qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "qemu/units.h"
  26#include "sysemu/block-backend.h"
  27#include "hw/qdev-properties.h"
  28#include "hw/qdev-properties-system.h"
  29#include "hw/ssi/ssi.h"
  30#include "migration/vmstate.h"
  31#include "qemu/bitops.h"
  32#include "qemu/log.h"
  33#include "qemu/module.h"
  34#include "qemu/error-report.h"
  35#include "qapi/error.h"
  36#include "trace.h"
  37#include "qom/object.h"
  38#include "m25p80_sfdp.h"
  39
  40/* 16 MiB max in 3 byte address mode */
  41#define MAX_3BYTES_SIZE 0x1000000
  42#define SPI_NOR_MAX_ID_LEN 6
  43
  44/* Fields for FlashPartInfo->flags */
  45enum spi_flash_option_flags {
  46    ER_4K                  = BIT(0),
  47    ER_32K                 = BIT(1),
  48    EEPROM                 = BIT(2),
  49    HAS_SR_TB              = BIT(3),
  50    HAS_SR_BP3_BIT6        = BIT(4),
  51};
  52
  53typedef struct FlashPartInfo {
  54    const char *part_name;
  55    /*
  56     * This array stores the ID bytes.
  57     * The first three bytes are the JEDIC ID.
  58     * JEDEC ID zero means "no ID" (mostly older chips).
  59     */
  60    uint8_t id[SPI_NOR_MAX_ID_LEN];
  61    uint8_t id_len;
  62    /* there is confusion between manufacturers as to what a sector is. In this
  63     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  64     * command (opcode 0xd8).
  65     */
  66    uint32_t sector_size;
  67    uint32_t n_sectors;
  68    uint32_t page_size;
  69    uint16_t flags;
  70    /*
  71     * Big sized spi nor are often stacked devices, thus sometime
  72     * replace chip erase with die erase.
  73     * This field inform how many die is in the chip.
  74     */
  75    uint8_t die_cnt;
  76    uint8_t (*sfdp_read)(uint32_t sfdp_addr);
  77} FlashPartInfo;
  78
  79/* adapted from linux */
  80/* Used when the "_ext_id" is two bytes at most */
  81#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  82    .part_name = _part_name,\
  83    .id = {\
  84        ((_jedec_id) >> 16) & 0xff,\
  85        ((_jedec_id) >> 8) & 0xff,\
  86        (_jedec_id) & 0xff,\
  87        ((_ext_id) >> 8) & 0xff,\
  88        (_ext_id) & 0xff,\
  89          },\
  90    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  91    .sector_size = (_sector_size),\
  92    .n_sectors = (_n_sectors),\
  93    .page_size = 256,\
  94    .flags = (_flags),\
  95    .die_cnt = 0
  96
  97#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  98    .part_name = _part_name,\
  99    .id = {\
 100        ((_jedec_id) >> 16) & 0xff,\
 101        ((_jedec_id) >> 8) & 0xff,\
 102        (_jedec_id) & 0xff,\
 103        ((_ext_id) >> 16) & 0xff,\
 104        ((_ext_id) >> 8) & 0xff,\
 105        (_ext_id) & 0xff,\
 106          },\
 107    .id_len = 6,\
 108    .sector_size = (_sector_size),\
 109    .n_sectors = (_n_sectors),\
 110    .page_size = 256,\
 111    .flags = (_flags),\
 112    .die_cnt = 0
 113
 114#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
 115                    _flags, _die_cnt)\
 116    .part_name = _part_name,\
 117    .id = {\
 118        ((_jedec_id) >> 16) & 0xff,\
 119        ((_jedec_id) >> 8) & 0xff,\
 120        (_jedec_id) & 0xff,\
 121        ((_ext_id) >> 8) & 0xff,\
 122        (_ext_id) & 0xff,\
 123          },\
 124    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
 125    .sector_size = (_sector_size),\
 126    .n_sectors = (_n_sectors),\
 127    .page_size = 256,\
 128    .flags = (_flags),\
 129    .die_cnt = _die_cnt
 130
 131#define JEDEC_NUMONYX 0x20
 132#define JEDEC_WINBOND 0xEF
 133#define JEDEC_SPANSION 0x01
 134
 135/* Numonyx (Micron) Configuration register macros */
 136#define VCFG_DUMMY 0x1
 137#define VCFG_WRAP_SEQUENTIAL 0x2
 138#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 139#define NVCFG_XIP_MODE_MASK (7 << 9)
 140#define VCFG_XIP_MODE_DISABLED (1 << 3)
 141#define CFG_DUMMY_CLK_LEN 4
 142#define NVCFG_DUMMY_CLK_POS 12
 143#define VCFG_DUMMY_CLK_POS 4
 144#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
 145#define EVCFG_VPP_ACCELERATOR (1 << 3)
 146#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 147#define NVCFG_DUAL_IO_MASK (1 << 2)
 148#define EVCFG_DUAL_IO_DISABLED (1 << 6)
 149#define NVCFG_QUAD_IO_MASK (1 << 3)
 150#define EVCFG_QUAD_IO_DISABLED (1 << 7)
 151#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 152#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 153
 154/* Numonyx (Micron) Flag Status Register macros */
 155#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 156#define FSR_FLASH_READY (1 << 7)
 157
 158/* Spansion configuration registers macros. */
 159#define SPANSION_QUAD_CFG_POS 0
 160#define SPANSION_QUAD_CFG_LEN 1
 161#define SPANSION_DUMMY_CLK_POS 0
 162#define SPANSION_DUMMY_CLK_LEN 4
 163#define SPANSION_ADDR_LEN_POS 7
 164#define SPANSION_ADDR_LEN_LEN 1
 165
 166/*
 167 * Spansion read mode command length in bytes,
 168 * the mode is currently not supported.
 169*/
 170
 171#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 172#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 173
 174static const FlashPartInfo known_devices[] = {
 175    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 176    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 177    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 178
 179    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 180    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 181    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 182
 183    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 184    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 185    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 186    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 187
 188    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 189
 190    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 191     * is set to 0. Block protection is not supported.
 192     */
 193    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 194    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 195
 196    /* EON -- en25xxx */
 197    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 198    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 199    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 200    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 201    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 202
 203    /* GigaDevice */
 204    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 205    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 206
 207    /* Intel/Numonyx -- xxxs33b */
 208    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 209    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 210    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 211    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 212
 213    /* ISSI */
 214    { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
 215    { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
 216    { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
 217    { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
 218    { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
 219    { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
 220    { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
 221    { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
 222    { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
 223    { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
 224    { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
 225
 226    /* Macronix */
 227    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 228    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 229    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 230    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 231    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 232    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 233    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 234    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 235    { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
 236            ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
 237    { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
 238            ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
 239    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 240    { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 241    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 242    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 243    { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
 244      .sfdp_read = m25p80_sfdp_mx66l1g45g },
 245
 246    /* Micron */
 247    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 248    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 249    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 250    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 251    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 252    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 253    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 254    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
 255      .sfdp_read = m25p80_sfdp_n25q256a },
 256    { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
 257    { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 258    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 259    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
 260           ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
 261      .sfdp_read = m25p80_sfdp_n25q256a },
 262   { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 263    { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
 264    { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
 265    { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
 266                   ER_4K | ER_32K, 2) },
 267    { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 268    { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 269    { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 270    { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 271    { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
 272    { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
 273
 274    /* Spansion -- single (large) sector size only, at least
 275     * for the chips listed here (without boot sectors).
 276     */
 277    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 278    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 279    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 280    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 281    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 282    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 283    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 284    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 285    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 286    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 287    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 288    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 289    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 290    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 291    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 292    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 293    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 294
 295    /* Spansion --  boot sectors support  */
 296    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 297    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 298
 299    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 300    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 301    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 302    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 303    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 304    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 305    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 306    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 307    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 308    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 309
 310    /* ST Microelectronics -- newer production may have feature updates */
 311    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 312    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 313    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 314    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 315    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 316    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 317    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 318    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 319    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 320    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 321
 322    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 323    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 324    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 325
 326    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 327    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 328    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 329
 330    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 331    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 332    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 333    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 334
 335    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 336    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 337    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 338    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 339    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 340    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 341    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 342    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 343    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 344    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 345    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 346    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 347    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 348    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
 349      .sfdp_read = m25p80_sfdp_w25q256 },
 350    { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
 351      .sfdp_read = m25p80_sfdp_w25q512jv },
 352    { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
 353      .sfdp_read = m25p80_sfdp_w25q01jvq },
 354};
 355
 356typedef enum {
 357    NOP = 0,
 358    WRSR = 0x1,
 359    WRDI = 0x4,
 360    RDSR = 0x5,
 361    WREN = 0x6,
 362    BRRD = 0x16,
 363    BRWR = 0x17,
 364    JEDEC_READ = 0x9f,
 365    BULK_ERASE_60 = 0x60,
 366    BULK_ERASE = 0xc7,
 367    READ_FSR = 0x70,
 368    RDCR = 0x15,
 369    RDSFDP = 0x5a,
 370
 371    READ = 0x03,
 372    READ4 = 0x13,
 373    FAST_READ = 0x0b,
 374    FAST_READ4 = 0x0c,
 375    DOR = 0x3b,
 376    DOR4 = 0x3c,
 377    QOR = 0x6b,
 378    QOR4 = 0x6c,
 379    DIOR = 0xbb,
 380    DIOR4 = 0xbc,
 381    QIOR = 0xeb,
 382    QIOR4 = 0xec,
 383
 384    PP = 0x02,
 385    PP4 = 0x12,
 386    PP4_4 = 0x3e,
 387    DPP = 0xa2,
 388    QPP = 0x32,
 389    QPP_4 = 0x34,
 390    RDID_90 = 0x90,
 391    RDID_AB = 0xab,
 392    AAI_WP = 0xad,
 393
 394    ERASE_4K = 0x20,
 395    ERASE4_4K = 0x21,
 396    ERASE_32K = 0x52,
 397    ERASE4_32K = 0x5c,
 398    ERASE_SECTOR = 0xd8,
 399    ERASE4_SECTOR = 0xdc,
 400
 401    EN_4BYTE_ADDR = 0xB7,
 402    EX_4BYTE_ADDR = 0xE9,
 403
 404    EXTEND_ADDR_READ = 0xC8,
 405    EXTEND_ADDR_WRITE = 0xC5,
 406
 407    RESET_ENABLE = 0x66,
 408    RESET_MEMORY = 0x99,
 409
 410    /*
 411     * Micron: 0x35 - enable QPI
 412     * Spansion: 0x35 - read control register
 413     */
 414    RDCR_EQIO = 0x35,
 415    RSTQIO = 0xf5,
 416
 417    RNVCR = 0xB5,
 418    WNVCR = 0xB1,
 419
 420    RVCR = 0x85,
 421    WVCR = 0x81,
 422
 423    REVCR = 0x65,
 424    WEVCR = 0x61,
 425
 426    DIE_ERASE = 0xC4,
 427} FlashCMD;
 428
 429typedef enum {
 430    STATE_IDLE,
 431    STATE_PAGE_PROGRAM,
 432    STATE_READ,
 433    STATE_COLLECTING_DATA,
 434    STATE_COLLECTING_VAR_LEN_DATA,
 435    STATE_READING_DATA,
 436    STATE_READING_SFDP,
 437} CMDState;
 438
 439typedef enum {
 440    MAN_SPANSION,
 441    MAN_MACRONIX,
 442    MAN_NUMONYX,
 443    MAN_WINBOND,
 444    MAN_SST,
 445    MAN_ISSI,
 446    MAN_GENERIC,
 447} Manufacturer;
 448
 449typedef enum {
 450    MODE_STD = 0,
 451    MODE_DIO = 1,
 452    MODE_QIO = 2
 453} SPIMode;
 454
 455#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
 456
 457struct Flash {
 458    SSIPeripheral parent_obj;
 459
 460    BlockBackend *blk;
 461
 462    uint8_t *storage;
 463    uint32_t size;
 464    int page_size;
 465
 466    uint8_t state;
 467    uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
 468    uint32_t len;
 469    uint32_t pos;
 470    bool data_read_loop;
 471    uint8_t needed_bytes;
 472    uint8_t cmd_in_progress;
 473    uint32_t cur_addr;
 474    uint32_t nonvolatile_cfg;
 475    /* Configuration register for Macronix */
 476    uint32_t volatile_cfg;
 477    uint32_t enh_volatile_cfg;
 478    /* Spansion cfg registers. */
 479    uint8_t spansion_cr1nv;
 480    uint8_t spansion_cr2nv;
 481    uint8_t spansion_cr3nv;
 482    uint8_t spansion_cr4nv;
 483    uint8_t spansion_cr1v;
 484    uint8_t spansion_cr2v;
 485    uint8_t spansion_cr3v;
 486    uint8_t spansion_cr4v;
 487    bool wp_level;
 488    bool write_enable;
 489    bool four_bytes_address_mode;
 490    bool reset_enable;
 491    bool quad_enable;
 492    bool aai_enable;
 493    bool block_protect0;
 494    bool block_protect1;
 495    bool block_protect2;
 496    bool block_protect3;
 497    bool top_bottom_bit;
 498    bool status_register_write_disabled;
 499    uint8_t ear;
 500
 501    int64_t dirty_page;
 502
 503    const FlashPartInfo *pi;
 504
 505};
 506
 507struct M25P80Class {
 508    SSIPeripheralClass parent_class;
 509    FlashPartInfo *pi;
 510};
 511
 512#define TYPE_M25P80 "m25p80-generic"
 513OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
 514
 515static inline Manufacturer get_man(Flash *s)
 516{
 517    switch (s->pi->id[0]) {
 518    case 0x20:
 519        return MAN_NUMONYX;
 520    case 0xEF:
 521        return MAN_WINBOND;
 522    case 0x01:
 523        return MAN_SPANSION;
 524    case 0xC2:
 525        return MAN_MACRONIX;
 526    case 0xBF:
 527        return MAN_SST;
 528    case 0x9D:
 529        return MAN_ISSI;
 530    default:
 531        return MAN_GENERIC;
 532    }
 533}
 534
 535static void blk_sync_complete(void *opaque, int ret)
 536{
 537    QEMUIOVector *iov = opaque;
 538
 539    qemu_iovec_destroy(iov);
 540    g_free(iov);
 541
 542    /* do nothing. Masters do not directly interact with the backing store,
 543     * only the working copy so no mutexing required.
 544     */
 545}
 546
 547static void flash_sync_page(Flash *s, int page)
 548{
 549    QEMUIOVector *iov;
 550
 551    if (!s->blk || !blk_is_writable(s->blk)) {
 552        return;
 553    }
 554
 555    iov = g_new(QEMUIOVector, 1);
 556    qemu_iovec_init(iov, 1);
 557    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 558                   s->pi->page_size);
 559    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 560                    blk_sync_complete, iov);
 561}
 562
 563static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 564{
 565    QEMUIOVector *iov;
 566
 567    if (!s->blk || !blk_is_writable(s->blk)) {
 568        return;
 569    }
 570
 571    assert(!(len % BDRV_SECTOR_SIZE));
 572    iov = g_new(QEMUIOVector, 1);
 573    qemu_iovec_init(iov, 1);
 574    qemu_iovec_add(iov, s->storage + off, len);
 575    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 576}
 577
 578static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 579{
 580    uint32_t len;
 581    uint8_t capa_to_assert = 0;
 582
 583    switch (cmd) {
 584    case ERASE_4K:
 585    case ERASE4_4K:
 586        len = 4 * KiB;
 587        capa_to_assert = ER_4K;
 588        break;
 589    case ERASE_32K:
 590    case ERASE4_32K:
 591        len = 32 * KiB;
 592        capa_to_assert = ER_32K;
 593        break;
 594    case ERASE_SECTOR:
 595    case ERASE4_SECTOR:
 596        len = s->pi->sector_size;
 597        break;
 598    case BULK_ERASE:
 599        len = s->size;
 600        break;
 601    case DIE_ERASE:
 602        if (s->pi->die_cnt) {
 603            len = s->size / s->pi->die_cnt;
 604            offset = offset & (~(len - 1));
 605        } else {
 606            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
 607                          " by device\n");
 608            return;
 609        }
 610        break;
 611    default:
 612        abort();
 613    }
 614
 615    trace_m25p80_flash_erase(s, offset, len);
 616
 617    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 618        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 619                      " device\n", len);
 620    }
 621
 622    if (!s->write_enable) {
 623        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 624        return;
 625    }
 626    memset(s->storage + offset, 0xff, len);
 627    flash_sync_area(s, offset, len);
 628}
 629
 630static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 631{
 632    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 633        flash_sync_page(s, s->dirty_page);
 634        s->dirty_page = newpage;
 635    }
 636}
 637
 638static inline
 639void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 640{
 641    uint32_t page = addr / s->pi->page_size;
 642    uint8_t prev = s->storage[s->cur_addr];
 643    uint32_t block_protect_value = (s->block_protect3 << 3) |
 644                                   (s->block_protect2 << 2) |
 645                                   (s->block_protect1 << 1) |
 646                                   (s->block_protect0 << 0);
 647
 648    if (!s->write_enable) {
 649        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 650        return;
 651    }
 652
 653    if (block_protect_value > 0) {
 654        uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
 655        uint32_t sector = addr / s->pi->sector_size;
 656
 657        /* top_bottom_bit == 0 means TOP */
 658        if (!s->top_bottom_bit) {
 659            if (s->pi->n_sectors <= sector + num_protected_sectors) {
 660                qemu_log_mask(LOG_GUEST_ERROR,
 661                              "M25P80: write with write protect!\n");
 662                return;
 663            }
 664        } else {
 665            if (sector < num_protected_sectors) {
 666                qemu_log_mask(LOG_GUEST_ERROR,
 667                              "M25P80: write with write protect!\n");
 668                return;
 669            }
 670        }
 671    }
 672
 673    if ((prev ^ data) & data) {
 674        trace_m25p80_programming_zero_to_one(s, addr, prev, data);
 675    }
 676
 677    if (s->pi->flags & EEPROM) {
 678        s->storage[s->cur_addr] = data;
 679    } else {
 680        s->storage[s->cur_addr] &= data;
 681    }
 682
 683    flash_sync_dirty(s, page);
 684    s->dirty_page = page;
 685}
 686
 687static inline int get_addr_length(Flash *s)
 688{
 689   /* check if eeprom is in use */
 690    if (s->pi->flags == EEPROM) {
 691        return 2;
 692    }
 693
 694   switch (s->cmd_in_progress) {
 695   case RDSFDP:
 696       return 3;
 697   case PP4:
 698   case PP4_4:
 699   case QPP_4:
 700   case READ4:
 701   case QIOR4:
 702   case ERASE4_4K:
 703   case ERASE4_32K:
 704   case ERASE4_SECTOR:
 705   case FAST_READ4:
 706   case DOR4:
 707   case QOR4:
 708   case DIOR4:
 709       return 4;
 710   default:
 711       return s->four_bytes_address_mode ? 4 : 3;
 712   }
 713}
 714
 715static void complete_collecting_data(Flash *s)
 716{
 717    int i, n;
 718
 719    n = get_addr_length(s);
 720    s->cur_addr = (n == 3 ? s->ear : 0);
 721    for (i = 0; i < n; ++i) {
 722        s->cur_addr <<= 8;
 723        s->cur_addr |= s->data[i];
 724    }
 725
 726    s->cur_addr &= s->size - 1;
 727
 728    s->state = STATE_IDLE;
 729
 730    trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
 731                                     s->cur_addr);
 732
 733    switch (s->cmd_in_progress) {
 734    case DPP:
 735    case QPP:
 736    case QPP_4:
 737    case PP:
 738    case PP4:
 739    case PP4_4:
 740        s->state = STATE_PAGE_PROGRAM;
 741        break;
 742    case AAI_WP:
 743        /* AAI programming starts from the even address */
 744        s->cur_addr &= ~BIT(0);
 745        s->state = STATE_PAGE_PROGRAM;
 746        break;
 747    case READ:
 748    case READ4:
 749    case FAST_READ:
 750    case FAST_READ4:
 751    case DOR:
 752    case DOR4:
 753    case QOR:
 754    case QOR4:
 755    case DIOR:
 756    case DIOR4:
 757    case QIOR:
 758    case QIOR4:
 759        s->state = STATE_READ;
 760        break;
 761    case ERASE_4K:
 762    case ERASE4_4K:
 763    case ERASE_32K:
 764    case ERASE4_32K:
 765    case ERASE_SECTOR:
 766    case ERASE4_SECTOR:
 767    case DIE_ERASE:
 768        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 769        break;
 770    case WRSR:
 771        s->status_register_write_disabled = extract32(s->data[0], 7, 1);
 772        s->block_protect0 = extract32(s->data[0], 2, 1);
 773        s->block_protect1 = extract32(s->data[0], 3, 1);
 774        s->block_protect2 = extract32(s->data[0], 4, 1);
 775        if (s->pi->flags & HAS_SR_TB) {
 776            s->top_bottom_bit = extract32(s->data[0], 5, 1);
 777        }
 778        if (s->pi->flags & HAS_SR_BP3_BIT6) {
 779            s->block_protect3 = extract32(s->data[0], 6, 1);
 780        }
 781
 782        switch (get_man(s)) {
 783        case MAN_SPANSION:
 784            s->quad_enable = !!(s->data[1] & 0x02);
 785            break;
 786        case MAN_ISSI:
 787            s->quad_enable = extract32(s->data[0], 6, 1);
 788            break;
 789        case MAN_MACRONIX:
 790            s->quad_enable = extract32(s->data[0], 6, 1);
 791            if (s->len > 1) {
 792                s->volatile_cfg = s->data[1];
 793                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 794            }
 795            break;
 796        default:
 797            break;
 798        }
 799        if (s->write_enable) {
 800            s->write_enable = false;
 801        }
 802        break;
 803    case BRWR:
 804    case EXTEND_ADDR_WRITE:
 805        s->ear = s->data[0];
 806        break;
 807    case WNVCR:
 808        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 809        break;
 810    case WVCR:
 811        s->volatile_cfg = s->data[0];
 812        break;
 813    case WEVCR:
 814        s->enh_volatile_cfg = s->data[0];
 815        break;
 816    case RDID_90:
 817    case RDID_AB:
 818        if (get_man(s) == MAN_SST) {
 819            if (s->cur_addr <= 1) {
 820                if (s->cur_addr) {
 821                    s->data[0] = s->pi->id[2];
 822                    s->data[1] = s->pi->id[0];
 823                } else {
 824                    s->data[0] = s->pi->id[0];
 825                    s->data[1] = s->pi->id[2];
 826                }
 827                s->pos = 0;
 828                s->len = 2;
 829                s->data_read_loop = true;
 830                s->state = STATE_READING_DATA;
 831            } else {
 832                qemu_log_mask(LOG_GUEST_ERROR,
 833                              "M25P80: Invalid read id address\n");
 834            }
 835        } else {
 836            qemu_log_mask(LOG_GUEST_ERROR,
 837                          "M25P80: Read id (command 0x90/0xAB) is not supported"
 838                          " by device\n");
 839        }
 840        break;
 841
 842    case RDSFDP:
 843        s->state = STATE_READING_SFDP;
 844        break;
 845
 846    default:
 847        break;
 848    }
 849}
 850
 851static void reset_memory(Flash *s)
 852{
 853    s->cmd_in_progress = NOP;
 854    s->cur_addr = 0;
 855    s->ear = 0;
 856    s->four_bytes_address_mode = false;
 857    s->len = 0;
 858    s->needed_bytes = 0;
 859    s->pos = 0;
 860    s->state = STATE_IDLE;
 861    s->write_enable = false;
 862    s->reset_enable = false;
 863    s->quad_enable = false;
 864    s->aai_enable = false;
 865
 866    switch (get_man(s)) {
 867    case MAN_NUMONYX:
 868        s->volatile_cfg = 0;
 869        s->volatile_cfg |= VCFG_DUMMY;
 870        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 871        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 872                                == NVCFG_XIP_MODE_DISABLED) {
 873            s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
 874        }
 875        s->volatile_cfg |= deposit32(s->volatile_cfg,
 876                            VCFG_DUMMY_CLK_POS,
 877                            CFG_DUMMY_CLK_LEN,
 878                            extract32(s->nonvolatile_cfg,
 879                                        NVCFG_DUMMY_CLK_POS,
 880                                        CFG_DUMMY_CLK_LEN)
 881                            );
 882
 883        s->enh_volatile_cfg = 0;
 884        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
 885        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 886        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 887        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 888            s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
 889        }
 890        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 891            s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
 892        }
 893        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 894            s->four_bytes_address_mode = true;
 895        }
 896        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 897            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 898        }
 899        break;
 900    case MAN_MACRONIX:
 901        s->volatile_cfg = 0x7;
 902        break;
 903    case MAN_SPANSION:
 904        s->spansion_cr1v = s->spansion_cr1nv;
 905        s->spansion_cr2v = s->spansion_cr2nv;
 906        s->spansion_cr3v = s->spansion_cr3nv;
 907        s->spansion_cr4v = s->spansion_cr4nv;
 908        s->quad_enable = extract32(s->spansion_cr1v,
 909                                   SPANSION_QUAD_CFG_POS,
 910                                   SPANSION_QUAD_CFG_LEN
 911                                   );
 912        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 913                SPANSION_ADDR_LEN_POS,
 914                SPANSION_ADDR_LEN_LEN
 915                );
 916        break;
 917    default:
 918        break;
 919    }
 920
 921    trace_m25p80_reset_done(s);
 922}
 923
 924static uint8_t numonyx_mode(Flash *s)
 925{
 926    if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
 927        return MODE_QIO;
 928    } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
 929        return MODE_DIO;
 930    } else {
 931        return MODE_STD;
 932    }
 933}
 934
 935static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
 936{
 937    uint8_t num_dummies;
 938    uint8_t mode;
 939    assert(get_man(s) == MAN_NUMONYX);
 940
 941    mode = numonyx_mode(s);
 942    num_dummies = extract32(s->volatile_cfg, 4, 4);
 943
 944    if (num_dummies == 0x0 || num_dummies == 0xf) {
 945        switch (s->cmd_in_progress) {
 946        case QIOR:
 947        case QIOR4:
 948            num_dummies = 10;
 949            break;
 950        default:
 951            num_dummies = (mode == MODE_QIO) ? 10 : 8;
 952            break;
 953        }
 954    }
 955
 956    return num_dummies;
 957}
 958
 959static void decode_fast_read_cmd(Flash *s)
 960{
 961    s->needed_bytes = get_addr_length(s);
 962    switch (get_man(s)) {
 963    /* Dummy cycles - modeled with bytes writes instead of bits */
 964    case MAN_SST:
 965        s->needed_bytes += 1;
 966        break;
 967    case MAN_WINBOND:
 968        s->needed_bytes += 8;
 969        break;
 970    case MAN_NUMONYX:
 971        s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
 972        break;
 973    case MAN_MACRONIX:
 974        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 975            s->needed_bytes += 6;
 976        } else {
 977            s->needed_bytes += 8;
 978        }
 979        break;
 980    case MAN_SPANSION:
 981        s->needed_bytes += extract32(s->spansion_cr2v,
 982                                    SPANSION_DUMMY_CLK_POS,
 983                                    SPANSION_DUMMY_CLK_LEN
 984                                    );
 985        break;
 986    case MAN_ISSI:
 987        /*
 988         * The Fast Read instruction code is followed by address bytes and
 989         * dummy cycles, transmitted via the SI line.
 990         *
 991         * The number of dummy cycles is configurable but this is currently
 992         * unmodeled, hence the default value 8 is used.
 993         *
 994         * QPI (Quad Peripheral Interface) mode has different default value
 995         * of dummy cycles, but this is unsupported at the time being.
 996         */
 997        s->needed_bytes += 1;
 998        break;
 999    default:
1000        break;
1001    }
1002    s->pos = 0;
1003    s->len = 0;
1004    s->state = STATE_COLLECTING_DATA;
1005}
1006
1007static void decode_dio_read_cmd(Flash *s)
1008{
1009    s->needed_bytes = get_addr_length(s);
1010    /* Dummy cycles modeled with bytes writes instead of bits */
1011    switch (get_man(s)) {
1012    case MAN_WINBOND:
1013        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1014        break;
1015    case MAN_SPANSION:
1016        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1017        s->needed_bytes += extract32(s->spansion_cr2v,
1018                                    SPANSION_DUMMY_CLK_POS,
1019                                    SPANSION_DUMMY_CLK_LEN
1020                                    );
1021        break;
1022    case MAN_NUMONYX:
1023        s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1024        break;
1025    case MAN_MACRONIX:
1026        switch (extract32(s->volatile_cfg, 6, 2)) {
1027        case 1:
1028            s->needed_bytes += 6;
1029            break;
1030        case 2:
1031            s->needed_bytes += 8;
1032            break;
1033        default:
1034            s->needed_bytes += 4;
1035            break;
1036        }
1037        break;
1038    case MAN_ISSI:
1039        /*
1040         * The Fast Read Dual I/O instruction code is followed by address bytes
1041         * and dummy cycles, transmitted via the IO1 and IO0 line.
1042         *
1043         * The number of dummy cycles is configurable but this is currently
1044         * unmodeled, hence the default value 4 is used.
1045         */
1046        s->needed_bytes += 1;
1047        break;
1048    default:
1049        break;
1050    }
1051    s->pos = 0;
1052    s->len = 0;
1053    s->state = STATE_COLLECTING_DATA;
1054}
1055
1056static void decode_qio_read_cmd(Flash *s)
1057{
1058    s->needed_bytes = get_addr_length(s);
1059    /* Dummy cycles modeled with bytes writes instead of bits */
1060    switch (get_man(s)) {
1061    case MAN_WINBOND:
1062        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1063        s->needed_bytes += 4;
1064        break;
1065    case MAN_SPANSION:
1066        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1067        s->needed_bytes += extract32(s->spansion_cr2v,
1068                                    SPANSION_DUMMY_CLK_POS,
1069                                    SPANSION_DUMMY_CLK_LEN
1070                                    );
1071        break;
1072    case MAN_NUMONYX:
1073        s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1074        break;
1075    case MAN_MACRONIX:
1076        switch (extract32(s->volatile_cfg, 6, 2)) {
1077        case 1:
1078            s->needed_bytes += 4;
1079            break;
1080        case 2:
1081            s->needed_bytes += 8;
1082            break;
1083        default:
1084            s->needed_bytes += 6;
1085            break;
1086        }
1087        break;
1088    case MAN_ISSI:
1089        /*
1090         * The Fast Read Quad I/O instruction code is followed by address bytes
1091         * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1092         *
1093         * The number of dummy cycles is configurable but this is currently
1094         * unmodeled, hence the default value 6 is used.
1095         *
1096         * QPI (Quad Peripheral Interface) mode has different default value
1097         * of dummy cycles, but this is unsupported at the time being.
1098         */
1099        s->needed_bytes += 3;
1100        break;
1101    default:
1102        break;
1103    }
1104    s->pos = 0;
1105    s->len = 0;
1106    s->state = STATE_COLLECTING_DATA;
1107}
1108
1109static bool is_valid_aai_cmd(uint32_t cmd)
1110{
1111    return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1112}
1113
1114static void decode_new_cmd(Flash *s, uint32_t value)
1115{
1116    int i;
1117
1118    s->cmd_in_progress = value;
1119    trace_m25p80_command_decoded(s, value);
1120
1121    if (value != RESET_MEMORY) {
1122        s->reset_enable = false;
1123    }
1124
1125    if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1126        qemu_log_mask(LOG_GUEST_ERROR,
1127                      "M25P80: Invalid cmd within AAI programming sequence");
1128    }
1129
1130    switch (value) {
1131
1132    case ERASE_4K:
1133    case ERASE4_4K:
1134    case ERASE_32K:
1135    case ERASE4_32K:
1136    case ERASE_SECTOR:
1137    case ERASE4_SECTOR:
1138    case PP:
1139    case PP4:
1140    case DIE_ERASE:
1141    case RDID_90:
1142    case RDID_AB:
1143        s->needed_bytes = get_addr_length(s);
1144        s->pos = 0;
1145        s->len = 0;
1146        s->state = STATE_COLLECTING_DATA;
1147        break;
1148    case READ:
1149    case READ4:
1150        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1151            s->needed_bytes = get_addr_length(s);
1152            s->pos = 0;
1153            s->len = 0;
1154            s->state = STATE_COLLECTING_DATA;
1155        } else {
1156            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1157                          "DIO or QIO mode\n", s->cmd_in_progress);
1158        }
1159        break;
1160    case DPP:
1161        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1162            s->needed_bytes = get_addr_length(s);
1163            s->pos = 0;
1164            s->len = 0;
1165            s->state = STATE_COLLECTING_DATA;
1166        } else {
1167            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1168                          "QIO mode\n", s->cmd_in_progress);
1169        }
1170        break;
1171    case QPP:
1172    case QPP_4:
1173    case PP4_4:
1174        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1175            s->needed_bytes = get_addr_length(s);
1176            s->pos = 0;
1177            s->len = 0;
1178            s->state = STATE_COLLECTING_DATA;
1179        } else {
1180            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1181                          "DIO mode\n", s->cmd_in_progress);
1182        }
1183        break;
1184
1185    case FAST_READ:
1186    case FAST_READ4:
1187        decode_fast_read_cmd(s);
1188        break;
1189    case DOR:
1190    case DOR4:
1191        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1192            decode_fast_read_cmd(s);
1193        } else {
1194            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1195                          "QIO mode\n", s->cmd_in_progress);
1196        }
1197        break;
1198    case QOR:
1199    case QOR4:
1200        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1201            decode_fast_read_cmd(s);
1202        } else {
1203            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1204                          "DIO mode\n", s->cmd_in_progress);
1205        }
1206        break;
1207
1208    case DIOR:
1209    case DIOR4:
1210        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1211            decode_dio_read_cmd(s);
1212        } else {
1213            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1214                          "QIO mode\n", s->cmd_in_progress);
1215        }
1216        break;
1217
1218    case QIOR:
1219    case QIOR4:
1220        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1221            decode_qio_read_cmd(s);
1222        } else {
1223            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1224                          "DIO mode\n", s->cmd_in_progress);
1225        }
1226        break;
1227
1228    case WRSR:
1229        /*
1230         * If WP# is low and status_register_write_disabled is high,
1231         * status register writes are disabled.
1232         * This is also called "hardware protected mode" (HPM). All other
1233         * combinations of the two states are called "software protected mode"
1234         * (SPM), and status register writes are permitted.
1235         */
1236        if ((s->wp_level == 0 && s->status_register_write_disabled)
1237            || !s->write_enable) {
1238            qemu_log_mask(LOG_GUEST_ERROR,
1239                          "M25P80: Status register write is disabled!\n");
1240            break;
1241        }
1242
1243        switch (get_man(s)) {
1244        case MAN_SPANSION:
1245            s->needed_bytes = 2;
1246            s->state = STATE_COLLECTING_DATA;
1247            break;
1248        case MAN_MACRONIX:
1249            s->needed_bytes = 2;
1250            s->state = STATE_COLLECTING_VAR_LEN_DATA;
1251            break;
1252        default:
1253            s->needed_bytes = 1;
1254            s->state = STATE_COLLECTING_DATA;
1255        }
1256        s->pos = 0;
1257        break;
1258
1259    case WRDI:
1260        s->write_enable = false;
1261        if (get_man(s) == MAN_SST) {
1262            s->aai_enable = false;
1263        }
1264        break;
1265    case WREN:
1266        s->write_enable = true;
1267        break;
1268
1269    case RDSR:
1270        s->data[0] = (!!s->write_enable) << 1;
1271        s->data[0] |= (!!s->status_register_write_disabled) << 7;
1272        s->data[0] |= (!!s->block_protect0) << 2;
1273        s->data[0] |= (!!s->block_protect1) << 3;
1274        s->data[0] |= (!!s->block_protect2) << 4;
1275        if (s->pi->flags & HAS_SR_TB) {
1276            s->data[0] |= (!!s->top_bottom_bit) << 5;
1277        }
1278        if (s->pi->flags & HAS_SR_BP3_BIT6) {
1279            s->data[0] |= (!!s->block_protect3) << 6;
1280        }
1281
1282        if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1283            s->data[0] |= (!!s->quad_enable) << 6;
1284        }
1285        if (get_man(s) == MAN_SST) {
1286            s->data[0] |= (!!s->aai_enable) << 6;
1287        }
1288
1289        s->pos = 0;
1290        s->len = 1;
1291        s->data_read_loop = true;
1292        s->state = STATE_READING_DATA;
1293        break;
1294
1295    case READ_FSR:
1296        s->data[0] = FSR_FLASH_READY;
1297        if (s->four_bytes_address_mode) {
1298            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1299        }
1300        s->pos = 0;
1301        s->len = 1;
1302        s->data_read_loop = true;
1303        s->state = STATE_READING_DATA;
1304        break;
1305
1306    case JEDEC_READ:
1307        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1308            trace_m25p80_populated_jedec(s);
1309            for (i = 0; i < s->pi->id_len; i++) {
1310                s->data[i] = s->pi->id[i];
1311            }
1312            for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1313                s->data[i] = 0;
1314            }
1315
1316            s->len = SPI_NOR_MAX_ID_LEN;
1317            s->pos = 0;
1318            s->state = STATE_READING_DATA;
1319        } else {
1320            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1321                          "in DIO or QIO mode\n");
1322        }
1323        break;
1324
1325    case RDCR:
1326        s->data[0] = s->volatile_cfg & 0xFF;
1327        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1328        s->pos = 0;
1329        s->len = 1;
1330        s->state = STATE_READING_DATA;
1331        break;
1332
1333    case BULK_ERASE_60:
1334    case BULK_ERASE:
1335        if (s->write_enable) {
1336            trace_m25p80_chip_erase(s);
1337            flash_erase(s, 0, BULK_ERASE);
1338        } else {
1339            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1340                          "protect!\n");
1341        }
1342        break;
1343    case NOP:
1344        break;
1345    case EN_4BYTE_ADDR:
1346        s->four_bytes_address_mode = true;
1347        break;
1348    case EX_4BYTE_ADDR:
1349        s->four_bytes_address_mode = false;
1350        break;
1351    case BRRD:
1352    case EXTEND_ADDR_READ:
1353        s->data[0] = s->ear;
1354        s->pos = 0;
1355        s->len = 1;
1356        s->state = STATE_READING_DATA;
1357        break;
1358    case BRWR:
1359    case EXTEND_ADDR_WRITE:
1360        if (s->write_enable) {
1361            s->needed_bytes = 1;
1362            s->pos = 0;
1363            s->len = 0;
1364            s->state = STATE_COLLECTING_DATA;
1365        }
1366        break;
1367    case RNVCR:
1368        s->data[0] = s->nonvolatile_cfg & 0xFF;
1369        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1370        s->pos = 0;
1371        s->len = 2;
1372        s->state = STATE_READING_DATA;
1373        break;
1374    case WNVCR:
1375        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1376            s->needed_bytes = 2;
1377            s->pos = 0;
1378            s->len = 0;
1379            s->state = STATE_COLLECTING_DATA;
1380        }
1381        break;
1382    case RVCR:
1383        s->data[0] = s->volatile_cfg & 0xFF;
1384        s->pos = 0;
1385        s->len = 1;
1386        s->state = STATE_READING_DATA;
1387        break;
1388    case WVCR:
1389        if (s->write_enable) {
1390            s->needed_bytes = 1;
1391            s->pos = 0;
1392            s->len = 0;
1393            s->state = STATE_COLLECTING_DATA;
1394        }
1395        break;
1396    case REVCR:
1397        s->data[0] = s->enh_volatile_cfg & 0xFF;
1398        s->pos = 0;
1399        s->len = 1;
1400        s->state = STATE_READING_DATA;
1401        break;
1402    case WEVCR:
1403        if (s->write_enable) {
1404            s->needed_bytes = 1;
1405            s->pos = 0;
1406            s->len = 0;
1407            s->state = STATE_COLLECTING_DATA;
1408        }
1409        break;
1410    case RESET_ENABLE:
1411        s->reset_enable = true;
1412        break;
1413    case RESET_MEMORY:
1414        if (s->reset_enable) {
1415            reset_memory(s);
1416        }
1417        break;
1418    case RDCR_EQIO:
1419        switch (get_man(s)) {
1420        case MAN_SPANSION:
1421            s->data[0] = (!!s->quad_enable) << 1;
1422            s->pos = 0;
1423            s->len = 1;
1424            s->state = STATE_READING_DATA;
1425            break;
1426        case MAN_MACRONIX:
1427            s->quad_enable = true;
1428            break;
1429        default:
1430            break;
1431        }
1432        break;
1433    case RSTQIO:
1434        s->quad_enable = false;
1435        break;
1436    case AAI_WP:
1437        if (get_man(s) == MAN_SST) {
1438            if (s->write_enable) {
1439                if (s->aai_enable) {
1440                    s->state = STATE_PAGE_PROGRAM;
1441                } else {
1442                    s->aai_enable = true;
1443                    s->needed_bytes = get_addr_length(s);
1444                    s->state = STATE_COLLECTING_DATA;
1445                }
1446            } else {
1447                qemu_log_mask(LOG_GUEST_ERROR,
1448                              "M25P80: AAI_WP with write protect\n");
1449            }
1450        } else {
1451            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1452        }
1453        break;
1454    case RDSFDP:
1455        if (s->pi->sfdp_read) {
1456            s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1457            s->pos = 0;
1458            s->len = 0;
1459            s->state = STATE_COLLECTING_DATA;
1460            break;
1461        }
1462        /* Fallthrough */
1463
1464    default:
1465        s->pos = 0;
1466        s->len = 1;
1467        s->state = STATE_READING_DATA;
1468        s->data_read_loop = true;
1469        s->data[0] = 0;
1470        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1471        break;
1472    }
1473}
1474
1475static int m25p80_cs(SSIPeripheral *ss, bool select)
1476{
1477    Flash *s = M25P80(ss);
1478
1479    if (select) {
1480        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1481            complete_collecting_data(s);
1482        }
1483        s->len = 0;
1484        s->pos = 0;
1485        s->state = STATE_IDLE;
1486        flash_sync_dirty(s, -1);
1487        s->data_read_loop = false;
1488    }
1489
1490    trace_m25p80_select(s, select ? "de" : "");
1491
1492    return 0;
1493}
1494
1495static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1496{
1497    Flash *s = M25P80(ss);
1498    uint32_t r = 0;
1499
1500    trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1501                          s->cur_addr, (uint8_t)tx);
1502
1503    switch (s->state) {
1504
1505    case STATE_PAGE_PROGRAM:
1506        trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1507        flash_write8(s, s->cur_addr, (uint8_t)tx);
1508        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1509
1510        if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1511            /*
1512             * There is no wrap mode during AAI programming once the highest
1513             * unprotected memory address is reached. The Write-Enable-Latch
1514             * bit is automatically reset, and AAI programming mode aborts.
1515             */
1516            s->write_enable = false;
1517            s->aai_enable = false;
1518        }
1519
1520        break;
1521
1522    case STATE_READ:
1523        r = s->storage[s->cur_addr];
1524        trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1525        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1526        break;
1527
1528    case STATE_COLLECTING_DATA:
1529    case STATE_COLLECTING_VAR_LEN_DATA:
1530
1531        if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1532            qemu_log_mask(LOG_GUEST_ERROR,
1533                          "M25P80: Write overrun internal data buffer. "
1534                          "SPI controller (QEMU emulator or guest driver) "
1535                          "is misbehaving\n");
1536            s->len = s->pos = 0;
1537            s->state = STATE_IDLE;
1538            break;
1539        }
1540
1541        s->data[s->len] = (uint8_t)tx;
1542        s->len++;
1543
1544        if (s->len == s->needed_bytes) {
1545            complete_collecting_data(s);
1546        }
1547        break;
1548
1549    case STATE_READING_DATA:
1550
1551        if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1552            qemu_log_mask(LOG_GUEST_ERROR,
1553                          "M25P80: Read overrun internal data buffer. "
1554                          "SPI controller (QEMU emulator or guest driver) "
1555                          "is misbehaving\n");
1556            s->len = s->pos = 0;
1557            s->state = STATE_IDLE;
1558            break;
1559        }
1560
1561        r = s->data[s->pos];
1562        trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1563        s->pos++;
1564        if (s->pos == s->len) {
1565            s->pos = 0;
1566            if (!s->data_read_loop) {
1567                s->state = STATE_IDLE;
1568            }
1569        }
1570        break;
1571    case STATE_READING_SFDP:
1572        assert(s->pi->sfdp_read);
1573        r = s->pi->sfdp_read(s->cur_addr);
1574        trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1575        s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1576        break;
1577
1578    default:
1579    case STATE_IDLE:
1580        decode_new_cmd(s, (uint8_t)tx);
1581        break;
1582    }
1583
1584    return r;
1585}
1586
1587static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1588{
1589    Flash *s = M25P80(opaque);
1590    /* WP# is just a single pin. */
1591    assert(n == 0);
1592    s->wp_level = !!level;
1593}
1594
1595static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1596{
1597    Flash *s = M25P80(ss);
1598    M25P80Class *mc = M25P80_GET_CLASS(s);
1599    int ret;
1600
1601    s->pi = mc->pi;
1602
1603    s->size = s->pi->sector_size * s->pi->n_sectors;
1604    s->dirty_page = -1;
1605
1606    if (s->blk) {
1607        uint64_t perm = BLK_PERM_CONSISTENT_READ |
1608                        (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1609        ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1610        if (ret < 0) {
1611            return;
1612        }
1613
1614        trace_m25p80_binding(s);
1615        s->storage = blk_blockalign(s->blk, s->size);
1616
1617        if (blk_pread(s->blk, 0, s->size, s->storage, 0) < 0) {
1618            error_setg(errp, "failed to read the initial flash content");
1619            return;
1620        }
1621    } else {
1622        trace_m25p80_binding_no_bdrv(s);
1623        s->storage = blk_blockalign(NULL, s->size);
1624        memset(s->storage, 0xFF, s->size);
1625    }
1626
1627    qdev_init_gpio_in_named(DEVICE(s),
1628                            m25p80_write_protect_pin_irq_handler, "WP#", 1);
1629}
1630
1631static void m25p80_reset(DeviceState *d)
1632{
1633    Flash *s = M25P80(d);
1634
1635    s->wp_level = true;
1636    s->status_register_write_disabled = false;
1637    s->block_protect0 = false;
1638    s->block_protect1 = false;
1639    s->block_protect2 = false;
1640    s->block_protect3 = false;
1641    s->top_bottom_bit = false;
1642
1643    reset_memory(s);
1644}
1645
1646static int m25p80_pre_save(void *opaque)
1647{
1648    flash_sync_dirty((Flash *)opaque, -1);
1649
1650    return 0;
1651}
1652
1653static Property m25p80_properties[] = {
1654    /* This is default value for Micron flash */
1655    DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1656    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1657    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1658    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1659    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1660    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1661    DEFINE_PROP_DRIVE("drive", Flash, blk),
1662    DEFINE_PROP_END_OF_LIST(),
1663};
1664
1665static int m25p80_pre_load(void *opaque)
1666{
1667    Flash *s = (Flash *)opaque;
1668
1669    s->data_read_loop = false;
1670    return 0;
1671}
1672
1673static bool m25p80_data_read_loop_needed(void *opaque)
1674{
1675    Flash *s = (Flash *)opaque;
1676
1677    return s->data_read_loop;
1678}
1679
1680static const VMStateDescription vmstate_m25p80_data_read_loop = {
1681    .name = "m25p80/data_read_loop",
1682    .version_id = 1,
1683    .minimum_version_id = 1,
1684    .needed = m25p80_data_read_loop_needed,
1685    .fields = (VMStateField[]) {
1686        VMSTATE_BOOL(data_read_loop, Flash),
1687        VMSTATE_END_OF_LIST()
1688    }
1689};
1690
1691static bool m25p80_aai_enable_needed(void *opaque)
1692{
1693    Flash *s = (Flash *)opaque;
1694
1695    return s->aai_enable;
1696}
1697
1698static const VMStateDescription vmstate_m25p80_aai_enable = {
1699    .name = "m25p80/aai_enable",
1700    .version_id = 1,
1701    .minimum_version_id = 1,
1702    .needed = m25p80_aai_enable_needed,
1703    .fields = (VMStateField[]) {
1704        VMSTATE_BOOL(aai_enable, Flash),
1705        VMSTATE_END_OF_LIST()
1706    }
1707};
1708
1709static bool m25p80_wp_level_srwd_needed(void *opaque)
1710{
1711    Flash *s = (Flash *)opaque;
1712
1713    return !s->wp_level || s->status_register_write_disabled;
1714}
1715
1716static const VMStateDescription vmstate_m25p80_write_protect = {
1717    .name = "m25p80/write_protect",
1718    .version_id = 1,
1719    .minimum_version_id = 1,
1720    .needed = m25p80_wp_level_srwd_needed,
1721    .fields = (VMStateField[]) {
1722        VMSTATE_BOOL(wp_level, Flash),
1723        VMSTATE_BOOL(status_register_write_disabled, Flash),
1724        VMSTATE_END_OF_LIST()
1725    }
1726};
1727
1728static bool m25p80_block_protect_needed(void *opaque)
1729{
1730    Flash *s = (Flash *)opaque;
1731
1732    return s->block_protect0 ||
1733           s->block_protect1 ||
1734           s->block_protect2 ||
1735           s->block_protect3 ||
1736           s->top_bottom_bit;
1737}
1738
1739static const VMStateDescription vmstate_m25p80_block_protect = {
1740    .name = "m25p80/block_protect",
1741    .version_id = 1,
1742    .minimum_version_id = 1,
1743    .needed = m25p80_block_protect_needed,
1744    .fields = (VMStateField[]) {
1745        VMSTATE_BOOL(block_protect0, Flash),
1746        VMSTATE_BOOL(block_protect1, Flash),
1747        VMSTATE_BOOL(block_protect2, Flash),
1748        VMSTATE_BOOL(block_protect3, Flash),
1749        VMSTATE_BOOL(top_bottom_bit, Flash),
1750        VMSTATE_END_OF_LIST()
1751    }
1752};
1753
1754static const VMStateDescription vmstate_m25p80 = {
1755    .name = "m25p80",
1756    .version_id = 0,
1757    .minimum_version_id = 0,
1758    .pre_save = m25p80_pre_save,
1759    .pre_load = m25p80_pre_load,
1760    .fields = (VMStateField[]) {
1761        VMSTATE_UINT8(state, Flash),
1762        VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1763        VMSTATE_UINT32(len, Flash),
1764        VMSTATE_UINT32(pos, Flash),
1765        VMSTATE_UINT8(needed_bytes, Flash),
1766        VMSTATE_UINT8(cmd_in_progress, Flash),
1767        VMSTATE_UINT32(cur_addr, Flash),
1768        VMSTATE_BOOL(write_enable, Flash),
1769        VMSTATE_BOOL(reset_enable, Flash),
1770        VMSTATE_UINT8(ear, Flash),
1771        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1772        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1773        VMSTATE_UINT32(volatile_cfg, Flash),
1774        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1775        VMSTATE_BOOL(quad_enable, Flash),
1776        VMSTATE_UINT8(spansion_cr1nv, Flash),
1777        VMSTATE_UINT8(spansion_cr2nv, Flash),
1778        VMSTATE_UINT8(spansion_cr3nv, Flash),
1779        VMSTATE_UINT8(spansion_cr4nv, Flash),
1780        VMSTATE_END_OF_LIST()
1781    },
1782    .subsections = (const VMStateDescription * []) {
1783        &vmstate_m25p80_data_read_loop,
1784        &vmstate_m25p80_aai_enable,
1785        &vmstate_m25p80_write_protect,
1786        &vmstate_m25p80_block_protect,
1787        NULL
1788    }
1789};
1790
1791static void m25p80_class_init(ObjectClass *klass, void *data)
1792{
1793    DeviceClass *dc = DEVICE_CLASS(klass);
1794    SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1795    M25P80Class *mc = M25P80_CLASS(klass);
1796
1797    k->realize = m25p80_realize;
1798    k->transfer = m25p80_transfer8;
1799    k->set_cs = m25p80_cs;
1800    k->cs_polarity = SSI_CS_LOW;
1801    dc->vmsd = &vmstate_m25p80;
1802    device_class_set_props(dc, m25p80_properties);
1803    dc->reset = m25p80_reset;
1804    mc->pi = data;
1805}
1806
1807static const TypeInfo m25p80_info = {
1808    .name           = TYPE_M25P80,
1809    .parent         = TYPE_SSI_PERIPHERAL,
1810    .instance_size  = sizeof(Flash),
1811    .class_size     = sizeof(M25P80Class),
1812    .abstract       = true,
1813};
1814
1815static void m25p80_register_types(void)
1816{
1817    int i;
1818
1819    type_register_static(&m25p80_info);
1820    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1821        TypeInfo ti = {
1822            .name       = known_devices[i].part_name,
1823            .parent     = TYPE_M25P80,
1824            .class_init = m25p80_class_init,
1825            .class_data = (void *)&known_devices[i],
1826        };
1827        type_register(&ti);
1828    }
1829}
1830
1831type_init(m25p80_register_types)
1832