qemu/hw/ppc/spapr_numa.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
   3 *
   4 * Copyright IBM Corp. 2020
   5 *
   6 * Authors:
   7 *  Daniel Henrique Barboza      <danielhb413@gmail.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "hw/ppc/spapr_numa.h"
  15#include "hw/pci-host/spapr.h"
  16#include "hw/ppc/fdt.h"
  17
  18/* Moved from hw/ppc/spapr_pci_nvlink2.c */
  19#define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
  20
  21/*
  22 * Retrieves max_dist_ref_points of the current NUMA affinity.
  23 */
  24static int get_max_dist_ref_points(SpaprMachineState *spapr)
  25{
  26    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
  27        return FORM2_DIST_REF_POINTS;
  28    }
  29
  30    return FORM1_DIST_REF_POINTS;
  31}
  32
  33/*
  34 * Retrieves numa_assoc_size of the current NUMA affinity.
  35 */
  36static int get_numa_assoc_size(SpaprMachineState *spapr)
  37{
  38    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
  39        return FORM2_NUMA_ASSOC_SIZE;
  40    }
  41
  42    return FORM1_NUMA_ASSOC_SIZE;
  43}
  44
  45/*
  46 * Retrieves vcpu_assoc_size of the current NUMA affinity.
  47 *
  48 * vcpu_assoc_size is the size of ibm,associativity array
  49 * for CPUs, which has an extra element (vcpu_id) in the end.
  50 */
  51static int get_vcpu_assoc_size(SpaprMachineState *spapr)
  52{
  53    return get_numa_assoc_size(spapr) + 1;
  54}
  55
  56/*
  57 * Retrieves the ibm,associativity array of NUMA node 'node_id'
  58 * for the current NUMA affinity.
  59 */
  60static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
  61{
  62    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
  63        return spapr->FORM2_assoc_array[node_id];
  64    }
  65    return spapr->FORM1_assoc_array[node_id];
  66}
  67
  68/*
  69 * Wrapper that returns node distance from ms->numa_state->nodes
  70 * after handling edge cases where the distance might be absent.
  71 */
  72static int get_numa_distance(MachineState *ms, int src, int dst)
  73{
  74    NodeInfo *numa_info = ms->numa_state->nodes;
  75    int ret = numa_info[src].distance[dst];
  76
  77    if (ret != 0) {
  78        return ret;
  79    }
  80
  81    /*
  82     * In case QEMU adds a default NUMA single node when the user
  83     * did not add any, or where the user did not supply distances,
  84     * the distance will be absent (zero). Return local/remote
  85     * distance in this case.
  86     */
  87    if (src == dst) {
  88        return NUMA_DISTANCE_MIN;
  89    }
  90
  91    return NUMA_DISTANCE_DEFAULT;
  92}
  93
  94static bool spapr_numa_is_symmetrical(MachineState *ms)
  95{
  96    int nb_numa_nodes = ms->numa_state->num_nodes;
  97    int src, dst;
  98
  99    for (src = 0; src < nb_numa_nodes; src++) {
 100        for (dst = src; dst < nb_numa_nodes; dst++) {
 101            if (get_numa_distance(ms, src, dst) !=
 102                get_numa_distance(ms, dst, src)) {
 103                return false;
 104            }
 105        }
 106    }
 107
 108    return true;
 109}
 110
 111/*
 112 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
 113 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
 114 * called from vPHB reset handler so we initialize the counter here.
 115 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
 116 * must be equally distant from any other node.
 117 * The final value of spapr->gpu_numa_id is going to be written to
 118 * max-associativity-domains in spapr_build_fdt().
 119 */
 120unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
 121{
 122    return MAX(1, machine->numa_state->num_nodes);
 123}
 124
 125/*
 126 * This function will translate the user distances into
 127 * what the kernel understand as possible values: 10
 128 * (local distance), 20, 40, 80 and 160, and return the equivalent
 129 * NUMA level for each. Current heuristic is:
 130 *  - local distance (10) returns numa_level = 0x4, meaning there is
 131 *    no rounding for local distance
 132 *  - distances between 11 and 30 inclusive -> rounded to 20,
 133 *    numa_level = 0x3
 134 *  - distances between 31 and 60 inclusive -> rounded to 40,
 135 *    numa_level = 0x2
 136 *  - distances between 61 and 120 inclusive -> rounded to 80,
 137 *    numa_level = 0x1
 138 *  - everything above 120 returns numa_level = 0 to indicate that
 139 *    there is no match. This will be calculated as disntace = 160
 140 *    by the kernel (as of v5.9)
 141 */
 142static uint8_t spapr_numa_get_numa_level(uint8_t distance)
 143{
 144    if (distance == 10) {
 145        return 0x4;
 146    } else if (distance > 11 && distance <= 30) {
 147        return 0x3;
 148    } else if (distance > 31 && distance <= 60) {
 149        return 0x2;
 150    } else if (distance > 61 && distance <= 120) {
 151        return 0x1;
 152    }
 153
 154    return 0;
 155}
 156
 157static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
 158{
 159    MachineState *ms = MACHINE(spapr);
 160    int nb_numa_nodes = ms->numa_state->num_nodes;
 161    int src, dst, i, j;
 162
 163    /*
 164     * Fill all associativity domains of non-zero NUMA nodes with
 165     * node_id. This is required because the default value (0) is
 166     * considered a match with associativity domains of node 0.
 167     */
 168    for (i = 1; i < nb_numa_nodes; i++) {
 169        for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
 170            spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
 171        }
 172    }
 173
 174    for (src = 0; src < nb_numa_nodes; src++) {
 175        for (dst = src; dst < nb_numa_nodes; dst++) {
 176            /*
 177             * This is how the associativity domain between A and B
 178             * is calculated:
 179             *
 180             * - get the distance D between them
 181             * - get the correspondent NUMA level 'n_level' for D
 182             * - all associativity arrays were initialized with their own
 183             * numa_ids, and we're calculating the distance in node_id
 184             * ascending order, starting from node id 0 (the first node
 185             * retrieved by numa_state). This will have a cascade effect in
 186             * the algorithm because the associativity domains that node 0
 187             * defines will be carried over to other nodes, and node 1
 188             * associativities will be carried over after taking node 0
 189             * associativities into account, and so on. This happens because
 190             * we'll assign assoc_src as the associativity domain of dst
 191             * as well, for all NUMA levels beyond and including n_level.
 192             *
 193             * The PPC kernel expects the associativity domains of node 0 to
 194             * be always 0, and this algorithm will grant that by default.
 195             */
 196            uint8_t distance = get_numa_distance(ms, src, dst);
 197            uint8_t n_level = spapr_numa_get_numa_level(distance);
 198            uint32_t assoc_src;
 199
 200            /*
 201             * n_level = 0 means that the distance is greater than our last
 202             * rounded value (120). In this case there is no NUMA level match
 203             * between src and dst and we can skip the remaining of the loop.
 204             *
 205             * The Linux kernel will assume that the distance between src and
 206             * dst, in this case of no match, is 10 (local distance) doubled
 207             * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
 208             * levels (4), so this gives us 10*2*2*2*2 = 160.
 209             *
 210             * This logic can be seen in the Linux kernel source code, as of
 211             * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
 212             */
 213            if (n_level == 0) {
 214                continue;
 215            }
 216
 217            /*
 218             * We must assign all assoc_src to dst, starting from n_level
 219             * and going up to 0x1.
 220             */
 221            for (i = n_level; i > 0; i--) {
 222                assoc_src = spapr->FORM1_assoc_array[src][i];
 223                spapr->FORM1_assoc_array[dst][i] = assoc_src;
 224            }
 225        }
 226    }
 227
 228}
 229
 230static void spapr_numa_FORM1_affinity_check(MachineState *machine)
 231{
 232    int i;
 233
 234    /*
 235     * Check we don't have a memory-less/cpu-less NUMA node
 236     * Firmware relies on the existing memory/cpu topology to provide the
 237     * NUMA topology to the kernel.
 238     * And the linux kernel needs to know the NUMA topology at start
 239     * to be able to hotplug CPUs later.
 240     */
 241    if (machine->numa_state->num_nodes) {
 242        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 243            /* check for memory-less node */
 244            if (machine->numa_state->nodes[i].node_mem == 0) {
 245                CPUState *cs;
 246                int found = 0;
 247                /* check for cpu-less node */
 248                CPU_FOREACH(cs) {
 249                    PowerPCCPU *cpu = POWERPC_CPU(cs);
 250                    if (cpu->node_id == i) {
 251                        found = 1;
 252                        break;
 253                    }
 254                }
 255                /* memory-less and cpu-less node */
 256                if (!found) {
 257                    error_report(
 258"Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
 259                    exit(EXIT_FAILURE);
 260                }
 261            }
 262        }
 263    }
 264
 265    if (!spapr_numa_is_symmetrical(machine)) {
 266        error_report(
 267"Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
 268        exit(EXIT_FAILURE);
 269    }
 270}
 271
 272/*
 273 * Set NUMA machine state data based on FORM1 affinity semantics.
 274 */
 275static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
 276                                           MachineState *machine)
 277{
 278    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 279    int nb_numa_nodes = machine->numa_state->num_nodes;
 280    int i, j, max_nodes_with_gpus;
 281
 282    /*
 283     * For all associativity arrays: first position is the size,
 284     * position FORM1_DIST_REF_POINTS is always the numa_id,
 285     * represented by the index 'i'.
 286     *
 287     * This will break on sparse NUMA setups, when/if QEMU starts
 288     * to support it, because there will be no more guarantee that
 289     * 'i' will be a valid node_id set by the user.
 290     */
 291    for (i = 0; i < nb_numa_nodes; i++) {
 292        spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
 293        spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
 294    }
 295
 296    /*
 297     * Initialize NVLink GPU associativity arrays. We know that
 298     * the first GPU will take the first available NUMA id, and
 299     * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
 300     * At this point we're not sure if there are GPUs or not, but
 301     * let's initialize the associativity arrays and allow NVLink
 302     * GPUs to be handled like regular NUMA nodes later on.
 303     */
 304    max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
 305
 306    for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
 307        spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
 308
 309        for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
 310            uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
 311                                 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
 312            spapr->FORM1_assoc_array[i][j] = gpu_assoc;
 313        }
 314
 315        spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
 316    }
 317
 318    /*
 319     * Guests pseries-5.1 and older uses zeroed associativity domains,
 320     * i.e. no domain definition based on NUMA distance input.
 321     *
 322     * Same thing with guests that have only one NUMA node.
 323     */
 324    if (smc->pre_5_2_numa_associativity ||
 325        machine->numa_state->num_nodes <= 1) {
 326        return;
 327    }
 328
 329    spapr_numa_define_FORM1_domains(spapr);
 330}
 331
 332/*
 333 * Init NUMA FORM2 machine state data
 334 */
 335static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
 336{
 337    int i;
 338
 339    /*
 340     * For all resources but CPUs, FORM2 associativity arrays will
 341     * be a size 2 array with the following format:
 342     *
 343     * ibm,associativity = {1, numa_id}
 344     *
 345     * CPUs will write an additional 'vcpu_id' on top of the arrays
 346     * being initialized here. 'numa_id' is represented by the
 347     * index 'i' of the loop.
 348     *
 349     * Given that this initialization is also valid for GPU associativity
 350     * arrays, handle everything in one single step by populating the
 351     * arrays up to NUMA_NODES_MAX_NUM.
 352     */
 353    for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
 354        spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
 355        spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
 356    }
 357}
 358
 359void spapr_numa_associativity_init(SpaprMachineState *spapr,
 360                                   MachineState *machine)
 361{
 362    spapr_numa_FORM1_affinity_init(spapr, machine);
 363    spapr_numa_FORM2_affinity_init(spapr);
 364}
 365
 366void spapr_numa_associativity_check(SpaprMachineState *spapr)
 367{
 368    /*
 369     * FORM2 does not have any restrictions we need to handle
 370     * at CAS time, for now.
 371     */
 372    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 373        return;
 374    }
 375
 376    spapr_numa_FORM1_affinity_check(MACHINE(spapr));
 377}
 378
 379void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
 380                                       int offset, int nodeid)
 381{
 382    const uint32_t *associativity = get_associativity(spapr, nodeid);
 383
 384    _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
 385                      associativity,
 386                      get_numa_assoc_size(spapr) * sizeof(uint32_t))));
 387}
 388
 389static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
 390                                           PowerPCCPU *cpu)
 391{
 392    const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
 393    int max_distance_ref_points = get_max_dist_ref_points(spapr);
 394    int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 395    uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
 396    int index = spapr_get_vcpu_id(cpu);
 397
 398    /*
 399     * VCPUs have an extra 'cpu_id' value in ibm,associativity
 400     * compared to other resources. Increment the size at index
 401     * 0, put cpu_id last, then copy the remaining associativity
 402     * domains.
 403     */
 404    vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
 405    vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
 406    memcpy(vcpu_assoc + 1, associativity + 1,
 407           (vcpu_assoc_size - 2) * sizeof(uint32_t));
 408
 409    return vcpu_assoc;
 410}
 411
 412int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
 413                            int offset, PowerPCCPU *cpu)
 414{
 415    g_autofree uint32_t *vcpu_assoc = NULL;
 416    int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 417
 418    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
 419
 420    /* Advertise NUMA via ibm,associativity */
 421    return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
 422                       vcpu_assoc_size * sizeof(uint32_t));
 423}
 424
 425
 426int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
 427                                         int offset)
 428{
 429    MachineState *machine = MACHINE(spapr);
 430    int max_distance_ref_points = get_max_dist_ref_points(spapr);
 431    int nb_numa_nodes = machine->numa_state->num_nodes;
 432    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 433    g_autofree uint32_t *int_buf = NULL;
 434    uint32_t *cur_index;
 435    int i;
 436
 437    /* ibm,associativity-lookup-arrays */
 438    int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
 439    cur_index = int_buf;
 440    int_buf[0] = cpu_to_be32(nr_nodes);
 441     /* Number of entries per associativity list */
 442    int_buf[1] = cpu_to_be32(max_distance_ref_points);
 443    cur_index += 2;
 444    for (i = 0; i < nr_nodes; i++) {
 445        /*
 446         * For the lookup-array we use the ibm,associativity array of the
 447         * current NUMA affinity, without the first element (size).
 448         */
 449        const uint32_t *associativity = get_associativity(spapr, i);
 450        memcpy(cur_index, ++associativity,
 451               sizeof(uint32_t) * max_distance_ref_points);
 452        cur_index += max_distance_ref_points;
 453    }
 454
 455    return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
 456                       int_buf, (cur_index - int_buf) * sizeof(uint32_t));
 457}
 458
 459static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
 460                                           void *fdt, int rtas)
 461{
 462    MachineState *ms = MACHINE(spapr);
 463    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 464    uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
 465                                   spapr_numa_initial_nvgpu_numa_id(ms);
 466    uint32_t refpoints[] = {
 467        cpu_to_be32(0x4),
 468        cpu_to_be32(0x3),
 469        cpu_to_be32(0x2),
 470        cpu_to_be32(0x1),
 471    };
 472    uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
 473    uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
 474    uint32_t maxdomains[] = {
 475        cpu_to_be32(4),
 476        cpu_to_be32(maxdomain),
 477        cpu_to_be32(maxdomain),
 478        cpu_to_be32(maxdomain),
 479        cpu_to_be32(maxdomain)
 480    };
 481
 482    if (smc->pre_5_2_numa_associativity ||
 483        ms->numa_state->num_nodes <= 1) {
 484        uint32_t legacy_refpoints[] = {
 485            cpu_to_be32(0x4),
 486            cpu_to_be32(0x4),
 487            cpu_to_be32(0x2),
 488        };
 489        uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
 490        uint32_t legacy_maxdomains[] = {
 491            cpu_to_be32(4),
 492            cpu_to_be32(legacy_maxdomain),
 493            cpu_to_be32(legacy_maxdomain),
 494            cpu_to_be32(legacy_maxdomain),
 495            cpu_to_be32(spapr->gpu_numa_id),
 496        };
 497
 498        G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
 499        G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
 500
 501        nr_refpoints = 3;
 502
 503        memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
 504        memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
 505
 506        /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
 507        if (smc->pre_5_1_assoc_refpoints) {
 508            nr_refpoints = 2;
 509        }
 510    }
 511
 512    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 513                     refpoints, nr_refpoints * sizeof(refpoints[0])));
 514
 515    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 516                     maxdomains, sizeof(maxdomains)));
 517}
 518
 519static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
 520                                               void *fdt, int rtas)
 521{
 522    MachineState *ms = MACHINE(spapr);
 523    int nb_numa_nodes = ms->numa_state->num_nodes;
 524    int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
 525    g_autofree uint32_t *lookup_index_table = NULL;
 526    g_autofree uint8_t *distance_table = NULL;
 527    int src, dst, i, distance_table_size;
 528
 529    /*
 530     * ibm,numa-lookup-index-table: array with length and a
 531     * list of NUMA ids present in the guest.
 532     */
 533    lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
 534    lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
 535
 536    for (i = 0; i < nb_numa_nodes; i++) {
 537        lookup_index_table[i + 1] = cpu_to_be32(i);
 538    }
 539
 540    _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
 541                     lookup_index_table,
 542                     (nb_numa_nodes + 1) * sizeof(uint32_t)));
 543
 544    /*
 545     * ibm,numa-distance-table: contains all node distances. First
 546     * element is the size of the table as uint32, followed up
 547     * by all the uint8 distances from the first NUMA node, then all
 548     * distances from the second NUMA node and so on.
 549     *
 550     * ibm,numa-lookup-index-table is used by guest to navigate this
 551     * array because NUMA ids can be sparse (node 0 is the first,
 552     * node 8 is the second ...).
 553     */
 554    distance_table_size = distance_table_entries * sizeof(uint8_t) +
 555                          sizeof(uint32_t);
 556    distance_table = g_new0(uint8_t, distance_table_size);
 557    stl_be_p(distance_table, distance_table_entries);
 558
 559    /* Skip the uint32_t array length at the start */
 560    i = sizeof(uint32_t);
 561
 562    for (src = 0; src < nb_numa_nodes; src++) {
 563        for (dst = 0; dst < nb_numa_nodes; dst++) {
 564            distance_table[i++] = get_numa_distance(ms, src, dst);
 565        }
 566    }
 567
 568    _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
 569                     distance_table, distance_table_size));
 570}
 571
 572/*
 573 * This helper could be compressed in a single function with
 574 * FORM1 logic since we're setting the same DT values, with the
 575 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
 576 * in the end. The separation was made to avoid clogging FORM1 code
 577 * which already has to deal with compat modes from previous
 578 * QEMU machine types.
 579 */
 580static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
 581                                           void *fdt, int rtas)
 582{
 583    MachineState *ms = MACHINE(spapr);
 584    uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
 585                                   spapr_numa_initial_nvgpu_numa_id(ms);
 586
 587    /*
 588     * In FORM2, ibm,associativity-reference-points will point to
 589     * the element in the ibm,associativity array that contains the
 590     * primary domain index (for FORM2, the first element).
 591     *
 592     * This value (in our case, the numa-id) is then used as an index
 593     * to retrieve all other attributes of the node (distance,
 594     * bandwidth, latency) via ibm,numa-lookup-index-table and other
 595     * ibm,numa-*-table properties.
 596     */
 597    uint32_t refpoints[] = { cpu_to_be32(1) };
 598
 599    uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
 600    uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
 601
 602    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 603                     refpoints, sizeof(refpoints)));
 604
 605    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 606                     maxdomains, sizeof(maxdomains)));
 607
 608    spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
 609}
 610
 611/*
 612 * Helper that writes ibm,associativity-reference-points and
 613 * max-associativity-domains in the RTAS pointed by @rtas
 614 * in the DT @fdt.
 615 */
 616void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
 617{
 618    if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 619        spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
 620        return;
 621    }
 622
 623    spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
 624}
 625
 626static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
 627                                              SpaprMachineState *spapr,
 628                                              target_ulong opcode,
 629                                              target_ulong *args)
 630{
 631    g_autofree uint32_t *vcpu_assoc = NULL;
 632    target_ulong flags = args[0];
 633    target_ulong procno = args[1];
 634    PowerPCCPU *tcpu;
 635    int idx, assoc_idx;
 636    int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 637
 638    /* only support procno from H_REGISTER_VPA */
 639    if (flags != 0x1) {
 640        return H_FUNCTION;
 641    }
 642
 643    tcpu = spapr_find_cpu(procno);
 644    if (tcpu == NULL) {
 645        return H_P2;
 646    }
 647
 648    /*
 649     * Given that we want to be flexible with the sizes and indexes,
 650     * we must consider that there is a hard limit of how many
 651     * associativities domain we can fit in R4 up to R9, which would be
 652     * 12 associativity domains for vcpus. Assert and bail if that's
 653     * not the case.
 654     */
 655    g_assert((vcpu_assoc_size - 1) <= 12);
 656
 657    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
 658    /* assoc_idx starts at 1 to skip associativity size */
 659    assoc_idx = 1;
 660
 661#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
 662                             ((uint64_t)(b) & 0xffffffff))
 663
 664    for (idx = 0; idx < 6; idx++) {
 665        int32_t a, b;
 666
 667        /*
 668         * vcpu_assoc[] will contain the associativity domains for tcpu,
 669         * including tcpu->node_id and procno, meaning that we don't
 670         * need to use these variables here.
 671         *
 672         * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
 673         * macro. The ternary will fill the remaining registers with -1
 674         * after we went through vcpu_assoc[].
 675         */
 676        a = assoc_idx < vcpu_assoc_size ?
 677            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 678        b = assoc_idx < vcpu_assoc_size ?
 679            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 680
 681        args[idx] = ASSOCIATIVITY(a, b);
 682    }
 683#undef ASSOCIATIVITY
 684
 685    return H_SUCCESS;
 686}
 687
 688static void spapr_numa_register_types(void)
 689{
 690    /* Virtual Processor Home Node */
 691    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
 692                             h_home_node_associativity);
 693}
 694
 695type_init(spapr_numa_register_types)
 696