qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "memory-region"
  37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
  38                         TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
  41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
  42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
  43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
  44
  45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
  46typedef struct RamDiscardManagerClass RamDiscardManagerClass;
  47typedef struct RamDiscardManager RamDiscardManager;
  48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
  49                     RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
  50
  51#ifdef CONFIG_FUZZ
  52void fuzz_dma_read_cb(size_t addr,
  53                      size_t len,
  54                      MemoryRegion *mr);
  55#else
  56static inline void fuzz_dma_read_cb(size_t addr,
  57                                    size_t len,
  58                                    MemoryRegion *mr)
  59{
  60    /* Do Nothing */
  61}
  62#endif
  63
  64/* Possible bits for global_dirty_log_{start|stop} */
  65
  66/* Dirty tracking enabled because migration is running */
  67#define GLOBAL_DIRTY_MIGRATION  (1U << 0)
  68
  69/* Dirty tracking enabled because measuring dirty rate */
  70#define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
  71
  72/* Dirty tracking enabled because dirty limit */
  73#define GLOBAL_DIRTY_LIMIT      (1U << 2)
  74
  75#define GLOBAL_DIRTY_MASK  (0x7)
  76
  77extern unsigned int global_dirty_tracking;
  78
  79typedef struct MemoryRegionOps MemoryRegionOps;
  80
  81struct ReservedRegion {
  82    hwaddr low;
  83    hwaddr high;
  84    unsigned type;
  85};
  86
  87/**
  88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
  89 *
  90 * @mr: the region, or %NULL if empty
  91 * @fv: the flat view of the address space the region is mapped in
  92 * @offset_within_region: the beginning of the section, relative to @mr's start
  93 * @size: the size of the section; will not exceed @mr's boundaries
  94 * @offset_within_address_space: the address of the first byte of the section
  95 *     relative to the region's address space
  96 * @readonly: writes to this section are ignored
  97 * @nonvolatile: this section is non-volatile
  98 */
  99struct MemoryRegionSection {
 100    Int128 size;
 101    MemoryRegion *mr;
 102    FlatView *fv;
 103    hwaddr offset_within_region;
 104    hwaddr offset_within_address_space;
 105    bool readonly;
 106    bool nonvolatile;
 107};
 108
 109typedef struct IOMMUTLBEntry IOMMUTLBEntry;
 110
 111/* See address_space_translate: bit 0 is read, bit 1 is write.  */
 112typedef enum {
 113    IOMMU_NONE = 0,
 114    IOMMU_RO   = 1,
 115    IOMMU_WO   = 2,
 116    IOMMU_RW   = 3,
 117} IOMMUAccessFlags;
 118
 119#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
 120
 121struct IOMMUTLBEntry {
 122    AddressSpace    *target_as;
 123    hwaddr           iova;
 124    hwaddr           translated_addr;
 125    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 126    IOMMUAccessFlags perm;
 127};
 128
 129/*
 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 131 * register with one or multiple IOMMU Notifier capability bit(s).
 132 */
 133typedef enum {
 134    IOMMU_NOTIFIER_NONE = 0,
 135    /* Notify cache invalidations */
 136    IOMMU_NOTIFIER_UNMAP = 0x1,
 137    /* Notify entry changes (newly created entries) */
 138    IOMMU_NOTIFIER_MAP = 0x2,
 139    /* Notify changes on device IOTLB entries */
 140    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
 141} IOMMUNotifierFlag;
 142
 143#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 144#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
 145#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
 146                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
 147
 148struct IOMMUNotifier;
 149typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 150                            IOMMUTLBEntry *data);
 151
 152struct IOMMUNotifier {
 153    IOMMUNotify notify;
 154    IOMMUNotifierFlag notifier_flags;
 155    /* Notify for address space range start <= addr <= end */
 156    hwaddr start;
 157    hwaddr end;
 158    int iommu_idx;
 159    QLIST_ENTRY(IOMMUNotifier) node;
 160};
 161typedef struct IOMMUNotifier IOMMUNotifier;
 162
 163typedef struct IOMMUTLBEvent {
 164    IOMMUNotifierFlag type;
 165    IOMMUTLBEntry entry;
 166} IOMMUTLBEvent;
 167
 168/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 169#define RAM_PREALLOC   (1 << 0)
 170
 171/* RAM is mmap-ed with MAP_SHARED */
 172#define RAM_SHARED     (1 << 1)
 173
 174/* Only a portion of RAM (used_length) is actually used, and migrated.
 175 * Resizing RAM while migrating can result in the migration being canceled.
 176 */
 177#define RAM_RESIZEABLE (1 << 2)
 178
 179/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 180 * zero the page and wake waiting processes.
 181 * (Set during postcopy)
 182 */
 183#define RAM_UF_ZEROPAGE (1 << 3)
 184
 185/* RAM can be migrated */
 186#define RAM_MIGRATABLE (1 << 4)
 187
 188/* RAM is a persistent kind memory */
 189#define RAM_PMEM (1 << 5)
 190
 191
 192/*
 193 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
 194 * support 'write-tracking' migration type.
 195 * Implies ram_state->ram_wt_enabled.
 196 */
 197#define RAM_UF_WRITEPROTECT (1 << 6)
 198
 199/*
 200 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
 201 * pages if applicable) is skipped: will bail out if not supported. When not
 202 * set, the OS will do the reservation, if supported for the memory type.
 203 */
 204#define RAM_NORESERVE (1 << 7)
 205
 206/* RAM that isn't accessible through normal means. */
 207#define RAM_PROTECTED (1 << 8)
 208
 209static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 210                                       IOMMUNotifierFlag flags,
 211                                       hwaddr start, hwaddr end,
 212                                       int iommu_idx)
 213{
 214    n->notify = fn;
 215    n->notifier_flags = flags;
 216    n->start = start;
 217    n->end = end;
 218    n->iommu_idx = iommu_idx;
 219}
 220
 221/*
 222 * Memory region callbacks
 223 */
 224struct MemoryRegionOps {
 225    /* Read from the memory region. @addr is relative to @mr; @size is
 226     * in bytes. */
 227    uint64_t (*read)(void *opaque,
 228                     hwaddr addr,
 229                     unsigned size);
 230    /* Write to the memory region. @addr is relative to @mr; @size is
 231     * in bytes. */
 232    void (*write)(void *opaque,
 233                  hwaddr addr,
 234                  uint64_t data,
 235                  unsigned size);
 236
 237    MemTxResult (*read_with_attrs)(void *opaque,
 238                                   hwaddr addr,
 239                                   uint64_t *data,
 240                                   unsigned size,
 241                                   MemTxAttrs attrs);
 242    MemTxResult (*write_with_attrs)(void *opaque,
 243                                    hwaddr addr,
 244                                    uint64_t data,
 245                                    unsigned size,
 246                                    MemTxAttrs attrs);
 247
 248    enum device_endian endianness;
 249    /* Guest-visible constraints: */
 250    struct {
 251        /* If nonzero, specify bounds on access sizes beyond which a machine
 252         * check is thrown.
 253         */
 254        unsigned min_access_size;
 255        unsigned max_access_size;
 256        /* If true, unaligned accesses are supported.  Otherwise unaligned
 257         * accesses throw machine checks.
 258         */
 259         bool unaligned;
 260        /*
 261         * If present, and returns #false, the transaction is not accepted
 262         * by the device (and results in machine dependent behaviour such
 263         * as a machine check exception).
 264         */
 265        bool (*accepts)(void *opaque, hwaddr addr,
 266                        unsigned size, bool is_write,
 267                        MemTxAttrs attrs);
 268    } valid;
 269    /* Internal implementation constraints: */
 270    struct {
 271        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 272         * will be rounded upwards and a partial result will be returned.
 273         */
 274        unsigned min_access_size;
 275        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 276         * will be done as a series of accesses with smaller sizes.
 277         */
 278        unsigned max_access_size;
 279        /* If true, unaligned accesses are supported.  Otherwise all accesses
 280         * are converted to (possibly multiple) naturally aligned accesses.
 281         */
 282        bool unaligned;
 283    } impl;
 284};
 285
 286typedef struct MemoryRegionClass {
 287    /* private */
 288    ObjectClass parent_class;
 289} MemoryRegionClass;
 290
 291
 292enum IOMMUMemoryRegionAttr {
 293    IOMMU_ATTR_SPAPR_TCE_FD
 294};
 295
 296/*
 297 * IOMMUMemoryRegionClass:
 298 *
 299 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 300 * and provide an implementation of at least the @translate method here
 301 * to handle requests to the memory region. Other methods are optional.
 302 *
 303 * The IOMMU implementation must use the IOMMU notifier infrastructure
 304 * to report whenever mappings are changed, by calling
 305 * memory_region_notify_iommu() (or, if necessary, by calling
 306 * memory_region_notify_iommu_one() for each registered notifier).
 307 *
 308 * Conceptually an IOMMU provides a mapping from input address
 309 * to an output TLB entry. If the IOMMU is aware of memory transaction
 310 * attributes and the output TLB entry depends on the transaction
 311 * attributes, we represent this using IOMMU indexes. Each index
 312 * selects a particular translation table that the IOMMU has:
 313 *
 314 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 315 *
 316 *   @translate takes an input address and an IOMMU index
 317 *
 318 * and the mapping returned can only depend on the input address and the
 319 * IOMMU index.
 320 *
 321 * Most IOMMUs don't care about the transaction attributes and support
 322 * only a single IOMMU index. A more complex IOMMU might have one index
 323 * for secure transactions and one for non-secure transactions.
 324 */
 325struct IOMMUMemoryRegionClass {
 326    /* private: */
 327    MemoryRegionClass parent_class;
 328
 329    /* public: */
 330    /**
 331     * @translate:
 332     *
 333     * Return a TLB entry that contains a given address.
 334     *
 335     * The IOMMUAccessFlags indicated via @flag are optional and may
 336     * be specified as IOMMU_NONE to indicate that the caller needs
 337     * the full translation information for both reads and writes. If
 338     * the access flags are specified then the IOMMU implementation
 339     * may use this as an optimization, to stop doing a page table
 340     * walk as soon as it knows that the requested permissions are not
 341     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 342     * full page table walk and report the permissions in the returned
 343     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 344     * return different mappings for reads and writes.)
 345     *
 346     * The returned information remains valid while the caller is
 347     * holding the big QEMU lock or is inside an RCU critical section;
 348     * if the caller wishes to cache the mapping beyond that it must
 349     * register an IOMMU notifier so it can invalidate its cached
 350     * information when the IOMMU mapping changes.
 351     *
 352     * @iommu: the IOMMUMemoryRegion
 353     *
 354     * @hwaddr: address to be translated within the memory region
 355     *
 356     * @flag: requested access permission
 357     *
 358     * @iommu_idx: IOMMU index for the translation
 359     */
 360    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 361                               IOMMUAccessFlags flag, int iommu_idx);
 362    /**
 363     * @get_min_page_size:
 364     *
 365     * Returns minimum supported page size in bytes.
 366     *
 367     * If this method is not provided then the minimum is assumed to
 368     * be TARGET_PAGE_SIZE.
 369     *
 370     * @iommu: the IOMMUMemoryRegion
 371     */
 372    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 373    /**
 374     * @notify_flag_changed:
 375     *
 376     * Called when IOMMU Notifier flag changes (ie when the set of
 377     * events which IOMMU users are requesting notification for changes).
 378     * Optional method -- need not be provided if the IOMMU does not
 379     * need to know exactly which events must be notified.
 380     *
 381     * @iommu: the IOMMUMemoryRegion
 382     *
 383     * @old_flags: events which previously needed to be notified
 384     *
 385     * @new_flags: events which now need to be notified
 386     *
 387     * Returns 0 on success, or a negative errno; in particular
 388     * returns -EINVAL if the new flag bitmap is not supported by the
 389     * IOMMU memory region. In case of failure, the error object
 390     * must be created
 391     */
 392    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 393                               IOMMUNotifierFlag old_flags,
 394                               IOMMUNotifierFlag new_flags,
 395                               Error **errp);
 396    /**
 397     * @replay:
 398     *
 399     * Called to handle memory_region_iommu_replay().
 400     *
 401     * The default implementation of memory_region_iommu_replay() is to
 402     * call the IOMMU translate method for every page in the address space
 403     * with flag == IOMMU_NONE and then call the notifier if translate
 404     * returns a valid mapping. If this method is implemented then it
 405     * overrides the default behaviour, and must provide the full semantics
 406     * of memory_region_iommu_replay(), by calling @notifier for every
 407     * translation present in the IOMMU.
 408     *
 409     * Optional method -- an IOMMU only needs to provide this method
 410     * if the default is inefficient or produces undesirable side effects.
 411     *
 412     * Note: this is not related to record-and-replay functionality.
 413     */
 414    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 415
 416    /**
 417     * @get_attr:
 418     *
 419     * Get IOMMU misc attributes. This is an optional method that
 420     * can be used to allow users of the IOMMU to get implementation-specific
 421     * information. The IOMMU implements this method to handle calls
 422     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 423     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 424     * the IOMMU supports. If the method is unimplemented then
 425     * memory_region_iommu_get_attr() will always return -EINVAL.
 426     *
 427     * @iommu: the IOMMUMemoryRegion
 428     *
 429     * @attr: attribute being queried
 430     *
 431     * @data: memory to fill in with the attribute data
 432     *
 433     * Returns 0 on success, or a negative errno; in particular
 434     * returns -EINVAL for unrecognized or unimplemented attribute types.
 435     */
 436    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 437                    void *data);
 438
 439    /**
 440     * @attrs_to_index:
 441     *
 442     * Return the IOMMU index to use for a given set of transaction attributes.
 443     *
 444     * Optional method: if an IOMMU only supports a single IOMMU index then
 445     * the default implementation of memory_region_iommu_attrs_to_index()
 446     * will return 0.
 447     *
 448     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 449     *
 450     * @iommu: the IOMMUMemoryRegion
 451     * @attrs: memory transaction attributes
 452     */
 453    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 454
 455    /**
 456     * @num_indexes:
 457     *
 458     * Return the number of IOMMU indexes this IOMMU supports.
 459     *
 460     * Optional method: if this method is not provided, then
 461     * memory_region_iommu_num_indexes() will return 1, indicating that
 462     * only a single IOMMU index is supported.
 463     *
 464     * @iommu: the IOMMUMemoryRegion
 465     */
 466    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 467
 468    /**
 469     * @iommu_set_page_size_mask:
 470     *
 471     * Restrict the page size mask that can be supported with a given IOMMU
 472     * memory region. Used for example to propagate host physical IOMMU page
 473     * size mask limitations to the virtual IOMMU.
 474     *
 475     * Optional method: if this method is not provided, then the default global
 476     * page mask is used.
 477     *
 478     * @iommu: the IOMMUMemoryRegion
 479     *
 480     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
 481     * representing the smallest page size, must be set. Additional set bits
 482     * represent supported block sizes. For example a host physical IOMMU that
 483     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
 484     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
 485     * block sizes is specified with mask 0xfffffffffffff000.
 486     *
 487     * Returns 0 on success, or a negative error. In case of failure, the error
 488     * object must be created.
 489     */
 490     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
 491                                     uint64_t page_size_mask,
 492                                     Error **errp);
 493};
 494
 495typedef struct RamDiscardListener RamDiscardListener;
 496typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
 497                                 MemoryRegionSection *section);
 498typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
 499                                 MemoryRegionSection *section);
 500
 501struct RamDiscardListener {
 502    /*
 503     * @notify_populate:
 504     *
 505     * Notification that previously discarded memory is about to get populated.
 506     * Listeners are able to object. If any listener objects, already
 507     * successfully notified listeners are notified about a discard again.
 508     *
 509     * @rdl: the #RamDiscardListener getting notified
 510     * @section: the #MemoryRegionSection to get populated. The section
 511     *           is aligned within the memory region to the minimum granularity
 512     *           unless it would exceed the registered section.
 513     *
 514     * Returns 0 on success. If the notification is rejected by the listener,
 515     * an error is returned.
 516     */
 517    NotifyRamPopulate notify_populate;
 518
 519    /*
 520     * @notify_discard:
 521     *
 522     * Notification that previously populated memory was discarded successfully
 523     * and listeners should drop all references to such memory and prevent
 524     * new population (e.g., unmap).
 525     *
 526     * @rdl: the #RamDiscardListener getting notified
 527     * @section: the #MemoryRegionSection to get populated. The section
 528     *           is aligned within the memory region to the minimum granularity
 529     *           unless it would exceed the registered section.
 530     */
 531    NotifyRamDiscard notify_discard;
 532
 533    /*
 534     * @double_discard_supported:
 535     *
 536     * The listener suppors getting @notify_discard notifications that span
 537     * already discarded parts.
 538     */
 539    bool double_discard_supported;
 540
 541    MemoryRegionSection *section;
 542    QLIST_ENTRY(RamDiscardListener) next;
 543};
 544
 545static inline void ram_discard_listener_init(RamDiscardListener *rdl,
 546                                             NotifyRamPopulate populate_fn,
 547                                             NotifyRamDiscard discard_fn,
 548                                             bool double_discard_supported)
 549{
 550    rdl->notify_populate = populate_fn;
 551    rdl->notify_discard = discard_fn;
 552    rdl->double_discard_supported = double_discard_supported;
 553}
 554
 555typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
 556typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
 557
 558/*
 559 * RamDiscardManagerClass:
 560 *
 561 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
 562 * regions are currently populated to be used/accessed by the VM, notifying
 563 * after parts were discarded (freeing up memory) and before parts will be
 564 * populated (consuming memory), to be used/accessed by the VM.
 565 *
 566 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
 567 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
 568 * mapped.
 569 *
 570 * The #RamDiscardManager is intended to be used by technologies that are
 571 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
 572 * memory inside a #MemoryRegion), and require proper coordination to only
 573 * map the currently populated parts, to hinder parts that are expected to
 574 * remain discarded from silently getting populated and consuming memory.
 575 * Technologies that support discarding of RAM don't have to bother and can
 576 * simply map the whole #MemoryRegion.
 577 *
 578 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
 579 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
 580 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
 581 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
 582 * properly coordinate with listeners before memory is plugged (populated),
 583 * and after memory is unplugged (discarded).
 584 *
 585 * Listeners are called in multiples of the minimum granularity (unless it
 586 * would exceed the registered range) and changes are aligned to the minimum
 587 * granularity within the #MemoryRegion. Listeners have to prepare for memory
 588 * becoming discarded in a different granularity than it was populated and the
 589 * other way around.
 590 */
 591struct RamDiscardManagerClass {
 592    /* private */
 593    InterfaceClass parent_class;
 594
 595    /* public */
 596
 597    /**
 598     * @get_min_granularity:
 599     *
 600     * Get the minimum granularity in which listeners will get notified
 601     * about changes within the #MemoryRegion via the #RamDiscardManager.
 602     *
 603     * @rdm: the #RamDiscardManager
 604     * @mr: the #MemoryRegion
 605     *
 606     * Returns the minimum granularity.
 607     */
 608    uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
 609                                    const MemoryRegion *mr);
 610
 611    /**
 612     * @is_populated:
 613     *
 614     * Check whether the given #MemoryRegionSection is completely populated
 615     * (i.e., no parts are currently discarded) via the #RamDiscardManager.
 616     * There are no alignment requirements.
 617     *
 618     * @rdm: the #RamDiscardManager
 619     * @section: the #MemoryRegionSection
 620     *
 621     * Returns whether the given range is completely populated.
 622     */
 623    bool (*is_populated)(const RamDiscardManager *rdm,
 624                         const MemoryRegionSection *section);
 625
 626    /**
 627     * @replay_populated:
 628     *
 629     * Call the #ReplayRamPopulate callback for all populated parts within the
 630     * #MemoryRegionSection via the #RamDiscardManager.
 631     *
 632     * In case any call fails, no further calls are made.
 633     *
 634     * @rdm: the #RamDiscardManager
 635     * @section: the #MemoryRegionSection
 636     * @replay_fn: the #ReplayRamPopulate callback
 637     * @opaque: pointer to forward to the callback
 638     *
 639     * Returns 0 on success, or a negative error if any notification failed.
 640     */
 641    int (*replay_populated)(const RamDiscardManager *rdm,
 642                            MemoryRegionSection *section,
 643                            ReplayRamPopulate replay_fn, void *opaque);
 644
 645    /**
 646     * @replay_discarded:
 647     *
 648     * Call the #ReplayRamDiscard callback for all discarded parts within the
 649     * #MemoryRegionSection via the #RamDiscardManager.
 650     *
 651     * @rdm: the #RamDiscardManager
 652     * @section: the #MemoryRegionSection
 653     * @replay_fn: the #ReplayRamDiscard callback
 654     * @opaque: pointer to forward to the callback
 655     */
 656    void (*replay_discarded)(const RamDiscardManager *rdm,
 657                             MemoryRegionSection *section,
 658                             ReplayRamDiscard replay_fn, void *opaque);
 659
 660    /**
 661     * @register_listener:
 662     *
 663     * Register a #RamDiscardListener for the given #MemoryRegionSection and
 664     * immediately notify the #RamDiscardListener about all populated parts
 665     * within the #MemoryRegionSection via the #RamDiscardManager.
 666     *
 667     * In case any notification fails, no further notifications are triggered
 668     * and an error is logged.
 669     *
 670     * @rdm: the #RamDiscardManager
 671     * @rdl: the #RamDiscardListener
 672     * @section: the #MemoryRegionSection
 673     */
 674    void (*register_listener)(RamDiscardManager *rdm,
 675                              RamDiscardListener *rdl,
 676                              MemoryRegionSection *section);
 677
 678    /**
 679     * @unregister_listener:
 680     *
 681     * Unregister a previously registered #RamDiscardListener via the
 682     * #RamDiscardManager after notifying the #RamDiscardListener about all
 683     * populated parts becoming unpopulated within the registered
 684     * #MemoryRegionSection.
 685     *
 686     * @rdm: the #RamDiscardManager
 687     * @rdl: the #RamDiscardListener
 688     */
 689    void (*unregister_listener)(RamDiscardManager *rdm,
 690                                RamDiscardListener *rdl);
 691};
 692
 693uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
 694                                                 const MemoryRegion *mr);
 695
 696bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
 697                                      const MemoryRegionSection *section);
 698
 699int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
 700                                         MemoryRegionSection *section,
 701                                         ReplayRamPopulate replay_fn,
 702                                         void *opaque);
 703
 704void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
 705                                          MemoryRegionSection *section,
 706                                          ReplayRamDiscard replay_fn,
 707                                          void *opaque);
 708
 709void ram_discard_manager_register_listener(RamDiscardManager *rdm,
 710                                           RamDiscardListener *rdl,
 711                                           MemoryRegionSection *section);
 712
 713void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
 714                                             RamDiscardListener *rdl);
 715
 716bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
 717                          ram_addr_t *ram_addr, bool *read_only,
 718                          bool *mr_has_discard_manager);
 719
 720typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 721typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 722
 723/** MemoryRegion:
 724 *
 725 * A struct representing a memory region.
 726 */
 727struct MemoryRegion {
 728    Object parent_obj;
 729
 730    /* private: */
 731
 732    /* The following fields should fit in a cache line */
 733    bool romd_mode;
 734    bool ram;
 735    bool subpage;
 736    bool readonly; /* For RAM regions */
 737    bool nonvolatile;
 738    bool rom_device;
 739    bool flush_coalesced_mmio;
 740    uint8_t dirty_log_mask;
 741    bool is_iommu;
 742    RAMBlock *ram_block;
 743    Object *owner;
 744
 745    const MemoryRegionOps *ops;
 746    void *opaque;
 747    MemoryRegion *container;
 748    int mapped_via_alias; /* Mapped via an alias, container might be NULL */
 749    Int128 size;
 750    hwaddr addr;
 751    void (*destructor)(MemoryRegion *mr);
 752    uint64_t align;
 753    bool terminates;
 754    bool ram_device;
 755    bool enabled;
 756    bool warning_printed; /* For reservations */
 757    uint8_t vga_logging_count;
 758    MemoryRegion *alias;
 759    hwaddr alias_offset;
 760    int32_t priority;
 761    QTAILQ_HEAD(, MemoryRegion) subregions;
 762    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 763    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 764    const char *name;
 765    unsigned ioeventfd_nb;
 766    MemoryRegionIoeventfd *ioeventfds;
 767    RamDiscardManager *rdm; /* Only for RAM */
 768};
 769
 770struct IOMMUMemoryRegion {
 771    MemoryRegion parent_obj;
 772
 773    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 774    IOMMUNotifierFlag iommu_notify_flags;
 775};
 776
 777#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 778    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 779
 780/**
 781 * struct MemoryListener: callbacks structure for updates to the physical memory map
 782 *
 783 * Allows a component to adjust to changes in the guest-visible memory map.
 784 * Use with memory_listener_register() and memory_listener_unregister().
 785 */
 786struct MemoryListener {
 787    /**
 788     * @begin:
 789     *
 790     * Called at the beginning of an address space update transaction.
 791     * Followed by calls to #MemoryListener.region_add(),
 792     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 793     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 794     * increasing address order.
 795     *
 796     * @listener: The #MemoryListener.
 797     */
 798    void (*begin)(MemoryListener *listener);
 799
 800    /**
 801     * @commit:
 802     *
 803     * Called at the end of an address space update transaction,
 804     * after the last call to #MemoryListener.region_add(),
 805     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 806     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 807     *
 808     * @listener: The #MemoryListener.
 809     */
 810    void (*commit)(MemoryListener *listener);
 811
 812    /**
 813     * @region_add:
 814     *
 815     * Called during an address space update transaction,
 816     * for a section of the address space that is new in this address space
 817     * space since the last transaction.
 818     *
 819     * @listener: The #MemoryListener.
 820     * @section: The new #MemoryRegionSection.
 821     */
 822    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 823
 824    /**
 825     * @region_del:
 826     *
 827     * Called during an address space update transaction,
 828     * for a section of the address space that has disappeared in the address
 829     * space since the last transaction.
 830     *
 831     * @listener: The #MemoryListener.
 832     * @section: The old #MemoryRegionSection.
 833     */
 834    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 835
 836    /**
 837     * @region_nop:
 838     *
 839     * Called during an address space update transaction,
 840     * for a section of the address space that is in the same place in the address
 841     * space as in the last transaction.
 842     *
 843     * @listener: The #MemoryListener.
 844     * @section: The #MemoryRegionSection.
 845     */
 846    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 847
 848    /**
 849     * @log_start:
 850     *
 851     * Called during an address space update transaction, after
 852     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 853     * #MemoryListener.region_nop(), if dirty memory logging clients have
 854     * become active since the last transaction.
 855     *
 856     * @listener: The #MemoryListener.
 857     * @section: The #MemoryRegionSection.
 858     * @old: A bitmap of dirty memory logging clients that were active in
 859     * the previous transaction.
 860     * @new: A bitmap of dirty memory logging clients that are active in
 861     * the current transaction.
 862     */
 863    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 864                      int old, int new);
 865
 866    /**
 867     * @log_stop:
 868     *
 869     * Called during an address space update transaction, after
 870     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 871     * #MemoryListener.region_nop() and possibly after
 872     * #MemoryListener.log_start(), if dirty memory logging clients have
 873     * become inactive since the last transaction.
 874     *
 875     * @listener: The #MemoryListener.
 876     * @section: The #MemoryRegionSection.
 877     * @old: A bitmap of dirty memory logging clients that were active in
 878     * the previous transaction.
 879     * @new: A bitmap of dirty memory logging clients that are active in
 880     * the current transaction.
 881     */
 882    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 883                     int old, int new);
 884
 885    /**
 886     * @log_sync:
 887     *
 888     * Called by memory_region_snapshot_and_clear_dirty() and
 889     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 890     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 891     *
 892     * @listener: The #MemoryListener.
 893     * @section: The #MemoryRegionSection.
 894     */
 895    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 896
 897    /**
 898     * @log_sync_global:
 899     *
 900     * This is the global version of @log_sync when the listener does
 901     * not have a way to synchronize the log with finer granularity.
 902     * When the listener registers with @log_sync_global defined, then
 903     * its @log_sync must be NULL.  Vice versa.
 904     *
 905     * @listener: The #MemoryListener.
 906     */
 907    void (*log_sync_global)(MemoryListener *listener);
 908
 909    /**
 910     * @log_clear:
 911     *
 912     * Called before reading the dirty memory bitmap for a
 913     * #MemoryRegionSection.
 914     *
 915     * @listener: The #MemoryListener.
 916     * @section: The #MemoryRegionSection.
 917     */
 918    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 919
 920    /**
 921     * @log_global_start:
 922     *
 923     * Called by memory_global_dirty_log_start(), which
 924     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 925     * the address space.  #MemoryListener.log_global_start() is also
 926     * called when a #MemoryListener is added, if global dirty logging is
 927     * active at that time.
 928     *
 929     * @listener: The #MemoryListener.
 930     */
 931    void (*log_global_start)(MemoryListener *listener);
 932
 933    /**
 934     * @log_global_stop:
 935     *
 936     * Called by memory_global_dirty_log_stop(), which
 937     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 938     * the address space.
 939     *
 940     * @listener: The #MemoryListener.
 941     */
 942    void (*log_global_stop)(MemoryListener *listener);
 943
 944    /**
 945     * @log_global_after_sync:
 946     *
 947     * Called after reading the dirty memory bitmap
 948     * for any #MemoryRegionSection.
 949     *
 950     * @listener: The #MemoryListener.
 951     */
 952    void (*log_global_after_sync)(MemoryListener *listener);
 953
 954    /**
 955     * @eventfd_add:
 956     *
 957     * Called during an address space update transaction,
 958     * for a section of the address space that has had a new ioeventfd
 959     * registration since the last transaction.
 960     *
 961     * @listener: The #MemoryListener.
 962     * @section: The new #MemoryRegionSection.
 963     * @match_data: The @match_data parameter for the new ioeventfd.
 964     * @data: The @data parameter for the new ioeventfd.
 965     * @e: The #EventNotifier parameter for the new ioeventfd.
 966     */
 967    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 968                        bool match_data, uint64_t data, EventNotifier *e);
 969
 970    /**
 971     * @eventfd_del:
 972     *
 973     * Called during an address space update transaction,
 974     * for a section of the address space that has dropped an ioeventfd
 975     * registration since the last transaction.
 976     *
 977     * @listener: The #MemoryListener.
 978     * @section: The new #MemoryRegionSection.
 979     * @match_data: The @match_data parameter for the dropped ioeventfd.
 980     * @data: The @data parameter for the dropped ioeventfd.
 981     * @e: The #EventNotifier parameter for the dropped ioeventfd.
 982     */
 983    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 984                        bool match_data, uint64_t data, EventNotifier *e);
 985
 986    /**
 987     * @coalesced_io_add:
 988     *
 989     * Called during an address space update transaction,
 990     * for a section of the address space that has had a new coalesced
 991     * MMIO range registration since the last transaction.
 992     *
 993     * @listener: The #MemoryListener.
 994     * @section: The new #MemoryRegionSection.
 995     * @addr: The starting address for the coalesced MMIO range.
 996     * @len: The length of the coalesced MMIO range.
 997     */
 998    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 999                               hwaddr addr, hwaddr len);
1000
1001    /**
1002     * @coalesced_io_del:
1003     *
1004     * Called during an address space update transaction,
1005     * for a section of the address space that has dropped a coalesced
1006     * MMIO range since the last transaction.
1007     *
1008     * @listener: The #MemoryListener.
1009     * @section: The new #MemoryRegionSection.
1010     * @addr: The starting address for the coalesced MMIO range.
1011     * @len: The length of the coalesced MMIO range.
1012     */
1013    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1014                               hwaddr addr, hwaddr len);
1015    /**
1016     * @priority:
1017     *
1018     * Govern the order in which memory listeners are invoked. Lower priorities
1019     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1020     * or "stop" callbacks.
1021     */
1022    unsigned priority;
1023
1024    /**
1025     * @name:
1026     *
1027     * Name of the listener.  It can be used in contexts where we'd like to
1028     * identify one memory listener with the rest.
1029     */
1030    const char *name;
1031
1032    /* private: */
1033    AddressSpace *address_space;
1034    QTAILQ_ENTRY(MemoryListener) link;
1035    QTAILQ_ENTRY(MemoryListener) link_as;
1036};
1037
1038/**
1039 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1040 */
1041struct AddressSpace {
1042    /* private: */
1043    struct rcu_head rcu;
1044    char *name;
1045    MemoryRegion *root;
1046
1047    /* Accessed via RCU.  */
1048    struct FlatView *current_map;
1049
1050    int ioeventfd_nb;
1051    struct MemoryRegionIoeventfd *ioeventfds;
1052    QTAILQ_HEAD(, MemoryListener) listeners;
1053    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1054};
1055
1056typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1057typedef struct FlatRange FlatRange;
1058
1059/* Flattened global view of current active memory hierarchy.  Kept in sorted
1060 * order.
1061 */
1062struct FlatView {
1063    struct rcu_head rcu;
1064    unsigned ref;
1065    FlatRange *ranges;
1066    unsigned nr;
1067    unsigned nr_allocated;
1068    struct AddressSpaceDispatch *dispatch;
1069    MemoryRegion *root;
1070};
1071
1072static inline FlatView *address_space_to_flatview(AddressSpace *as)
1073{
1074    return qatomic_rcu_read(&as->current_map);
1075}
1076
1077/**
1078 * typedef flatview_cb: callback for flatview_for_each_range()
1079 *
1080 * @start: start address of the range within the FlatView
1081 * @len: length of the range in bytes
1082 * @mr: MemoryRegion covering this range
1083 * @offset_in_region: offset of the first byte of the range within @mr
1084 * @opaque: data pointer passed to flatview_for_each_range()
1085 *
1086 * Returns: true to stop the iteration, false to keep going.
1087 */
1088typedef bool (*flatview_cb)(Int128 start,
1089                            Int128 len,
1090                            const MemoryRegion *mr,
1091                            hwaddr offset_in_region,
1092                            void *opaque);
1093
1094/**
1095 * flatview_for_each_range: Iterate through a FlatView
1096 * @fv: the FlatView to iterate through
1097 * @cb: function to call for each range
1098 * @opaque: opaque data pointer to pass to @cb
1099 *
1100 * A FlatView is made up of a list of non-overlapping ranges, each of
1101 * which is a slice of a MemoryRegion. This function iterates through
1102 * each range in @fv, calling @cb. The callback function can terminate
1103 * iteration early by returning 'true'.
1104 */
1105void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1106
1107static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1108                                          MemoryRegionSection *b)
1109{
1110    return a->mr == b->mr &&
1111           a->fv == b->fv &&
1112           a->offset_within_region == b->offset_within_region &&
1113           a->offset_within_address_space == b->offset_within_address_space &&
1114           int128_eq(a->size, b->size) &&
1115           a->readonly == b->readonly &&
1116           a->nonvolatile == b->nonvolatile;
1117}
1118
1119/**
1120 * memory_region_section_new_copy: Copy a memory region section
1121 *
1122 * Allocate memory for a new copy, copy the memory region section, and
1123 * properly take a reference on all relevant members.
1124 *
1125 * @s: the #MemoryRegionSection to copy
1126 */
1127MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1128
1129/**
1130 * memory_region_section_new_copy: Free a copied memory region section
1131 *
1132 * Free a copy of a memory section created via memory_region_section_new_copy().
1133 * properly dropping references on all relevant members.
1134 *
1135 * @s: the #MemoryRegionSection to copy
1136 */
1137void memory_region_section_free_copy(MemoryRegionSection *s);
1138
1139/**
1140 * memory_region_init: Initialize a memory region
1141 *
1142 * The region typically acts as a container for other memory regions.  Use
1143 * memory_region_add_subregion() to add subregions.
1144 *
1145 * @mr: the #MemoryRegion to be initialized
1146 * @owner: the object that tracks the region's reference count
1147 * @name: used for debugging; not visible to the user or ABI
1148 * @size: size of the region; any subregions beyond this size will be clipped
1149 */
1150void memory_region_init(MemoryRegion *mr,
1151                        Object *owner,
1152                        const char *name,
1153                        uint64_t size);
1154
1155/**
1156 * memory_region_ref: Add 1 to a memory region's reference count
1157 *
1158 * Whenever memory regions are accessed outside the BQL, they need to be
1159 * preserved against hot-unplug.  MemoryRegions actually do not have their
1160 * own reference count; they piggyback on a QOM object, their "owner".
1161 * This function adds a reference to the owner.
1162 *
1163 * All MemoryRegions must have an owner if they can disappear, even if the
1164 * device they belong to operates exclusively under the BQL.  This is because
1165 * the region could be returned at any time by memory_region_find, and this
1166 * is usually under guest control.
1167 *
1168 * @mr: the #MemoryRegion
1169 */
1170void memory_region_ref(MemoryRegion *mr);
1171
1172/**
1173 * memory_region_unref: Remove 1 to a memory region's reference count
1174 *
1175 * Whenever memory regions are accessed outside the BQL, they need to be
1176 * preserved against hot-unplug.  MemoryRegions actually do not have their
1177 * own reference count; they piggyback on a QOM object, their "owner".
1178 * This function removes a reference to the owner and possibly destroys it.
1179 *
1180 * @mr: the #MemoryRegion
1181 */
1182void memory_region_unref(MemoryRegion *mr);
1183
1184/**
1185 * memory_region_init_io: Initialize an I/O memory region.
1186 *
1187 * Accesses into the region will cause the callbacks in @ops to be called.
1188 * if @size is nonzero, subregions will be clipped to @size.
1189 *
1190 * @mr: the #MemoryRegion to be initialized.
1191 * @owner: the object that tracks the region's reference count
1192 * @ops: a structure containing read and write callbacks to be used when
1193 *       I/O is performed on the region.
1194 * @opaque: passed to the read and write callbacks of the @ops structure.
1195 * @name: used for debugging; not visible to the user or ABI
1196 * @size: size of the region.
1197 */
1198void memory_region_init_io(MemoryRegion *mr,
1199                           Object *owner,
1200                           const MemoryRegionOps *ops,
1201                           void *opaque,
1202                           const char *name,
1203                           uint64_t size);
1204
1205/**
1206 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1207 *                                    into the region will modify memory
1208 *                                    directly.
1209 *
1210 * @mr: the #MemoryRegion to be initialized.
1211 * @owner: the object that tracks the region's reference count
1212 * @name: Region name, becomes part of RAMBlock name used in migration stream
1213 *        must be unique within any device
1214 * @size: size of the region.
1215 * @errp: pointer to Error*, to store an error if it happens.
1216 *
1217 * Note that this function does not do anything to cause the data in the
1218 * RAM memory region to be migrated; that is the responsibility of the caller.
1219 */
1220void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1221                                      Object *owner,
1222                                      const char *name,
1223                                      uint64_t size,
1224                                      Error **errp);
1225
1226/**
1227 * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1228 *                                          Accesses into the region will
1229 *                                          modify memory directly.
1230 *
1231 * @mr: the #MemoryRegion to be initialized.
1232 * @owner: the object that tracks the region's reference count
1233 * @name: Region name, becomes part of RAMBlock name used in migration stream
1234 *        must be unique within any device
1235 * @size: size of the region.
1236 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1237 * @errp: pointer to Error*, to store an error if it happens.
1238 *
1239 * Note that this function does not do anything to cause the data in the
1240 * RAM memory region to be migrated; that is the responsibility of the caller.
1241 */
1242void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1243                                            Object *owner,
1244                                            const char *name,
1245                                            uint64_t size,
1246                                            uint32_t ram_flags,
1247                                            Error **errp);
1248
1249/**
1250 * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1251 *                                     RAM.  Accesses into the region will
1252 *                                     modify memory directly.  Only an initial
1253 *                                     portion of this RAM is actually used.
1254 *                                     Changing the size while migrating
1255 *                                     can result in the migration being
1256 *                                     canceled.
1257 *
1258 * @mr: the #MemoryRegion to be initialized.
1259 * @owner: the object that tracks the region's reference count
1260 * @name: Region name, becomes part of RAMBlock name used in migration stream
1261 *        must be unique within any device
1262 * @size: used size of the region.
1263 * @max_size: max size of the region.
1264 * @resized: callback to notify owner about used size change.
1265 * @errp: pointer to Error*, to store an error if it happens.
1266 *
1267 * Note that this function does not do anything to cause the data in the
1268 * RAM memory region to be migrated; that is the responsibility of the caller.
1269 */
1270void memory_region_init_resizeable_ram(MemoryRegion *mr,
1271                                       Object *owner,
1272                                       const char *name,
1273                                       uint64_t size,
1274                                       uint64_t max_size,
1275                                       void (*resized)(const char*,
1276                                                       uint64_t length,
1277                                                       void *host),
1278                                       Error **errp);
1279#ifdef CONFIG_POSIX
1280
1281/**
1282 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1283 *                                    mmap-ed backend.
1284 *
1285 * @mr: the #MemoryRegion to be initialized.
1286 * @owner: the object that tracks the region's reference count
1287 * @name: Region name, becomes part of RAMBlock name used in migration stream
1288 *        must be unique within any device
1289 * @size: size of the region.
1290 * @align: alignment of the region base address; if 0, the default alignment
1291 *         (getpagesize()) will be used.
1292 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1293 *             RAM_NORESERVE,
1294 * @path: the path in which to allocate the RAM.
1295 * @readonly: true to open @path for reading, false for read/write.
1296 * @errp: pointer to Error*, to store an error if it happens.
1297 *
1298 * Note that this function does not do anything to cause the data in the
1299 * RAM memory region to be migrated; that is the responsibility of the caller.
1300 */
1301void memory_region_init_ram_from_file(MemoryRegion *mr,
1302                                      Object *owner,
1303                                      const char *name,
1304                                      uint64_t size,
1305                                      uint64_t align,
1306                                      uint32_t ram_flags,
1307                                      const char *path,
1308                                      bool readonly,
1309                                      Error **errp);
1310
1311/**
1312 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1313 *                                  mmap-ed backend.
1314 *
1315 * @mr: the #MemoryRegion to be initialized.
1316 * @owner: the object that tracks the region's reference count
1317 * @name: the name of the region.
1318 * @size: size of the region.
1319 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1320 *             RAM_NORESERVE, RAM_PROTECTED.
1321 * @fd: the fd to mmap.
1322 * @offset: offset within the file referenced by fd
1323 * @errp: pointer to Error*, to store an error if it happens.
1324 *
1325 * Note that this function does not do anything to cause the data in the
1326 * RAM memory region to be migrated; that is the responsibility of the caller.
1327 */
1328void memory_region_init_ram_from_fd(MemoryRegion *mr,
1329                                    Object *owner,
1330                                    const char *name,
1331                                    uint64_t size,
1332                                    uint32_t ram_flags,
1333                                    int fd,
1334                                    ram_addr_t offset,
1335                                    Error **errp);
1336#endif
1337
1338/**
1339 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1340 *                              user-provided pointer.  Accesses into the
1341 *                              region will modify memory directly.
1342 *
1343 * @mr: the #MemoryRegion to be initialized.
1344 * @owner: the object that tracks the region's reference count
1345 * @name: Region name, becomes part of RAMBlock name used in migration stream
1346 *        must be unique within any device
1347 * @size: size of the region.
1348 * @ptr: memory to be mapped; must contain at least @size bytes.
1349 *
1350 * Note that this function does not do anything to cause the data in the
1351 * RAM memory region to be migrated; that is the responsibility of the caller.
1352 */
1353void memory_region_init_ram_ptr(MemoryRegion *mr,
1354                                Object *owner,
1355                                const char *name,
1356                                uint64_t size,
1357                                void *ptr);
1358
1359/**
1360 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1361 *                                     a user-provided pointer.
1362 *
1363 * A RAM device represents a mapping to a physical device, such as to a PCI
1364 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1365 * into the VM address space and access to the region will modify memory
1366 * directly.  However, the memory region should not be included in a memory
1367 * dump (device may not be enabled/mapped at the time of the dump), and
1368 * operations incompatible with manipulating MMIO should be avoided.  Replaces
1369 * skip_dump flag.
1370 *
1371 * @mr: the #MemoryRegion to be initialized.
1372 * @owner: the object that tracks the region's reference count
1373 * @name: the name of the region.
1374 * @size: size of the region.
1375 * @ptr: memory to be mapped; must contain at least @size bytes.
1376 *
1377 * Note that this function does not do anything to cause the data in the
1378 * RAM memory region to be migrated; that is the responsibility of the caller.
1379 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1380 */
1381void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1382                                       Object *owner,
1383                                       const char *name,
1384                                       uint64_t size,
1385                                       void *ptr);
1386
1387/**
1388 * memory_region_init_alias: Initialize a memory region that aliases all or a
1389 *                           part of another memory region.
1390 *
1391 * @mr: the #MemoryRegion to be initialized.
1392 * @owner: the object that tracks the region's reference count
1393 * @name: used for debugging; not visible to the user or ABI
1394 * @orig: the region to be referenced; @mr will be equivalent to
1395 *        @orig between @offset and @offset + @size - 1.
1396 * @offset: start of the section in @orig to be referenced.
1397 * @size: size of the region.
1398 */
1399void memory_region_init_alias(MemoryRegion *mr,
1400                              Object *owner,
1401                              const char *name,
1402                              MemoryRegion *orig,
1403                              hwaddr offset,
1404                              uint64_t size);
1405
1406/**
1407 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1408 *
1409 * This has the same effect as calling memory_region_init_ram_nomigrate()
1410 * and then marking the resulting region read-only with
1411 * memory_region_set_readonly().
1412 *
1413 * Note that this function does not do anything to cause the data in the
1414 * RAM side of the memory region to be migrated; that is the responsibility
1415 * of the caller.
1416 *
1417 * @mr: the #MemoryRegion to be initialized.
1418 * @owner: the object that tracks the region's reference count
1419 * @name: Region name, becomes part of RAMBlock name used in migration stream
1420 *        must be unique within any device
1421 * @size: size of the region.
1422 * @errp: pointer to Error*, to store an error if it happens.
1423 */
1424void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1425                                      Object *owner,
1426                                      const char *name,
1427                                      uint64_t size,
1428                                      Error **errp);
1429
1430/**
1431 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1432 *                                 Writes are handled via callbacks.
1433 *
1434 * Note that this function does not do anything to cause the data in the
1435 * RAM side of the memory region to be migrated; that is the responsibility
1436 * of the caller.
1437 *
1438 * @mr: the #MemoryRegion to be initialized.
1439 * @owner: the object that tracks the region's reference count
1440 * @ops: callbacks for write access handling (must not be NULL).
1441 * @opaque: passed to the read and write callbacks of the @ops structure.
1442 * @name: Region name, becomes part of RAMBlock name used in migration stream
1443 *        must be unique within any device
1444 * @size: size of the region.
1445 * @errp: pointer to Error*, to store an error if it happens.
1446 */
1447void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1448                                             Object *owner,
1449                                             const MemoryRegionOps *ops,
1450                                             void *opaque,
1451                                             const char *name,
1452                                             uint64_t size,
1453                                             Error **errp);
1454
1455/**
1456 * memory_region_init_iommu: Initialize a memory region of a custom type
1457 * that translates addresses
1458 *
1459 * An IOMMU region translates addresses and forwards accesses to a target
1460 * memory region.
1461 *
1462 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1463 * @_iommu_mr should be a pointer to enough memory for an instance of
1464 * that subclass, @instance_size is the size of that subclass, and
1465 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1466 * instance of the subclass, and its methods will then be called to handle
1467 * accesses to the memory region. See the documentation of
1468 * #IOMMUMemoryRegionClass for further details.
1469 *
1470 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1471 * @instance_size: the IOMMUMemoryRegion subclass instance size
1472 * @mrtypename: the type name of the #IOMMUMemoryRegion
1473 * @owner: the object that tracks the region's reference count
1474 * @name: used for debugging; not visible to the user or ABI
1475 * @size: size of the region.
1476 */
1477void memory_region_init_iommu(void *_iommu_mr,
1478                              size_t instance_size,
1479                              const char *mrtypename,
1480                              Object *owner,
1481                              const char *name,
1482                              uint64_t size);
1483
1484/**
1485 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1486 *                          region will modify memory directly.
1487 *
1488 * @mr: the #MemoryRegion to be initialized
1489 * @owner: the object that tracks the region's reference count (must be
1490 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1491 * @name: name of the memory region
1492 * @size: size of the region in bytes
1493 * @errp: pointer to Error*, to store an error if it happens.
1494 *
1495 * This function allocates RAM for a board model or device, and
1496 * arranges for it to be migrated (by calling vmstate_register_ram()
1497 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1498 * @owner is NULL).
1499 *
1500 * TODO: Currently we restrict @owner to being either NULL (for
1501 * global RAM regions with no owner) or devices, so that we can
1502 * give the RAM block a unique name for migration purposes.
1503 * We should lift this restriction and allow arbitrary Objects.
1504 * If you pass a non-NULL non-device @owner then we will assert.
1505 */
1506void memory_region_init_ram(MemoryRegion *mr,
1507                            Object *owner,
1508                            const char *name,
1509                            uint64_t size,
1510                            Error **errp);
1511
1512/**
1513 * memory_region_init_rom: Initialize a ROM memory region.
1514 *
1515 * This has the same effect as calling memory_region_init_ram()
1516 * and then marking the resulting region read-only with
1517 * memory_region_set_readonly(). This includes arranging for the
1518 * contents to be migrated.
1519 *
1520 * TODO: Currently we restrict @owner to being either NULL (for
1521 * global RAM regions with no owner) or devices, so that we can
1522 * give the RAM block a unique name for migration purposes.
1523 * We should lift this restriction and allow arbitrary Objects.
1524 * If you pass a non-NULL non-device @owner then we will assert.
1525 *
1526 * @mr: the #MemoryRegion to be initialized.
1527 * @owner: the object that tracks the region's reference count
1528 * @name: Region name, becomes part of RAMBlock name used in migration stream
1529 *        must be unique within any device
1530 * @size: size of the region.
1531 * @errp: pointer to Error*, to store an error if it happens.
1532 */
1533void memory_region_init_rom(MemoryRegion *mr,
1534                            Object *owner,
1535                            const char *name,
1536                            uint64_t size,
1537                            Error **errp);
1538
1539/**
1540 * memory_region_init_rom_device:  Initialize a ROM memory region.
1541 *                                 Writes are handled via callbacks.
1542 *
1543 * This function initializes a memory region backed by RAM for reads
1544 * and callbacks for writes, and arranges for the RAM backing to
1545 * be migrated (by calling vmstate_register_ram()
1546 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1547 * @owner is NULL).
1548 *
1549 * TODO: Currently we restrict @owner to being either NULL (for
1550 * global RAM regions with no owner) or devices, so that we can
1551 * give the RAM block a unique name for migration purposes.
1552 * We should lift this restriction and allow arbitrary Objects.
1553 * If you pass a non-NULL non-device @owner then we will assert.
1554 *
1555 * @mr: the #MemoryRegion to be initialized.
1556 * @owner: the object that tracks the region's reference count
1557 * @ops: callbacks for write access handling (must not be NULL).
1558 * @opaque: passed to the read and write callbacks of the @ops structure.
1559 * @name: Region name, becomes part of RAMBlock name used in migration stream
1560 *        must be unique within any device
1561 * @size: size of the region.
1562 * @errp: pointer to Error*, to store an error if it happens.
1563 */
1564void memory_region_init_rom_device(MemoryRegion *mr,
1565                                   Object *owner,
1566                                   const MemoryRegionOps *ops,
1567                                   void *opaque,
1568                                   const char *name,
1569                                   uint64_t size,
1570                                   Error **errp);
1571
1572
1573/**
1574 * memory_region_owner: get a memory region's owner.
1575 *
1576 * @mr: the memory region being queried.
1577 */
1578Object *memory_region_owner(MemoryRegion *mr);
1579
1580/**
1581 * memory_region_size: get a memory region's size.
1582 *
1583 * @mr: the memory region being queried.
1584 */
1585uint64_t memory_region_size(MemoryRegion *mr);
1586
1587/**
1588 * memory_region_is_ram: check whether a memory region is random access
1589 *
1590 * Returns %true if a memory region is random access.
1591 *
1592 * @mr: the memory region being queried
1593 */
1594static inline bool memory_region_is_ram(MemoryRegion *mr)
1595{
1596    return mr->ram;
1597}
1598
1599/**
1600 * memory_region_is_ram_device: check whether a memory region is a ram device
1601 *
1602 * Returns %true if a memory region is a device backed ram region
1603 *
1604 * @mr: the memory region being queried
1605 */
1606bool memory_region_is_ram_device(MemoryRegion *mr);
1607
1608/**
1609 * memory_region_is_romd: check whether a memory region is in ROMD mode
1610 *
1611 * Returns %true if a memory region is a ROM device and currently set to allow
1612 * direct reads.
1613 *
1614 * @mr: the memory region being queried
1615 */
1616static inline bool memory_region_is_romd(MemoryRegion *mr)
1617{
1618    return mr->rom_device && mr->romd_mode;
1619}
1620
1621/**
1622 * memory_region_is_protected: check whether a memory region is protected
1623 *
1624 * Returns %true if a memory region is protected RAM and cannot be accessed
1625 * via standard mechanisms, e.g. DMA.
1626 *
1627 * @mr: the memory region being queried
1628 */
1629bool memory_region_is_protected(MemoryRegion *mr);
1630
1631/**
1632 * memory_region_get_iommu: check whether a memory region is an iommu
1633 *
1634 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1635 * otherwise NULL.
1636 *
1637 * @mr: the memory region being queried
1638 */
1639static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1640{
1641    if (mr->alias) {
1642        return memory_region_get_iommu(mr->alias);
1643    }
1644    if (mr->is_iommu) {
1645        return (IOMMUMemoryRegion *) mr;
1646    }
1647    return NULL;
1648}
1649
1650/**
1651 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1652 *   if an iommu or NULL if not
1653 *
1654 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1655 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1656 *
1657 * @iommu_mr: the memory region being queried
1658 */
1659static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1660        IOMMUMemoryRegion *iommu_mr)
1661{
1662    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1663}
1664
1665#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1666
1667/**
1668 * memory_region_iommu_get_min_page_size: get minimum supported page size
1669 * for an iommu
1670 *
1671 * Returns minimum supported page size for an iommu.
1672 *
1673 * @iommu_mr: the memory region being queried
1674 */
1675uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1676
1677/**
1678 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1679 *
1680 * Note: for any IOMMU implementation, an in-place mapping change
1681 * should be notified with an UNMAP followed by a MAP.
1682 *
1683 * @iommu_mr: the memory region that was changed
1684 * @iommu_idx: the IOMMU index for the translation table which has changed
1685 * @event: TLB event with the new entry in the IOMMU translation table.
1686 *         The entry replaces all old entries for the same virtual I/O address
1687 *         range.
1688 */
1689void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1690                                int iommu_idx,
1691                                IOMMUTLBEvent event);
1692
1693/**
1694 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1695 *                           entry to a single notifier
1696 *
1697 * This works just like memory_region_notify_iommu(), but it only
1698 * notifies a specific notifier, not all of them.
1699 *
1700 * @notifier: the notifier to be notified
1701 * @event: TLB event with the new entry in the IOMMU translation table.
1702 *         The entry replaces all old entries for the same virtual I/O address
1703 *         range.
1704 */
1705void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1706                                    IOMMUTLBEvent *event);
1707
1708/**
1709 * memory_region_register_iommu_notifier: register a notifier for changes to
1710 * IOMMU translation entries.
1711 *
1712 * Returns 0 on success, or a negative errno otherwise. In particular,
1713 * -EINVAL indicates that at least one of the attributes of the notifier
1714 * is not supported (flag/range) by the IOMMU memory region. In case of error
1715 * the error object must be created.
1716 *
1717 * @mr: the memory region to observe
1718 * @n: the IOMMUNotifier to be added; the notify callback receives a
1719 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1720 *     ceases to be valid on exit from the notifier.
1721 * @errp: pointer to Error*, to store an error if it happens.
1722 */
1723int memory_region_register_iommu_notifier(MemoryRegion *mr,
1724                                          IOMMUNotifier *n, Error **errp);
1725
1726/**
1727 * memory_region_iommu_replay: replay existing IOMMU translations to
1728 * a notifier with the minimum page granularity returned by
1729 * mr->iommu_ops->get_page_size().
1730 *
1731 * Note: this is not related to record-and-replay functionality.
1732 *
1733 * @iommu_mr: the memory region to observe
1734 * @n: the notifier to which to replay iommu mappings
1735 */
1736void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1737
1738/**
1739 * memory_region_unregister_iommu_notifier: unregister a notifier for
1740 * changes to IOMMU translation entries.
1741 *
1742 * @mr: the memory region which was observed and for which notity_stopped()
1743 *      needs to be called
1744 * @n: the notifier to be removed.
1745 */
1746void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1747                                             IOMMUNotifier *n);
1748
1749/**
1750 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1751 * defined on the IOMMU.
1752 *
1753 * Returns 0 on success, or a negative errno otherwise. In particular,
1754 * -EINVAL indicates that the IOMMU does not support the requested
1755 * attribute.
1756 *
1757 * @iommu_mr: the memory region
1758 * @attr: the requested attribute
1759 * @data: a pointer to the requested attribute data
1760 */
1761int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1762                                 enum IOMMUMemoryRegionAttr attr,
1763                                 void *data);
1764
1765/**
1766 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1767 * use for translations with the given memory transaction attributes.
1768 *
1769 * @iommu_mr: the memory region
1770 * @attrs: the memory transaction attributes
1771 */
1772int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1773                                       MemTxAttrs attrs);
1774
1775/**
1776 * memory_region_iommu_num_indexes: return the total number of IOMMU
1777 * indexes that this IOMMU supports.
1778 *
1779 * @iommu_mr: the memory region
1780 */
1781int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1782
1783/**
1784 * memory_region_iommu_set_page_size_mask: set the supported page
1785 * sizes for a given IOMMU memory region
1786 *
1787 * @iommu_mr: IOMMU memory region
1788 * @page_size_mask: supported page size mask
1789 * @errp: pointer to Error*, to store an error if it happens.
1790 */
1791int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1792                                           uint64_t page_size_mask,
1793                                           Error **errp);
1794
1795/**
1796 * memory_region_name: get a memory region's name
1797 *
1798 * Returns the string that was used to initialize the memory region.
1799 *
1800 * @mr: the memory region being queried
1801 */
1802const char *memory_region_name(const MemoryRegion *mr);
1803
1804/**
1805 * memory_region_is_logging: return whether a memory region is logging writes
1806 *
1807 * Returns %true if the memory region is logging writes for the given client
1808 *
1809 * @mr: the memory region being queried
1810 * @client: the client being queried
1811 */
1812bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1813
1814/**
1815 * memory_region_get_dirty_log_mask: return the clients for which a
1816 * memory region is logging writes.
1817 *
1818 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1819 * are the bit indices.
1820 *
1821 * @mr: the memory region being queried
1822 */
1823uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1824
1825/**
1826 * memory_region_is_rom: check whether a memory region is ROM
1827 *
1828 * Returns %true if a memory region is read-only memory.
1829 *
1830 * @mr: the memory region being queried
1831 */
1832static inline bool memory_region_is_rom(MemoryRegion *mr)
1833{
1834    return mr->ram && mr->readonly;
1835}
1836
1837/**
1838 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1839 *
1840 * Returns %true is a memory region is non-volatile memory.
1841 *
1842 * @mr: the memory region being queried
1843 */
1844static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1845{
1846    return mr->nonvolatile;
1847}
1848
1849/**
1850 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1851 *
1852 * Returns a file descriptor backing a file-based RAM memory region,
1853 * or -1 if the region is not a file-based RAM memory region.
1854 *
1855 * @mr: the RAM or alias memory region being queried.
1856 */
1857int memory_region_get_fd(MemoryRegion *mr);
1858
1859/**
1860 * memory_region_from_host: Convert a pointer into a RAM memory region
1861 * and an offset within it.
1862 *
1863 * Given a host pointer inside a RAM memory region (created with
1864 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1865 * the MemoryRegion and the offset within it.
1866 *
1867 * Use with care; by the time this function returns, the returned pointer is
1868 * not protected by RCU anymore.  If the caller is not within an RCU critical
1869 * section and does not hold the iothread lock, it must have other means of
1870 * protecting the pointer, such as a reference to the region that includes
1871 * the incoming ram_addr_t.
1872 *
1873 * @ptr: the host pointer to be converted
1874 * @offset: the offset within memory region
1875 */
1876MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1877
1878/**
1879 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1880 *
1881 * Returns a host pointer to a RAM memory region (created with
1882 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1883 *
1884 * Use with care; by the time this function returns, the returned pointer is
1885 * not protected by RCU anymore.  If the caller is not within an RCU critical
1886 * section and does not hold the iothread lock, it must have other means of
1887 * protecting the pointer, such as a reference to the region that includes
1888 * the incoming ram_addr_t.
1889 *
1890 * @mr: the memory region being queried.
1891 */
1892void *memory_region_get_ram_ptr(MemoryRegion *mr);
1893
1894/* memory_region_ram_resize: Resize a RAM region.
1895 *
1896 * Resizing RAM while migrating can result in the migration being canceled.
1897 * Care has to be taken if the guest might have already detected the memory.
1898 *
1899 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1900 * @newsize: the new size the region
1901 * @errp: pointer to Error*, to store an error if it happens.
1902 */
1903void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1904                              Error **errp);
1905
1906/**
1907 * memory_region_msync: Synchronize selected address range of
1908 * a memory mapped region
1909 *
1910 * @mr: the memory region to be msync
1911 * @addr: the initial address of the range to be sync
1912 * @size: the size of the range to be sync
1913 */
1914void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1915
1916/**
1917 * memory_region_writeback: Trigger cache writeback for
1918 * selected address range
1919 *
1920 * @mr: the memory region to be updated
1921 * @addr: the initial address of the range to be written back
1922 * @size: the size of the range to be written back
1923 */
1924void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1925
1926/**
1927 * memory_region_set_log: Turn dirty logging on or off for a region.
1928 *
1929 * Turns dirty logging on or off for a specified client (display, migration).
1930 * Only meaningful for RAM regions.
1931 *
1932 * @mr: the memory region being updated.
1933 * @log: whether dirty logging is to be enabled or disabled.
1934 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1935 */
1936void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1937
1938/**
1939 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1940 *
1941 * Marks a range of bytes as dirty, after it has been dirtied outside
1942 * guest code.
1943 *
1944 * @mr: the memory region being dirtied.
1945 * @addr: the address (relative to the start of the region) being dirtied.
1946 * @size: size of the range being dirtied.
1947 */
1948void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1949                             hwaddr size);
1950
1951/**
1952 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1953 *
1954 * This function is called when the caller wants to clear the remote
1955 * dirty bitmap of a memory range within the memory region.  This can
1956 * be used by e.g. KVM to manually clear dirty log when
1957 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1958 * kernel.
1959 *
1960 * @mr:     the memory region to clear the dirty log upon
1961 * @start:  start address offset within the memory region
1962 * @len:    length of the memory region to clear dirty bitmap
1963 */
1964void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1965                                      hwaddr len);
1966
1967/**
1968 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1969 *                                         bitmap and clear it.
1970 *
1971 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1972 * returns the snapshot.  The snapshot can then be used to query dirty
1973 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1974 * querying the same page multiple times, which is especially useful for
1975 * display updates where the scanlines often are not page aligned.
1976 *
1977 * The dirty bitmap region which gets copied into the snapshot (and
1978 * cleared afterwards) can be larger than requested.  The boundaries
1979 * are rounded up/down so complete bitmap longs (covering 64 pages on
1980 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1981 * isn't a problem for display updates as the extra pages are outside
1982 * the visible area, and in case the visible area changes a full
1983 * display redraw is due anyway.  Should other use cases for this
1984 * function emerge we might have to revisit this implementation
1985 * detail.
1986 *
1987 * Use g_free to release DirtyBitmapSnapshot.
1988 *
1989 * @mr: the memory region being queried.
1990 * @addr: the address (relative to the start of the region) being queried.
1991 * @size: the size of the range being queried.
1992 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1993 */
1994DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1995                                                            hwaddr addr,
1996                                                            hwaddr size,
1997                                                            unsigned client);
1998
1999/**
2000 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2001 *                                   in the specified dirty bitmap snapshot.
2002 *
2003 * @mr: the memory region being queried.
2004 * @snap: the dirty bitmap snapshot
2005 * @addr: the address (relative to the start of the region) being queried.
2006 * @size: the size of the range being queried.
2007 */
2008bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2009                                      DirtyBitmapSnapshot *snap,
2010                                      hwaddr addr, hwaddr size);
2011
2012/**
2013 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2014 *                            client.
2015 *
2016 * Marks a range of pages as no longer dirty.
2017 *
2018 * @mr: the region being updated.
2019 * @addr: the start of the subrange being cleaned.
2020 * @size: the size of the subrange being cleaned.
2021 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2022 *          %DIRTY_MEMORY_VGA.
2023 */
2024void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2025                               hwaddr size, unsigned client);
2026
2027/**
2028 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2029 *                                 TBs (for self-modifying code).
2030 *
2031 * The MemoryRegionOps->write() callback of a ROM device must use this function
2032 * to mark byte ranges that have been modified internally, such as by directly
2033 * accessing the memory returned by memory_region_get_ram_ptr().
2034 *
2035 * This function marks the range dirty and invalidates TBs so that TCG can
2036 * detect self-modifying code.
2037 *
2038 * @mr: the region being flushed.
2039 * @addr: the start, relative to the start of the region, of the range being
2040 *        flushed.
2041 * @size: the size, in bytes, of the range being flushed.
2042 */
2043void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2044
2045/**
2046 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2047 *
2048 * Allows a memory region to be marked as read-only (turning it into a ROM).
2049 * only useful on RAM regions.
2050 *
2051 * @mr: the region being updated.
2052 * @readonly: whether rhe region is to be ROM or RAM.
2053 */
2054void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2055
2056/**
2057 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2058 *
2059 * Allows a memory region to be marked as non-volatile.
2060 * only useful on RAM regions.
2061 *
2062 * @mr: the region being updated.
2063 * @nonvolatile: whether rhe region is to be non-volatile.
2064 */
2065void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2066
2067/**
2068 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2069 *
2070 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2071 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2072 * device is mapped to guest memory and satisfies read access directly.
2073 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2074 * Writes are always handled by the #MemoryRegion.write function.
2075 *
2076 * @mr: the memory region to be updated
2077 * @romd_mode: %true to put the region into ROMD mode
2078 */
2079void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2080
2081/**
2082 * memory_region_set_coalescing: Enable memory coalescing for the region.
2083 *
2084 * Enabled writes to a region to be queued for later processing. MMIO ->write
2085 * callbacks may be delayed until a non-coalesced MMIO is issued.
2086 * Only useful for IO regions.  Roughly similar to write-combining hardware.
2087 *
2088 * @mr: the memory region to be write coalesced
2089 */
2090void memory_region_set_coalescing(MemoryRegion *mr);
2091
2092/**
2093 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2094 *                               a region.
2095 *
2096 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2097 * Multiple calls can be issued coalesced disjoint ranges.
2098 *
2099 * @mr: the memory region to be updated.
2100 * @offset: the start of the range within the region to be coalesced.
2101 * @size: the size of the subrange to be coalesced.
2102 */
2103void memory_region_add_coalescing(MemoryRegion *mr,
2104                                  hwaddr offset,
2105                                  uint64_t size);
2106
2107/**
2108 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2109 *
2110 * Disables any coalescing caused by memory_region_set_coalescing() or
2111 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2112 * hardware.
2113 *
2114 * @mr: the memory region to be updated.
2115 */
2116void memory_region_clear_coalescing(MemoryRegion *mr);
2117
2118/**
2119 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2120 *                                    accesses.
2121 *
2122 * Ensure that pending coalesced MMIO request are flushed before the memory
2123 * region is accessed. This property is automatically enabled for all regions
2124 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2125 *
2126 * @mr: the memory region to be updated.
2127 */
2128void memory_region_set_flush_coalesced(MemoryRegion *mr);
2129
2130/**
2131 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2132 *                                      accesses.
2133 *
2134 * Clear the automatic coalesced MMIO flushing enabled via
2135 * memory_region_set_flush_coalesced. Note that this service has no effect on
2136 * memory regions that have MMIO coalescing enabled for themselves. For them,
2137 * automatic flushing will stop once coalescing is disabled.
2138 *
2139 * @mr: the memory region to be updated.
2140 */
2141void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2142
2143/**
2144 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2145 *                            is written to a location.
2146 *
2147 * Marks a word in an IO region (initialized with memory_region_init_io())
2148 * as a trigger for an eventfd event.  The I/O callback will not be called.
2149 * The caller must be prepared to handle failure (that is, take the required
2150 * action if the callback _is_ called).
2151 *
2152 * @mr: the memory region being updated.
2153 * @addr: the address within @mr that is to be monitored
2154 * @size: the size of the access to trigger the eventfd
2155 * @match_data: whether to match against @data, instead of just @addr
2156 * @data: the data to match against the guest write
2157 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2158 **/
2159void memory_region_add_eventfd(MemoryRegion *mr,
2160                               hwaddr addr,
2161                               unsigned size,
2162                               bool match_data,
2163                               uint64_t data,
2164                               EventNotifier *e);
2165
2166/**
2167 * memory_region_del_eventfd: Cancel an eventfd.
2168 *
2169 * Cancels an eventfd trigger requested by a previous
2170 * memory_region_add_eventfd() call.
2171 *
2172 * @mr: the memory region being updated.
2173 * @addr: the address within @mr that is to be monitored
2174 * @size: the size of the access to trigger the eventfd
2175 * @match_data: whether to match against @data, instead of just @addr
2176 * @data: the data to match against the guest write
2177 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2178 */
2179void memory_region_del_eventfd(MemoryRegion *mr,
2180                               hwaddr addr,
2181                               unsigned size,
2182                               bool match_data,
2183                               uint64_t data,
2184                               EventNotifier *e);
2185
2186/**
2187 * memory_region_add_subregion: Add a subregion to a container.
2188 *
2189 * Adds a subregion at @offset.  The subregion may not overlap with other
2190 * subregions (except for those explicitly marked as overlapping).  A region
2191 * may only be added once as a subregion (unless removed with
2192 * memory_region_del_subregion()); use memory_region_init_alias() if you
2193 * want a region to be a subregion in multiple locations.
2194 *
2195 * @mr: the region to contain the new subregion; must be a container
2196 *      initialized with memory_region_init().
2197 * @offset: the offset relative to @mr where @subregion is added.
2198 * @subregion: the subregion to be added.
2199 */
2200void memory_region_add_subregion(MemoryRegion *mr,
2201                                 hwaddr offset,
2202                                 MemoryRegion *subregion);
2203/**
2204 * memory_region_add_subregion_overlap: Add a subregion to a container
2205 *                                      with overlap.
2206 *
2207 * Adds a subregion at @offset.  The subregion may overlap with other
2208 * subregions.  Conflicts are resolved by having a higher @priority hide a
2209 * lower @priority. Subregions without priority are taken as @priority 0.
2210 * A region may only be added once as a subregion (unless removed with
2211 * memory_region_del_subregion()); use memory_region_init_alias() if you
2212 * want a region to be a subregion in multiple locations.
2213 *
2214 * @mr: the region to contain the new subregion; must be a container
2215 *      initialized with memory_region_init().
2216 * @offset: the offset relative to @mr where @subregion is added.
2217 * @subregion: the subregion to be added.
2218 * @priority: used for resolving overlaps; highest priority wins.
2219 */
2220void memory_region_add_subregion_overlap(MemoryRegion *mr,
2221                                         hwaddr offset,
2222                                         MemoryRegion *subregion,
2223                                         int priority);
2224
2225/**
2226 * memory_region_get_ram_addr: Get the ram address associated with a memory
2227 *                             region
2228 *
2229 * @mr: the region to be queried
2230 */
2231ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2232
2233uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2234/**
2235 * memory_region_del_subregion: Remove a subregion.
2236 *
2237 * Removes a subregion from its container.
2238 *
2239 * @mr: the container to be updated.
2240 * @subregion: the region being removed; must be a current subregion of @mr.
2241 */
2242void memory_region_del_subregion(MemoryRegion *mr,
2243                                 MemoryRegion *subregion);
2244
2245/*
2246 * memory_region_set_enabled: dynamically enable or disable a region
2247 *
2248 * Enables or disables a memory region.  A disabled memory region
2249 * ignores all accesses to itself and its subregions.  It does not
2250 * obscure sibling subregions with lower priority - it simply behaves as
2251 * if it was removed from the hierarchy.
2252 *
2253 * Regions default to being enabled.
2254 *
2255 * @mr: the region to be updated
2256 * @enabled: whether to enable or disable the region
2257 */
2258void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2259
2260/*
2261 * memory_region_set_address: dynamically update the address of a region
2262 *
2263 * Dynamically updates the address of a region, relative to its container.
2264 * May be used on regions are currently part of a memory hierarchy.
2265 *
2266 * @mr: the region to be updated
2267 * @addr: new address, relative to container region
2268 */
2269void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2270
2271/*
2272 * memory_region_set_size: dynamically update the size of a region.
2273 *
2274 * Dynamically updates the size of a region.
2275 *
2276 * @mr: the region to be updated
2277 * @size: used size of the region.
2278 */
2279void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2280
2281/*
2282 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2283 *
2284 * Dynamically updates the offset into the target region that an alias points
2285 * to, as if the fourth argument to memory_region_init_alias() has changed.
2286 *
2287 * @mr: the #MemoryRegion to be updated; should be an alias.
2288 * @offset: the new offset into the target memory region
2289 */
2290void memory_region_set_alias_offset(MemoryRegion *mr,
2291                                    hwaddr offset);
2292
2293/**
2294 * memory_region_present: checks if an address relative to a @container
2295 * translates into #MemoryRegion within @container
2296 *
2297 * Answer whether a #MemoryRegion within @container covers the address
2298 * @addr.
2299 *
2300 * @container: a #MemoryRegion within which @addr is a relative address
2301 * @addr: the area within @container to be searched
2302 */
2303bool memory_region_present(MemoryRegion *container, hwaddr addr);
2304
2305/**
2306 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2307 * into another memory region, which does not necessarily imply that it is
2308 * mapped into an address space.
2309 *
2310 * @mr: a #MemoryRegion which should be checked if it's mapped
2311 */
2312bool memory_region_is_mapped(MemoryRegion *mr);
2313
2314/**
2315 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2316 * #MemoryRegion
2317 *
2318 * The #RamDiscardManager cannot change while a memory region is mapped.
2319 *
2320 * @mr: the #MemoryRegion
2321 */
2322RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2323
2324/**
2325 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2326 * #RamDiscardManager assigned
2327 *
2328 * @mr: the #MemoryRegion
2329 */
2330static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2331{
2332    return !!memory_region_get_ram_discard_manager(mr);
2333}
2334
2335/**
2336 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2337 * #MemoryRegion
2338 *
2339 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2340 * that does not cover RAM, or a #MemoryRegion that already has a
2341 * #RamDiscardManager assigned.
2342 *
2343 * @mr: the #MemoryRegion
2344 * @rdm: #RamDiscardManager to set
2345 */
2346void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2347                                           RamDiscardManager *rdm);
2348
2349/**
2350 * memory_region_find: translate an address/size relative to a
2351 * MemoryRegion into a #MemoryRegionSection.
2352 *
2353 * Locates the first #MemoryRegion within @mr that overlaps the range
2354 * given by @addr and @size.
2355 *
2356 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2357 * It will have the following characteristics:
2358 * - @size = 0 iff no overlap was found
2359 * - @mr is non-%NULL iff an overlap was found
2360 *
2361 * Remember that in the return value the @offset_within_region is
2362 * relative to the returned region (in the .@mr field), not to the
2363 * @mr argument.
2364 *
2365 * Similarly, the .@offset_within_address_space is relative to the
2366 * address space that contains both regions, the passed and the
2367 * returned one.  However, in the special case where the @mr argument
2368 * has no container (and thus is the root of the address space), the
2369 * following will hold:
2370 * - @offset_within_address_space >= @addr
2371 * - @offset_within_address_space + .@size <= @addr + @size
2372 *
2373 * @mr: a MemoryRegion within which @addr is a relative address
2374 * @addr: start of the area within @as to be searched
2375 * @size: size of the area to be searched
2376 */
2377MemoryRegionSection memory_region_find(MemoryRegion *mr,
2378                                       hwaddr addr, uint64_t size);
2379
2380/**
2381 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2382 *
2383 * Synchronizes the dirty page log for all address spaces.
2384 */
2385void memory_global_dirty_log_sync(void);
2386
2387/**
2388 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2389 *
2390 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2391 * This function must be called after the dirty log bitmap is cleared, and
2392 * before dirty guest memory pages are read.  If you are using
2393 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2394 * care of doing this.
2395 */
2396void memory_global_after_dirty_log_sync(void);
2397
2398/**
2399 * memory_region_transaction_begin: Start a transaction.
2400 *
2401 * During a transaction, changes will be accumulated and made visible
2402 * only when the transaction ends (is committed).
2403 */
2404void memory_region_transaction_begin(void);
2405
2406/**
2407 * memory_region_transaction_commit: Commit a transaction and make changes
2408 *                                   visible to the guest.
2409 */
2410void memory_region_transaction_commit(void);
2411
2412/**
2413 * memory_listener_register: register callbacks to be called when memory
2414 *                           sections are mapped or unmapped into an address
2415 *                           space
2416 *
2417 * @listener: an object containing the callbacks to be called
2418 * @filter: if non-%NULL, only regions in this address space will be observed
2419 */
2420void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2421
2422/**
2423 * memory_listener_unregister: undo the effect of memory_listener_register()
2424 *
2425 * @listener: an object containing the callbacks to be removed
2426 */
2427void memory_listener_unregister(MemoryListener *listener);
2428
2429/**
2430 * memory_global_dirty_log_start: begin dirty logging for all regions
2431 *
2432 * @flags: purpose of starting dirty log, migration or dirty rate
2433 */
2434void memory_global_dirty_log_start(unsigned int flags);
2435
2436/**
2437 * memory_global_dirty_log_stop: end dirty logging for all regions
2438 *
2439 * @flags: purpose of stopping dirty log, migration or dirty rate
2440 */
2441void memory_global_dirty_log_stop(unsigned int flags);
2442
2443void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2444
2445/**
2446 * memory_region_dispatch_read: perform a read directly to the specified
2447 * MemoryRegion.
2448 *
2449 * @mr: #MemoryRegion to access
2450 * @addr: address within that region
2451 * @pval: pointer to uint64_t which the data is written to
2452 * @op: size, sign, and endianness of the memory operation
2453 * @attrs: memory transaction attributes to use for the access
2454 */
2455MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2456                                        hwaddr addr,
2457                                        uint64_t *pval,
2458                                        MemOp op,
2459                                        MemTxAttrs attrs);
2460/**
2461 * memory_region_dispatch_write: perform a write directly to the specified
2462 * MemoryRegion.
2463 *
2464 * @mr: #MemoryRegion to access
2465 * @addr: address within that region
2466 * @data: data to write
2467 * @op: size, sign, and endianness of the memory operation
2468 * @attrs: memory transaction attributes to use for the access
2469 */
2470MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2471                                         hwaddr addr,
2472                                         uint64_t data,
2473                                         MemOp op,
2474                                         MemTxAttrs attrs);
2475
2476/**
2477 * address_space_init: initializes an address space
2478 *
2479 * @as: an uninitialized #AddressSpace
2480 * @root: a #MemoryRegion that routes addresses for the address space
2481 * @name: an address space name.  The name is only used for debugging
2482 *        output.
2483 */
2484void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2485
2486/**
2487 * address_space_destroy: destroy an address space
2488 *
2489 * Releases all resources associated with an address space.  After an address space
2490 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2491 * as well.
2492 *
2493 * @as: address space to be destroyed
2494 */
2495void address_space_destroy(AddressSpace *as);
2496
2497/**
2498 * address_space_remove_listeners: unregister all listeners of an address space
2499 *
2500 * Removes all callbacks previously registered with memory_listener_register()
2501 * for @as.
2502 *
2503 * @as: an initialized #AddressSpace
2504 */
2505void address_space_remove_listeners(AddressSpace *as);
2506
2507/**
2508 * address_space_rw: read from or write to an address space.
2509 *
2510 * Return a MemTxResult indicating whether the operation succeeded
2511 * or failed (eg unassigned memory, device rejected the transaction,
2512 * IOMMU fault).
2513 *
2514 * @as: #AddressSpace to be accessed
2515 * @addr: address within that address space
2516 * @attrs: memory transaction attributes
2517 * @buf: buffer with the data transferred
2518 * @len: the number of bytes to read or write
2519 * @is_write: indicates the transfer direction
2520 */
2521MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2522                             MemTxAttrs attrs, void *buf,
2523                             hwaddr len, bool is_write);
2524
2525/**
2526 * address_space_write: write to address space.
2527 *
2528 * Return a MemTxResult indicating whether the operation succeeded
2529 * or failed (eg unassigned memory, device rejected the transaction,
2530 * IOMMU fault).
2531 *
2532 * @as: #AddressSpace to be accessed
2533 * @addr: address within that address space
2534 * @attrs: memory transaction attributes
2535 * @buf: buffer with the data transferred
2536 * @len: the number of bytes to write
2537 */
2538MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2539                                MemTxAttrs attrs,
2540                                const void *buf, hwaddr len);
2541
2542/**
2543 * address_space_write_rom: write to address space, including ROM.
2544 *
2545 * This function writes to the specified address space, but will
2546 * write data to both ROM and RAM. This is used for non-guest
2547 * writes like writes from the gdb debug stub or initial loading
2548 * of ROM contents.
2549 *
2550 * Note that portions of the write which attempt to write data to
2551 * a device will be silently ignored -- only real RAM and ROM will
2552 * be written to.
2553 *
2554 * Return a MemTxResult indicating whether the operation succeeded
2555 * or failed (eg unassigned memory, device rejected the transaction,
2556 * IOMMU fault).
2557 *
2558 * @as: #AddressSpace to be accessed
2559 * @addr: address within that address space
2560 * @attrs: memory transaction attributes
2561 * @buf: buffer with the data transferred
2562 * @len: the number of bytes to write
2563 */
2564MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2565                                    MemTxAttrs attrs,
2566                                    const void *buf, hwaddr len);
2567
2568/* address_space_ld*: load from an address space
2569 * address_space_st*: store to an address space
2570 *
2571 * These functions perform a load or store of the byte, word,
2572 * longword or quad to the specified address within the AddressSpace.
2573 * The _le suffixed functions treat the data as little endian;
2574 * _be indicates big endian; no suffix indicates "same endianness
2575 * as guest CPU".
2576 *
2577 * The "guest CPU endianness" accessors are deprecated for use outside
2578 * target-* code; devices should be CPU-agnostic and use either the LE
2579 * or the BE accessors.
2580 *
2581 * @as #AddressSpace to be accessed
2582 * @addr: address within that address space
2583 * @val: data value, for stores
2584 * @attrs: memory transaction attributes
2585 * @result: location to write the success/failure of the transaction;
2586 *   if NULL, this information is discarded
2587 */
2588
2589#define SUFFIX
2590#define ARG1         as
2591#define ARG1_DECL    AddressSpace *as
2592#include "exec/memory_ldst.h.inc"
2593
2594#define SUFFIX
2595#define ARG1         as
2596#define ARG1_DECL    AddressSpace *as
2597#include "exec/memory_ldst_phys.h.inc"
2598
2599struct MemoryRegionCache {
2600    void *ptr;
2601    hwaddr xlat;
2602    hwaddr len;
2603    FlatView *fv;
2604    MemoryRegionSection mrs;
2605    bool is_write;
2606};
2607
2608#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2609
2610
2611/* address_space_ld*_cached: load from a cached #MemoryRegion
2612 * address_space_st*_cached: store into a cached #MemoryRegion
2613 *
2614 * These functions perform a load or store of the byte, word,
2615 * longword or quad to the specified address.  The address is
2616 * a physical address in the AddressSpace, but it must lie within
2617 * a #MemoryRegion that was mapped with address_space_cache_init.
2618 *
2619 * The _le suffixed functions treat the data as little endian;
2620 * _be indicates big endian; no suffix indicates "same endianness
2621 * as guest CPU".
2622 *
2623 * The "guest CPU endianness" accessors are deprecated for use outside
2624 * target-* code; devices should be CPU-agnostic and use either the LE
2625 * or the BE accessors.
2626 *
2627 * @cache: previously initialized #MemoryRegionCache to be accessed
2628 * @addr: address within the address space
2629 * @val: data value, for stores
2630 * @attrs: memory transaction attributes
2631 * @result: location to write the success/failure of the transaction;
2632 *   if NULL, this information is discarded
2633 */
2634
2635#define SUFFIX       _cached_slow
2636#define ARG1         cache
2637#define ARG1_DECL    MemoryRegionCache *cache
2638#include "exec/memory_ldst.h.inc"
2639
2640/* Inline fast path for direct RAM access.  */
2641static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2642    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2643{
2644    assert(addr < cache->len);
2645    if (likely(cache->ptr)) {
2646        return ldub_p(cache->ptr + addr);
2647    } else {
2648        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2649    }
2650}
2651
2652static inline void address_space_stb_cached(MemoryRegionCache *cache,
2653    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2654{
2655    assert(addr < cache->len);
2656    if (likely(cache->ptr)) {
2657        stb_p(cache->ptr + addr, val);
2658    } else {
2659        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2660    }
2661}
2662
2663#define ENDIANNESS   _le
2664#include "exec/memory_ldst_cached.h.inc"
2665
2666#define ENDIANNESS   _be
2667#include "exec/memory_ldst_cached.h.inc"
2668
2669#define SUFFIX       _cached
2670#define ARG1         cache
2671#define ARG1_DECL    MemoryRegionCache *cache
2672#include "exec/memory_ldst_phys.h.inc"
2673
2674/* address_space_cache_init: prepare for repeated access to a physical
2675 * memory region
2676 *
2677 * @cache: #MemoryRegionCache to be filled
2678 * @as: #AddressSpace to be accessed
2679 * @addr: address within that address space
2680 * @len: length of buffer
2681 * @is_write: indicates the transfer direction
2682 *
2683 * Will only work with RAM, and may map a subset of the requested range by
2684 * returning a value that is less than @len.  On failure, return a negative
2685 * errno value.
2686 *
2687 * Because it only works with RAM, this function can be used for
2688 * read-modify-write operations.  In this case, is_write should be %true.
2689 *
2690 * Note that addresses passed to the address_space_*_cached functions
2691 * are relative to @addr.
2692 */
2693int64_t address_space_cache_init(MemoryRegionCache *cache,
2694                                 AddressSpace *as,
2695                                 hwaddr addr,
2696                                 hwaddr len,
2697                                 bool is_write);
2698
2699/**
2700 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2701 *
2702 * @cache: The #MemoryRegionCache to operate on.
2703 * @addr: The first physical address that was written, relative to the
2704 * address that was passed to @address_space_cache_init.
2705 * @access_len: The number of bytes that were written starting at @addr.
2706 */
2707void address_space_cache_invalidate(MemoryRegionCache *cache,
2708                                    hwaddr addr,
2709                                    hwaddr access_len);
2710
2711/**
2712 * address_space_cache_destroy: free a #MemoryRegionCache
2713 *
2714 * @cache: The #MemoryRegionCache whose memory should be released.
2715 */
2716void address_space_cache_destroy(MemoryRegionCache *cache);
2717
2718/* address_space_get_iotlb_entry: translate an address into an IOTLB
2719 * entry. Should be called from an RCU critical section.
2720 */
2721IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2722                                            bool is_write, MemTxAttrs attrs);
2723
2724/* address_space_translate: translate an address range into an address space
2725 * into a MemoryRegion and an address range into that section.  Should be
2726 * called from an RCU critical section, to avoid that the last reference
2727 * to the returned region disappears after address_space_translate returns.
2728 *
2729 * @fv: #FlatView to be accessed
2730 * @addr: address within that address space
2731 * @xlat: pointer to address within the returned memory region section's
2732 * #MemoryRegion.
2733 * @len: pointer to length
2734 * @is_write: indicates the transfer direction
2735 * @attrs: memory attributes
2736 */
2737MemoryRegion *flatview_translate(FlatView *fv,
2738                                 hwaddr addr, hwaddr *xlat,
2739                                 hwaddr *len, bool is_write,
2740                                 MemTxAttrs attrs);
2741
2742static inline MemoryRegion *address_space_translate(AddressSpace *as,
2743                                                    hwaddr addr, hwaddr *xlat,
2744                                                    hwaddr *len, bool is_write,
2745                                                    MemTxAttrs attrs)
2746{
2747    return flatview_translate(address_space_to_flatview(as),
2748                              addr, xlat, len, is_write, attrs);
2749}
2750
2751/* address_space_access_valid: check for validity of accessing an address
2752 * space range
2753 *
2754 * Check whether memory is assigned to the given address space range, and
2755 * access is permitted by any IOMMU regions that are active for the address
2756 * space.
2757 *
2758 * For now, addr and len should be aligned to a page size.  This limitation
2759 * will be lifted in the future.
2760 *
2761 * @as: #AddressSpace to be accessed
2762 * @addr: address within that address space
2763 * @len: length of the area to be checked
2764 * @is_write: indicates the transfer direction
2765 * @attrs: memory attributes
2766 */
2767bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2768                                bool is_write, MemTxAttrs attrs);
2769
2770/* address_space_map: map a physical memory region into a host virtual address
2771 *
2772 * May map a subset of the requested range, given by and returned in @plen.
2773 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2774 * the mapping are exhausted.
2775 * Use only for reads OR writes - not for read-modify-write operations.
2776 * Use cpu_register_map_client() to know when retrying the map operation is
2777 * likely to succeed.
2778 *
2779 * @as: #AddressSpace to be accessed
2780 * @addr: address within that address space
2781 * @plen: pointer to length of buffer; updated on return
2782 * @is_write: indicates the transfer direction
2783 * @attrs: memory attributes
2784 */
2785void *address_space_map(AddressSpace *as, hwaddr addr,
2786                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2787
2788/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2789 *
2790 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2791 * the amount of memory that was actually read or written by the caller.
2792 *
2793 * @as: #AddressSpace used
2794 * @buffer: host pointer as returned by address_space_map()
2795 * @len: buffer length as returned by address_space_map()
2796 * @access_len: amount of data actually transferred
2797 * @is_write: indicates the transfer direction
2798 */
2799void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2800                         bool is_write, hwaddr access_len);
2801
2802
2803/* Internal functions, part of the implementation of address_space_read.  */
2804MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2805                                    MemTxAttrs attrs, void *buf, hwaddr len);
2806MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2807                                   MemTxAttrs attrs, void *buf,
2808                                   hwaddr len, hwaddr addr1, hwaddr l,
2809                                   MemoryRegion *mr);
2810void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2811
2812/* Internal functions, part of the implementation of address_space_read_cached
2813 * and address_space_write_cached.  */
2814MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2815                                           hwaddr addr, void *buf, hwaddr len);
2816MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2817                                            hwaddr addr, const void *buf,
2818                                            hwaddr len);
2819
2820int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2821bool prepare_mmio_access(MemoryRegion *mr);
2822
2823static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2824{
2825    if (is_write) {
2826        return memory_region_is_ram(mr) && !mr->readonly &&
2827               !mr->rom_device && !memory_region_is_ram_device(mr);
2828    } else {
2829        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2830               memory_region_is_romd(mr);
2831    }
2832}
2833
2834/**
2835 * address_space_read: read from an address space.
2836 *
2837 * Return a MemTxResult indicating whether the operation succeeded
2838 * or failed (eg unassigned memory, device rejected the transaction,
2839 * IOMMU fault).  Called within RCU critical section.
2840 *
2841 * @as: #AddressSpace to be accessed
2842 * @addr: address within that address space
2843 * @attrs: memory transaction attributes
2844 * @buf: buffer with the data transferred
2845 * @len: length of the data transferred
2846 */
2847static inline __attribute__((__always_inline__))
2848MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2849                               MemTxAttrs attrs, void *buf,
2850                               hwaddr len)
2851{
2852    MemTxResult result = MEMTX_OK;
2853    hwaddr l, addr1;
2854    void *ptr;
2855    MemoryRegion *mr;
2856    FlatView *fv;
2857
2858    if (__builtin_constant_p(len)) {
2859        if (len) {
2860            RCU_READ_LOCK_GUARD();
2861            fv = address_space_to_flatview(as);
2862            l = len;
2863            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2864            if (len == l && memory_access_is_direct(mr, false)) {
2865                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2866                memcpy(buf, ptr, len);
2867            } else {
2868                result = flatview_read_continue(fv, addr, attrs, buf, len,
2869                                                addr1, l, mr);
2870            }
2871        }
2872    } else {
2873        result = address_space_read_full(as, addr, attrs, buf, len);
2874    }
2875    return result;
2876}
2877
2878/**
2879 * address_space_read_cached: read from a cached RAM region
2880 *
2881 * @cache: Cached region to be addressed
2882 * @addr: address relative to the base of the RAM region
2883 * @buf: buffer with the data transferred
2884 * @len: length of the data transferred
2885 */
2886static inline MemTxResult
2887address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2888                          void *buf, hwaddr len)
2889{
2890    assert(addr < cache->len && len <= cache->len - addr);
2891    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2892    if (likely(cache->ptr)) {
2893        memcpy(buf, cache->ptr + addr, len);
2894        return MEMTX_OK;
2895    } else {
2896        return address_space_read_cached_slow(cache, addr, buf, len);
2897    }
2898}
2899
2900/**
2901 * address_space_write_cached: write to a cached RAM region
2902 *
2903 * @cache: Cached region to be addressed
2904 * @addr: address relative to the base of the RAM region
2905 * @buf: buffer with the data transferred
2906 * @len: length of the data transferred
2907 */
2908static inline MemTxResult
2909address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2910                           const void *buf, hwaddr len)
2911{
2912    assert(addr < cache->len && len <= cache->len - addr);
2913    if (likely(cache->ptr)) {
2914        memcpy(cache->ptr + addr, buf, len);
2915        return MEMTX_OK;
2916    } else {
2917        return address_space_write_cached_slow(cache, addr, buf, len);
2918    }
2919}
2920
2921/**
2922 * address_space_set: Fill address space with a constant byte.
2923 *
2924 * Return a MemTxResult indicating whether the operation succeeded
2925 * or failed (eg unassigned memory, device rejected the transaction,
2926 * IOMMU fault).
2927 *
2928 * @as: #AddressSpace to be accessed
2929 * @addr: address within that address space
2930 * @c: constant byte to fill the memory
2931 * @len: the number of bytes to fill with the constant byte
2932 * @attrs: memory transaction attributes
2933 */
2934MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2935                              uint8_t c, hwaddr len, MemTxAttrs attrs);
2936
2937#ifdef NEED_CPU_H
2938/* enum device_endian to MemOp.  */
2939static inline MemOp devend_memop(enum device_endian end)
2940{
2941    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2942                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2943
2944#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2945    /* Swap if non-host endianness or native (target) endianness */
2946    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2947#else
2948    const int non_host_endianness =
2949        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2950
2951    /* In this case, native (target) endianness needs no swap.  */
2952    return (end == non_host_endianness) ? MO_BSWAP : 0;
2953#endif
2954}
2955#endif
2956
2957/*
2958 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2959 * to manage the actual amount of memory consumed by the VM (then, the memory
2960 * provided by RAM blocks might be bigger than the desired memory consumption).
2961 * This *must* be set if:
2962 * - Discarding parts of a RAM blocks does not result in the change being
2963 *   reflected in the VM and the pages getting freed.
2964 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2965 *   discards blindly.
2966 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2967 *   encrypted VMs).
2968 * Technologies that only temporarily pin the current working set of a
2969 * driver are fine, because we don't expect such pages to be discarded
2970 * (esp. based on guest action like balloon inflation).
2971 *
2972 * This is *not* to be used to protect from concurrent discards (esp.,
2973 * postcopy).
2974 *
2975 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2976 * discards to work reliably is active.
2977 */
2978int ram_block_discard_disable(bool state);
2979
2980/*
2981 * See ram_block_discard_disable(): only disable uncoordinated discards,
2982 * keeping coordinated discards (via the RamDiscardManager) enabled.
2983 */
2984int ram_block_uncoordinated_discard_disable(bool state);
2985
2986/*
2987 * Inhibit technologies that disable discarding of pages in RAM blocks.
2988 *
2989 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2990 * broken.
2991 */
2992int ram_block_discard_require(bool state);
2993
2994/*
2995 * See ram_block_discard_require(): only inhibit technologies that disable
2996 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2997 * technologies that only inhibit uncoordinated discards (via the
2998 * RamDiscardManager).
2999 */
3000int ram_block_coordinated_discard_require(bool state);
3001
3002/*
3003 * Test if any discarding of memory in ram blocks is disabled.
3004 */
3005bool ram_block_discard_is_disabled(void);
3006
3007/*
3008 * Test if any discarding of memory in ram blocks is required to work reliably.
3009 */
3010bool ram_block_discard_is_required(void);
3011
3012#endif
3013
3014#endif
3015