signals
 126 * and in addition NR_LOCAL_IRQS interrupts
 127 */
 128#define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
 129                                     (max_cpus + NR_LOCAL_IRQS))
 130/*
 131 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
 132 * as the dirty bitmap must be managed by bitops that take an int as
 133 * position indicator. This would end at an unaligned  address
 134 * (0x7fffff00000). As future variants might provide larger pages
 135 * and to make all addresses properly aligned, let us split at 4TB.
 136 */
 137#define KVM_SLOT_MAX_BYTES (4UL * TiB)
 138
 139static CPUWatchpoint hw_watchpoint;
 140/*
 141 * We don't use a list because this structure is also used to transmit the
 142 * hardware breakpoints to the kernel.
 143 */
 144static struct kvm_hw_breakpoint *hw_breakpoints;
 145static int nb_hw_breakpoints;
 146
 147const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 148    KVM_CAP_LAST_INFO
 149};
 150
 151static int cap_sync_regs;
 152static int cap_async_pf;
 153static int cap_mem_op;
 154static int cap_mem_op_extension;
 155static int cap_s390_irq;
 156static int cap_ri;
 157static int cap_hpage_1m;
 158static int cap_vcpu_resets;
 159static int cap_protected;
 160static int cap_zpci_op;
 161static int cap_protected_dump;
 162
 163static bool mem_op_storage_key_support;
 164
 165static int active_cmma;
 166
 167static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
 168{
 169    struct kvm_device_attr attr = {
 170        .group = KVM_S390_VM_MEM_CTRL,
 171        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 172        .addr = (uint64_t) memory_limit,
 173    };
 174
 175    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 176}
 177
 178int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
 179{
 180    int rc;
 181
 182    struct kvm_device_attr attr = {
 183        .group = KVM_S390_VM_MEM_CTRL,
 184        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 185        .addr = (uint64_t) &new_limit,
 186    };
 187
 188    if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
 189        return 0;
 190    }
 191
 192    rc = kvm_s390_query_mem_limit(hw_limit);
 193    if (rc) {
 194        return rc;
 195    } else if (*hw_limit < new_limit) {
 196        return -E2BIG;
 197    }
 198
 199    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 200}
 201
 202int kvm_s390_cmma_active(void)
 203{
 204    return active_cmma;
 205}
 206
 207static bool kvm_s390_cmma_available(void)
 208{
 209    static bool initialized, value;
 210
 211    if (!initialized) {
 212        initialized = true;
 213        value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
 214                kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
 215    }
 216    return value;
 217}
 218
 219void kvm_s390_cmma_reset(void)
 220{
 221    int rc;
 222    struct kvm_device_attr attr = {
 223        .group = KVM_S390_VM_MEM_CTRL,
 224        .attr = KVM_S390_VM_MEM_CLR_CMMA,
 225    };
 226
 227    if (!kvm_s390_cmma_active()) {
 228        return;
 229    }
 230
 231    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 232    trace_kvm_clear_cmma(rc);
 233}
 234
 235static void kvm_s390_enable_cmma(void)
 236{
 237    int rc;
 238    struct kvm_device_attr attr = {
 239        .group = KVM_S390_VM_MEM_CTRL,
 240        .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
 241    };
 242
 243    if (cap_hpage_1m) {
 244        warn_report("CMM will not be enabled because it is not "
 245                    "compatible with huge memory backings.");
 246        return;
 247    }
 248    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 249    active_cmma = !rc;
 250    trace_kvm_enable_cmma(rc);
 251}
 252
 253static void kvm_s390_set_attr(uint64_t attr)
 254{
 255    struct kvm_device_attr attribute = {
 256        .group = KVM_S390_VM_CRYPTO,
 257        .attr  = attr,
 258    };
 259
 260    int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
 261
 262    if (ret) {
 263        error_report("Failed to set crypto device attribute %lu: %s",
 264                     attr, strerror(-ret));
 265    }
 266}
 267
 268static void kvm_s390_init_aes_kw(void)
 269{
 270    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
 271
 272    if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
 273                                 NULL)) {
 274            attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
 275    }
 276
 277    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 278            kvm_s390_set_attr(attr);
 279    }
 280}
 281
 282static void kvm_s390_init_dea_kw(void)
 283{
 284    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
 285
 286    if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
 287                                 NULL)) {
 288            attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
 289    }
 290
 291    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 292            kvm_s390_set_attr(attr);
 293    }
 294}
 295
 296void kvm_s390_crypto_reset(void)
 297{
 298    if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
 299        kvm_s390_init_aes_kw();
 300        kvm_s390_init_dea_kw();
 301    }
 302}
 303
 304void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
 305{
 306    if (pagesize == 4 * KiB) {
 307        return;
 308    }
 309
 310    if (!hpage_1m_allowed()) {
 311        error_setg(errp, "This QEMU machine does not support huge page "
 312                   "mappings");
 313        return;
 314    }
 315
 316    if (pagesize != 1 * MiB) {
 317        error_setg(errp, "Memory backing with 2G pages was specified, "
 318                   "but KVM does not support this memory backing");
 319        return;
 320    }
 321
 322    if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
 323        error_setg(errp, "Memory backing with 1M pages was specified, "
 324                   "but KVM does not support this memory backing");
 325        return;
 326    }
 327
 328    cap_hpage_1m = 1;
 329}
 330
 331int kvm_s390_get_hpage_1m(void)
 332{
 333    return cap_hpage_1m;
 334}
 335
 336static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
 337{
 338    MachineClass *mc = MACHINE_CLASS(oc);
 339
 340    mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
 341}
 342
 343int kvm_arch_init(MachineState *ms, KVMState *s)
 344{
 345    object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
 346                         false, NULL);
 347
 348    if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
 349        error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
 350                     "please use kernel 3.15 or newer");
 351        return -1;
 352    }
 353    if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
 354        error_report("KVM is missing capability KVM_CAP_S390_COW - "
 355                     "unsupported environment");
 356        return -1;
 357    }
 358
 359    cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
 360    cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
 361    cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
 362    cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
 363    mem_op_storage_key_support = cap_mem_op_extension > 0;
 364    cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
 365    cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
 366    cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
 367    cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
 368    cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
 369
 370    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
 371    kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
 372    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
 373    if (ri_allowed()) {
 374        if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
 375            cap_ri = 1;
 376        }
 377    }
 378    if (cpu_model_allowed()) {
 379        kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
 380    }
 381
 382    /*
 383     * The migration interface for ais was introduced with kernel 4.13
 384     * but the capability itself had been active since 4.12. As migration
 385     * support is considered necessary, we only try to enable this for
 386     * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
 387     */
 388    if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
 389        kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
 390        kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
 391    }
 392
 393    kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
 394    return 0;
 395}
 396
 397int kvm_arch_irqchip_create(KVMState *s)
 398{
 399    return 0;
 400}
 401
 402unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 403{
 404    return cpu->cpu_index;
 405}
 406
 407int kvm_arch_init_vcpu(CPUState *cs)
 408{
 409    unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
 410    S390CPU *cpu = S390_CPU(cs);
 411    kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
 412    cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
 413    return 0;
 414}
 415
 416int kvm_arch_destroy_vcpu(CPUState *cs)
 417{
 418    S390CPU *cpu = S390_CPU(cs);
 419
 420    g_free(cpu->irqstate);
 421    cpu->irqstate = NULL;
 422
 423    return 0;
 424}
 425
 426static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
 427{
 428    CPUState *cs = CPU(cpu);
 429
 430    /*
 431     * The reset call is needed here to reset in-kernel vcpu data that
 432     * we can't access directly from QEMU (i.e. with older kernels
 433     * which don't support sync_regs/ONE_REG).  Before this ioctl
 434     * cpu_synchronize_state() is called in common kvm code
 435     * (kvm-all).
 436     */
 437    if (kvm_vcpu_ioctl(cs, type)) {
 438        error_report("CPU reset failed on CPU %i type %lx",
 439                     cs->cpu_index, type);
 440    }
 441}
 442
 443void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
 444{
 445    kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
 446}
 447
 448void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
 449{
 450    if (cap_vcpu_resets) {
 451        kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
 452    } else {
 453        kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
 454    }
 455}
 456
 457void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
 458{
 459    if (cap_vcpu_resets) {
 460        kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
 461    }
 462}
 463
 464static int can_sync_regs(CPUState *cs, int regs)
 465{
 466    return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
 467}
 468
 469int kvm_arch_put_registers(CPUState *cs, int level)
 470{
 471    S390CPU *cpu = S390_CPU(cs);
 472    CPUS390XState *env = &cpu->env;
 473    struct kvm_sregs sregs;
 474    struct kvm_regs regs;
 475    struct kvm_fpu fpu = {};
 476    int r;
 477    int i;
 478
 479    /* always save the PSW  and the GPRS*/
 480    cs->kvm_run->psw_addr = env->psw.addr;
 481    cs->kvm_run->psw_mask = env->psw.mask;
 482
 483    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 484        for (i = 0; i < 16; i++) {
 485            cs->kvm_run->s.regs.gprs[i] = env->regs[i];
 486            cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
 487        }
 488    } else {
 489        for (i = 0; i < 16; i++) {
 490            regs.gprs[i] = env->regs[i];
 491        }
 492        r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 493        if (r < 0) {
 494            return r;
 495        }
 496    }
 497
 498    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 499        for (i = 0; i < 32; i++) {
 500            cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
 501            cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
 502        }
 503        cs->kvm_run->s.regs.fpc = env->fpc;
 504        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
 505    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 506        for (i = 0; i < 16; i++) {
 507            cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
 508        }
 509        cs->kvm_run->s.regs.fpc = env->fpc;
 510        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
 511    } else {
 512        /* Floating point */
 513        for (i = 0; i < 16; i++) {
 514            fpu.fprs[i] = *get_freg(env, i);
 515        }
 516        fpu.fpc = env->fpc;
 517
 518        r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
 519        if (r < 0) {
 520            return r;
 521        }
 522    }
 523
 524    /* Do we need to save more than that? */
 525    if (level == KVM_PUT_RUNTIME_STATE) {
 526        return 0;
 527    }
 528
 529    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 530        cs->kvm_run->s.regs.cputm = env->cputm;
 531        cs->kvm_run->s.regs.ckc = env->ckc;
 532        cs->kvm_run->s.regs.todpr = env->todpr;
 533        cs->kvm_run->s.regs.gbea = env->gbea;
 534        cs->kvm_run->s.regs.pp = env->pp;
 535        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
 536    } else {
 537        /*
 538         * These ONE_REGS are not protected by a capability. As they are only
 539         * necessary for migration we just trace a possible error, but don't
 540         * return with an error return code.
 541         */
 542        kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 543        kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 544        kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 545        kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 546        kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 547    }
 548
 549    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 550        memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
 551        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
 552    }
 553
 554    /* pfault parameters */
 555    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 556        cs->kvm_run->s.regs.pft = env->pfault_token;
 557        cs->kvm_run->s.regs.pfs = env->pfault_select;
 558        cs->kvm_run->s.regs.pfc = env->pfault_compare;
 559        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
 560    } else if (cap_async_pf) {
 561        r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 562        if (r < 0) {
 563            return r;
 564        }
 565        r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 566        if (r < 0) {
 567            return r;
 568        }
 569        r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 570        if (r < 0) {
 571            return r;
 572        }
 573    }
 574
 575    /* access registers and control registers*/
 576    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 577        for (i = 0; i < 16; i++) {
 578            cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
 579            cs->kvm_run->s.regs.crs[i] = env->cregs[i];
 580        }
 581        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
 582        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
 583    } else {
 584        for (i = 0; i < 16; i++) {
 585            sregs.acrs[i] = env->aregs[i];
 586            sregs.crs[i] = env->cregs[i];
 587        }
 588        r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 589        if (r < 0) {
 590            return r;
 591        }
 592    }
 593
 594    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 595        memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
 596        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
 597    }
 598
 599    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 600        cs->kvm_run->s.regs.bpbc = env->bpbc;
 601        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
 602    }
 603
 604    if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
 605        cs->kvm_run->s.regs.etoken = env->etoken;
 606        cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
 607        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
 608    }
 609
 610    if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
 611        cs->kvm_run->s.regs.diag318 = env->diag318_info;
 612        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
 613    }
 614
 615    /* Finally the prefix */
 616    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 617        cs->kvm_run->s.regs.prefix = env->psa;
 618        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
 619    } else {
 620        /* prefix is only supported via sync regs */
 621    }
 622    return 0;
 623}
 624
 625int kvm_arch_get_registers(CPUState *cs)
 626{
 627    S390CPU *cpu = S390_CPU(cs);
 628    CPUS390XState *env = &cpu->env;
 629    struct kvm_sregs sregs;
 630    struct kvm_regs regs;
 631    struct kvm_fpu fpu;
 632    int i, r;
 633
 634    /* get the PSW */
 635    env->psw.addr = cs->kvm_run->psw_addr;
 636    env->psw.mask = cs->kvm_run->psw_mask;
 637
 638    /* the GPRS */
 639    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 640        for (i = 0; i < 16; i++) {
 641            env->regs[i] = cs->kvm_run->s.regs.gprs[i];
 642        }
 643    } else {
 644        r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 645        if (r < 0) {
 646            return r;
 647        }
 648         for (i = 0; i < 16; i++) {
 649            env->regs[i] = regs.gprs[i];
 650        }
 651    }
 652
 653    /* The ACRS and CRS */
 654    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 655        for (i = 0; i < 16; i++) {
 656            env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
 657            env->cregs[i] = cs->kvm_run->s.regs.crs[i];
 658        }
 659    } else {
 660        r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 661        if (r < 0) {
 662            return r;
 663        }
 664         for (i = 0; i < 16; i++) {
 665            env->aregs[i] = sregs.acrs[i];
 666            env->cregs[i] = sregs.crs[i];
 667        }
 668    }
 669
 670    /* Floating point and vector registers */
 671    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 672        for (i = 0; i < 32; i++) {
 673            env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
 674            env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
 675        }
 676        env->fpc = cs->kvm_run->s.regs.fpc;
 677    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 678        for (i = 0; i < 16; i++) {
 679            *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
 680        }
 681        env->fpc = cs->kvm_run->s.regs.fpc;
 682    } else {
 683        r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
 684        if (r < 0) {
 685            return r;
 686        }
 687        for (i = 0; i < 16; i++) {
 688            *get_freg(env, i) = fpu.fprs[i];
 689        }
 690        env->fpc = fpu.fpc;
 691    }
 692
 693    /* The prefix */
 694    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 695        env->psa = cs->kvm_run->s.regs.prefix;
 696    }
 697
 698    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 699        env->cputm = cs->kvm_run->s.regs.cputm;
 700        env->ckc = cs->kvm_run->s.regs.ckc;
 701        env->todpr = cs->kvm_run->s.regs.todpr;
 702        env->gbea = cs->kvm_run->s.regs.gbea;
 703        env->pp = cs->kvm_run->s.regs.pp;
 704    } else {
 705        /*
 706         * These ONE_REGS are not protected by a capability. As they are only
 707         * necessary for migration we just trace a possible error, but don't
 708         * return with an error return code.
 709         */
 710        kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 711        kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 712        kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 713        kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 714        kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 715    }
 716
 717    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 718        memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
 719    }
 720
 721    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 722        memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
 723    }
 724
 725    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 726        env->bpbc = cs->kvm_run->s.regs.bpbc;
 727    }
 728
 729    if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
 730        env->etoken = cs->kvm_run->s.regs.etoken;
 731        env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
 732    }
 733
 734    /* pfault parameters */
 735    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 736        env->pfault_token = cs->kvm_run->s.regs.pft;
 737        env->pfault_select = cs->kvm_run->s.regs.pfs;
 738        env->pfault_compare = cs->kvm_run->s.regs.pfc;
 739    } else if (cap_async_pf) {
 740        r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 741        if (r < 0) {
 742            return r;
 743        }
 744        r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 745        if (r < 0) {
 746            return r;
 747        }
 748        r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 749        if (r < 0) {
 750            return r;
 751        }
 752    }
 753
 754    if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
 755        env->diag318_info = cs->kvm_run->s.regs.diag318;
 756    }
 757
 758    return 0;
 759}
 760
 761int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
 762{
 763    int r;
 764    struct kvm_device_attr attr = {
 765        .group = KVM_S390_VM_TOD,
 766        .attr = KVM_S390_VM_TOD_LOW,
 767        .addr = (uint64_t)tod_low,
 768    };
 769
 770    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 771    if (r) {
 772        return r;
 773    }
 774
 775    attr.attr = KVM_S390_VM_TOD_HIGH;
 776    attr.addr = (uint64_t)tod_high;
 777    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 778}
 779
 780int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
 781{
 782    int r;
 783    struct kvm_s390_vm_tod_clock gtod;
 784    struct kvm_device_attr attr = {
 785        .group = KVM_S390_VM_TOD,
 786        .attr = KVM_S390_VM_TOD_EXT,
 787        .addr = (uint64_t)&gtod,
 788    };
 789
 790    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 791    *tod_high = gtod.epoch_idx;
 792    *tod_low  = gtod.tod;
 793
 794    return r;
 795}
 796
 797int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
 798{
 799    int r;
 800    struct kvm_device_attr attr = {
 801        .group = KVM_S390_VM_TOD,
 802        .attr = KVM_S390_VM_TOD_LOW,
 803        .addr = (uint64_t)&tod_low,
 804    };
 805
 806    r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 807    if (r) {
 808        return r;
 809    }
 810
 811    attr.attr = KVM_S390_VM_TOD_HIGH;
 812    attr.addr = (uint64_t)&tod_high;
 813    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 814}
 815
 816int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
 817{
 818    struct kvm_s390_vm_tod_clock gtod = {
 819        .epoch_idx = tod_high,
 820        .tod  = tod_low,
 821    };
 822    struct kvm_device_attr attr = {
 823        .group = KVM_S390_VM_TOD,
 824        .attr = KVM_S390_VM_TOD_EXT,
 825        .addr = (uint64_t)&gtod,
 826    };
 827
 828    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 829}
 830
 831/**
 832 * kvm_s390_mem_op:
 833 * @addr:      the logical start address in guest memory
 834 * @ar:        the access register number
 835 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 836 * @len:       length that should be transferred
 837 * @is_write:  true = write, false = read
 838 * Returns:    0 on success, non-zero if an exception or error occurred
 839 *
 840 * Use KVM ioctl to read/write from/to guest memory. An access exception
 841 * is injected into the vCPU in case of translation errors.
 842 */
 843int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
 844                    int len, bool is_write)
 845{
 846    struct kvm_s390_mem_op mem_op = {
 847        .gaddr = addr,
 848        .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
 849        .size = len,
 850        .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
 851                       : KVM_S390_MEMOP_LOGICAL_READ,
 852        .buf = (uint64_t)hostbuf,
 853        .ar = ar,
 854        .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
 855    };
 856    int ret;
 857
 858    if (!cap_mem_op) {
 859        return -ENOSYS;
 860    }
 861    if (!hostbuf) {
 862        mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 863    }
 864    if (mem_op_storage_key_support) {
 865        mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
 866    }
 867
 868    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 869    if (ret < 0) {
 870        warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
 871    }
 872    return ret;
 873}
 874
 875int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
 876                       int len, bool is_write)
 877{
 878    struct kvm_s390_mem_op mem_op = {
 879        .sida_offset = offset,
 880        .size = len,
 881        .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
 882                       : KVM_S390_MEMOP_SIDA_READ,
 883        .buf = (uint64_t)hostbuf,
 884    };
 885    int ret;
 886
 887    if (!cap_mem_op || !cap_protected) {
 888        return -ENOSYS;
 889    }
 890
 891    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 892    if (ret < 0) {
 893        error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
 894        abort();
 895    }
 896    return ret;
 897}
 898
 899static uint8_t const *sw_bp_inst;
 900static uint8_t sw_bp_ilen;
 901
 902static void determine_sw_breakpoint_instr(void)
 903{
 904        /* DIAG 501 is used for sw breakpoints with old kernels */
 905        static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
 906        /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
 907        static const uint8_t instr_0x0000[] = {0x00, 0x00};
 908
 909        if (sw_bp_inst) {
 910            return;
 911        }
 912        if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
 913            sw_bp_inst = diag_501;
 914            sw_bp_ilen = sizeof(diag_501);
 915            DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
 916        } else {
 917            sw_bp_inst = instr_0x0000;
 918            sw_bp_ilen = sizeof(instr_0x0000);
 919            DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
 920        }
 921}
 922
 923int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 924{
 925    determine_sw_breakpoint_instr();
 926
 927    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 928                            sw_bp_ilen, 0) ||
 929        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
 930        return -EINVAL;
 931    }
 932    return 0;
 933}
 934
 935int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 936{
 937    uint8_t t[MAX_ILEN];
 938
 939    if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
 940        return -EINVAL;
 941    } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
 942        return -EINVAL;
 943    } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 944                                   sw_bp_ilen, 1)) {
 945        return -EINVAL;
 946    }
 947
 948    return 0;
 949}
 950
 951static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
 952                                                    int len, int type)
 953{
 954    int n;
 955
 956    for (n = 0; n < nb_hw_breakpoints; n++) {
 957        if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
 958            (hw_breakpoints[n].len == len || len == -1)) {
 959            return &hw_breakpoints[n];
 960        }
 961    }
 962
 963    return NULL;
 964}
 965
 966static int insert_hw_breakpoint(target_ulong addr, int len, int type)
 967{
 968    int size;
 969
 970    if (find_hw_breakpoint(addr, len, type)) {
 971        return -EEXIST;
 972    }
 973
 974    size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
 975
 976    if (!hw_breakpoints) {
 977        nb_hw_breakpoints = 0;
 978        hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
 979    } else {
 980        hw_breakpoints =
 981            (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
 982    }
 983
 984    if (!hw_breakpoints) {
 985        nb_hw_breakpoints = 0;
 986        return -ENOMEM;
 987    }
 988
 989    hw_breakpoints[nb_hw_breakpoints].addr = addr;
 990    hw_breakpoints[nb_hw_breakpoints].len = len;
 991    hw_breakpoints[nb_hw_breakpoints].type = type;
 992
 993    nb_hw_breakpoints++;
 994
 995    return 0;
 996}
 997
 998int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 999                                  target_ulong len, int type)
1000{
1001    switch (type) {
1002    case GDB_BREAKPOINT_HW:
1003        type = KVM_HW_BP;
1004        break;
1005    case GDB_WATCHPOINT_WRITE:
1006        if (len < 1) {
1007            return -EINVAL;
1008        }
1009        type = KVM_HW_WP_WRITE;
1010        break;
1011    default:
1012        return -ENOSYS;
1013    }
1014    return insert_hw_breakpoint(addr, len, type);
1015}
1016
1017int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1018                                  target_ulong len, int type)
1019{
1020    int size;
1021    struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1022
1023    if (bp == NULL) {
1024        return -ENOENT;
1025    }
1026
1027    nb_hw_breakpoints--;
1028    if (nb_hw_breakpoints > 0) {
1029        /*
1030         * In order to trim the array, move the last element to the position to
1031         * be removed - if necessary.
1032         */
1033        if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1034            *bp = hw_breakpoints[nb_hw_breakpoints];
1035        }
1036        size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1037        hw_breakpoints =
1038             g_realloc(hw_breakpoints, size);
1039    } else {
1040        g_free(hw_breakpoints);
1041        hw_breakpoints = NULL;
1042    }
1043
1044    return 0;
1045}
1046
1047void kvm_arch_remove_all_hw_breakpoints(void)
1048{
1049    nb_hw_breakpoints = 0;
1050    g_free(hw_breakpoints);
1051    hw_breakpoints = NULL;
1052}
1053
1054void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1055{
1056    int i;
1057
1058    if (nb_hw_breakpoints > 0) {
1059        dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1060        dbg->arch.hw_bp = hw_breakpoints;
1061
1062        for (i = 0; i < nb_hw_breakpoints; ++i) {
1063            hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1064                                                       hw_breakpoints[i].addr);
1065        }
1066        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1067    } else {
1068        dbg->arch.nr_hw_bp = 0;
1069        dbg->arch.hw_bp = NULL;
1070    }
1071}
1072
1073void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1074{
1075}
1076
1077MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1078{
1079    return MEMTXATTRS_UNSPECIFIED;
1080}
1081
1082int kvm_arch_process_async_events(CPUState *cs)
1083{
1084    return cs->halted;
1085}
1086
1087static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1088                                     struct kvm_s390_interrupt *interrupt)
1089{
1090    int r = 0;
1091
1092    interrupt->type = irq->type;
1093    switch (irq->type) {
1094    case KVM_S390_INT_VIRTIO:
1095        interrupt->parm = irq->u.ext.ext_params;
1096        /* fall through */
1097    case KVM_S390_INT_PFAULT_INIT:
1098    case KVM_S390_INT_PFAULT_DONE:
1099        interrupt->parm64 = irq->u.ext.ext_params2;
1100        break;
1101    case KVM_S390_PROGRAM_INT:
1102        interrupt->parm = irq->u.pgm.code;
1103        break;
1104    case KVM_S390_SIGP_SET_PREFIX:
1105        interrupt->parm = irq->u.prefix.address;
1106        break;
1107    case KVM_S390_INT_SERVICE:
1108        interrupt->parm = irq->u.ext.ext_params;
1109        break;
1110    case KVM_S390_MCHK:
1111        interrupt->parm = irq->u.mchk.cr14;
1112        interrupt->parm64 = irq->u.mchk.mcic;
1113        break;
1114    case KVM_S390_INT_EXTERNAL_CALL:
1115        interrupt->parm = irq->u.extcall.code;
1116        break;
1117    case KVM_S390_INT_EMERGENCY:
1118        interrupt->parm = irq->u.emerg.code;
1119        break;
1120    case KVM_S390_SIGP_STOP:
1121    case KVM_S390_RESTART:
1122        break; /* These types have no parameters */
1123    case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1124        interrupt->parm = irq->u.io.subchannel_id << 16;
1125        interrupt->parm |= irq->u.io.subchannel_nr;
1126        interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1127        interrupt->parm64 |= irq->u.io.io_int_word;
1128        break;
1129    default:
1130        r = -EINVAL;
1131        break;
1132    }
1133    return r;
1134}
1135
1136static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1137{
1138    struct kvm_s390_interrupt kvmint = {};
1139    int r;
1140
1141    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1142    if (r < 0) {
1143        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1144        exit(1);
1145    }
1146
1147    r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1148    if (r < 0) {
1149        fprintf(stderr, "KVM failed to inject interrupt\n");
1150        exit(1);
1151    }
1152}
1153
1154void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1155{
1156    CPUState *cs = CPU(cpu);
1157    int r;
1158
1159    if (cap_s390_irq) {
1160        r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1161        if (!r) {
1162            return;
1163        }
1164        error_report("KVM failed to inject interrupt %llx", irq->type);
1165        exit(1);
1166    }
1167
1168    inject_vcpu_irq_legacy(cs, irq);
1169}
1170
1171void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1172{
1173    struct kvm_s390_interrupt kvmint = {};
1174    int r;
1175
1176    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1177    if (r < 0) {
1178        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1179        exit(1);
1180    }
1181
1182    r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1183    if (r < 0) {
1184        fprintf(stderr, "KVM failed to inject interrupt\n");
1185        exit(1);
1186    }
1187}
1188
1189void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1190{
1191    struct kvm_s390_irq irq = {
1192        .type = KVM_S390_PROGRAM_INT,
1193        .u.pgm.code = code,
1194    };
1195    qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1196                  cpu->env.psw.addr);
1197    kvm_s390_vcpu_interrupt(cpu, &irq);
1198}
1199
1200void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1201{
1202    struct kvm_s390_irq irq = {
1203        .type = KVM_S390_PROGRAM_INT,
1204        .u.pgm.code = code,
1205        .u.pgm.trans_exc_code = te_code,
1206        .u.pgm.exc_access_id = te_code & 3,
1207    };
1208
1209    kvm_s390_vcpu_interrupt(cpu, &irq);
1210}
1211
1212static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1213                                 uint16_t ipbh0)
1214{
1215    CPUS390XState *env = &cpu->env;
1216    uint64_t sccb;
1217    uint32_t code;
1218    int r;
1219
1220    sccb = env->regs[ipbh0 & 0xf];
1221    code = env->regs[(ipbh0 & 0xf0) >> 4];
1222
1223    switch (run->s390_sieic.icptcode) {
1224    case ICPT_PV_INSTR_NOTIFICATION:
1225        g_assert(s390_is_pv());
1226        /* The notification intercepts are currently handled by KVM */
1227        error_report("unexpected SCLP PV notification");
1228        exit(1);
1229        break;
1230    case ICPT_PV_INSTR:
1231        g_assert(s390_is_pv());
1232        sclp_service_call_protected(env, sccb, code);
1233        /* Setting the CC is done by the Ultravisor. */
1234        break;
1235    case ICPT_INSTRUCTION:
1236        g_assert(!s390_is_pv());
1237        r = sclp_service_call(env, sccb, code);
1238        if (r < 0) {
1239            kvm_s390_program_interrupt(cpu, -r);
1240            return;
1241        }
1242        setcc(cpu, r);
1243    }
1244}
1245
1246static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1247{
1248    CPUS390XState *env = &cpu->env;
1249    int rc = 0;
1250    uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1251
1252    switch (ipa1) {
1253    case PRIV_B2_XSCH:
1254        ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1255        break;
1256    case PRIV_B2_CSCH:
1257        ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1258        break;
1259    case PRIV_B2_HSCH:
1260        ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1261        break;
1262    case PRIV_B2_MSCH:
1263        ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1264        break;
1265    case PRIV_B2_SSCH:
1266        ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1267        break;
1268    case PRIV_B2_STCRW:
1269        ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1270        break;
1271    case PRIV_B2_STSCH:
1272        ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1273        break;
1274    case PRIV_B2_TSCH:
1275        /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1276        fprintf(stderr, "Spurious tsch intercept\n");
1277        break;
1278    case PRIV_B2_CHSC:
1279        ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1280        break;
1281    case PRIV_B2_TPI:
1282        /* This should have been handled by kvm already. */
1283        fprintf(stderr, "Spurious tpi intercept\n");
1284        break;
1285    case PRIV_B2_SCHM:
1286        ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1287                           run->s390_sieic.ipb, RA_IGNORED);
1288        break;
1289    case PRIV_B2_RSCH:
1290        ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1291        break;
1292    case PRIV_B2_RCHP:
1293        ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1294        break;
1295    case PRIV_B2_STCPS:
1296        /* We do not provide this instruction, it is suppressed. */
1297        break;
1298    case PRIV_B2_SAL:
1299        ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1300        break;
1301    case PRIV_B2_SIGA:
1302        /* Not provided, set CC = 3 for subchannel not operational */
1303        setcc(cpu, 3);
1304        break;
1305    case PRIV_B2_SCLP_CALL:
1306        kvm_sclp_service_call(cpu, run, ipbh0);
1307        break;
1308    default:
1309        rc = -1;
1310        DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1311        break;
1312    }
1313
1314    return rc;
1315}
1316
1317static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1318                                  uint8_t *ar)
1319{
1320    CPUS390XState *env = &cpu->env;
1321    uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1322    uint32_t base2 = run->s390_sieic.ipb >> 28;
1323    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1324                     ((run->s390_sieic.ipb & 0xff00) << 4);
1325
1326    if (disp2 & 0x80000) {
1327        disp2 += 0xfff00000;
1328    }
1329    if (ar) {
1330        *ar = base2;
1331    }
1332
1333    return (base2 ? env->regs[base2] : 0) +
1334           (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1335}
1336
1337static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1338                                  uint8_t *ar)
1339{
1340    CPUS390XState *env = &cpu->env;
1341    uint32_t base2 = run->s390_sieic.ipb >> 28;
1342    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1343                     ((run->s390_sieic.ipb & 0xff00) << 4);
1344
1345    if (disp2 & 0x80000) {
1346        disp2 += 0xfff00000;
1347    }
1348    if (ar) {
1349        *ar = base2;
1350    }
1351
1352    return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1353}
1354
1355static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1356{
1357    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1358
1359    if (s390_has_feat(S390_FEAT_ZPCI)) {
1360        return clp_service_call(cpu, r2, RA_IGNORED);
1361    } else {
1362        return -1;
1363    }
1364}
1365
1366static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1367{
1368    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1369    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1370
1371    if (s390_has_feat(S390_FEAT_ZPCI)) {
1372        return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1373    } else {
1374        return -1;
1375    }
1376}
1377
1378static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1379{
1380    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1381    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1382
1383    if (s390_has_feat(S390_FEAT_ZPCI)) {
1384        return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1385    } else {
1386        return -1;
1387    }
1388}
1389
1390static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1391{
1392    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1393    uint64_t fiba;
1394    uint8_t ar;
1395
1396    if (s390_has_feat(S390_FEAT_ZPCI)) {
1397        fiba = get_base_disp_rxy(cpu, run, &ar);
1398
1399        return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1400    } else {
1401        return -1;
1402    }
1403}
1404
1405static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1406{
1407    CPUS390XState *env = &cpu->env;
1408    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1409    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1410    uint8_t isc;
1411    uint16_t mode;
1412    int r;
1413
1414    mode = env->regs[r1] & 0xffff;
1415    isc = (env->regs[r3] >> 27) & 0x7;
1416    r = css_do_sic(env, isc, mode);
1417    if (r) {
1418        kvm_s390_program_interrupt(cpu, -r);
1419    }
1420
1421    return 0;
1422}
1423
1424static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1425{
1426    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1427    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1428
1429    if (s390_has_feat(S390_FEAT_ZPCI)) {
1430        return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1431    } else {
1432        return -1;
1433    }
1434}
1435
1436static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1437{
1438    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1439    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1440    uint64_t gaddr;
1441    uint8_t ar;
1442
1443    if (s390_has_feat(S390_FEAT_ZPCI)) {
1444        gaddr = get_base_disp_rsy(cpu, run, &ar);
1445
1446        return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1447    } else {
1448        return -1;
1449    }
1450}
1451
1452static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1453{
1454    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1455    uint64_t fiba;
1456    uint8_t ar;
1457
1458    if (s390_has_feat(S390_FEAT_ZPCI)) {
1459        fiba = get_base_disp_rxy(cpu, run, &ar);
1460
1461        return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1462    } else {
1463        return -1;
1464    }
1465}
1466
1467static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1468{
1469    int r = 0;
1470
1471    switch (ipa1) {
1472    case PRIV_B9_CLP:
1473        r = kvm_clp_service_call(cpu, run);
1474        break;
1475    case PRIV_B9_PCISTG:
1476        r = kvm_pcistg_service_call(cpu, run);
1477        break;
1478    case PRIV_B9_PCILG:
1479        r = kvm_pcilg_service_call(cpu, run);
1480        break;
1481    case PRIV_B9_RPCIT:
1482        r = kvm_rpcit_service_call(cpu, run);
1483        break;
1484    case PRIV_B9_EQBS:
1485        /* just inject exception */
1486        r = -1;
1487        break;
1488    default:
1489        r = -1;
1490        DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1491        break;
1492    }
1493
1494    return r;
1495}
1496
1497static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1498{
1499    int r = 0;
1500
1501    switch (ipbl) {
1502    case PRIV_EB_PCISTB:
1503        r = kvm_pcistb_service_call(cpu, run);
1504        break;
1505    case PRIV_EB_SIC:
1506        r = kvm_sic_service_call(cpu, run);
1507        break;
1508    case PRIV_EB_SQBS:
1509        /* just inject exception */
1510        r = -1;
1511        break;
1512    default:
1513        r = -1;
1514        DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1515        break;
1516    }
1517
1518    return r;
1519}
1520
1521static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1522{
1523    int r = 0;
1524
1525    switch (ipbl) {
1526    case PRIV_E3_MPCIFC:
1527        r = kvm_mpcifc_service_call(cpu, run);
1528        break;
1529    case PRIV_E3_STPCIFC:
1530        r = kvm_stpcifc_service_call(cpu, run);
1531        break;
1532    default:
1533        r = -1;
1534        DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1535        break;
1536    }
1537
1538    return r;
1539}
1540
1541static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1542{
1543    CPUS390XState *env = &cpu->env;
1544    int ret;
1545
1546    ret = s390_virtio_hypercall(env);
1547    if (ret == -EINVAL) {
1548        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1549        return 0;
1550    }
1551
1552    return ret;
1553}
1554
1555static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1556{
1557    uint64_t r1, r3;
1558    int rc;
1559
1560    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1561    r3 = run->s390_sieic.ipa & 0x000f;
1562    rc = handle_diag_288(&cpu->env, r1, r3);
1563    if (rc) {
1564        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1565    }
1566}
1567
1568static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1569{
1570    uint64_t r1, r3;
1571
1572    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1573    r3 = run->s390_sieic.ipa & 0x000f;
1574    handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1575}
1576
1577static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1578{
1579    CPUS390XState *env = &cpu->env;
1580    unsigned long pc;
1581
1582    pc = env->psw.addr - sw_bp_ilen;
1583    if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1584        env->psw.addr = pc;
1585        return EXCP_DEBUG;
1586    }
1587
1588    return -ENOENT;
1589}
1590
1591void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1592{
1593    CPUS390XState *env = &S390_CPU(cs)->env;
1594
1595    /* Feat bit is set only if KVM supports sync for diag318 */
1596    if (s390_has_feat(S390_FEAT_DIAG_318)) {
1597        env->diag318_info = diag318_info;
1598        cs->kvm_run->s.regs.diag318 = diag318_info;
1599        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1600        /*
1601         * diag 318 info is zeroed during a clear reset and
1602         * diag 308 IPL subcodes.
1603         */
1604    }
1605}
1606
1607static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1608{
1609    uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1610    uint64_t diag318_info = run->s.regs.gprs[reg];
1611    CPUState *t;
1612
1613    /*
1614     * DIAG 318 can only be enabled with KVM support. As such, let's
1615     * ensure a guest cannot execute this instruction erroneously.
1616     */
1617    if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1618        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1619        return;
1620    }
1621
1622    CPU_FOREACH(t) {
1623        run_on_cpu(t, s390_do_cpu_set_diag318,
1624                   RUN_ON_CPU_HOST_ULONG(diag318_info));
1625    }
1626}
1627
1628#define DIAG_KVM_CODE_MASK 0x000000000000ffff
1629
1630static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1631{
1632    int r = 0;
1633    uint16_t func_code;
1634
1635    /*
1636     * For any diagnose call we support, bits 48-63 of the resulting
1637     * address specify the function code; the remainder is ignored.
1638     */
1639    func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1640    switch (func_code) {
1641    case DIAG_TIMEREVENT:
1642        kvm_handle_diag_288(cpu, run);
1643        break;
1644    case DIAG_IPL:
1645        kvm_handle_diag_308(cpu, run);
1646        break;
1647    case DIAG_SET_CONTROL_PROGRAM_CODES:
1648        handle_diag_318(cpu, run);
1649        break;
1650    case DIAG_KVM_HYPERCALL:
1651        r = handle_hypercall(cpu, run);
1652        break;
1653    case DIAG_KVM_BREAKPOINT:
1654        r = handle_sw_breakpoint(cpu, run);
1655        break;
1656    default:
1657        DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1658        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1659        break;
1660    }
1661
1662    return r;
1663}
1664
1665static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1666{
1667    CPUS390XState *env = &cpu->env;
1668    const uint8_t r1 = ipa1 >> 4;
1669    const uint8_t r3 = ipa1 & 0x0f;
1670    int ret;
1671    uint8_t order;
1672
1673    /* get order code */
1674    order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1675
1676    ret = handle_sigp(env, order, r1, r3);
1677    setcc(cpu, ret);
1678    return 0;
1679}
1680
1681static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1682{
1683    unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1684    uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1685    int r = -1;
1686
1687    DPRINTF("handle_instruction 0x%x 0x%x\n",
1688            run->s390_sieic.ipa, run->s390_sieic.ipb);
1689    switch (ipa0) {
1690    case IPA0_B2:
1691        r = handle_b2(cpu, run, ipa1);
1692        break;
1693    case IPA0_B9:
1694        r = handle_b9(cpu, run, ipa1);
1695        break;
1696    case IPA0_EB:
1697        r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1698        break;
1699    case IPA0_E3:
1700        r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1701        break;
1702    case IPA0_DIAG:
1703        r = handle_diag(cpu, run, run->s390_sieic.ipb);
1704        break;
1705    case IPA0_SIGP:
1706        r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1707        break;
1708    }
1709
1710    if (r < 0) {
1711        r = 0;
1712        kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1713    }
1714
1715    return r;
1716}
1717
1718static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1719                                   int pswoffset)
1720{
1721    CPUState *cs = CPU(cpu);
1722
1723    s390_cpu_halt(cpu);
1724    cpu->env.crash_reason = reason;
1725    qemu_system_guest_panicked(cpu_get_crash_info(cs));
1726}
1727
1728/* try to detect pgm check loops */
1729static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1730{
1731    CPUState *cs = CPU(cpu);
1732    PSW oldpsw, newpsw;
1733
1734    newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1735                           offsetof(LowCore, program_new_psw));
1736    newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1737                           offsetof(LowCore, program_new_psw) + 8);
1738    oldpsw.mask  = run->psw_mask;
1739    oldpsw.addr  = run->psw_addr;
1740    /*
1741     * Avoid endless loops of operation exceptions, if the pgm new
1742     * PSW will cause a new operation exception.
1743     * The heuristic checks if the pgm new psw is within 6 bytes before
1744     * the faulting psw address (with same DAT, AS settings) and the
1745     * new psw is not a wait psw and the fault was not triggered by
1746     * problem state. In that case go into crashed state.
1747     */
1748
1749    if (oldpsw.addr - newpsw.addr <= 6 &&
1750        !(newpsw.mask & PSW_MASK_WAIT) &&
1751        !(oldpsw.mask & PSW_MASK_PSTATE) &&
1752        (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1753        (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1754        unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1755                               offsetof(LowCore, program_new_psw));
1756        return EXCP_HALTED;
1757    }
1758    return 0;
1759}
1760
1761static int handle_intercept(S390CPU *cpu)
1762{
1763    CPUState *cs = CPU(cpu);
1764    struct kvm_run *run = cs->kvm_run;
1765    int icpt_code = run->s390_sieic.icptcode;
1766    int r = 0;
1767
1768    DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr);
1769    switch (icpt_code) {
1770        case ICPT_INSTRUCTION:
1771        case ICPT_PV_INSTR:
1772        case ICPT_PV_INSTR_NOTIFICATION:
1773            r = handle_instruction(cpu, run);
1774            break;
1775        case ICPT_PROGRAM:
1776            unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1777                                   offsetof(LowCore, program_new_psw));
1778            r = EXCP_HALTED;
1779            break;
1780        case ICPT_EXT_INT:
1781            unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1782                                   offsetof(LowCore, external_new_psw));
1783            r = EXCP_HALTED;
1784            break;
1785        case ICPT_WAITPSW:
1786            /* disabled wait, since enabled wait is handled in kernel */
1787            s390_handle_wait(cpu);
1788            r = EXCP_HALTED;
1789            break;
1790        case ICPT_CPU_STOP:
1791            do_stop_interrupt(&cpu->env);
1792            r = EXCP_HALTED;
1793            break;
1794        case ICPT_OPEREXC:
1795            /* check for break points */
1796            r = handle_sw_breakpoint(cpu, run);
1797            if (r == -ENOENT) {
1798                /* Then check for potential pgm check loops */
1799                r = handle_oper_loop(cpu, run);
1800                if (r == 0) {
1801                    kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1802                }
1803            }
1804            break;
1805        case ICPT_SOFT_INTERCEPT:
1806            fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1807            exit(1);
1808            break;
1809        case ICPT_IO:
1810            fprintf(stderr, "KVM unimplemented icpt IO\n");
1811            exit(1);
1812            break;
1813        default:
1814            fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1815            exit(1);
1816            break;
1817    }
1818
1819    return r;
1820}
1821
1822static int handle_tsch(S390CPU *cpu)
1823{
1824    CPUState *cs = CPU(cpu);
1825    struct kvm_run *run = cs->kvm_run;
1826    int ret;
1827
1828    ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1829                             RA_IGNORED);
1830    if (ret < 0) {
1831        /*
1832         * Failure.
1833         * If an I/O interrupt had been dequeued, we have to reinject it.
1834         */
1835        if (run->s390_tsch.dequeued) {
1836            s390_io_interrupt(run->s390_tsch.subchannel_id,
1837                              run->s390_tsch.subchannel_nr,
1838                              run->s390_tsch.io_int_parm,
1839                              run->s390_tsch.io_int_word);
1840        }
1841        ret = 0;
1842    }
1843    return ret;
1844}
1845
1846static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1847{
1848    const MachineState *ms = MACHINE(qdev_get_machine());
1849    uint16_t conf_cpus = 0, reserved_cpus = 0;
1850    SysIB_322 sysib;
1851    int del, i;
1852
1853    if (s390_is_pv()) {
1854        s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1855    } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1856        return;
1857    }
1858    /* Shift the stack of Extended Names to prepare for our own data */
1859    memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1860            sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1861    /* First virt level, that doesn't provide Ext Names delimits stack. It is
1862     * assumed it's not capable of managing Extended Names for lower levels.
1863     */
1864    for (del = 1; del < sysib.count; del++) {
1865        if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1866            break;
1867        }
1868    }
1869    if (del < sysib.count) {
1870        memset(sysib.ext_names[del], 0,
1871               sizeof(sysib.ext_names[0]) * (sysib.count - del));
1872    }
1873
1874    /* count the cpus and split them into configured and reserved ones */
1875    for (i = 0; i < ms->possible_cpus->len; i++) {
1876        if (ms->possible_cpus->cpus[i].cpu) {
1877            conf_cpus++;
1878        } else {
1879            reserved_cpus++;
1880        }
1881    }
1882    sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1883    sysib.vm[0].conf_cpus = conf_cpus;
1884    sysib.vm[0].reserved_cpus = reserved_cpus;
1885
1886    /* Insert short machine name in EBCDIC, padded with blanks */
1887    if (qemu_name) {
1888        memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1889        ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1890                                                    strlen(qemu_name)));
1891    }
1892    sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1893    /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1894     * considered by s390 as not capable of providing any Extended Name.
1895     * Therefore if no name was specified on qemu invocation, we go with the
1896     * same "KVMguest" default, which KVM has filled into short name field.
1897     */
1898    strpadcpy((char *)sysib.ext_names[0],
1899              sizeof(sysib.ext_names[0]),
1900              qemu_name ?: "KVMguest", '\0');
1901
1902    /* Insert UUID */
1903    memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1904
1905    if (s390_is_pv()) {
1906        s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1907    } else {
1908        s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1909    }
1910}
1911
1912static int handle_stsi(S390CPU *cpu)
1913{
1914    CPUState *cs = CPU(cpu);
1915    struct kvm_run *run = cs->kvm_run;
1916
1917    switch (run->s390_stsi.fc) {
1918    case 3:
1919        if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1920            return 0;
1921        }
1922        /* Only sysib 3.2.2 needs post-handling for now. */
1923        insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1924        return 0;
1925    default:
1926        return 0;
1927    }
1928}
1929
1930static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1931{
1932    CPUState *cs = CPU(cpu);
1933    struct kvm_run *run = cs->kvm_run;
1934
1935    int ret = 0;
1936    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1937
1938    switch (arch_info->type) {
1939    case KVM_HW_WP_WRITE:
1940        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1941            cs->watchpoint_hit = &hw_watchpoint;
1942            hw_watchpoint.vaddr = arch_info->addr;
1943            hw_watchpoint.flags = BP_MEM_WRITE;
1944            ret = EXCP_DEBUG;
1945        }
1946        break;
1947    case KVM_HW_BP:
1948        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1949            ret = EXCP_DEBUG;
1950        }
1951        break;
1952    case KVM_SINGLESTEP:
1953        if (cs->singlestep_enabled) {
1954            ret = EXCP_DEBUG;
1955        }
1956        break;
1957    default:
1958        ret = -ENOSYS;
1959    }
1960
1961    return ret;
1962}
1963
1964int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1965{
1966    S390CPU *cpu = S390_CPU(cs);
1967    int ret = 0;
1968
1969    qemu_mutex_lock_iothread();
1970
1971    kvm_cpu_synchronize_state(cs);
1972
1973    switch (run->exit_reason) {
1974        case KVM_EXIT_S390_SIEIC:
1975            ret = handle_intercept(cpu);
1976            break;
1977        case KVM_EXIT_S390_RESET:
1978            s390_ipl_reset_request(cs, S390_RESET_REIPL);
1979            break;
1980        case KVM_EXIT_S390_TSCH:
1981            ret = handle_tsch(cpu);
1982            break;
1983        case KVM_EXIT_S390_STSI:
1984            ret = handle_stsi(cpu);
1985            break;
1986        case KVM_EXIT_DEBUG:
1987            ret = kvm_arch_handle_debug_exit(cpu);
1988            break;
1989        default:
1990            fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1991            break;
1992    }
1993    qemu_mutex_unlock_iothread();
1994
1995    if (ret == 0) {
1996        ret = EXCP_INTERRUPT;
1997    }
1998    return ret;
1999}
2000
2001bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2002{
2003    return true;
2004}
2005
2006void kvm_s390_enable_css_support(S390CPU *cpu)
2007{
2008    int r;
2009
2010    /* Activate host kernel channel subsystem support. */
2011    r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2012    assert(r == 0);
2013}
2014
2015void kvm_arch_init_irq_routing(KVMState *s)
2016{
2017    /*
2018     * Note that while irqchip capabilities generally imply that cpustates
2019     * are handled in-kernel, it is not true for s390 (yet); therefore, we
2020     * have to override the common code kvm_halt_in_kernel_allowed setting.
2021     */
2022    if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2023        kvm_gsi_routing_allowed = true;
2024        kvm_halt_in_kernel_allowed = false;
2025    }
2026}
2027
2028int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2029                                    int vq, bool assign)
2030{
2031    struct kvm_ioeventfd kick = {
2032        .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2033        KVM_IOEVENTFD_FLAG_DATAMATCH,
2034        .fd = event_notifier_get_fd(notifier),
2035        .datamatch = vq,
2036        .addr = sch,
2037        .len = 8,
2038    };
2039    trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2040                                     kick.datamatch);
2041    if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2042        return -ENOSYS;
2043    }
2044    if (!assign) {
2045        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2046    }
2047    return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2048}
2049
2050int kvm_s390_get_protected_dump(void)
2051{
2052    return cap_protected_dump;
2053}
2054
2055int kvm_s390_get_ri(void)
2056{
2057    return cap_ri;
2058}
2059
2060int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2061{
2062    struct kvm_mp_state mp_state = {};
2063    int ret;
2064
2065    /* the kvm part might not have been initialized yet */
2066    if (CPU(cpu)->kvm_state == NULL) {
2067        return 0;
2068    }
2069
2070    switch (cpu_state) {
2071    case S390_CPU_STATE_STOPPED:
2072        mp_state.mp_state = KVM_MP_STATE_STOPPED;
2073        break;
2074    case S390_CPU_STATE_CHECK_STOP:
2075        mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2076        break;
2077    case S390_CPU_STATE_OPERATING:
2078        mp_state.mp_state = KVM_MP_STATE_OPERATING;
2079        break;
2080    case S390_CPU_STATE_LOAD:
2081        mp_state.mp_state = KVM_MP_STATE_LOAD;
2082        break;
2083    default:
2084        error_report("Requested CPU state is not a valid S390 CPU state: %u",
2085                     cpu_state);
2086        exit(1);
2087    }
2088
2089    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2090    if (ret) {
2091        trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2092                                       strerror(-ret));
2093    }
2094
2095    return ret;
2096}
2097
2098void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2099{
2100    unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2101    struct kvm_s390_irq_state irq_state = {
2102        .buf = (uint64_t) cpu->irqstate,
2103        .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2104    };
2105    CPUState *cs = CPU(cpu);
2106    int32_t bytes;
2107
2108    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2109        return;
2110    }
2111
2112    bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2113    if (bytes < 0) {
2114        cpu->irqstate_saved_size = 0;
2115        error_report("Migration of interrupt state failed");
2116        return;
2117    }
2118
2119    cpu->irqstate_saved_size = bytes;
2120}
2121
2122int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2123{
2124    CPUState *cs = CPU(cpu);
2125    struct kvm_s390_irq_state irq_state = {
2126        .buf = (uint64_t) cpu->irqstate,
2127        .len = cpu->irqstate_saved_size,
2128    };
2129    int r;
2130
2131    if (cpu->irqstate_saved_size == 0) {
2132        return 0;
2133    }
2134
2135    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2136        return -ENOSYS;
2137    }
2138
2139    r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2140    if (r) {
2141        error_report("Setting interrupt state failed %d", r);
2142    }
2143    return r;
2144}
2145
2146int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2147                             uint64_t address, uint32_t data, PCIDevice *dev)
2148{
2149    S390PCIBusDevice *pbdev;
2150    uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2151
2152    if (!dev) {
2153        DPRINTF("add_msi_route no pci device\n");
2154        return -ENODEV;
2155    }
2156
2157    pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2158    if (!pbdev) {
2159        DPRINTF("add_msi_route no zpci device\n");
2160        return -ENODEV;
2161    }
2162
2163    route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2164    route->flags = 0;
2165    route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2166    route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2167    route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2168    route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2169    route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2170    return 0;
2171}
2172
2173int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2174                                int vector, PCIDevice *dev)
2175{
2176    return 0;
2177}
2178
2179int kvm_arch_release_virq_post(int virq)
2180{
2181    return 0;
2182}
2183
2184int kvm_arch_msi_data_to_gsi(uint32_t data)
2185{
2186    abort();
2187}
2188
2189static int query_cpu_subfunc(S390FeatBitmap features)
2190{
2191    struct kvm_s390_vm_cpu_subfunc prop = {};
2192    struct kvm_device_attr attr = {
2193        .group = KVM_S390_VM_CPU_MODEL,
2194        .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2195        .addr = (uint64_t) &prop,
2196    };
2197    int rc;
2198
2199    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2200    if (rc) {
2201        return  rc;
2202    }
2203
2204    /*
2205     * We're going to add all subfunctions now, if the corresponding feature
2206     * is available that unlocks the query functions.
2207     */
2208    s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2209    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2210        s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2211    }
2212    if (test_bit(S390_FEAT_MSA, features)) {
2213        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2214        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2215        s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2216        s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2217        s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2218    }
2219    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2220        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2221    }
2222    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2223        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2224        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2225        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2226        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2227    }
2228    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2229        s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2230    }
2231    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2232        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2233    }
2234    if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2235        s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2236    }
2237    if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2238        s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2239    }
2240    if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2241        s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2242    }
2243    return 0;
2244}
2245
2246static int configure_cpu_subfunc(const S390FeatBitmap features)
2247{
2248    struct kvm_s390_vm_cpu_subfunc prop = {};
2249    struct kvm_device_attr attr = {
2250        .group = KVM_S390_VM_CPU_MODEL,
2251        .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2252        .addr = (uint64_t) &prop,
2253    };
2254
2255    if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2256                           KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2257        /* hardware support might be missing, IBC will handle most of this */
2258        return 0;
2259    }
2260
2261    s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2262    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2263        s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2264    }
2265    if (test_bit(S390_FEAT_MSA, features)) {
2266        s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2267        s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2268        s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2269        s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2270        s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2271    }
2272    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2273        s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2274    }
2275    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2276        s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2277        s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2278        s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2279        s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2280    }
2281    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2282        s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2283    }
2284    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2285        s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2286    }
2287    if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2288        s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2289    }
2290    if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2291        s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2292    }
2293    if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2294        s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2295    }
2296    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2297}
2298
2299static int kvm_to_feat[][2] = {
2300    { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2301    { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2302    { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2303    { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2304    { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2305    { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2306    { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2307    { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2308    { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2309    { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2310    { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2311    { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2312    { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2313    { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2314};
2315
2316static int query_cpu_feat(S390FeatBitmap features)
2317{
2318    struct kvm_s390_vm_cpu_feat prop = {};
2319    struct kvm_device_attr attr = {
2320        .group = KVM_S390_VM_CPU_MODEL,
2321        .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2322        .addr = (uint64_t) &prop,
2323    };
2324    int rc;
2325    int i;
2326
2327    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2328    if (rc) {
2329        return  rc;
2330    }
2331
2332    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2333        if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2334            set_bit(kvm_to_feat[i][1], features);
2335        }
2336    }
2337    return 0;
2338}
2339
2340static int configure_cpu_feat(const S390FeatBitmap features)
2341{
2342    struct kvm_s390_vm_cpu_feat prop = {};
2343    struct kvm_device_attr attr = {
2344        .group = KVM_S390_VM_CPU_MODEL,
2345        .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2346        .addr = (uint64_t) &prop,
2347    };
2348    int i;
2349
2350    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2351        if (test_bit(kvm_to_feat[i][1], features)) {
2352            set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2353        }
2354    }
2355    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2356}
2357
2358bool kvm_s390_cpu_models_supported(void)
2359{
2360    if (!cpu_model_allowed()) {
2361        /* compatibility machines interfere with the cpu model */
2362        return false;
2363    }
2364    return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2365                             KVM_S390_VM_CPU_MACHINE) &&
2366           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2367                             KVM_S390_VM_CPU_PROCESSOR) &&
2368           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2369                             KVM_S390_VM_CPU_MACHINE_FEAT) &&
2370           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2371                             KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2372           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2373                             KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2374}
2375
2376void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2377{
2378    struct kvm_s390_vm_cpu_machine prop = {};
2379    struct kvm_device_attr attr = {
2380        .group = KVM_S390_VM_CPU_MODEL,
2381        .attr = KVM_S390_VM_CPU_MACHINE,
2382        .addr = (uint64_t) &prop,
2383    };
2384    uint16_t unblocked_ibc = 0, cpu_type = 0;
2385    int rc;
2386
2387    memset(model, 0, sizeof(*model));
2388
2389    if (!kvm_s390_cpu_models_supported()) {
2390        error_setg(errp, "KVM doesn't support CPU models");
2391        return;
2392    }
2393
2394    /* query the basic cpu model properties */
2395    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2396    if (rc) {
2397        error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2398        return;
2399    }
2400
2401    cpu_type = cpuid_type(prop.cpuid);
2402    if (has_ibc(prop.ibc)) {
2403        model->lowest_ibc = lowest_ibc(prop.ibc);
2404        unblocked_ibc = unblocked_ibc(prop.ibc);
2405    }
2406    model->cpu_id = cpuid_id(prop.cpuid);
2407    model->cpu_id_format = cpuid_format(prop.cpuid);
2408    model->cpu_ver = 0xff;
2409
2410    /* get supported cpu features indicated via STFL(E) */
2411    s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2412                             (uint8_t *) prop.fac_mask);
2413    /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2414    if (test_bit(S390_FEAT_STFLE, model->features)) {
2415        set_bit(S390_FEAT_DAT_ENH_2, model->features);
2416    }
2417    /* get supported cpu features indicated e.g. via SCLP */
2418    rc = query_cpu_feat(model->features);
2419    if (rc) {
2420        error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2421        return;
2422    }
2423    /* get supported cpu subfunctions indicated via query / test bit */
2424    rc = query_cpu_subfunc(model->features);
2425    if (rc) {
2426        error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2427        return;
2428    }
2429
2430    /* PTFF subfunctions might be indicated although kernel support missing */
2431    if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2432        clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2433        clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2434        clear_bit(S390_FEAT_PTFF_STOE, model->features);
2435        clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2436    }
2437
2438    /* with cpu model support, CMM is only indicated if really available */
2439    if (kvm_s390_cmma_available()) {
2440        set_bit(S390_FEAT_CMM, model->features);
2441    } else {
2442        /* no cmm -> no cmm nt */
2443        clear_bit(S390_FEAT_CMM_NT, model->features);
2444    }
2445
2446    /* bpb needs kernel support for migration, VSIE and reset */
2447    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2448        clear_bit(S390_FEAT_BPB, model->features);
2449    }
2450
2451    /*
2452     * If we have support for protected virtualization, indicate
2453     * the protected virtualization IPL unpack facility.
2454     */
2455    if (cap_protected) {
2456        set_bit(S390_FEAT_UNPACK, model->features);
2457    }
2458
2459    /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2460    set_bit(S390_FEAT_ZPCI, model->features);
2461    set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2462
2463    if (s390_known_cpu_type(cpu_type)) {
2464        /* we want the exact model, even if some features are missing */
2465        model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2466                                       ibc_ec_ga(unblocked_ibc), NULL);
2467    } else {
2468        /* model unknown, e.g. too new - search using features */
2469        model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2470                                       ibc_ec_ga(unblocked_ibc),
2471                                       model->features);
2472    }
2473    if (!model->def) {
2474        error_setg(errp, "KVM: host CPU model could not be identified");
2475        return;
2476    }
2477    /* for now, we can only provide the AP feature with HW support */
2478    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2479        KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2480        set_bit(S390_FEAT_AP, model->features);
2481    }
2482
2483    /*
2484     * Extended-Length SCCB is handled entirely within QEMU.
2485     * For PV guests this is completely fenced by the Ultravisor, as Service
2486     * Call error checking and STFLE interpretation are handled via SIE.
2487     */
2488    set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2489
2490    if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2491        set_bit(S390_FEAT_DIAG_318, model->features);
2492    }
2493
2494    /* strip of features that are not part of the maximum model */
2495    bitmap_and(model->features, model->features, model->def->full_feat,
2496               S390_FEAT_MAX);
2497}
2498
2499static void kvm_s390_configure_apie(bool interpret)
2500{
2501    uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2502                                KVM_S390_VM_CRYPTO_DISABLE_APIE;
2503
2504    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2505        kvm_s390_set_attr(attr);
2506    }
2507}
2508
2509void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2510{
2511    struct kvm_s390_vm_cpu_processor prop  = {
2512        .fac_list = { 0 },
2513    };
2514    struct kvm_device_attr attr = {
2515        .group = KVM_S390_VM_CPU_MODEL,
2516        .attr = KVM_S390_VM_CPU_PROCESSOR,
2517        .addr = (uint64_t) &prop,
2518    };
2519    int rc;
2520
2521    if (!model) {
2522        /* compatibility handling if cpu models are disabled */
2523        if (kvm_s390_cmma_available()) {
2524            kvm_s390_enable_cmma();
2525        }
2526        return;
2527    }
2528    if (!kvm_s390_cpu_models_supported()) {
2529        error_setg(errp, "KVM doesn't support CPU models");
2530        return;
2531    }
2532    prop.cpuid = s390_cpuid_from_cpu_model(model);
2533    prop.ibc = s390_ibc_from_cpu_model(model);
2534    /* configure cpu features indicated via STFL(e) */
2535    s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2536                         (uint8_t *) prop.fac_list);
2537    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2538    if (rc) {
2539        error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2540        return;
2541    }
2542    /* configure cpu features indicated e.g. via SCLP */
2543    rc = configure_cpu_feat(model->features);
2544    if (rc) {
2545        error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2546        return;
2547    }
2548    /* configure cpu subfunctions indicated via query / test bit */
2549    rc = configure_cpu_subfunc(model->features);
2550    if (rc) {
2551        error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2552        return;
2553    }
2554    /* enable CMM via CMMA */
2555    if (test_bit(S390_FEAT_CMM, model->features)) {
2556        kvm_s390_enable_cmma();
2557    }
2558
2559    if (test_bit(S390_FEAT_AP, model->features)) {
2560        kvm_s390_configure_apie(true);
2561    }
2562}
2563
2564void kvm_s390_restart_interrupt(S390CPU *cpu)
2565{
2566    struct kvm_s390_irq irq = {
2567        .type = KVM_S390_RESTART,
2568    };
2569
2570    kvm_s390_vcpu_interrupt(cpu, &irq);
2571}
2572
2573void kvm_s390_stop_interrupt(S390CPU *cpu)
2574{
2575    struct kvm_s390_irq irq = {
2576        .type = KVM_S390_SIGP_STOP,
2577    };
2578
2579    kvm_s390_vcpu_interrupt(cpu, &irq);
2580}
2581
2582bool kvm_arch_cpu_check_are_resettable(void)
2583{
2584    return true;
2585}
2586
2587int kvm_s390_get_zpci_op(void)
2588{
2589    return cap_zpci_op;
2590}
2591
2592void kvm_arch_accel_class_init(ObjectClass *oc)
2593{
2594}
2595