qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qemu/cutils.h"
   3#include "qapi/error.h"
   4#include "sysemu/hw_accel.h"
   5#include "sysemu/runstate.h"
   6#include "qemu/log.h"
   7#include "qemu/main-loop.h"
   8#include "qemu/module.h"
   9#include "qemu/error-report.h"
  10#include "exec/exec-all.h"
  11#include "helper_regs.h"
  12#include "hw/ppc/ppc.h"
  13#include "hw/ppc/spapr.h"
  14#include "hw/ppc/spapr_cpu_core.h"
  15#include "mmu-hash64.h"
  16#include "cpu-models.h"
  17#include "trace.h"
  18#include "kvm_ppc.h"
  19#include "hw/ppc/fdt.h"
  20#include "hw/ppc/spapr_ovec.h"
  21#include "hw/ppc/spapr_numa.h"
  22#include "mmu-book3s-v3.h"
  23#include "hw/mem/memory-device.h"
  24
  25bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
  26{
  27    MachineState *machine = MACHINE(spapr);
  28    DeviceMemoryState *dms = machine->device_memory;
  29
  30    if (addr < machine->ram_size) {
  31        return true;
  32    }
  33    if ((addr >= dms->base)
  34        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
  35        return true;
  36    }
  37
  38    return false;
  39}
  40
  41/* Convert a return code from the KVM ioctl()s implementing resize HPT
  42 * into a PAPR hypercall return code */
  43static target_ulong resize_hpt_convert_rc(int ret)
  44{
  45    if (ret >= 100000) {
  46        return H_LONG_BUSY_ORDER_100_SEC;
  47    } else if (ret >= 10000) {
  48        return H_LONG_BUSY_ORDER_10_SEC;
  49    } else if (ret >= 1000) {
  50        return H_LONG_BUSY_ORDER_1_SEC;
  51    } else if (ret >= 100) {
  52        return H_LONG_BUSY_ORDER_100_MSEC;
  53    } else if (ret >= 10) {
  54        return H_LONG_BUSY_ORDER_10_MSEC;
  55    } else if (ret > 0) {
  56        return H_LONG_BUSY_ORDER_1_MSEC;
  57    }
  58
  59    switch (ret) {
  60    case 0:
  61        return H_SUCCESS;
  62    case -EPERM:
  63        return H_AUTHORITY;
  64    case -EINVAL:
  65        return H_PARAMETER;
  66    case -ENXIO:
  67        return H_CLOSED;
  68    case -ENOSPC:
  69        return H_PTEG_FULL;
  70    case -EBUSY:
  71        return H_BUSY;
  72    case -ENOMEM:
  73        return H_NO_MEM;
  74    default:
  75        return H_HARDWARE;
  76    }
  77}
  78
  79static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
  80                                         SpaprMachineState *spapr,
  81                                         target_ulong opcode,
  82                                         target_ulong *args)
  83{
  84    target_ulong flags = args[0];
  85    int shift = args[1];
  86    uint64_t current_ram_size;
  87    int rc;
  88
  89    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
  90        return H_AUTHORITY;
  91    }
  92
  93    if (!spapr->htab_shift) {
  94        /* Radix guest, no HPT */
  95        return H_NOT_AVAILABLE;
  96    }
  97
  98    trace_spapr_h_resize_hpt_prepare(flags, shift);
  99
 100    if (flags != 0) {
 101        return H_PARAMETER;
 102    }
 103
 104    if (shift && ((shift < 18) || (shift > 46))) {
 105        return H_PARAMETER;
 106    }
 107
 108    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 109
 110    /* We only allow the guest to allocate an HPT one order above what
 111     * we'd normally give them (to stop a small guest claiming a huge
 112     * chunk of resources in the HPT */
 113    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 114        return H_RESOURCE;
 115    }
 116
 117    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 118    if (rc != -ENOSYS) {
 119        return resize_hpt_convert_rc(rc);
 120    }
 121
 122    if (kvm_enabled()) {
 123        return H_HARDWARE;
 124    }
 125
 126    return softmmu_resize_hpt_prepare(cpu, spapr, shift);
 127}
 128
 129static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 130{
 131    int ret;
 132
 133    cpu_synchronize_state(cs);
 134
 135    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 136    if (ret < 0) {
 137        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 138        exit(1);
 139    }
 140}
 141
 142void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
 143{
 144    CPUState *cs;
 145
 146    /*
 147     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 148     * slot in kvm_sregs to communicate the userspace address of the
 149     * HPT
 150     */
 151    if (!kvm_enabled() || !spapr->htab) {
 152        return;
 153    }
 154
 155    CPU_FOREACH(cs) {
 156        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 157    }
 158}
 159
 160static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 161                                        SpaprMachineState *spapr,
 162                                        target_ulong opcode,
 163                                        target_ulong *args)
 164{
 165    target_ulong flags = args[0];
 166    target_ulong shift = args[1];
 167    int rc;
 168
 169    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 170        return H_AUTHORITY;
 171    }
 172
 173    if (!spapr->htab_shift) {
 174        /* Radix guest, no HPT */
 175        return H_NOT_AVAILABLE;
 176    }
 177
 178    trace_spapr_h_resize_hpt_commit(flags, shift);
 179
 180    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 181    if (rc != -ENOSYS) {
 182        rc = resize_hpt_convert_rc(rc);
 183        if (rc == H_SUCCESS) {
 184            /* Need to set the new htab_shift in the machine state */
 185            spapr->htab_shift = shift;
 186        }
 187        return rc;
 188    }
 189
 190    if (kvm_enabled()) {
 191        return H_HARDWARE;
 192    }
 193
 194    return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
 195}
 196
 197
 198
 199static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
 200                                target_ulong opcode, target_ulong *args)
 201{
 202    cpu_synchronize_state(CPU(cpu));
 203    cpu->env.spr[SPR_SPRG0] = args[0];
 204
 205    return H_SUCCESS;
 206}
 207
 208static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 209                               target_ulong opcode, target_ulong *args)
 210{
 211    if (!ppc_has_spr(cpu, SPR_DABR)) {
 212        return H_HARDWARE;              /* DABR register not available */
 213    }
 214    cpu_synchronize_state(CPU(cpu));
 215
 216    if (ppc_has_spr(cpu, SPR_DABRX)) {
 217        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 218    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 219        return H_RESERVED_DABR;
 220    }
 221
 222    cpu->env.spr[SPR_DABR] = args[0];
 223    return H_SUCCESS;
 224}
 225
 226static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 227                                target_ulong opcode, target_ulong *args)
 228{
 229    target_ulong dabrx = args[1];
 230
 231    if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
 232        return H_HARDWARE;
 233    }
 234
 235    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 236        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 237        return H_PARAMETER;
 238    }
 239
 240    cpu_synchronize_state(CPU(cpu));
 241    cpu->env.spr[SPR_DABRX] = dabrx;
 242    cpu->env.spr[SPR_DABR] = args[0];
 243
 244    return H_SUCCESS;
 245}
 246
 247static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
 248                                target_ulong opcode, target_ulong *args)
 249{
 250    target_ulong flags = args[0];
 251    hwaddr dst = args[1];
 252    hwaddr src = args[2];
 253    hwaddr len = TARGET_PAGE_SIZE;
 254    uint8_t *pdst, *psrc;
 255    target_long ret = H_SUCCESS;
 256
 257    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 258                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 259        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 260                      flags);
 261        return H_PARAMETER;
 262    }
 263
 264    /* Map-in destination */
 265    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 266        return H_PARAMETER;
 267    }
 268    pdst = cpu_physical_memory_map(dst, &len, true);
 269    if (!pdst || len != TARGET_PAGE_SIZE) {
 270        return H_PARAMETER;
 271    }
 272
 273    if (flags & H_COPY_PAGE) {
 274        /* Map-in source, copy to destination, and unmap source again */
 275        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 276            ret = H_PARAMETER;
 277            goto unmap_out;
 278        }
 279        psrc = cpu_physical_memory_map(src, &len, false);
 280        if (!psrc || len != TARGET_PAGE_SIZE) {
 281            ret = H_PARAMETER;
 282            goto unmap_out;
 283        }
 284        memcpy(pdst, psrc, len);
 285        cpu_physical_memory_unmap(psrc, len, 0, len);
 286    } else if (flags & H_ZERO_PAGE) {
 287        memset(pdst, 0, len);          /* Just clear the destination page */
 288    }
 289
 290    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 291        kvmppc_dcbst_range(cpu, pdst, len);
 292    }
 293    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 294        if (kvm_enabled()) {
 295            kvmppc_icbi_range(cpu, pdst, len);
 296        } else {
 297            tb_flush(CPU(cpu));
 298        }
 299    }
 300
 301unmap_out:
 302    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 303    return ret;
 304}
 305
 306#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 307#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 308#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 309#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 310#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 311#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 312
 313static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 314{
 315    CPUState *cs = CPU(cpu);
 316    CPUPPCState *env = &cpu->env;
 317    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 318    uint16_t size;
 319    uint8_t tmp;
 320
 321    if (vpa == 0) {
 322        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 323        return H_HARDWARE;
 324    }
 325
 326    if (vpa % env->dcache_line_size) {
 327        return H_PARAMETER;
 328    }
 329    /* FIXME: bounds check the address */
 330
 331    size = lduw_be_phys(cs->as, vpa + 0x4);
 332
 333    if (size < VPA_MIN_SIZE) {
 334        return H_PARAMETER;
 335    }
 336
 337    /* VPA is not allowed to cross a page boundary */
 338    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 339        return H_PARAMETER;
 340    }
 341
 342    spapr_cpu->vpa_addr = vpa;
 343
 344    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 345    tmp |= VPA_SHARED_PROC_VAL;
 346    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 347
 348    return H_SUCCESS;
 349}
 350
 351static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 352{
 353    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 354
 355    if (spapr_cpu->slb_shadow_addr) {
 356        return H_RESOURCE;
 357    }
 358
 359    if (spapr_cpu->dtl_addr) {
 360        return H_RESOURCE;
 361    }
 362
 363    spapr_cpu->vpa_addr = 0;
 364    return H_SUCCESS;
 365}
 366
 367static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 368{
 369    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 370    uint32_t size;
 371
 372    if (addr == 0) {
 373        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 374        return H_HARDWARE;
 375    }
 376
 377    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 378    if (size < 0x8) {
 379        return H_PARAMETER;
 380    }
 381
 382    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 383        return H_PARAMETER;
 384    }
 385
 386    if (!spapr_cpu->vpa_addr) {
 387        return H_RESOURCE;
 388    }
 389
 390    spapr_cpu->slb_shadow_addr = addr;
 391    spapr_cpu->slb_shadow_size = size;
 392
 393    return H_SUCCESS;
 394}
 395
 396static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 397{
 398    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 399
 400    spapr_cpu->slb_shadow_addr = 0;
 401    spapr_cpu->slb_shadow_size = 0;
 402    return H_SUCCESS;
 403}
 404
 405static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 406{
 407    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 408    uint32_t size;
 409
 410    if (addr == 0) {
 411        hcall_dprintf("Can't cope with DTL at logical 0\n");
 412        return H_HARDWARE;
 413    }
 414
 415    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 416
 417    if (size < 48) {
 418        return H_PARAMETER;
 419    }
 420
 421    if (!spapr_cpu->vpa_addr) {
 422        return H_RESOURCE;
 423    }
 424
 425    spapr_cpu->dtl_addr = addr;
 426    spapr_cpu->dtl_size = size;
 427
 428    return H_SUCCESS;
 429}
 430
 431static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
 432{
 433    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 434
 435    spapr_cpu->dtl_addr = 0;
 436    spapr_cpu->dtl_size = 0;
 437
 438    return H_SUCCESS;
 439}
 440
 441static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
 442                                   target_ulong opcode, target_ulong *args)
 443{
 444    target_ulong flags = args[0];
 445    target_ulong procno = args[1];
 446    target_ulong vpa = args[2];
 447    target_ulong ret = H_PARAMETER;
 448    PowerPCCPU *tcpu;
 449
 450    tcpu = spapr_find_cpu(procno);
 451    if (!tcpu) {
 452        return H_PARAMETER;
 453    }
 454
 455    switch (flags) {
 456    case FLAGS_REGISTER_VPA:
 457        ret = register_vpa(tcpu, vpa);
 458        break;
 459
 460    case FLAGS_DEREGISTER_VPA:
 461        ret = deregister_vpa(tcpu, vpa);
 462        break;
 463
 464    case FLAGS_REGISTER_SLBSHADOW:
 465        ret = register_slb_shadow(tcpu, vpa);
 466        break;
 467
 468    case FLAGS_DEREGISTER_SLBSHADOW:
 469        ret = deregister_slb_shadow(tcpu, vpa);
 470        break;
 471
 472    case FLAGS_REGISTER_DTL:
 473        ret = register_dtl(tcpu, vpa);
 474        break;
 475
 476    case FLAGS_DEREGISTER_DTL:
 477        ret = deregister_dtl(tcpu, vpa);
 478        break;
 479    }
 480
 481    return ret;
 482}
 483
 484static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
 485                           target_ulong opcode, target_ulong *args)
 486{
 487    CPUPPCState *env = &cpu->env;
 488    CPUState *cs = CPU(cpu);
 489    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 490
 491    env->msr |= (1ULL << MSR_EE);
 492    hreg_compute_hflags(env);
 493    ppc_maybe_interrupt(env);
 494
 495    if (spapr_cpu->prod) {
 496        spapr_cpu->prod = false;
 497        return H_SUCCESS;
 498    }
 499
 500    if (!cpu_has_work(cs)) {
 501        cs->halted = 1;
 502        cs->exception_index = EXCP_HLT;
 503        cs->exit_request = 1;
 504        ppc_maybe_interrupt(env);
 505    }
 506
 507    return H_SUCCESS;
 508}
 509
 510/*
 511 * Confer to self, aka join. Cede could use the same pattern as well, if
 512 * EXCP_HLT can be changed to ECXP_HALTED.
 513 */
 514static target_ulong h_confer_self(PowerPCCPU *cpu)
 515{
 516    CPUState *cs = CPU(cpu);
 517    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 518
 519    if (spapr_cpu->prod) {
 520        spapr_cpu->prod = false;
 521        return H_SUCCESS;
 522    }
 523    cs->halted = 1;
 524    cs->exception_index = EXCP_HALTED;
 525    cs->exit_request = 1;
 526    ppc_maybe_interrupt(&cpu->env);
 527
 528    return H_SUCCESS;
 529}
 530
 531static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
 532                           target_ulong opcode, target_ulong *args)
 533{
 534    CPUPPCState *env = &cpu->env;
 535    CPUState *cs;
 536    bool last_unjoined = true;
 537
 538    if (env->msr & (1ULL << MSR_EE)) {
 539        return H_BAD_MODE;
 540    }
 541
 542    /*
 543     * Must not join the last CPU running. Interestingly, no such restriction
 544     * for H_CONFER-to-self, but that is probably not intended to be used
 545     * when H_JOIN is available.
 546     */
 547    CPU_FOREACH(cs) {
 548        PowerPCCPU *c = POWERPC_CPU(cs);
 549        CPUPPCState *e = &c->env;
 550        if (c == cpu) {
 551            continue;
 552        }
 553
 554        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
 555        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
 556            last_unjoined = false;
 557            break;
 558        }
 559    }
 560    if (last_unjoined) {
 561        return H_CONTINUE;
 562    }
 563
 564    return h_confer_self(cpu);
 565}
 566
 567static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
 568                           target_ulong opcode, target_ulong *args)
 569{
 570    target_long target = args[0];
 571    uint32_t dispatch = args[1];
 572    CPUState *cs = CPU(cpu);
 573    SpaprCpuState *spapr_cpu;
 574
 575    /*
 576     * -1 means confer to all other CPUs without dispatch counter check,
 577     *  otherwise it's a targeted confer.
 578     */
 579    if (target != -1) {
 580        PowerPCCPU *target_cpu = spapr_find_cpu(target);
 581        uint32_t target_dispatch;
 582
 583        if (!target_cpu) {
 584            return H_PARAMETER;
 585        }
 586
 587        /*
 588         * target == self is a special case, we wait until prodded, without
 589         * dispatch counter check.
 590         */
 591        if (cpu == target_cpu) {
 592            return h_confer_self(cpu);
 593        }
 594
 595        spapr_cpu = spapr_cpu_state(target_cpu);
 596        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
 597            return H_SUCCESS;
 598        }
 599
 600        target_dispatch = ldl_be_phys(cs->as,
 601                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
 602        if (target_dispatch != dispatch) {
 603            return H_SUCCESS;
 604        }
 605
 606        /*
 607         * The targeted confer does not do anything special beyond yielding
 608         * the current vCPU, but even this should be better than nothing.
 609         * At least for single-threaded tcg, it gives the target a chance to
 610         * run before we run again. Multi-threaded tcg does not really do
 611         * anything with EXCP_YIELD yet.
 612         */
 613    }
 614
 615    cs->exception_index = EXCP_YIELD;
 616    cs->exit_request = 1;
 617    cpu_loop_exit(cs);
 618
 619    return H_SUCCESS;
 620}
 621
 622static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
 623                           target_ulong opcode, target_ulong *args)
 624{
 625    target_long target = args[0];
 626    PowerPCCPU *tcpu;
 627    CPUState *cs;
 628    SpaprCpuState *spapr_cpu;
 629
 630    tcpu = spapr_find_cpu(target);
 631    cs = CPU(tcpu);
 632    if (!cs) {
 633        return H_PARAMETER;
 634    }
 635
 636    spapr_cpu = spapr_cpu_state(tcpu);
 637    spapr_cpu->prod = true;
 638    cs->halted = 0;
 639    ppc_maybe_interrupt(&cpu->env);
 640    qemu_cpu_kick(cs);
 641
 642    return H_SUCCESS;
 643}
 644
 645static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
 646                           target_ulong opcode, target_ulong *args)
 647{
 648    target_ulong rtas_r3 = args[0];
 649    uint32_t token = rtas_ld(rtas_r3, 0);
 650    uint32_t nargs = rtas_ld(rtas_r3, 1);
 651    uint32_t nret = rtas_ld(rtas_r3, 2);
 652
 653    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
 654                           nret, rtas_r3 + 12 + 4*nargs);
 655}
 656
 657static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
 658                                   target_ulong opcode, target_ulong *args)
 659{
 660    CPUState *cs = CPU(cpu);
 661    target_ulong size = args[0];
 662    target_ulong addr = args[1];
 663
 664    switch (size) {
 665    case 1:
 666        args[0] = ldub_phys(cs->as, addr);
 667        return H_SUCCESS;
 668    case 2:
 669        args[0] = lduw_phys(cs->as, addr);
 670        return H_SUCCESS;
 671    case 4:
 672        args[0] = ldl_phys(cs->as, addr);
 673        return H_SUCCESS;
 674    case 8:
 675        args[0] = ldq_phys(cs->as, addr);
 676        return H_SUCCESS;
 677    }
 678    return H_PARAMETER;
 679}
 680
 681static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
 682                                    target_ulong opcode, target_ulong *args)
 683{
 684    CPUState *cs = CPU(cpu);
 685
 686    target_ulong size = args[0];
 687    target_ulong addr = args[1];
 688    target_ulong val  = args[2];
 689
 690    switch (size) {
 691    case 1:
 692        stb_phys(cs->as, addr, val);
 693        return H_SUCCESS;
 694    case 2:
 695        stw_phys(cs->as, addr, val);
 696        return H_SUCCESS;
 697    case 4:
 698        stl_phys(cs->as, addr, val);
 699        return H_SUCCESS;
 700    case 8:
 701        stq_phys(cs->as, addr, val);
 702        return H_SUCCESS;
 703    }
 704    return H_PARAMETER;
 705}
 706
 707static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
 708                                    target_ulong opcode, target_ulong *args)
 709{
 710    CPUState *cs = CPU(cpu);
 711
 712    target_ulong dst   = args[0]; /* Destination address */
 713    target_ulong src   = args[1]; /* Source address */
 714    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
 715    target_ulong count = args[3]; /* Element count */
 716    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
 717    uint64_t tmp;
 718    unsigned int mask = (1 << esize) - 1;
 719    int step = 1 << esize;
 720
 721    if (count > 0x80000000) {
 722        return H_PARAMETER;
 723    }
 724
 725    if ((dst & mask) || (src & mask) || (op > 1)) {
 726        return H_PARAMETER;
 727    }
 728
 729    if (dst >= src && dst < (src + (count << esize))) {
 730            dst = dst + ((count - 1) << esize);
 731            src = src + ((count - 1) << esize);
 732            step = -step;
 733    }
 734
 735    while (count--) {
 736        switch (esize) {
 737        case 0:
 738            tmp = ldub_phys(cs->as, src);
 739            break;
 740        case 1:
 741            tmp = lduw_phys(cs->as, src);
 742            break;
 743        case 2:
 744            tmp = ldl_phys(cs->as, src);
 745            break;
 746        case 3:
 747            tmp = ldq_phys(cs->as, src);
 748            break;
 749        default:
 750            return H_PARAMETER;
 751        }
 752        if (op == 1) {
 753            tmp = ~tmp;
 754        }
 755        switch (esize) {
 756        case 0:
 757            stb_phys(cs->as, dst, tmp);
 758            break;
 759        case 1:
 760            stw_phys(cs->as, dst, tmp);
 761            break;
 762        case 2:
 763            stl_phys(cs->as, dst, tmp);
 764            break;
 765        case 3:
 766            stq_phys(cs->as, dst, tmp);
 767            break;
 768        }
 769        dst = dst + step;
 770        src = src + step;
 771    }
 772
 773    return H_SUCCESS;
 774}
 775
 776static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
 777                                   target_ulong opcode, target_ulong *args)
 778{
 779    /* Nothing to do on emulation, KVM will trap this in the kernel */
 780    return H_SUCCESS;
 781}
 782
 783static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
 784                                   target_ulong opcode, target_ulong *args)
 785{
 786    /* Nothing to do on emulation, KVM will trap this in the kernel */
 787    return H_SUCCESS;
 788}
 789
 790static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
 791                                           SpaprMachineState *spapr,
 792                                           target_ulong mflags,
 793                                           target_ulong value1,
 794                                           target_ulong value2)
 795{
 796    if (value1) {
 797        return H_P3;
 798    }
 799    if (value2) {
 800        return H_P4;
 801    }
 802
 803    switch (mflags) {
 804    case H_SET_MODE_ENDIAN_BIG:
 805        spapr_set_all_lpcrs(0, LPCR_ILE);
 806        spapr_pci_switch_vga(spapr, true);
 807        return H_SUCCESS;
 808
 809    case H_SET_MODE_ENDIAN_LITTLE:
 810        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
 811        spapr_pci_switch_vga(spapr, false);
 812        return H_SUCCESS;
 813    }
 814
 815    return H_UNSUPPORTED_FLAG;
 816}
 817
 818static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
 819                                                        target_ulong mflags,
 820                                                        target_ulong value1,
 821                                                        target_ulong value2)
 822{
 823    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 824
 825    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
 826        return H_P2;
 827    }
 828    if (value1) {
 829        return H_P3;
 830    }
 831    if (value2) {
 832        return H_P4;
 833    }
 834
 835    if (mflags == 1) {
 836        /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
 837        return H_UNSUPPORTED_FLAG;
 838    }
 839
 840    if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
 841        /* AIL=2 is reserved in POWER10 (ISA v3.1) */
 842        return H_UNSUPPORTED_FLAG;
 843    }
 844
 845    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
 846
 847    return H_SUCCESS;
 848}
 849
 850static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
 851                               target_ulong opcode, target_ulong *args)
 852{
 853    target_ulong resource = args[1];
 854    target_ulong ret = H_P2;
 855
 856    switch (resource) {
 857    case H_SET_MODE_RESOURCE_LE:
 858        ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
 859        break;
 860    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
 861        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
 862                                                  args[2], args[3]);
 863        break;
 864    }
 865
 866    return ret;
 867}
 868
 869static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
 870                                target_ulong opcode, target_ulong *args)
 871{
 872    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 873                  opcode, " (H_CLEAN_SLB)");
 874    return H_FUNCTION;
 875}
 876
 877static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
 878                                     target_ulong opcode, target_ulong *args)
 879{
 880    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 881                  opcode, " (H_INVALIDATE_PID)");
 882    return H_FUNCTION;
 883}
 884
 885static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
 886                                       uint64_t patbe_old, uint64_t patbe_new)
 887{
 888    /*
 889     * We have 4 Options:
 890     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
 891     * HASH->RADIX                                  : Free HPT
 892     * RADIX->HASH                                  : Allocate HPT
 893     * NOTHING->HASH                                : Allocate HPT
 894     * Note: NOTHING implies the case where we said the guest could choose
 895     *       later and so assumed radix and now it's called H_REG_PROC_TBL
 896     */
 897
 898    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
 899        /* We assume RADIX, so this catches all the "Do Nothing" cases */
 900    } else if (!(patbe_old & PATE1_GR)) {
 901        /* HASH->RADIX : Free HPT */
 902        spapr_free_hpt(spapr);
 903    } else if (!(patbe_new & PATE1_GR)) {
 904        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
 905        spapr_setup_hpt(spapr);
 906    }
 907    return;
 908}
 909
 910#define FLAGS_MASK              0x01FULL
 911#define FLAG_MODIFY             0x10
 912#define FLAG_REGISTER           0x08
 913#define FLAG_RADIX              0x04
 914#define FLAG_HASH_PROC_TBL      0x02
 915#define FLAG_GTSE               0x01
 916
 917static target_ulong h_register_process_table(PowerPCCPU *cpu,
 918                                             SpaprMachineState *spapr,
 919                                             target_ulong opcode,
 920                                             target_ulong *args)
 921{
 922    target_ulong flags = args[0];
 923    target_ulong proc_tbl = args[1];
 924    target_ulong page_size = args[2];
 925    target_ulong table_size = args[3];
 926    target_ulong update_lpcr = 0;
 927    target_ulong table_byte_size;
 928    uint64_t cproc;
 929
 930    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
 931        return H_PARAMETER;
 932    }
 933    if (flags & FLAG_MODIFY) {
 934        if (flags & FLAG_REGISTER) {
 935            /* Check process table alignment */
 936            table_byte_size = 1ULL << (table_size + 12);
 937            if (proc_tbl & (table_byte_size - 1)) {
 938                qemu_log_mask(LOG_GUEST_ERROR,
 939                    "%s: process table not properly aligned: proc_tbl 0x"
 940                    TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
 941                    __func__, proc_tbl, table_byte_size);
 942            }
 943            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
 944                if (proc_tbl & 0xfff || proc_tbl >> 60) {
 945                    return H_P2;
 946                } else if (page_size) {
 947                    return H_P3;
 948                } else if (table_size > 24) {
 949                    return H_P4;
 950                }
 951                cproc = PATE1_GR | proc_tbl | table_size;
 952            } else { /* Register new HPT process table */
 953                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
 954                    /* TODO - Not Supported */
 955                    /* Technically caused by flag bits => H_PARAMETER */
 956                    return H_PARAMETER;
 957                } else { /* Hash with SLB */
 958                    if (proc_tbl >> 38) {
 959                        return H_P2;
 960                    } else if (page_size & ~0x7) {
 961                        return H_P3;
 962                    } else if (table_size > 24) {
 963                        return H_P4;
 964                    }
 965                }
 966                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
 967            }
 968
 969        } else { /* Deregister current process table */
 970            /*
 971             * Set to benign value: (current GR) | 0. This allows
 972             * deregistration in KVM to succeed even if the radix bit
 973             * in flags doesn't match the radix bit in the old PATE.
 974             */
 975            cproc = spapr->patb_entry & PATE1_GR;
 976        }
 977    } else { /* Maintain current registration */
 978        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
 979            /* Technically caused by flag bits => H_PARAMETER */
 980            return H_PARAMETER; /* Existing Process Table Mismatch */
 981        }
 982        cproc = spapr->patb_entry;
 983    }
 984
 985    /* Check if we need to setup OR free the hpt */
 986    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
 987
 988    spapr->patb_entry = cproc; /* Save new process table */
 989
 990    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
 991    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
 992        update_lpcr |= (LPCR_UPRT | LPCR_HR);
 993    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
 994        update_lpcr |= LPCR_UPRT;
 995    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
 996        update_lpcr |= LPCR_GTSE;
 997
 998    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
 999
1000    if (kvm_enabled()) {
1001        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1002                                       flags & FLAG_GTSE, cproc);
1003    }
1004    return H_SUCCESS;
1005}
1006
1007#define H_SIGNAL_SYS_RESET_ALL         -1
1008#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1009
1010static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1011                                       SpaprMachineState *spapr,
1012                                       target_ulong opcode, target_ulong *args)
1013{
1014    target_long target = args[0];
1015    CPUState *cs;
1016
1017    if (target < 0) {
1018        /* Broadcast */
1019        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1020            return H_PARAMETER;
1021        }
1022
1023        CPU_FOREACH(cs) {
1024            PowerPCCPU *c = POWERPC_CPU(cs);
1025
1026            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1027                if (c == cpu) {
1028                    continue;
1029                }
1030            }
1031            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1032        }
1033        return H_SUCCESS;
1034
1035    } else {
1036        /* Unicast */
1037        cs = CPU(spapr_find_cpu(target));
1038        if (cs) {
1039            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1040            return H_SUCCESS;
1041        }
1042        return H_PARAMETER;
1043    }
1044}
1045
1046/* Returns either a logical PVR or zero if none was found */
1047static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1048                              target_ulong *addr, bool *raw_mode_supported)
1049{
1050    bool explicit_match = false; /* Matched the CPU's real PVR */
1051    uint32_t best_compat = 0;
1052    int i;
1053
1054    /*
1055     * We scan the supplied table of PVRs looking for two things
1056     *   1. Is our real CPU PVR in the list?
1057     *   2. What's the "best" listed logical PVR
1058     */
1059    for (i = 0; i < 512; ++i) {
1060        uint32_t pvr, pvr_mask;
1061
1062        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1063        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1064        *addr += 8;
1065
1066        if (~pvr_mask & pvr) {
1067            break; /* Terminator record */
1068        }
1069
1070        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1071            explicit_match = true;
1072        } else {
1073            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1074                best_compat = pvr;
1075            }
1076        }
1077    }
1078
1079    *raw_mode_supported = explicit_match;
1080
1081    /* Parsing finished */
1082    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1083
1084    return best_compat;
1085}
1086
1087static
1088target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1089                                            SpaprMachineState *spapr,
1090                                            target_ulong vec,
1091                                            target_ulong fdt_bufsize)
1092{
1093    target_ulong ov_table; /* Working address in data buffer */
1094    uint32_t cas_pvr;
1095    SpaprOptionVector *ov1_guest, *ov5_guest;
1096    bool guest_radix;
1097    bool raw_mode_supported = false;
1098    bool guest_xive;
1099    CPUState *cs;
1100    void *fdt;
1101    uint32_t max_compat = spapr->max_compat_pvr;
1102
1103    /* CAS is supposed to be called early when only the boot vCPU is active. */
1104    CPU_FOREACH(cs) {
1105        if (cs == CPU(cpu)) {
1106            continue;
1107        }
1108        if (!cs->halted) {
1109            warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1110            return H_MULTI_THREADS_ACTIVE;
1111        }
1112    }
1113
1114    cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1115    if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1116        /*
1117         * We couldn't find a suitable compatibility mode, and either
1118         * the guest doesn't support "raw" mode for this CPU, or "raw"
1119         * mode is disabled because a maximum compat mode is set.
1120         */
1121        error_report("Couldn't negotiate a suitable PVR during CAS");
1122        return H_HARDWARE;
1123    }
1124
1125    /* Update CPUs */
1126    if (cpu->compat_pvr != cas_pvr) {
1127        Error *local_err = NULL;
1128
1129        if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1130            /* We fail to set compat mode (likely because running with KVM PR),
1131             * but maybe we can fallback to raw mode if the guest supports it.
1132             */
1133            if (!raw_mode_supported) {
1134                error_report_err(local_err);
1135                return H_HARDWARE;
1136            }
1137            error_free(local_err);
1138        }
1139    }
1140
1141    /* For the future use: here @ov_table points to the first option vector */
1142    ov_table = vec;
1143
1144    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1145    if (!ov1_guest) {
1146        warn_report("guest didn't provide option vector 1");
1147        return H_PARAMETER;
1148    }
1149    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1150    if (!ov5_guest) {
1151        spapr_ovec_cleanup(ov1_guest);
1152        warn_report("guest didn't provide option vector 5");
1153        return H_PARAMETER;
1154    }
1155    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1156        error_report("guest requested hash and radix MMU, which is invalid.");
1157        exit(EXIT_FAILURE);
1158    }
1159    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1160        error_report("guest requested an invalid interrupt mode");
1161        exit(EXIT_FAILURE);
1162    }
1163
1164    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1165
1166    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1167
1168    /*
1169     * HPT resizing is a bit of a special case, because when enabled
1170     * we assume an HPT guest will support it until it says it
1171     * doesn't, instead of assuming it won't support it until it says
1172     * it does.  Strictly speaking that approach could break for
1173     * guests which don't make a CAS call, but those are so old we
1174     * don't care about them.  Without that assumption we'd have to
1175     * make at least a temporary allocation of an HPT sized for max
1176     * memory, which could be impossibly difficult under KVM HV if
1177     * maxram is large.
1178     */
1179    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1180        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1181
1182        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1183            error_report(
1184                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1185            exit(1);
1186        }
1187
1188        if (spapr->htab_shift < maxshift) {
1189            /* Guest doesn't know about HPT resizing, so we
1190             * pre-emptively resize for the maximum permitted RAM.  At
1191             * the point this is called, nothing should have been
1192             * entered into the existing HPT */
1193            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1194            push_sregs_to_kvm_pr(spapr);
1195        }
1196    }
1197
1198    /* NOTE: there are actually a number of ov5 bits where input from the
1199     * guest is always zero, and the platform/QEMU enables them independently
1200     * of guest input. To model these properly we'd want some sort of mask,
1201     * but since they only currently apply to memory migration as defined
1202     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1203     * to worry about this for now.
1204     */
1205
1206    /* full range of negotiated ov5 capabilities */
1207    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1208    spapr_ovec_cleanup(ov5_guest);
1209
1210    spapr_check_mmu_mode(guest_radix);
1211
1212    spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1213    spapr_ovec_cleanup(ov1_guest);
1214
1215    /*
1216     * Check for NUMA affinity conditions now that we know which NUMA
1217     * affinity the guest will use.
1218     */
1219    spapr_numa_associativity_check(spapr);
1220
1221    /*
1222     * Ensure the guest asks for an interrupt mode we support;
1223     * otherwise terminate the boot.
1224     */
1225    if (guest_xive) {
1226        if (!spapr->irq->xive) {
1227            error_report(
1228"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1229            exit(EXIT_FAILURE);
1230        }
1231    } else {
1232        if (!spapr->irq->xics) {
1233            error_report(
1234"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1235            exit(EXIT_FAILURE);
1236        }
1237    }
1238
1239    spapr_irq_update_active_intc(spapr);
1240
1241    /*
1242     * Process all pending hot-plug/unplug requests now. An updated full
1243     * rendered FDT will be returned to the guest.
1244     */
1245    spapr_drc_reset_all(spapr);
1246    spapr_clear_pending_hotplug_events(spapr);
1247
1248    /*
1249     * If spapr_machine_reset() did not set up a HPT but one is necessary
1250     * (because the guest isn't going to use radix) then set it up here.
1251     */
1252    if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1253        /* legacy hash or new hash: */
1254        spapr_setup_hpt(spapr);
1255    }
1256
1257    fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1258    g_free(spapr->fdt_blob);
1259    spapr->fdt_size = fdt_totalsize(fdt);
1260    spapr->fdt_initial_size = spapr->fdt_size;
1261    spapr->fdt_blob = fdt;
1262
1263    /*
1264     * Set the machine->fdt pointer again since we just freed
1265     * it above (by freeing spapr->fdt_blob). We set this
1266     * pointer to enable support for the 'dumpdtb' QMP/HMP
1267     * command.
1268     */
1269    MACHINE(spapr)->fdt = fdt;
1270
1271    return H_SUCCESS;
1272}
1273
1274static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1275                                                  SpaprMachineState *spapr,
1276                                                  target_ulong opcode,
1277                                                  target_ulong *args)
1278{
1279    target_ulong vec = ppc64_phys_to_real(args[0]);
1280    target_ulong fdt_buf = args[1];
1281    target_ulong fdt_bufsize = args[2];
1282    target_ulong ret;
1283    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1284
1285    if (fdt_bufsize < sizeof(hdr)) {
1286        error_report("SLOF provided insufficient CAS buffer "
1287                     TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1288        exit(EXIT_FAILURE);
1289    }
1290
1291    fdt_bufsize -= sizeof(hdr);
1292
1293    ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1294    if (ret == H_SUCCESS) {
1295        _FDT((fdt_pack(spapr->fdt_blob)));
1296        spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1297        spapr->fdt_initial_size = spapr->fdt_size;
1298
1299        cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1300        cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1301                                  spapr->fdt_size);
1302        trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1303    }
1304
1305    return ret;
1306}
1307
1308target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1309                                                   CPUState *cs,
1310                                                   target_ulong ovec_addr)
1311{
1312    SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1313
1314    target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1315                                                      ovec_addr, FDT_MAX_SIZE);
1316
1317    /*
1318     * This adds stdout and generates phandles for boottime and CAS FDTs.
1319     * It is alright to update the FDT here as do_client_architecture_support()
1320     * does not pack it.
1321     */
1322    spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1323
1324    return ret;
1325}
1326
1327static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1328                                              SpaprMachineState *spapr,
1329                                              target_ulong opcode,
1330                                              target_ulong *args)
1331{
1332    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1333                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1334    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1335    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1336    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1337    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1338    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1339                                                     SPAPR_CAP_CCF_ASSIST);
1340
1341    switch (safe_cache) {
1342    case SPAPR_CAP_WORKAROUND:
1343        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1344        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1345        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1346        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1347        break;
1348    case SPAPR_CAP_FIXED:
1349        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1350        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1351        break;
1352    default: /* broken */
1353        assert(safe_cache == SPAPR_CAP_BROKEN);
1354        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1355        break;
1356    }
1357
1358    switch (safe_bounds_check) {
1359    case SPAPR_CAP_WORKAROUND:
1360        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1361        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1362        break;
1363    case SPAPR_CAP_FIXED:
1364        break;
1365    default: /* broken */
1366        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1367        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1368        break;
1369    }
1370
1371    switch (safe_indirect_branch) {
1372    case SPAPR_CAP_FIXED_NA:
1373        break;
1374    case SPAPR_CAP_FIXED_CCD:
1375        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1376        break;
1377    case SPAPR_CAP_FIXED_IBS:
1378        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1379        break;
1380    case SPAPR_CAP_WORKAROUND:
1381        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1382        if (count_cache_flush_assist) {
1383            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1384        }
1385        break;
1386    default: /* broken */
1387        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1388        break;
1389    }
1390
1391    args[0] = characteristics;
1392    args[1] = behaviour;
1393    return H_SUCCESS;
1394}
1395
1396static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1397                                target_ulong opcode, target_ulong *args)
1398{
1399    target_ulong dt = ppc64_phys_to_real(args[0]);
1400    struct fdt_header hdr = { 0 };
1401    unsigned cb;
1402    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1403    void *fdt;
1404
1405    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1406    cb = fdt32_to_cpu(hdr.totalsize);
1407
1408    if (!smc->update_dt_enabled) {
1409        return H_SUCCESS;
1410    }
1411
1412    /* Check that the fdt did not grow out of proportion */
1413    if (cb > spapr->fdt_initial_size * 2) {
1414        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1415                                          fdt32_to_cpu(hdr.magic));
1416        return H_PARAMETER;
1417    }
1418
1419    fdt = g_malloc0(cb);
1420    cpu_physical_memory_read(dt, fdt, cb);
1421
1422    /* Check the fdt consistency */
1423    if (fdt_check_full(fdt, cb)) {
1424        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1425                                           fdt32_to_cpu(hdr.magic));
1426        return H_PARAMETER;
1427    }
1428
1429    g_free(spapr->fdt_blob);
1430    spapr->fdt_size = cb;
1431    spapr->fdt_blob = fdt;
1432    trace_spapr_update_dt(cb);
1433
1434    return H_SUCCESS;
1435}
1436
1437static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1438static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1439static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1440
1441void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1442{
1443    spapr_hcall_fn *slot;
1444
1445    if (opcode <= MAX_HCALL_OPCODE) {
1446        assert((opcode & 0x3) == 0);
1447
1448        slot = &papr_hypercall_table[opcode / 4];
1449    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1450        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1451        assert((opcode & 0x3) == 0);
1452
1453        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1454    } else {
1455        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1456
1457        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1458    }
1459
1460    assert(!(*slot));
1461    *slot = fn;
1462}
1463
1464target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1465                             target_ulong *args)
1466{
1467    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1468
1469    if ((opcode <= MAX_HCALL_OPCODE)
1470        && ((opcode & 0x3) == 0)) {
1471        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1472
1473        if (fn) {
1474            return fn(cpu, spapr, opcode, args);
1475        }
1476    } else if ((opcode >= SVM_HCALL_BASE) &&
1477               (opcode <= SVM_HCALL_MAX)) {
1478        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1479
1480        if (fn) {
1481            return fn(cpu, spapr, opcode, args);
1482        }
1483    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1484               (opcode <= KVMPPC_HCALL_MAX)) {
1485        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1486
1487        if (fn) {
1488            return fn(cpu, spapr, opcode, args);
1489        }
1490    }
1491
1492    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1493                  opcode);
1494    return H_FUNCTION;
1495}
1496
1497#ifdef CONFIG_TCG
1498#define PRTS_MASK      0x1f
1499
1500static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1501                               SpaprMachineState *spapr,
1502                               target_ulong opcode,
1503                               target_ulong *args)
1504{
1505    target_ulong ptcr = args[0];
1506
1507    if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1508        return H_FUNCTION;
1509    }
1510
1511    if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1512        return H_PARAMETER;
1513    }
1514
1515    spapr->nested_ptcr = ptcr; /* Save new partition table */
1516
1517    return H_SUCCESS;
1518}
1519
1520static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1521                                     SpaprMachineState *spapr,
1522                                     target_ulong opcode,
1523                                     target_ulong *args)
1524{
1525    /*
1526     * The spapr virtual hypervisor nested HV implementation retains no L2
1527     * translation state except for TLB. And the TLB is always invalidated
1528     * across L1<->L2 transitions, so nothing is required here.
1529     */
1530
1531    return H_SUCCESS;
1532}
1533
1534static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1535                                        SpaprMachineState *spapr,
1536                                        target_ulong opcode,
1537                                        target_ulong *args)
1538{
1539    /*
1540     * This HCALL is not required, L1 KVM will take a slow path and walk the
1541     * page tables manually to do the data copy.
1542     */
1543    return H_FUNCTION;
1544}
1545
1546/*
1547 * When this handler returns, the environment is switched to the L2 guest
1548 * and TCG begins running that. spapr_exit_nested() performs the switch from
1549 * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1550 */
1551static target_ulong h_enter_nested(PowerPCCPU *cpu,
1552                                   SpaprMachineState *spapr,
1553                                   target_ulong opcode,
1554                                   target_ulong *args)
1555{
1556    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1557    CPUState *cs = CPU(cpu);
1558    CPUPPCState *env = &cpu->env;
1559    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1560    target_ulong hv_ptr = args[0];
1561    target_ulong regs_ptr = args[1];
1562    target_ulong hdec, now = cpu_ppc_load_tbl(env);
1563    target_ulong lpcr, lpcr_mask;
1564    struct kvmppc_hv_guest_state *hvstate;
1565    struct kvmppc_hv_guest_state hv_state;
1566    struct kvmppc_pt_regs *regs;
1567    hwaddr len;
1568    uint64_t cr;
1569    int i;
1570
1571    if (spapr->nested_ptcr == 0) {
1572        return H_NOT_AVAILABLE;
1573    }
1574
1575    len = sizeof(*hvstate);
1576    hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1577                                MEMTXATTRS_UNSPECIFIED);
1578    if (len != sizeof(*hvstate)) {
1579        address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1580        return H_PARAMETER;
1581    }
1582
1583    memcpy(&hv_state, hvstate, len);
1584
1585    address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1586
1587    /*
1588     * We accept versions 1 and 2. Version 2 fields are unused because TCG
1589     * does not implement DAWR*.
1590     */
1591    if (hv_state.version > HV_GUEST_STATE_VERSION) {
1592        return H_PARAMETER;
1593    }
1594
1595    spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1596    if (!spapr_cpu->nested_host_state) {
1597        return H_NO_MEM;
1598    }
1599
1600    memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1601
1602    len = sizeof(*regs);
1603    regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1604                                MEMTXATTRS_UNSPECIFIED);
1605    if (!regs || len != sizeof(*regs)) {
1606        address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1607        g_free(spapr_cpu->nested_host_state);
1608        return H_P2;
1609    }
1610
1611    len = sizeof(env->gpr);
1612    assert(len == sizeof(regs->gpr));
1613    memcpy(env->gpr, regs->gpr, len);
1614
1615    env->lr = regs->link;
1616    env->ctr = regs->ctr;
1617    cpu_write_xer(env, regs->xer);
1618
1619    cr = regs->ccr;
1620    for (i = 7; i >= 0; i--) {
1621        env->crf[i] = cr & 15;
1622        cr >>= 4;
1623    }
1624
1625    env->msr = regs->msr;
1626    env->nip = regs->nip;
1627
1628    address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1629
1630    env->cfar = hv_state.cfar;
1631
1632    assert(env->spr[SPR_LPIDR] == 0);
1633    env->spr[SPR_LPIDR] = hv_state.lpid;
1634
1635    lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1636    lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1637    lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1638    lpcr &= ~LPCR_LPES0;
1639    env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1640
1641    env->spr[SPR_PCR] = hv_state.pcr;
1642    /* hv_state.amor is not used */
1643    env->spr[SPR_DPDES] = hv_state.dpdes;
1644    env->spr[SPR_HFSCR] = hv_state.hfscr;
1645    hdec = hv_state.hdec_expiry - now;
1646    spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1647    /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1648    env->spr[SPR_SRR0] = hv_state.srr0;
1649    env->spr[SPR_SRR1] = hv_state.srr1;
1650    env->spr[SPR_SPRG0] = hv_state.sprg[0];
1651    env->spr[SPR_SPRG1] = hv_state.sprg[1];
1652    env->spr[SPR_SPRG2] = hv_state.sprg[2];
1653    env->spr[SPR_SPRG3] = hv_state.sprg[3];
1654    env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1655    env->spr[SPR_PPR] = hv_state.ppr;
1656
1657    cpu_ppc_hdecr_init(env);
1658    cpu_ppc_store_hdecr(env, hdec);
1659
1660    /*
1661     * The hv_state.vcpu_token is not needed. It is used by the KVM
1662     * implementation to remember which L2 vCPU last ran on which physical
1663     * CPU so as to invalidate process scope translations if it is moved
1664     * between physical CPUs. For now TLBs are always flushed on L1<->L2
1665     * transitions so this is not a problem.
1666     *
1667     * Could validate that the same vcpu_token does not attempt to run on
1668     * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1669     * and it's not obviously worth a new data structure to do it.
1670     */
1671
1672    env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1673    spapr_cpu->in_nested = true;
1674
1675    hreg_compute_hflags(env);
1676    ppc_maybe_interrupt(env);
1677    tlb_flush(cs);
1678    env->reserve_addr = -1; /* Reset the reservation */
1679
1680    /*
1681     * The spapr hcall helper sets env->gpr[3] to the return value, but at
1682     * this point the L1 is not returning from the hcall but rather we
1683     * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1684     * to leave it unchanged.
1685     */
1686    return env->gpr[3];
1687}
1688
1689void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1690{
1691    CPUState *cs = CPU(cpu);
1692    CPUPPCState *env = &cpu->env;
1693    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1694    target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1695    target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1696    target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1697    struct kvmppc_hv_guest_state *hvstate;
1698    struct kvmppc_pt_regs *regs;
1699    hwaddr len;
1700    uint64_t cr;
1701    int i;
1702
1703    assert(spapr_cpu->in_nested);
1704
1705    cpu_ppc_hdecr_exit(env);
1706
1707    len = sizeof(*hvstate);
1708    hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1709                                MEMTXATTRS_UNSPECIFIED);
1710    if (len != sizeof(*hvstate)) {
1711        address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1712        r3_return = H_PARAMETER;
1713        goto out_restore_l1;
1714    }
1715
1716    hvstate->cfar = env->cfar;
1717    hvstate->lpcr = env->spr[SPR_LPCR];
1718    hvstate->pcr = env->spr[SPR_PCR];
1719    hvstate->dpdes = env->spr[SPR_DPDES];
1720    hvstate->hfscr = env->spr[SPR_HFSCR];
1721
1722    if (excp == POWERPC_EXCP_HDSI) {
1723        hvstate->hdar = env->spr[SPR_HDAR];
1724        hvstate->hdsisr = env->spr[SPR_HDSISR];
1725        hvstate->asdr = env->spr[SPR_ASDR];
1726    } else if (excp == POWERPC_EXCP_HISI) {
1727        hvstate->asdr = env->spr[SPR_ASDR];
1728    }
1729
1730    /* HEIR should be implemented for HV mode and saved here. */
1731    hvstate->srr0 = env->spr[SPR_SRR0];
1732    hvstate->srr1 = env->spr[SPR_SRR1];
1733    hvstate->sprg[0] = env->spr[SPR_SPRG0];
1734    hvstate->sprg[1] = env->spr[SPR_SPRG1];
1735    hvstate->sprg[2] = env->spr[SPR_SPRG2];
1736    hvstate->sprg[3] = env->spr[SPR_SPRG3];
1737    hvstate->pidr = env->spr[SPR_BOOKS_PID];
1738    hvstate->ppr = env->spr[SPR_PPR];
1739
1740    /* Is it okay to specify write length larger than actual data written? */
1741    address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1742
1743    len = sizeof(*regs);
1744    regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1745                                MEMTXATTRS_UNSPECIFIED);
1746    if (!regs || len != sizeof(*regs)) {
1747        address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1748        r3_return = H_P2;
1749        goto out_restore_l1;
1750    }
1751
1752    len = sizeof(env->gpr);
1753    assert(len == sizeof(regs->gpr));
1754    memcpy(regs->gpr, env->gpr, len);
1755
1756    regs->link = env->lr;
1757    regs->ctr = env->ctr;
1758    regs->xer = cpu_read_xer(env);
1759
1760    cr = 0;
1761    for (i = 0; i < 8; i++) {
1762        cr |= (env->crf[i] & 15) << (4 * (7 - i));
1763    }
1764    regs->ccr = cr;
1765
1766    if (excp == POWERPC_EXCP_MCHECK ||
1767        excp == POWERPC_EXCP_RESET ||
1768        excp == POWERPC_EXCP_SYSCALL) {
1769        regs->nip = env->spr[SPR_SRR0];
1770        regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1771    } else {
1772        regs->nip = env->spr[SPR_HSRR0];
1773        regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1774    }
1775
1776    /* Is it okay to specify write length larger than actual data written? */
1777    address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1778
1779out_restore_l1:
1780    memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1781    env->lr = spapr_cpu->nested_host_state->lr;
1782    env->ctr = spapr_cpu->nested_host_state->ctr;
1783    memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1784    env->cfar = spapr_cpu->nested_host_state->cfar;
1785    env->xer = spapr_cpu->nested_host_state->xer;
1786    env->so = spapr_cpu->nested_host_state->so;
1787    env->ov = spapr_cpu->nested_host_state->ov;
1788    env->ov32 = spapr_cpu->nested_host_state->ov32;
1789    env->ca32 = spapr_cpu->nested_host_state->ca32;
1790    env->msr = spapr_cpu->nested_host_state->msr;
1791    env->nip = spapr_cpu->nested_host_state->nip;
1792
1793    assert(env->spr[SPR_LPIDR] != 0);
1794    env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1795    env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1796    env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1797    env->spr[SPR_DPDES] = 0;
1798    env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1799    env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1800    env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1801    env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1802    env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1803    env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1804    env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1805    env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1806    env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1807
1808    /*
1809     * Return the interrupt vector address from H_ENTER_NESTED to the L1
1810     * (or error code).
1811     */
1812    env->gpr[3] = r3_return;
1813
1814    env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1815    spapr_cpu->in_nested = false;
1816
1817    hreg_compute_hflags(env);
1818    ppc_maybe_interrupt(env);
1819    tlb_flush(cs);
1820    env->reserve_addr = -1; /* Reset the reservation */
1821
1822    g_free(spapr_cpu->nested_host_state);
1823    spapr_cpu->nested_host_state = NULL;
1824}
1825
1826static void hypercall_register_nested(void)
1827{
1828    spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1829    spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1830    spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1831    spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1832}
1833
1834static void hypercall_register_softmmu(void)
1835{
1836    /* DO NOTHING */
1837}
1838#else
1839void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1840{
1841    g_assert_not_reached();
1842}
1843
1844static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1845                            target_ulong opcode, target_ulong *args)
1846{
1847    g_assert_not_reached();
1848}
1849
1850static void hypercall_register_nested(void)
1851{
1852    /* DO NOTHING */
1853}
1854
1855static void hypercall_register_softmmu(void)
1856{
1857    /* hcall-pft */
1858    spapr_register_hypercall(H_ENTER, h_softmmu);
1859    spapr_register_hypercall(H_REMOVE, h_softmmu);
1860    spapr_register_hypercall(H_PROTECT, h_softmmu);
1861    spapr_register_hypercall(H_READ, h_softmmu);
1862
1863    /* hcall-bulk */
1864    spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1865}
1866#endif
1867
1868static void hypercall_register_types(void)
1869{
1870    hypercall_register_softmmu();
1871
1872    /* hcall-hpt-resize */
1873    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1874    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1875
1876    /* hcall-splpar */
1877    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1878    spapr_register_hypercall(H_CEDE, h_cede);
1879    spapr_register_hypercall(H_CONFER, h_confer);
1880    spapr_register_hypercall(H_PROD, h_prod);
1881
1882    /* hcall-join */
1883    spapr_register_hypercall(H_JOIN, h_join);
1884
1885    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1886
1887    /* processor register resource access h-calls */
1888    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1889    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1890    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1891    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1892    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1893
1894    /* In Memory Table MMU h-calls */
1895    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1896    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1897    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1898
1899    /* hcall-get-cpu-characteristics */
1900    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1901                             h_get_cpu_characteristics);
1902
1903    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1904     * here between the "CI" and the "CACHE" variants, they will use whatever
1905     * mapping attributes qemu is using. When using KVM, the kernel will
1906     * enforce the attributes more strongly
1907     */
1908    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1909    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1910    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1911    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1912    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1913    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1914    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1915
1916    /* qemu/KVM-PPC specific hcalls */
1917    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1918
1919    /* ibm,client-architecture-support support */
1920    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1921
1922    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1923
1924    hypercall_register_nested();
1925}
1926
1927type_init(hypercall_register_types)
1928