qemu/hw/riscv/boot.c
<<
>>
Prefs
   1/*
   2 * QEMU RISC-V Boot Helper
   3 *
   4 * Copyright (c) 2017 SiFive, Inc.
   5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/datadir.h"
  22#include "qemu/units.h"
  23#include "qemu/error-report.h"
  24#include "exec/cpu-defs.h"
  25#include "hw/boards.h"
  26#include "hw/loader.h"
  27#include "hw/riscv/boot.h"
  28#include "hw/riscv/boot_opensbi.h"
  29#include "elf.h"
  30#include "sysemu/device_tree.h"
  31#include "sysemu/qtest.h"
  32#include "sysemu/kvm.h"
  33#include "sysemu/reset.h"
  34
  35#include <libfdt.h>
  36
  37bool riscv_is_32bit(RISCVHartArrayState *harts)
  38{
  39    return harts->harts[0].env.misa_mxl_max == MXL_RV32;
  40}
  41
  42/*
  43 * Return the per-socket PLIC hart topology configuration string
  44 * (caller must free with g_free())
  45 */
  46char *riscv_plic_hart_config_string(int hart_count)
  47{
  48    g_autofree const char **vals = g_new(const char *, hart_count + 1);
  49    int i;
  50
  51    for (i = 0; i < hart_count; i++) {
  52        CPUState *cs = qemu_get_cpu(i);
  53        CPURISCVState *env = &RISCV_CPU(cs)->env;
  54
  55        if (kvm_enabled()) {
  56            vals[i] = "S";
  57        } else if (riscv_has_ext(env, RVS)) {
  58            vals[i] = "MS";
  59        } else {
  60            vals[i] = "M";
  61        }
  62    }
  63    vals[i] = NULL;
  64
  65    /* g_strjoinv() obliges us to cast away const here */
  66    return g_strjoinv(",", (char **)vals);
  67}
  68
  69target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
  70                                          target_ulong firmware_end_addr) {
  71    if (riscv_is_32bit(harts)) {
  72        return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
  73    } else {
  74        return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
  75    }
  76}
  77
  78target_ulong riscv_find_and_load_firmware(MachineState *machine,
  79                                          const char *default_machine_firmware,
  80                                          hwaddr firmware_load_addr,
  81                                          symbol_fn_t sym_cb)
  82{
  83    char *firmware_filename = NULL;
  84    target_ulong firmware_end_addr = firmware_load_addr;
  85
  86    if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
  87        /*
  88         * The user didn't specify -bios, or has specified "-bios default".
  89         * That means we are going to load the OpenSBI binary included in
  90         * the QEMU source.
  91         */
  92        firmware_filename = riscv_find_firmware(default_machine_firmware);
  93    } else if (strcmp(machine->firmware, "none")) {
  94        firmware_filename = riscv_find_firmware(machine->firmware);
  95    }
  96
  97    if (firmware_filename) {
  98        /* If not "none" load the firmware */
  99        firmware_end_addr = riscv_load_firmware(firmware_filename,
 100                                                firmware_load_addr, sym_cb);
 101        g_free(firmware_filename);
 102    }
 103
 104    return firmware_end_addr;
 105}
 106
 107char *riscv_find_firmware(const char *firmware_filename)
 108{
 109    char *filename;
 110
 111    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
 112    if (filename == NULL) {
 113        if (!qtest_enabled()) {
 114            /*
 115             * We only ship OpenSBI binary bios images in the QEMU source.
 116             * For machines that use images other than the default bios,
 117             * running QEMU test will complain hence let's suppress the error
 118             * report for QEMU testing.
 119             */
 120            error_report("Unable to load the RISC-V firmware \"%s\"",
 121                         firmware_filename);
 122            exit(1);
 123        }
 124    }
 125
 126    return filename;
 127}
 128
 129target_ulong riscv_load_firmware(const char *firmware_filename,
 130                                 hwaddr firmware_load_addr,
 131                                 symbol_fn_t sym_cb)
 132{
 133    uint64_t firmware_entry, firmware_end;
 134    ssize_t firmware_size;
 135
 136    if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
 137                         &firmware_entry, NULL, &firmware_end, NULL,
 138                         0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
 139        return firmware_end;
 140    }
 141
 142    firmware_size = load_image_targphys_as(firmware_filename,
 143                                           firmware_load_addr,
 144                                           current_machine->ram_size, NULL);
 145
 146    if (firmware_size > 0) {
 147        return firmware_load_addr + firmware_size;
 148    }
 149
 150    error_report("could not load firmware '%s'", firmware_filename);
 151    exit(1);
 152}
 153
 154target_ulong riscv_load_kernel(const char *kernel_filename,
 155                               target_ulong kernel_start_addr,
 156                               symbol_fn_t sym_cb)
 157{
 158    uint64_t kernel_load_base, kernel_entry;
 159
 160    /*
 161     * NB: Use low address not ELF entry point to ensure that the fw_dynamic
 162     * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
 163     * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
 164     * the (expected) load address load address. This allows kernels to have
 165     * separate SBI and ELF entry points (used by FreeBSD, for example).
 166     */
 167    if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
 168                         NULL, &kernel_load_base, NULL, NULL, 0,
 169                         EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
 170        return kernel_load_base;
 171    }
 172
 173    if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
 174                       NULL, NULL, NULL) > 0) {
 175        return kernel_entry;
 176    }
 177
 178    if (load_image_targphys_as(kernel_filename, kernel_start_addr,
 179                               current_machine->ram_size, NULL) > 0) {
 180        return kernel_start_addr;
 181    }
 182
 183    error_report("could not load kernel '%s'", kernel_filename);
 184    exit(1);
 185}
 186
 187hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
 188                         uint64_t kernel_entry, hwaddr *start)
 189{
 190    ssize_t size;
 191
 192    /*
 193     * We want to put the initrd far enough into RAM that when the
 194     * kernel is uncompressed it will not clobber the initrd. However
 195     * on boards without much RAM we must ensure that we still leave
 196     * enough room for a decent sized initrd, and on boards with large
 197     * amounts of RAM we must avoid the initrd being so far up in RAM
 198     * that it is outside lowmem and inaccessible to the kernel.
 199     * So for boards with less  than 256MB of RAM we put the initrd
 200     * halfway into RAM, and for boards with 256MB of RAM or more we put
 201     * the initrd at 128MB.
 202     */
 203    *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
 204
 205    size = load_ramdisk(filename, *start, mem_size - *start);
 206    if (size == -1) {
 207        size = load_image_targphys(filename, *start, mem_size - *start);
 208        if (size == -1) {
 209            error_report("could not load ramdisk '%s'", filename);
 210            exit(1);
 211        }
 212    }
 213
 214    return *start + size;
 215}
 216
 217uint64_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
 218{
 219    uint64_t temp, fdt_addr;
 220    hwaddr dram_end = dram_base + mem_size;
 221    int ret, fdtsize = fdt_totalsize(fdt);
 222
 223    if (fdtsize <= 0) {
 224        error_report("invalid device-tree");
 225        exit(1);
 226    }
 227
 228    /*
 229     * We should put fdt as far as possible to avoid kernel/initrd overwriting
 230     * its content. But it should be addressable by 32 bit system as well.
 231     * Thus, put it at an 2MB aligned address that less than fdt size from the
 232     * end of dram or 3GB whichever is lesser.
 233     */
 234    temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
 235    fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
 236
 237    ret = fdt_pack(fdt);
 238    /* Should only fail if we've built a corrupted tree */
 239    g_assert(ret == 0);
 240    /* copy in the device tree */
 241    qemu_fdt_dumpdtb(fdt, fdtsize);
 242
 243    rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
 244                          &address_space_memory);
 245    qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
 246                        rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
 247
 248    return fdt_addr;
 249}
 250
 251void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
 252                                  hwaddr rom_size, uint32_t reset_vec_size,
 253                                  uint64_t kernel_entry)
 254{
 255    struct fw_dynamic_info dinfo;
 256    size_t dinfo_len;
 257
 258    if (sizeof(dinfo.magic) == 4) {
 259        dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
 260        dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
 261        dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
 262        dinfo.next_addr = cpu_to_le32(kernel_entry);
 263    } else {
 264        dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
 265        dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
 266        dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
 267        dinfo.next_addr = cpu_to_le64(kernel_entry);
 268    }
 269    dinfo.options = 0;
 270    dinfo.boot_hart = 0;
 271    dinfo_len = sizeof(dinfo);
 272
 273    /**
 274     * copy the dynamic firmware info. This information is specific to
 275     * OpenSBI but doesn't break any other firmware as long as they don't
 276     * expect any certain value in "a2" register.
 277     */
 278    if (dinfo_len > (rom_size - reset_vec_size)) {
 279        error_report("not enough space to store dynamic firmware info");
 280        exit(1);
 281    }
 282
 283    rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
 284                           rom_base + reset_vec_size,
 285                           &address_space_memory);
 286}
 287
 288void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
 289                               hwaddr start_addr,
 290                               hwaddr rom_base, hwaddr rom_size,
 291                               uint64_t kernel_entry,
 292                               uint64_t fdt_load_addr)
 293{
 294    int i;
 295    uint32_t start_addr_hi32 = 0x00000000;
 296    uint32_t fdt_load_addr_hi32 = 0x00000000;
 297
 298    if (!riscv_is_32bit(harts)) {
 299        start_addr_hi32 = start_addr >> 32;
 300        fdt_load_addr_hi32 = fdt_load_addr >> 32;
 301    }
 302    /* reset vector */
 303    uint32_t reset_vec[10] = {
 304        0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
 305        0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
 306        0xf1402573,                  /*     csrr   a0, mhartid  */
 307        0,
 308        0,
 309        0x00028067,                  /*     jr     t0 */
 310        start_addr,                  /* start: .dword */
 311        start_addr_hi32,
 312        fdt_load_addr,               /* fdt_laddr: .dword */
 313        fdt_load_addr_hi32,
 314                                     /* fw_dyn: */
 315    };
 316    if (riscv_is_32bit(harts)) {
 317        reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
 318        reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
 319    } else {
 320        reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
 321        reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
 322    }
 323
 324    /* copy in the reset vector in little_endian byte order */
 325    for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
 326        reset_vec[i] = cpu_to_le32(reset_vec[i]);
 327    }
 328    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
 329                          rom_base, &address_space_memory);
 330    riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
 331                                 kernel_entry);
 332}
 333
 334void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
 335{
 336    CPUState *cs;
 337
 338    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
 339        RISCVCPU *riscv_cpu = RISCV_CPU(cs);
 340        riscv_cpu->env.kernel_addr = kernel_addr;
 341        riscv_cpu->env.fdt_addr = fdt_addr;
 342    }
 343}
 344
 345void riscv_setup_firmware_boot(MachineState *machine)
 346{
 347    if (machine->kernel_filename) {
 348        FWCfgState *fw_cfg;
 349        fw_cfg = fw_cfg_find();
 350
 351        assert(fw_cfg);
 352        /*
 353         * Expose the kernel, the command line, and the initrd in fw_cfg.
 354         * We don't process them here at all, it's all left to the
 355         * firmware.
 356         */
 357        load_image_to_fw_cfg(fw_cfg,
 358                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
 359                             machine->kernel_filename,
 360                             true);
 361        load_image_to_fw_cfg(fw_cfg,
 362                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
 363                             machine->initrd_filename, false);
 364
 365        if (machine->kernel_cmdline) {
 366            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 367                           strlen(machine->kernel_cmdline) + 1);
 368            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
 369                              machine->kernel_cmdline);
 370        }
 371    }
 372}
 373