qemu/hw/intc/arm_gic.c
<<
>>
Prefs
   1/*
   2 * ARM Generic/Distributed Interrupt Controller
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10/* This file contains implementation code for the RealView EB interrupt
  11 * controller, MPCore distributed interrupt controller and ARMv7-M
  12 * Nested Vectored Interrupt Controller.
  13 * It is compiled in two ways:
  14 *  (1) as a standalone file to produce a sysbus device which is a GIC
  15 *  that can be used on the realview board and as one of the builtin
  16 *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
  17 *  (2) by being directly #included into armv7m_nvic.c to produce the
  18 *  armv7m_nvic device.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "hw/irq.h"
  23#include "hw/sysbus.h"
  24#include "gic_internal.h"
  25#include "qapi/error.h"
  26#include "hw/core/cpu.h"
  27#include "qemu/log.h"
  28#include "qemu/module.h"
  29#include "trace.h"
  30#include "sysemu/kvm.h"
  31#include "sysemu/qtest.h"
  32
  33/* #define DEBUG_GIC */
  34
  35#ifdef DEBUG_GIC
  36#define DEBUG_GIC_GATE 1
  37#else
  38#define DEBUG_GIC_GATE 0
  39#endif
  40
  41#define DPRINTF(fmt, ...) do {                                          \
  42        if (DEBUG_GIC_GATE) {                                           \
  43            fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
  44        }                                                               \
  45    } while (0)
  46
  47static const uint8_t gic_id_11mpcore[] = {
  48    0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  49};
  50
  51static const uint8_t gic_id_gicv1[] = {
  52    0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  53};
  54
  55static const uint8_t gic_id_gicv2[] = {
  56    0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  57};
  58
  59static inline int gic_get_current_cpu(GICState *s)
  60{
  61    if (!qtest_enabled() && s->num_cpu > 1) {
  62        return current_cpu->cpu_index;
  63    }
  64    return 0;
  65}
  66
  67static inline int gic_get_current_vcpu(GICState *s)
  68{
  69    return gic_get_current_cpu(s) + GIC_NCPU;
  70}
  71
  72/* Return true if this GIC config has interrupt groups, which is
  73 * true if we're a GICv2, or a GICv1 with the security extensions.
  74 */
  75static inline bool gic_has_groups(GICState *s)
  76{
  77    return s->revision == 2 || s->security_extn;
  78}
  79
  80static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
  81{
  82    return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
  83}
  84
  85static inline void gic_get_best_irq(GICState *s, int cpu,
  86                                    int *best_irq, int *best_prio, int *group)
  87{
  88    int irq;
  89    int cm = 1 << cpu;
  90
  91    *best_irq = 1023;
  92    *best_prio = 0x100;
  93
  94    for (irq = 0; irq < s->num_irq; irq++) {
  95        if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
  96            (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
  97            (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
  98            if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
  99                *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
 100                *best_irq = irq;
 101            }
 102        }
 103    }
 104
 105    if (*best_irq < 1023) {
 106        *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
 107    }
 108}
 109
 110static inline void gic_get_best_virq(GICState *s, int cpu,
 111                                     int *best_irq, int *best_prio, int *group)
 112{
 113    int lr_idx = 0;
 114
 115    *best_irq = 1023;
 116    *best_prio = 0x100;
 117
 118    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 119        uint32_t lr_entry = s->h_lr[lr_idx][cpu];
 120        int state = GICH_LR_STATE(lr_entry);
 121
 122        if (state == GICH_LR_STATE_PENDING) {
 123            int prio = GICH_LR_PRIORITY(lr_entry);
 124
 125            if (prio < *best_prio) {
 126                *best_prio = prio;
 127                *best_irq = GICH_LR_VIRT_ID(lr_entry);
 128                *group = GICH_LR_GROUP(lr_entry);
 129            }
 130        }
 131    }
 132}
 133
 134/* Return true if IRQ signaling is enabled for the given cpu and at least one
 135 * of the given groups:
 136 *   - in the non-virt case, the distributor must be enabled for one of the
 137 *   given groups
 138 *   - in the virt case, the virtual interface must be enabled.
 139 *   - in all cases, the (v)CPU interface must be enabled for one of the given
 140 *   groups.
 141 */
 142static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
 143                                    int group_mask)
 144{
 145    int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
 146
 147    if (!virt && !(s->ctlr & group_mask)) {
 148        return false;
 149    }
 150
 151    if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
 152        return false;
 153    }
 154
 155    if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
 156        return false;
 157    }
 158
 159    return true;
 160}
 161
 162/* TODO: Many places that call this routine could be optimized.  */
 163/* Update interrupt status after enabled or pending bits have been changed.  */
 164static inline void gic_update_internal(GICState *s, bool virt)
 165{
 166    int best_irq;
 167    int best_prio;
 168    int irq_level, fiq_level;
 169    int cpu, cpu_iface;
 170    int group = 0;
 171    qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
 172    qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
 173
 174    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 175        cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
 176
 177        s->current_pending[cpu_iface] = 1023;
 178        if (!gic_irq_signaling_enabled(s, cpu, virt,
 179                                       GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
 180            qemu_irq_lower(irq_lines[cpu]);
 181            qemu_irq_lower(fiq_lines[cpu]);
 182            continue;
 183        }
 184
 185        if (virt) {
 186            gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
 187        } else {
 188            gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
 189        }
 190
 191        if (best_irq != 1023) {
 192            trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
 193                                     best_irq, best_prio,
 194                                     s->priority_mask[cpu_iface],
 195                                     s->running_priority[cpu_iface]);
 196        }
 197
 198        irq_level = fiq_level = 0;
 199
 200        if (best_prio < s->priority_mask[cpu_iface]) {
 201            s->current_pending[cpu_iface] = best_irq;
 202            if (best_prio < s->running_priority[cpu_iface]) {
 203                if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
 204                    if (group == 0 &&
 205                        s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
 206                        DPRINTF("Raised pending FIQ %d (cpu %d)\n",
 207                                best_irq, cpu_iface);
 208                        fiq_level = 1;
 209                        trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
 210                                                 fiq_level);
 211                    } else {
 212                        DPRINTF("Raised pending IRQ %d (cpu %d)\n",
 213                                best_irq, cpu_iface);
 214                        irq_level = 1;
 215                        trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
 216                                                 irq_level);
 217                    }
 218                }
 219            }
 220        }
 221
 222        qemu_set_irq(irq_lines[cpu], irq_level);
 223        qemu_set_irq(fiq_lines[cpu], fiq_level);
 224    }
 225}
 226
 227static void gic_update(GICState *s)
 228{
 229    gic_update_internal(s, false);
 230}
 231
 232/* Return true if this LR is empty, i.e. the corresponding bit
 233 * in ELRSR is set.
 234 */
 235static inline bool gic_lr_entry_is_free(uint32_t entry)
 236{
 237    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 238        && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
 239}
 240
 241/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
 242 * corrsponding bit in EISR is set.
 243 */
 244static inline bool gic_lr_entry_is_eoi(uint32_t entry)
 245{
 246    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 247        && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
 248}
 249
 250static inline void gic_extract_lr_info(GICState *s, int cpu,
 251                                int *num_eoi, int *num_valid, int *num_pending)
 252{
 253    int lr_idx;
 254
 255    *num_eoi = 0;
 256    *num_valid = 0;
 257    *num_pending = 0;
 258
 259    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 260        uint32_t *entry = &s->h_lr[lr_idx][cpu];
 261
 262        if (gic_lr_entry_is_eoi(*entry)) {
 263            (*num_eoi)++;
 264        }
 265
 266        if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
 267            (*num_valid)++;
 268        }
 269
 270        if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
 271            (*num_pending)++;
 272        }
 273    }
 274}
 275
 276static void gic_compute_misr(GICState *s, int cpu)
 277{
 278    uint32_t value = 0;
 279    int vcpu = cpu + GIC_NCPU;
 280
 281    int num_eoi, num_valid, num_pending;
 282
 283    gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
 284
 285    /* EOI */
 286    if (num_eoi) {
 287        value |= R_GICH_MISR_EOI_MASK;
 288    }
 289
 290    /* U: true if only 0 or 1 LR entry is valid */
 291    if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
 292        value |= R_GICH_MISR_U_MASK;
 293    }
 294
 295    /* LRENP: EOICount is not 0 */
 296    if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
 297        ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
 298        value |= R_GICH_MISR_LRENP_MASK;
 299    }
 300
 301    /* NP: no pending interrupts */
 302    if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
 303        value |= R_GICH_MISR_NP_MASK;
 304    }
 305
 306    /* VGrp0E: group0 virq signaling enabled */
 307    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
 308        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 309        value |= R_GICH_MISR_VGrp0E_MASK;
 310    }
 311
 312    /* VGrp0D: group0 virq signaling disabled */
 313    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
 314        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 315        value |= R_GICH_MISR_VGrp0D_MASK;
 316    }
 317
 318    /* VGrp1E: group1 virq signaling enabled */
 319    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
 320        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 321        value |= R_GICH_MISR_VGrp1E_MASK;
 322    }
 323
 324    /* VGrp1D: group1 virq signaling disabled */
 325    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
 326        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 327        value |= R_GICH_MISR_VGrp1D_MASK;
 328    }
 329
 330    s->h_misr[cpu] = value;
 331}
 332
 333static void gic_update_maintenance(GICState *s)
 334{
 335    int cpu = 0;
 336    int maint_level;
 337
 338    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 339        gic_compute_misr(s, cpu);
 340        maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
 341
 342        trace_gic_update_maintenance_irq(cpu, maint_level);
 343        qemu_set_irq(s->maintenance_irq[cpu], maint_level);
 344    }
 345}
 346
 347static void gic_update_virt(GICState *s)
 348{
 349    gic_update_internal(s, true);
 350    gic_update_maintenance(s);
 351}
 352
 353static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
 354                                 int cm, int target)
 355{
 356    if (level) {
 357        GIC_DIST_SET_LEVEL(irq, cm);
 358        if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
 359            DPRINTF("Set %d pending mask %x\n", irq, target);
 360            GIC_DIST_SET_PENDING(irq, target);
 361        }
 362    } else {
 363        GIC_DIST_CLEAR_LEVEL(irq, cm);
 364    }
 365}
 366
 367static void gic_set_irq_generic(GICState *s, int irq, int level,
 368                                int cm, int target)
 369{
 370    if (level) {
 371        GIC_DIST_SET_LEVEL(irq, cm);
 372        DPRINTF("Set %d pending mask %x\n", irq, target);
 373        if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
 374            GIC_DIST_SET_PENDING(irq, target);
 375        }
 376    } else {
 377        GIC_DIST_CLEAR_LEVEL(irq, cm);
 378    }
 379}
 380
 381/* Process a change in an external IRQ input.  */
 382static void gic_set_irq(void *opaque, int irq, int level)
 383{
 384    /* Meaning of the 'irq' parameter:
 385     *  [0..N-1] : external interrupts
 386     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 387     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 388     *  ...
 389     */
 390    GICState *s = (GICState *)opaque;
 391    int cm, target;
 392    if (irq < (s->num_irq - GIC_INTERNAL)) {
 393        /* The first external input line is internal interrupt 32.  */
 394        cm = ALL_CPU_MASK;
 395        irq += GIC_INTERNAL;
 396        target = GIC_DIST_TARGET(irq);
 397    } else {
 398        int cpu;
 399        irq -= (s->num_irq - GIC_INTERNAL);
 400        cpu = irq / GIC_INTERNAL;
 401        irq %= GIC_INTERNAL;
 402        cm = 1 << cpu;
 403        target = cm;
 404    }
 405
 406    assert(irq >= GIC_NR_SGIS);
 407
 408    if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
 409        return;
 410    }
 411
 412    if (s->revision == REV_11MPCORE) {
 413        gic_set_irq_11mpcore(s, irq, level, cm, target);
 414    } else {
 415        gic_set_irq_generic(s, irq, level, cm, target);
 416    }
 417    trace_gic_set_irq(irq, level, cm, target);
 418
 419    gic_update(s);
 420}
 421
 422static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
 423                                            MemTxAttrs attrs)
 424{
 425    uint16_t pending_irq = s->current_pending[cpu];
 426
 427    if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
 428        int group = gic_test_group(s, pending_irq, cpu);
 429
 430        /* On a GIC without the security extensions, reading this register
 431         * behaves in the same way as a secure access to a GIC with them.
 432         */
 433        bool secure = !gic_cpu_ns_access(s, cpu, attrs);
 434
 435        if (group == 0 && !secure) {
 436            /* Group0 interrupts hidden from Non-secure access */
 437            return 1023;
 438        }
 439        if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
 440            /* Group1 interrupts only seen by Secure access if
 441             * AckCtl bit set.
 442             */
 443            return 1022;
 444        }
 445    }
 446    return pending_irq;
 447}
 448
 449static int gic_get_group_priority(GICState *s, int cpu, int irq)
 450{
 451    /* Return the group priority of the specified interrupt
 452     * (which is the top bits of its priority, with the number
 453     * of bits masked determined by the applicable binary point register).
 454     */
 455    int bpr;
 456    uint32_t mask;
 457
 458    if (gic_has_groups(s) &&
 459        !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
 460        gic_test_group(s, irq, cpu)) {
 461        bpr = s->abpr[cpu] - 1;
 462        assert(bpr >= 0);
 463    } else {
 464        bpr = s->bpr[cpu];
 465    }
 466
 467    /* a BPR of 0 means the group priority bits are [7:1];
 468     * a BPR of 1 means they are [7:2], and so on down to
 469     * a BPR of 7 meaning no group priority bits at all.
 470     */
 471    mask = ~0U << ((bpr & 7) + 1);
 472
 473    return gic_get_priority(s, irq, cpu) & mask;
 474}
 475
 476static void gic_activate_irq(GICState *s, int cpu, int irq)
 477{
 478    /* Set the appropriate Active Priority Register bit for this IRQ,
 479     * and update the running priority.
 480     */
 481    int prio = gic_get_group_priority(s, cpu, irq);
 482    int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
 483    int preemption_level = prio >> (min_bpr + 1);
 484    int regno = preemption_level / 32;
 485    int bitno = preemption_level % 32;
 486    uint32_t *papr = NULL;
 487
 488    if (gic_is_vcpu(cpu)) {
 489        assert(regno == 0);
 490        papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
 491    } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
 492        papr = &s->nsapr[regno][cpu];
 493    } else {
 494        papr = &s->apr[regno][cpu];
 495    }
 496
 497    *papr |= (1 << bitno);
 498
 499    s->running_priority[cpu] = prio;
 500    gic_set_active(s, irq, cpu);
 501}
 502
 503static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
 504{
 505    /* Recalculate the current running priority for this CPU based
 506     * on the set bits in the Active Priority Registers.
 507     */
 508    int i;
 509
 510    if (gic_is_vcpu(cpu)) {
 511        uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
 512        if (apr) {
 513            return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
 514        } else {
 515            return 0x100;
 516        }
 517    }
 518
 519    for (i = 0; i < GIC_NR_APRS; i++) {
 520        uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
 521        if (!apr) {
 522            continue;
 523        }
 524        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 525    }
 526    return 0x100;
 527}
 528
 529static void gic_drop_prio(GICState *s, int cpu, int group)
 530{
 531    /* Drop the priority of the currently active interrupt in the
 532     * specified group.
 533     *
 534     * Note that we can guarantee (because of the requirement to nest
 535     * GICC_IAR reads [which activate an interrupt and raise priority]
 536     * with GICC_EOIR writes [which drop the priority for the interrupt])
 537     * that the interrupt we're being called for is the highest priority
 538     * active interrupt, meaning that it has the lowest set bit in the
 539     * APR registers.
 540     *
 541     * If the guest does not honour the ordering constraints then the
 542     * behaviour of the GIC is UNPREDICTABLE, which for us means that
 543     * the values of the APR registers might become incorrect and the
 544     * running priority will be wrong, so interrupts that should preempt
 545     * might not do so, and interrupts that should not preempt might do so.
 546     */
 547    if (gic_is_vcpu(cpu)) {
 548        int rcpu = gic_get_vcpu_real_id(cpu);
 549
 550        if (s->h_apr[rcpu]) {
 551            /* Clear lowest set bit */
 552            s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
 553        }
 554    } else {
 555        int i;
 556
 557        for (i = 0; i < GIC_NR_APRS; i++) {
 558            uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
 559            if (!*papr) {
 560                continue;
 561            }
 562            /* Clear lowest set bit */
 563            *papr &= *papr - 1;
 564            break;
 565        }
 566    }
 567
 568    s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
 569}
 570
 571static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
 572{
 573    int src;
 574    uint32_t ret;
 575
 576    if (!gic_is_vcpu(cpu)) {
 577        /* Lookup the source CPU for the SGI and clear this in the
 578         * sgi_pending map.  Return the src and clear the overall pending
 579         * state on this CPU if the SGI is not pending from any CPUs.
 580         */
 581        assert(s->sgi_pending[irq][cpu] != 0);
 582        src = ctz32(s->sgi_pending[irq][cpu]);
 583        s->sgi_pending[irq][cpu] &= ~(1 << src);
 584        if (s->sgi_pending[irq][cpu] == 0) {
 585            gic_clear_pending(s, irq, cpu);
 586        }
 587        ret = irq | ((src & 0x7) << 10);
 588    } else {
 589        uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
 590        src = GICH_LR_CPUID(*lr_entry);
 591
 592        gic_clear_pending(s, irq, cpu);
 593        ret = irq | (src << 10);
 594    }
 595
 596    return ret;
 597}
 598
 599uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
 600{
 601    int ret, irq;
 602
 603    /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
 604     * for the case where this GIC supports grouping and the pending interrupt
 605     * is in the wrong group.
 606     */
 607    irq = gic_get_current_pending_irq(s, cpu, attrs);
 608    trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
 609                              gic_get_vcpu_real_id(cpu), irq);
 610
 611    if (irq >= GIC_MAXIRQ) {
 612        DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
 613        return irq;
 614    }
 615
 616    if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
 617        DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
 618        return 1023;
 619    }
 620
 621    gic_activate_irq(s, cpu, irq);
 622
 623    if (s->revision == REV_11MPCORE) {
 624        /* Clear pending flags for both level and edge triggered interrupts.
 625         * Level triggered IRQs will be reasserted once they become inactive.
 626         */
 627        gic_clear_pending(s, irq, cpu);
 628        ret = irq;
 629    } else {
 630        if (irq < GIC_NR_SGIS) {
 631            ret = gic_clear_pending_sgi(s, irq, cpu);
 632        } else {
 633            gic_clear_pending(s, irq, cpu);
 634            ret = irq;
 635        }
 636    }
 637
 638    if (gic_is_vcpu(cpu)) {
 639        gic_update_virt(s);
 640    } else {
 641        gic_update(s);
 642    }
 643    DPRINTF("ACK %d\n", irq);
 644    return ret;
 645}
 646
 647static uint32_t gic_fullprio_mask(GICState *s, int cpu)
 648{
 649    /*
 650     * Return a mask word which clears the unimplemented priority
 651     * bits from a priority value for an interrupt. (Not to be
 652     * confused with the group priority, whose mask depends on BPR.)
 653     */
 654    int priBits;
 655
 656    if (gic_is_vcpu(cpu)) {
 657        priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
 658    } else {
 659        priBits = s->n_prio_bits;
 660    }
 661    return ~0U << (8 - priBits);
 662}
 663
 664void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
 665                      MemTxAttrs attrs)
 666{
 667    if (s->security_extn && !attrs.secure) {
 668        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 669            return; /* Ignore Non-secure access of Group0 IRQ */
 670        }
 671        val = 0x80 | (val >> 1); /* Non-secure view */
 672    }
 673
 674    val &= gic_fullprio_mask(s, cpu);
 675
 676    if (irq < GIC_INTERNAL) {
 677        s->priority1[irq][cpu] = val;
 678    } else {
 679        s->priority2[(irq) - GIC_INTERNAL] = val;
 680    }
 681}
 682
 683static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
 684                                 MemTxAttrs attrs)
 685{
 686    uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
 687
 688    if (s->security_extn && !attrs.secure) {
 689        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 690            return 0; /* Non-secure access cannot read priority of Group0 IRQ */
 691        }
 692        prio = (prio << 1) & 0xff; /* Non-secure view */
 693    }
 694    return prio & gic_fullprio_mask(s, cpu);
 695}
 696
 697static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
 698                                  MemTxAttrs attrs)
 699{
 700    if (gic_cpu_ns_access(s, cpu, attrs)) {
 701        if (s->priority_mask[cpu] & 0x80) {
 702            /* Priority Mask in upper half */
 703            pmask = 0x80 | (pmask >> 1);
 704        } else {
 705            /* Non-secure write ignored if priority mask is in lower half */
 706            return;
 707        }
 708    }
 709    s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
 710}
 711
 712static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
 713{
 714    uint32_t pmask = s->priority_mask[cpu];
 715
 716    if (gic_cpu_ns_access(s, cpu, attrs)) {
 717        if (pmask & 0x80) {
 718            /* Priority Mask in upper half, return Non-secure view */
 719            pmask = (pmask << 1) & 0xff;
 720        } else {
 721            /* Priority Mask in lower half, RAZ */
 722            pmask = 0;
 723        }
 724    }
 725    return pmask;
 726}
 727
 728static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
 729{
 730    uint32_t ret = s->cpu_ctlr[cpu];
 731
 732    if (gic_cpu_ns_access(s, cpu, attrs)) {
 733        /* Construct the NS banked view of GICC_CTLR from the correct
 734         * bits of the S banked view. We don't need to move the bypass
 735         * control bits because we don't implement that (IMPDEF) part
 736         * of the GIC architecture.
 737         */
 738        ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
 739    }
 740    return ret;
 741}
 742
 743static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
 744                                MemTxAttrs attrs)
 745{
 746    uint32_t mask;
 747
 748    if (gic_cpu_ns_access(s, cpu, attrs)) {
 749        /* The NS view can only write certain bits in the register;
 750         * the rest are unchanged
 751         */
 752        mask = GICC_CTLR_EN_GRP1;
 753        if (s->revision == 2) {
 754            mask |= GICC_CTLR_EOIMODE_NS;
 755        }
 756        s->cpu_ctlr[cpu] &= ~mask;
 757        s->cpu_ctlr[cpu] |= (value << 1) & mask;
 758    } else {
 759        if (s->revision == 2) {
 760            mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
 761        } else {
 762            mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
 763        }
 764        s->cpu_ctlr[cpu] = value & mask;
 765    }
 766    DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
 767            "Group1 Interrupts %sabled\n", cpu,
 768            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
 769            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
 770}
 771
 772static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
 773{
 774    if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
 775        /* Idle priority */
 776        return 0xff;
 777    }
 778
 779    if (gic_cpu_ns_access(s, cpu, attrs)) {
 780        if (s->running_priority[cpu] & 0x80) {
 781            /* Running priority in upper half of range: return the Non-secure
 782             * view of the priority.
 783             */
 784            return s->running_priority[cpu] << 1;
 785        } else {
 786            /* Running priority in lower half of range: RAZ */
 787            return 0;
 788        }
 789    } else {
 790        return s->running_priority[cpu];
 791    }
 792}
 793
 794/* Return true if we should split priority drop and interrupt deactivation,
 795 * ie whether the relevant EOIMode bit is set.
 796 */
 797static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
 798{
 799    if (s->revision != 2) {
 800        /* Before GICv2 prio-drop and deactivate are not separable */
 801        return false;
 802    }
 803    if (gic_cpu_ns_access(s, cpu, attrs)) {
 804        return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
 805    }
 806    return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
 807}
 808
 809static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 810{
 811    int group;
 812
 813    if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
 814        /*
 815         * This handles two cases:
 816         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 817         * to the GICC_DIR, the GIC ignores that write.
 818         * 2. If software writes the number of a non-existent interrupt
 819         * this must be a subcase of "value written is not an active interrupt"
 820         * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
 821         * all IRQs potentially exist, so this limit does not apply.
 822         */
 823        return;
 824    }
 825
 826    if (!gic_eoi_split(s, cpu, attrs)) {
 827        /* This is UNPREDICTABLE; we choose to ignore it */
 828        qemu_log_mask(LOG_GUEST_ERROR,
 829                      "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
 830        return;
 831    }
 832
 833    if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
 834        /* This vIRQ does not have an LR entry which is either active or
 835         * pending and active. Increment EOICount and ignore the write.
 836         */
 837        int rcpu = gic_get_vcpu_real_id(cpu);
 838        s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 839
 840        /* Update the virtual interface in case a maintenance interrupt should
 841         * be raised.
 842         */
 843        gic_update_virt(s);
 844        return;
 845    }
 846
 847    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 848
 849    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 850        DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
 851        return;
 852    }
 853
 854    gic_clear_active(s, irq, cpu);
 855}
 856
 857static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 858{
 859    int cm = 1 << cpu;
 860    int group;
 861
 862    DPRINTF("EOI %d\n", irq);
 863    if (gic_is_vcpu(cpu)) {
 864        /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
 865         * running prio is < 0x100.
 866         */
 867        bool prio_drop = s->running_priority[cpu] < 0x100;
 868
 869        if (irq >= GIC_MAXIRQ) {
 870            /* Ignore spurious interrupt */
 871            return;
 872        }
 873
 874        gic_drop_prio(s, cpu, 0);
 875
 876        if (!gic_eoi_split(s, cpu, attrs)) {
 877            bool valid = gic_virq_is_valid(s, irq, cpu);
 878            if (prio_drop && !valid) {
 879                /* We are in a situation where:
 880                 *   - V_CTRL.EOIMode is false (no EOI split),
 881                 *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
 882                 *   - This vIRQ does not have an LR entry which is either
 883                 *     active or pending and active.
 884                 * In that case, we must increment EOICount.
 885                 */
 886                int rcpu = gic_get_vcpu_real_id(cpu);
 887                s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 888            } else if (valid) {
 889                gic_clear_active(s, irq, cpu);
 890            }
 891        }
 892
 893        gic_update_virt(s);
 894        return;
 895    }
 896
 897    if (irq >= s->num_irq) {
 898        /* This handles two cases:
 899         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 900         * to the GICC_EOIR, the GIC ignores that write.
 901         * 2. If software writes the number of a non-existent interrupt
 902         * this must be a subcase of "value written does not match the last
 903         * valid interrupt value read from the Interrupt Acknowledge
 904         * register" and so this is UNPREDICTABLE. We choose to ignore it.
 905         */
 906        return;
 907    }
 908    if (s->running_priority[cpu] == 0x100) {
 909        return; /* No active IRQ.  */
 910    }
 911
 912    if (s->revision == REV_11MPCORE) {
 913        /* Mark level triggered interrupts as pending if they are still
 914           raised.  */
 915        if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
 916            && GIC_DIST_TEST_LEVEL(irq, cm)
 917            && (GIC_DIST_TARGET(irq) & cm) != 0) {
 918            DPRINTF("Set %d pending mask %x\n", irq, cm);
 919            GIC_DIST_SET_PENDING(irq, cm);
 920        }
 921    }
 922
 923    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 924
 925    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 926        DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
 927        return;
 928    }
 929
 930    /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
 931     * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
 932     * i.e. go ahead and complete the irq anyway.
 933     */
 934
 935    gic_drop_prio(s, cpu, group);
 936
 937    /* In GICv2 the guest can choose to split priority-drop and deactivate */
 938    if (!gic_eoi_split(s, cpu, attrs)) {
 939        gic_clear_active(s, irq, cpu);
 940    }
 941    gic_update(s);
 942}
 943
 944static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
 945{
 946    GICState *s = (GICState *)opaque;
 947    uint32_t res;
 948    int irq;
 949    int i;
 950    int cpu;
 951    int cm;
 952    int mask;
 953
 954    cpu = gic_get_current_cpu(s);
 955    cm = 1 << cpu;
 956    if (offset < 0x100) {
 957        if (offset == 0) {      /* GICD_CTLR */
 958            /* We rely here on the only non-zero bits being in byte 0 */
 959            if (s->security_extn && !attrs.secure) {
 960                /* The NS bank of this register is just an alias of the
 961                 * EnableGrp1 bit in the S bank version.
 962                 */
 963                return extract32(s->ctlr, 1, 1);
 964            } else {
 965                return s->ctlr;
 966            }
 967        }
 968        if (offset == 4) {
 969            /* GICD_TYPER byte 0 */
 970            return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5);
 971        }
 972        if (offset == 5) {
 973            /* GICD_TYPER byte 1 */
 974            return (s->security_extn << 2);
 975        }
 976        if (offset == 8) {
 977            /* GICD_IIDR byte 0 */
 978            return 0x3b; /* Arm JEP106 identity */
 979        }
 980        if (offset == 9) {
 981            /* GICD_IIDR byte 1 */
 982            return 0x04; /* Arm JEP106 identity */
 983        }
 984        if (offset < 0x0c) {
 985            /* All other bytes in this range are RAZ */
 986            return 0;
 987        }
 988        if (offset >= 0x80) {
 989            /* Interrupt Group Registers: these RAZ/WI if this is an NS
 990             * access to a GIC with the security extensions, or if the GIC
 991             * doesn't have groups at all.
 992             */
 993            res = 0;
 994            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 995                /* Every byte offset holds 8 group status bits */
 996                irq = (offset - 0x080) * 8;
 997                if (irq >= s->num_irq) {
 998                    goto bad_reg;
 999                }
1000                for (i = 0; i < 8; i++) {
1001                    if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
1002                        res |= (1 << i);
1003                    }
1004                }
1005            }
1006            return res;
1007        }
1008        goto bad_reg;
1009    } else if (offset < 0x200) {
1010        /* Interrupt Set/Clear Enable.  */
1011        if (offset < 0x180)
1012            irq = (offset - 0x100) * 8;
1013        else
1014            irq = (offset - 0x180) * 8;
1015        if (irq >= s->num_irq)
1016            goto bad_reg;
1017        res = 0;
1018        for (i = 0; i < 8; i++) {
1019            if (s->security_extn && !attrs.secure &&
1020                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1021                continue; /* Ignore Non-secure access of Group0 IRQ */
1022            }
1023
1024            if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1025                res |= (1 << i);
1026            }
1027        }
1028    } else if (offset < 0x300) {
1029        /* Interrupt Set/Clear Pending.  */
1030        if (offset < 0x280)
1031            irq = (offset - 0x200) * 8;
1032        else
1033            irq = (offset - 0x280) * 8;
1034        if (irq >= s->num_irq)
1035            goto bad_reg;
1036        res = 0;
1037        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1038        for (i = 0; i < 8; i++) {
1039            if (s->security_extn && !attrs.secure &&
1040                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1041                continue; /* Ignore Non-secure access of Group0 IRQ */
1042            }
1043
1044            if (gic_test_pending(s, irq + i, mask)) {
1045                res |= (1 << i);
1046            }
1047        }
1048    } else if (offset < 0x400) {
1049        /* Interrupt Set/Clear Active.  */
1050        if (offset < 0x380) {
1051            irq = (offset - 0x300) * 8;
1052        } else if (s->revision == 2) {
1053            irq = (offset - 0x380) * 8;
1054        } else {
1055            goto bad_reg;
1056        }
1057
1058        if (irq >= s->num_irq)
1059            goto bad_reg;
1060        res = 0;
1061        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1062        for (i = 0; i < 8; i++) {
1063            if (s->security_extn && !attrs.secure &&
1064                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1065                continue; /* Ignore Non-secure access of Group0 IRQ */
1066            }
1067
1068            if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1069                res |= (1 << i);
1070            }
1071        }
1072    } else if (offset < 0x800) {
1073        /* Interrupt Priority.  */
1074        irq = (offset - 0x400);
1075        if (irq >= s->num_irq)
1076            goto bad_reg;
1077        res = gic_dist_get_priority(s, cpu, irq, attrs);
1078    } else if (offset < 0xc00) {
1079        /* Interrupt CPU Target.  */
1080        if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1081            /* For uniprocessor GICs these RAZ/WI */
1082            res = 0;
1083        } else {
1084            irq = (offset - 0x800);
1085            if (irq >= s->num_irq) {
1086                goto bad_reg;
1087            }
1088            if (irq < 29 && s->revision == REV_11MPCORE) {
1089                res = 0;
1090            } else if (irq < GIC_INTERNAL) {
1091                res = cm;
1092            } else {
1093                res = GIC_DIST_TARGET(irq);
1094            }
1095        }
1096    } else if (offset < 0xf00) {
1097        /* Interrupt Configuration.  */
1098        irq = (offset - 0xc00) * 4;
1099        if (irq >= s->num_irq)
1100            goto bad_reg;
1101        res = 0;
1102        for (i = 0; i < 4; i++) {
1103            if (s->security_extn && !attrs.secure &&
1104                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1105                continue; /* Ignore Non-secure access of Group0 IRQ */
1106            }
1107
1108            if (GIC_DIST_TEST_MODEL(irq + i)) {
1109                res |= (1 << (i * 2));
1110            }
1111            if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1112                res |= (2 << (i * 2));
1113            }
1114        }
1115    } else if (offset < 0xf10) {
1116        goto bad_reg;
1117    } else if (offset < 0xf30) {
1118        if (s->revision == REV_11MPCORE) {
1119            goto bad_reg;
1120        }
1121
1122        if (offset < 0xf20) {
1123            /* GICD_CPENDSGIRn */
1124            irq = (offset - 0xf10);
1125        } else {
1126            irq = (offset - 0xf20);
1127            /* GICD_SPENDSGIRn */
1128        }
1129
1130        if (s->security_extn && !attrs.secure &&
1131            !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1132            res = 0; /* Ignore Non-secure access of Group0 IRQ */
1133        } else {
1134            res = s->sgi_pending[irq][cpu];
1135        }
1136    } else if (offset < 0xfd0) {
1137        goto bad_reg;
1138    } else if (offset < 0x1000) {
1139        if (offset & 3) {
1140            res = 0;
1141        } else {
1142            switch (s->revision) {
1143            case REV_11MPCORE:
1144                res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1145                break;
1146            case 1:
1147                res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1148                break;
1149            case 2:
1150                res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1151                break;
1152            default:
1153                res = 0;
1154            }
1155        }
1156    } else {
1157        g_assert_not_reached();
1158    }
1159    return res;
1160bad_reg:
1161    qemu_log_mask(LOG_GUEST_ERROR,
1162                  "gic_dist_readb: Bad offset %x\n", (int)offset);
1163    return 0;
1164}
1165
1166static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1167                                 unsigned size, MemTxAttrs attrs)
1168{
1169    switch (size) {
1170    case 1:
1171        *data = gic_dist_readb(opaque, offset, attrs);
1172        break;
1173    case 2:
1174        *data = gic_dist_readb(opaque, offset, attrs);
1175        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1176        break;
1177    case 4:
1178        *data = gic_dist_readb(opaque, offset, attrs);
1179        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1180        *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1181        *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1182        break;
1183    default:
1184        return MEMTX_ERROR;
1185    }
1186
1187    trace_gic_dist_read(offset, size, *data);
1188    return MEMTX_OK;
1189}
1190
1191static void gic_dist_writeb(void *opaque, hwaddr offset,
1192                            uint32_t value, MemTxAttrs attrs)
1193{
1194    GICState *s = (GICState *)opaque;
1195    int irq;
1196    int i;
1197    int cpu;
1198
1199    cpu = gic_get_current_cpu(s);
1200    if (offset < 0x100) {
1201        if (offset == 0) {
1202            if (s->security_extn && !attrs.secure) {
1203                /* NS version is just an alias of the S version's bit 1 */
1204                s->ctlr = deposit32(s->ctlr, 1, 1, value);
1205            } else if (gic_has_groups(s)) {
1206                s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1207            } else {
1208                s->ctlr = value & GICD_CTLR_EN_GRP0;
1209            }
1210            DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1211                    s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1212                    s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1213        } else if (offset < 4) {
1214            /* ignored.  */
1215        } else if (offset >= 0x80) {
1216            /* Interrupt Group Registers: RAZ/WI for NS access to secure
1217             * GIC, or for GICs without groups.
1218             */
1219            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1220                /* Every byte offset holds 8 group status bits */
1221                irq = (offset - 0x80) * 8;
1222                if (irq >= s->num_irq) {
1223                    goto bad_reg;
1224                }
1225                for (i = 0; i < 8; i++) {
1226                    /* Group bits are banked for private interrupts */
1227                    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1228                    if (value & (1 << i)) {
1229                        /* Group1 (Non-secure) */
1230                        GIC_DIST_SET_GROUP(irq + i, cm);
1231                    } else {
1232                        /* Group0 (Secure) */
1233                        GIC_DIST_CLEAR_GROUP(irq + i, cm);
1234                    }
1235                }
1236            }
1237        } else {
1238            goto bad_reg;
1239        }
1240    } else if (offset < 0x180) {
1241        /* Interrupt Set Enable.  */
1242        irq = (offset - 0x100) * 8;
1243        if (irq >= s->num_irq)
1244            goto bad_reg;
1245        if (irq < GIC_NR_SGIS) {
1246            value = 0xff;
1247        }
1248
1249        for (i = 0; i < 8; i++) {
1250            if (value & (1 << i)) {
1251                int mask =
1252                    (irq < GIC_INTERNAL) ? (1 << cpu)
1253                                         : GIC_DIST_TARGET(irq + i);
1254                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1255
1256                if (s->security_extn && !attrs.secure &&
1257                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1258                    continue; /* Ignore Non-secure access of Group0 IRQ */
1259                }
1260
1261                if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1262                    DPRINTF("Enabled IRQ %d\n", irq + i);
1263                    trace_gic_enable_irq(irq + i);
1264                }
1265                GIC_DIST_SET_ENABLED(irq + i, cm);
1266                /* If a raised level triggered IRQ enabled then mark
1267                   is as pending.  */
1268                if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1269                        && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1270                    DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1271                    GIC_DIST_SET_PENDING(irq + i, mask);
1272                }
1273            }
1274        }
1275    } else if (offset < 0x200) {
1276        /* Interrupt Clear Enable.  */
1277        irq = (offset - 0x180) * 8;
1278        if (irq >= s->num_irq)
1279            goto bad_reg;
1280        if (irq < GIC_NR_SGIS) {
1281            value = 0;
1282        }
1283
1284        for (i = 0; i < 8; i++) {
1285            if (value & (1 << i)) {
1286                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1287
1288                if (s->security_extn && !attrs.secure &&
1289                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1290                    continue; /* Ignore Non-secure access of Group0 IRQ */
1291                }
1292
1293                if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1294                    DPRINTF("Disabled IRQ %d\n", irq + i);
1295                    trace_gic_disable_irq(irq + i);
1296                }
1297                GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1298            }
1299        }
1300    } else if (offset < 0x280) {
1301        /* Interrupt Set Pending.  */
1302        irq = (offset - 0x200) * 8;
1303        if (irq >= s->num_irq)
1304            goto bad_reg;
1305        if (irq < GIC_NR_SGIS) {
1306            value = 0;
1307        }
1308
1309        for (i = 0; i < 8; i++) {
1310            if (value & (1 << i)) {
1311                if (s->security_extn && !attrs.secure &&
1312                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1313                    continue; /* Ignore Non-secure access of Group0 IRQ */
1314                }
1315
1316                GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1317            }
1318        }
1319    } else if (offset < 0x300) {
1320        /* Interrupt Clear Pending.  */
1321        irq = (offset - 0x280) * 8;
1322        if (irq >= s->num_irq)
1323            goto bad_reg;
1324        if (irq < GIC_NR_SGIS) {
1325            value = 0;
1326        }
1327
1328        for (i = 0; i < 8; i++) {
1329            if (s->security_extn && !attrs.secure &&
1330                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1331                continue; /* Ignore Non-secure access of Group0 IRQ */
1332            }
1333
1334            /* ??? This currently clears the pending bit for all CPUs, even
1335               for per-CPU interrupts.  It's unclear whether this is the
1336               corect behavior.  */
1337            if (value & (1 << i)) {
1338                GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1339            }
1340        }
1341    } else if (offset < 0x380) {
1342        /* Interrupt Set Active.  */
1343        if (s->revision != 2) {
1344            goto bad_reg;
1345        }
1346
1347        irq = (offset - 0x300) * 8;
1348        if (irq >= s->num_irq) {
1349            goto bad_reg;
1350        }
1351
1352        /* This register is banked per-cpu for PPIs */
1353        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1354
1355        for (i = 0; i < 8; i++) {
1356            if (s->security_extn && !attrs.secure &&
1357                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1358                continue; /* Ignore Non-secure access of Group0 IRQ */
1359            }
1360
1361            if (value & (1 << i)) {
1362                GIC_DIST_SET_ACTIVE(irq + i, cm);
1363            }
1364        }
1365    } else if (offset < 0x400) {
1366        /* Interrupt Clear Active.  */
1367        if (s->revision != 2) {
1368            goto bad_reg;
1369        }
1370
1371        irq = (offset - 0x380) * 8;
1372        if (irq >= s->num_irq) {
1373            goto bad_reg;
1374        }
1375
1376        /* This register is banked per-cpu for PPIs */
1377        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1378
1379        for (i = 0; i < 8; i++) {
1380            if (s->security_extn && !attrs.secure &&
1381                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1382                continue; /* Ignore Non-secure access of Group0 IRQ */
1383            }
1384
1385            if (value & (1 << i)) {
1386                GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1387            }
1388        }
1389    } else if (offset < 0x800) {
1390        /* Interrupt Priority.  */
1391        irq = (offset - 0x400);
1392        if (irq >= s->num_irq)
1393            goto bad_reg;
1394        gic_dist_set_priority(s, cpu, irq, value, attrs);
1395    } else if (offset < 0xc00) {
1396        /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1397         * annoying exception of the 11MPCore's GIC.
1398         */
1399        if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1400            irq = (offset - 0x800);
1401            if (irq >= s->num_irq) {
1402                goto bad_reg;
1403            }
1404            if (irq < 29 && s->revision == REV_11MPCORE) {
1405                value = 0;
1406            } else if (irq < GIC_INTERNAL) {
1407                value = ALL_CPU_MASK;
1408            }
1409            s->irq_target[irq] = value & ALL_CPU_MASK;
1410        }
1411    } else if (offset < 0xf00) {
1412        /* Interrupt Configuration.  */
1413        irq = (offset - 0xc00) * 4;
1414        if (irq >= s->num_irq)
1415            goto bad_reg;
1416        if (irq < GIC_NR_SGIS)
1417            value |= 0xaa;
1418        for (i = 0; i < 4; i++) {
1419            if (s->security_extn && !attrs.secure &&
1420                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1421                continue; /* Ignore Non-secure access of Group0 IRQ */
1422            }
1423
1424            if (s->revision == REV_11MPCORE) {
1425                if (value & (1 << (i * 2))) {
1426                    GIC_DIST_SET_MODEL(irq + i);
1427                } else {
1428                    GIC_DIST_CLEAR_MODEL(irq + i);
1429                }
1430            }
1431            if (value & (2 << (i * 2))) {
1432                GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1433            } else {
1434                GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1435            }
1436        }
1437    } else if (offset < 0xf10) {
1438        /* 0xf00 is only handled for 32-bit writes.  */
1439        goto bad_reg;
1440    } else if (offset < 0xf20) {
1441        /* GICD_CPENDSGIRn */
1442        if (s->revision == REV_11MPCORE) {
1443            goto bad_reg;
1444        }
1445        irq = (offset - 0xf10);
1446
1447        if (!s->security_extn || attrs.secure ||
1448            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1449            s->sgi_pending[irq][cpu] &= ~value;
1450            if (s->sgi_pending[irq][cpu] == 0) {
1451                GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1452            }
1453        }
1454    } else if (offset < 0xf30) {
1455        /* GICD_SPENDSGIRn */
1456        if (s->revision == REV_11MPCORE) {
1457            goto bad_reg;
1458        }
1459        irq = (offset - 0xf20);
1460
1461        if (!s->security_extn || attrs.secure ||
1462            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1463            GIC_DIST_SET_PENDING(irq, 1 << cpu);
1464            s->sgi_pending[irq][cpu] |= value;
1465        }
1466    } else {
1467        goto bad_reg;
1468    }
1469    gic_update(s);
1470    return;
1471bad_reg:
1472    qemu_log_mask(LOG_GUEST_ERROR,
1473                  "gic_dist_writeb: Bad offset %x\n", (int)offset);
1474}
1475
1476static void gic_dist_writew(void *opaque, hwaddr offset,
1477                            uint32_t value, MemTxAttrs attrs)
1478{
1479    gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1480    gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1481}
1482
1483static void gic_dist_writel(void *opaque, hwaddr offset,
1484                            uint32_t value, MemTxAttrs attrs)
1485{
1486    GICState *s = (GICState *)opaque;
1487    if (offset == 0xf00) {
1488        int cpu;
1489        int irq;
1490        int mask;
1491        int target_cpu;
1492
1493        cpu = gic_get_current_cpu(s);
1494        irq = value & 0xf;
1495        switch ((value >> 24) & 3) {
1496        case 0:
1497            mask = (value >> 16) & ALL_CPU_MASK;
1498            break;
1499        case 1:
1500            mask = ALL_CPU_MASK ^ (1 << cpu);
1501            break;
1502        case 2:
1503            mask = 1 << cpu;
1504            break;
1505        default:
1506            DPRINTF("Bad Soft Int target filter\n");
1507            mask = ALL_CPU_MASK;
1508            break;
1509        }
1510        GIC_DIST_SET_PENDING(irq, mask);
1511        target_cpu = ctz32(mask);
1512        while (target_cpu < GIC_NCPU) {
1513            s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1514            mask &= ~(1 << target_cpu);
1515            target_cpu = ctz32(mask);
1516        }
1517        gic_update(s);
1518        return;
1519    }
1520    gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1521    gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1522}
1523
1524static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1525                                  unsigned size, MemTxAttrs attrs)
1526{
1527    trace_gic_dist_write(offset, size, data);
1528
1529    switch (size) {
1530    case 1:
1531        gic_dist_writeb(opaque, offset, data, attrs);
1532        return MEMTX_OK;
1533    case 2:
1534        gic_dist_writew(opaque, offset, data, attrs);
1535        return MEMTX_OK;
1536    case 4:
1537        gic_dist_writel(opaque, offset, data, attrs);
1538        return MEMTX_OK;
1539    default:
1540        return MEMTX_ERROR;
1541    }
1542}
1543
1544static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1545{
1546    /* Return the Nonsecure view of GICC_APR<regno>. This is the
1547     * second half of GICC_NSAPR.
1548     */
1549    switch (GIC_MIN_BPR) {
1550    case 0:
1551        if (regno < 2) {
1552            return s->nsapr[regno + 2][cpu];
1553        }
1554        break;
1555    case 1:
1556        if (regno == 0) {
1557            return s->nsapr[regno + 1][cpu];
1558        }
1559        break;
1560    case 2:
1561        if (regno == 0) {
1562            return extract32(s->nsapr[0][cpu], 16, 16);
1563        }
1564        break;
1565    case 3:
1566        if (regno == 0) {
1567            return extract32(s->nsapr[0][cpu], 8, 8);
1568        }
1569        break;
1570    default:
1571        g_assert_not_reached();
1572    }
1573    return 0;
1574}
1575
1576static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1577                                         uint32_t value)
1578{
1579    /* Write the Nonsecure view of GICC_APR<regno>. */
1580    switch (GIC_MIN_BPR) {
1581    case 0:
1582        if (regno < 2) {
1583            s->nsapr[regno + 2][cpu] = value;
1584        }
1585        break;
1586    case 1:
1587        if (regno == 0) {
1588            s->nsapr[regno + 1][cpu] = value;
1589        }
1590        break;
1591    case 2:
1592        if (regno == 0) {
1593            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1594        }
1595        break;
1596    case 3:
1597        if (regno == 0) {
1598            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1599        }
1600        break;
1601    default:
1602        g_assert_not_reached();
1603    }
1604}
1605
1606static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1607                                uint64_t *data, MemTxAttrs attrs)
1608{
1609    switch (offset) {
1610    case 0x00: /* Control */
1611        *data = gic_get_cpu_control(s, cpu, attrs);
1612        break;
1613    case 0x04: /* Priority mask */
1614        *data = gic_get_priority_mask(s, cpu, attrs);
1615        break;
1616    case 0x08: /* Binary Point */
1617        if (gic_cpu_ns_access(s, cpu, attrs)) {
1618            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1619                /* NS view of BPR when CBPR is 1 */
1620                *data = MIN(s->bpr[cpu] + 1, 7);
1621            } else {
1622                /* BPR is banked. Non-secure copy stored in ABPR. */
1623                *data = s->abpr[cpu];
1624            }
1625        } else {
1626            *data = s->bpr[cpu];
1627        }
1628        break;
1629    case 0x0c: /* Acknowledge */
1630        *data = gic_acknowledge_irq(s, cpu, attrs);
1631        break;
1632    case 0x14: /* Running Priority */
1633        *data = gic_get_running_priority(s, cpu, attrs);
1634        break;
1635    case 0x18: /* Highest Pending Interrupt */
1636        *data = gic_get_current_pending_irq(s, cpu, attrs);
1637        break;
1638    case 0x1c: /* Aliased Binary Point */
1639        /* GIC v2, no security: ABPR
1640         * GIC v1, no security: not implemented (RAZ/WI)
1641         * With security extensions, secure access: ABPR (alias of NS BPR)
1642         * With security extensions, nonsecure access: RAZ/WI
1643         */
1644        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1645            *data = 0;
1646        } else {
1647            *data = s->abpr[cpu];
1648        }
1649        break;
1650    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1651    {
1652        int regno = (offset - 0xd0) / 4;
1653        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1654
1655        if (regno >= nr_aprs || s->revision != 2) {
1656            *data = 0;
1657        } else if (gic_is_vcpu(cpu)) {
1658            *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1659        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1660            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1661            *data = gic_apr_ns_view(s, regno, cpu);
1662        } else {
1663            *data = s->apr[regno][cpu];
1664        }
1665        break;
1666    }
1667    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1668    {
1669        int regno = (offset - 0xe0) / 4;
1670
1671        if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1672            gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1673            *data = 0;
1674        } else {
1675            *data = s->nsapr[regno][cpu];
1676        }
1677        break;
1678    }
1679    case 0xfc:
1680        if (s->revision == REV_11MPCORE) {
1681            /* Reserved on 11MPCore */
1682            *data = 0;
1683        } else {
1684            /* GICv1 or v2; Arm implementation */
1685            *data = (s->revision << 16) | 0x43b;
1686        }
1687        break;
1688    default:
1689        qemu_log_mask(LOG_GUEST_ERROR,
1690                      "gic_cpu_read: Bad offset %x\n", (int)offset);
1691        *data = 0;
1692        break;
1693    }
1694
1695    trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1696                       gic_get_vcpu_real_id(cpu), offset, *data);
1697    return MEMTX_OK;
1698}
1699
1700static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1701                                 uint32_t value, MemTxAttrs attrs)
1702{
1703    trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1704                        gic_get_vcpu_real_id(cpu), offset, value);
1705
1706    switch (offset) {
1707    case 0x00: /* Control */
1708        gic_set_cpu_control(s, cpu, value, attrs);
1709        break;
1710    case 0x04: /* Priority mask */
1711        gic_set_priority_mask(s, cpu, value, attrs);
1712        break;
1713    case 0x08: /* Binary Point */
1714        if (gic_cpu_ns_access(s, cpu, attrs)) {
1715            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1716                /* WI when CBPR is 1 */
1717                return MEMTX_OK;
1718            } else {
1719                s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1720            }
1721        } else {
1722            int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1723            s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1724        }
1725        break;
1726    case 0x10: /* End Of Interrupt */
1727        gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1728        return MEMTX_OK;
1729    case 0x1c: /* Aliased Binary Point */
1730        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1731            /* unimplemented, or NS access: RAZ/WI */
1732            return MEMTX_OK;
1733        } else {
1734            s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1735        }
1736        break;
1737    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1738    {
1739        int regno = (offset - 0xd0) / 4;
1740        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1741
1742        if (regno >= nr_aprs || s->revision != 2) {
1743            return MEMTX_OK;
1744        }
1745        if (gic_is_vcpu(cpu)) {
1746            s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1747        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1748            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1749            gic_apr_write_ns_view(s, regno, cpu, value);
1750        } else {
1751            s->apr[regno][cpu] = value;
1752        }
1753        s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1754        break;
1755    }
1756    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1757    {
1758        int regno = (offset - 0xe0) / 4;
1759
1760        if (regno >= GIC_NR_APRS || s->revision != 2) {
1761            return MEMTX_OK;
1762        }
1763        if (gic_is_vcpu(cpu)) {
1764            return MEMTX_OK;
1765        }
1766        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1767            return MEMTX_OK;
1768        }
1769        s->nsapr[regno][cpu] = value;
1770        s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1771        break;
1772    }
1773    case 0x1000:
1774        /* GICC_DIR */
1775        gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1776        break;
1777    default:
1778        qemu_log_mask(LOG_GUEST_ERROR,
1779                      "gic_cpu_write: Bad offset %x\n", (int)offset);
1780        return MEMTX_OK;
1781    }
1782
1783    if (gic_is_vcpu(cpu)) {
1784        gic_update_virt(s);
1785    } else {
1786        gic_update(s);
1787    }
1788
1789    return MEMTX_OK;
1790}
1791
1792/* Wrappers to read/write the GIC CPU interface for the current CPU */
1793static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1794                                    unsigned size, MemTxAttrs attrs)
1795{
1796    GICState *s = (GICState *)opaque;
1797    return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1798}
1799
1800static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1801                                     uint64_t value, unsigned size,
1802                                     MemTxAttrs attrs)
1803{
1804    GICState *s = (GICState *)opaque;
1805    return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1806}
1807
1808/* Wrappers to read/write the GIC CPU interface for a specific CPU.
1809 * These just decode the opaque pointer into GICState* + cpu id.
1810 */
1811static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1812                                   unsigned size, MemTxAttrs attrs)
1813{
1814    GICState **backref = (GICState **)opaque;
1815    GICState *s = *backref;
1816    int id = (backref - s->backref);
1817    return gic_cpu_read(s, id, addr, data, attrs);
1818}
1819
1820static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1821                                    uint64_t value, unsigned size,
1822                                    MemTxAttrs attrs)
1823{
1824    GICState **backref = (GICState **)opaque;
1825    GICState *s = *backref;
1826    int id = (backref - s->backref);
1827    return gic_cpu_write(s, id, addr, value, attrs);
1828}
1829
1830static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1831                                    unsigned size, MemTxAttrs attrs)
1832{
1833    GICState *s = (GICState *)opaque;
1834
1835    return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1836}
1837
1838static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1839                                     uint64_t value, unsigned size,
1840                                     MemTxAttrs attrs)
1841{
1842    GICState *s = (GICState *)opaque;
1843
1844    return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1845}
1846
1847static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1848{
1849    int lr_idx;
1850    uint32_t ret = 0;
1851
1852    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1853        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1854        ret = deposit32(ret, lr_idx - lr_start, 1,
1855                        gic_lr_entry_is_eoi(*entry));
1856    }
1857
1858    return ret;
1859}
1860
1861static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1862{
1863    int lr_idx;
1864    uint32_t ret = 0;
1865
1866    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1867        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1868        ret = deposit32(ret, lr_idx - lr_start, 1,
1869                        gic_lr_entry_is_free(*entry));
1870    }
1871
1872    return ret;
1873}
1874
1875static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1876{
1877    int vcpu = gic_get_current_vcpu(s);
1878    uint32_t ctlr;
1879    uint32_t abpr;
1880    uint32_t bpr;
1881    uint32_t prio_mask;
1882
1883    ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1884    abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1885    bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1886    prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1887
1888    gic_set_cpu_control(s, vcpu, ctlr, attrs);
1889    s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1890    s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1891    gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1892}
1893
1894static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1895                                uint64_t *data, MemTxAttrs attrs)
1896{
1897    GICState *s = ARM_GIC(opaque);
1898    int vcpu = cpu + GIC_NCPU;
1899
1900    switch (addr) {
1901    case A_GICH_HCR: /* Hypervisor Control */
1902        *data = s->h_hcr[cpu];
1903        break;
1904
1905    case A_GICH_VTR: /* VGIC Type */
1906        *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1907        *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1908                           GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1909        *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1910                           (7 - GIC_VIRT_MIN_BPR) - 1);
1911        break;
1912
1913    case A_GICH_VMCR: /* Virtual Machine Control */
1914        *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1915                           extract32(s->cpu_ctlr[vcpu], 0, 10));
1916        *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1917        *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1918        *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1919                           extract32(s->priority_mask[vcpu], 3, 5));
1920        break;
1921
1922    case A_GICH_MISR: /* Maintenance Interrupt Status */
1923        *data = s->h_misr[cpu];
1924        break;
1925
1926    case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1927    case A_GICH_EISR1:
1928        *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1929        break;
1930
1931    case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1932    case A_GICH_ELRSR1:
1933        *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1934        break;
1935
1936    case A_GICH_APR: /* Active Priorities */
1937        *data = s->h_apr[cpu];
1938        break;
1939
1940    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1941    {
1942        int lr_idx = (addr - A_GICH_LR0) / 4;
1943
1944        if (lr_idx > s->num_lrs) {
1945            *data = 0;
1946        } else {
1947            *data = s->h_lr[lr_idx][cpu];
1948        }
1949        break;
1950    }
1951
1952    default:
1953        qemu_log_mask(LOG_GUEST_ERROR,
1954                      "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1955        return MEMTX_OK;
1956    }
1957
1958    trace_gic_hyp_read(addr, *data);
1959    return MEMTX_OK;
1960}
1961
1962static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1963                                 uint64_t value, MemTxAttrs attrs)
1964{
1965    GICState *s = ARM_GIC(opaque);
1966    int vcpu = cpu + GIC_NCPU;
1967
1968    trace_gic_hyp_write(addr, value);
1969
1970    switch (addr) {
1971    case A_GICH_HCR: /* Hypervisor Control */
1972        s->h_hcr[cpu] = value & GICH_HCR_MASK;
1973        break;
1974
1975    case A_GICH_VMCR: /* Virtual Machine Control */
1976        gic_vmcr_write(s, value, attrs);
1977        break;
1978
1979    case A_GICH_APR: /* Active Priorities */
1980        s->h_apr[cpu] = value;
1981        s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1982        break;
1983
1984    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1985    {
1986        int lr_idx = (addr - A_GICH_LR0) / 4;
1987
1988        if (lr_idx > s->num_lrs) {
1989            return MEMTX_OK;
1990        }
1991
1992        s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1993        trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1994        break;
1995    }
1996
1997    default:
1998        qemu_log_mask(LOG_GUEST_ERROR,
1999                      "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
2000        return MEMTX_OK;
2001    }
2002
2003    gic_update_virt(s);
2004    return MEMTX_OK;
2005}
2006
2007static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2008                                    unsigned size, MemTxAttrs attrs)
2009{
2010    GICState *s = (GICState *)opaque;
2011
2012    return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
2013}
2014
2015static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
2016                                     uint64_t value, unsigned size,
2017                                     MemTxAttrs attrs)
2018{
2019    GICState *s = (GICState *)opaque;
2020
2021    return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
2022}
2023
2024static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2025                                    unsigned size, MemTxAttrs attrs)
2026{
2027    GICState **backref = (GICState **)opaque;
2028    GICState *s = *backref;
2029    int id = (backref - s->backref);
2030
2031    return gic_hyp_read(s, id, addr, data, attrs);
2032}
2033
2034static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2035                                     uint64_t value, unsigned size,
2036                                     MemTxAttrs attrs)
2037{
2038    GICState **backref = (GICState **)opaque;
2039    GICState *s = *backref;
2040    int id = (backref - s->backref);
2041
2042    return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2043
2044}
2045
2046static const MemoryRegionOps gic_ops[2] = {
2047    {
2048        .read_with_attrs = gic_dist_read,
2049        .write_with_attrs = gic_dist_write,
2050        .endianness = DEVICE_NATIVE_ENDIAN,
2051    },
2052    {
2053        .read_with_attrs = gic_thiscpu_read,
2054        .write_with_attrs = gic_thiscpu_write,
2055        .endianness = DEVICE_NATIVE_ENDIAN,
2056    }
2057};
2058
2059static const MemoryRegionOps gic_cpu_ops = {
2060    .read_with_attrs = gic_do_cpu_read,
2061    .write_with_attrs = gic_do_cpu_write,
2062    .endianness = DEVICE_NATIVE_ENDIAN,
2063};
2064
2065static const MemoryRegionOps gic_virt_ops[2] = {
2066    {
2067        .read_with_attrs = gic_thiscpu_hyp_read,
2068        .write_with_attrs = gic_thiscpu_hyp_write,
2069        .endianness = DEVICE_NATIVE_ENDIAN,
2070    },
2071    {
2072        .read_with_attrs = gic_thisvcpu_read,
2073        .write_with_attrs = gic_thisvcpu_write,
2074        .endianness = DEVICE_NATIVE_ENDIAN,
2075    }
2076};
2077
2078static const MemoryRegionOps gic_viface_ops = {
2079    .read_with_attrs = gic_do_hyp_read,
2080    .write_with_attrs = gic_do_hyp_write,
2081    .endianness = DEVICE_NATIVE_ENDIAN,
2082};
2083
2084static void arm_gic_realize(DeviceState *dev, Error **errp)
2085{
2086    /* Device instance realize function for the GIC sysbus device */
2087    int i;
2088    GICState *s = ARM_GIC(dev);
2089    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2090    ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2091    Error *local_err = NULL;
2092
2093    agc->parent_realize(dev, &local_err);
2094    if (local_err) {
2095        error_propagate(errp, local_err);
2096        return;
2097    }
2098
2099    if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2100        error_setg(errp, "KVM with user space irqchip only works when the "
2101                         "host kernel supports KVM_CAP_ARM_USER_IRQ");
2102        return;
2103    }
2104
2105    if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2106       (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2107        s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2108        error_setg(errp, "num-priority-bits cannot be greater than %d"
2109                   " or less than %d", GIC_MAX_PRIORITY_BITS,
2110                   s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2111                   GIC_MIN_PRIORITY_BITS);
2112        return;
2113    }
2114
2115    /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2116     * enabled, virtualization extensions related interfaces (main virtual
2117     * interface (s->vifaceiomem[0]) and virtual CPU interface).
2118     */
2119    gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2120
2121    /* Extra core-specific regions for the CPU interfaces. This is
2122     * necessary for "franken-GIC" implementations, for example on
2123     * Exynos 4.
2124     * NB that the memory region size of 0x100 applies for the 11MPCore
2125     * and also cores following the GIC v1 spec (ie A9).
2126     * GIC v2 defines a larger memory region (0x1000) so this will need
2127     * to be extended when we implement A15.
2128     */
2129    for (i = 0; i < s->num_cpu; i++) {
2130        s->backref[i] = s;
2131        memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2132                              &s->backref[i], "gic_cpu", 0x100);
2133        sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2134    }
2135
2136    /* Extra core-specific regions for virtual interfaces. This is required by
2137     * the GICv2 specification.
2138     */
2139    if (s->virt_extn) {
2140        for (i = 0; i < s->num_cpu; i++) {
2141            memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2142                                  &gic_viface_ops, &s->backref[i],
2143                                  "gic_viface", 0x200);
2144            sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2145        }
2146    }
2147
2148}
2149
2150static void arm_gic_class_init(ObjectClass *klass, void *data)
2151{
2152    DeviceClass *dc = DEVICE_CLASS(klass);
2153    ARMGICClass *agc = ARM_GIC_CLASS(klass);
2154
2155    device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2156}
2157
2158static const TypeInfo arm_gic_info = {
2159    .name = TYPE_ARM_GIC,
2160    .parent = TYPE_ARM_GIC_COMMON,
2161    .instance_size = sizeof(GICState),
2162    .class_init = arm_gic_class_init,
2163    .class_size = sizeof(ARMGICClass),
2164};
2165
2166static void arm_gic_register_types(void)
2167{
2168    type_register_static(&arm_gic_info);
2169}
2170
2171type_init(arm_gic_register_types)
2172