qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu/timer.h"
  17#include "qemu/error-report.h"
  18#include "qemu/main-loop.h"
  19#include "qom/object.h"
  20#include "qapi/error.h"
  21#include "sysemu/sysemu.h"
  22#include "sysemu/kvm.h"
  23#include "sysemu/kvm_int.h"
  24#include "kvm_arm.h"
  25#include "cpu.h"
  26#include "trace.h"
  27#include "internals.h"
  28#include "hw/pci/pci.h"
  29#include "exec/memattrs.h"
  30#include "exec/address-spaces.h"
  31#include "hw/boards.h"
  32#include "hw/irq.h"
  33#include "qemu/log.h"
  34
  35const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  36    KVM_CAP_LAST_INFO
  37};
  38
  39static bool cap_has_mp_state;
  40static bool cap_has_inject_serror_esr;
  41static bool cap_has_inject_ext_dabt;
  42
  43static ARMHostCPUFeatures arm_host_cpu_features;
  44
  45int kvm_arm_vcpu_init(CPUState *cs)
  46{
  47    ARMCPU *cpu = ARM_CPU(cs);
  48    struct kvm_vcpu_init init;
  49
  50    init.target = cpu->kvm_target;
  51    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  52
  53    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  54}
  55
  56int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
  57{
  58    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
  59}
  60
  61void kvm_arm_init_serror_injection(CPUState *cs)
  62{
  63    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  64                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  65}
  66
  67bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  68                                      int *fdarray,
  69                                      struct kvm_vcpu_init *init)
  70{
  71    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
  72    int max_vm_pa_size;
  73
  74    kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
  75    if (kvmfd < 0) {
  76        goto err;
  77    }
  78    max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
  79    if (max_vm_pa_size < 0) {
  80        max_vm_pa_size = 0;
  81    }
  82    do {
  83        vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
  84    } while (vmfd == -1 && errno == EINTR);
  85    if (vmfd < 0) {
  86        goto err;
  87    }
  88    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  89    if (cpufd < 0) {
  90        goto err;
  91    }
  92
  93    if (!init) {
  94        /* Caller doesn't want the VCPU to be initialized, so skip it */
  95        goto finish;
  96    }
  97
  98    if (init->target == -1) {
  99        struct kvm_vcpu_init preferred;
 100
 101        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
 102        if (!ret) {
 103            init->target = preferred.target;
 104        }
 105    }
 106    if (ret >= 0) {
 107        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
 108        if (ret < 0) {
 109            goto err;
 110        }
 111    } else if (cpus_to_try) {
 112        /* Old kernel which doesn't know about the
 113         * PREFERRED_TARGET ioctl: we know it will only support
 114         * creating one kind of guest CPU which is its preferred
 115         * CPU type.
 116         */
 117        struct kvm_vcpu_init try;
 118
 119        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
 120            try.target = *cpus_to_try++;
 121            memcpy(try.features, init->features, sizeof(init->features));
 122            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
 123            if (ret >= 0) {
 124                break;
 125            }
 126        }
 127        if (ret < 0) {
 128            goto err;
 129        }
 130        init->target = try.target;
 131    } else {
 132        /* Treat a NULL cpus_to_try argument the same as an empty
 133         * list, which means we will fail the call since this must
 134         * be an old kernel which doesn't support PREFERRED_TARGET.
 135         */
 136        goto err;
 137    }
 138
 139finish:
 140    fdarray[0] = kvmfd;
 141    fdarray[1] = vmfd;
 142    fdarray[2] = cpufd;
 143
 144    return true;
 145
 146err:
 147    if (cpufd >= 0) {
 148        close(cpufd);
 149    }
 150    if (vmfd >= 0) {
 151        close(vmfd);
 152    }
 153    if (kvmfd >= 0) {
 154        close(kvmfd);
 155    }
 156
 157    return false;
 158}
 159
 160void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 161{
 162    int i;
 163
 164    for (i = 2; i >= 0; i--) {
 165        close(fdarray[i]);
 166    }
 167}
 168
 169void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 170{
 171    CPUARMState *env = &cpu->env;
 172
 173    if (!arm_host_cpu_features.dtb_compatible) {
 174        if (!kvm_enabled() ||
 175            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 176            /* We can't report this error yet, so flag that we need to
 177             * in arm_cpu_realizefn().
 178             */
 179            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 180            cpu->host_cpu_probe_failed = true;
 181            return;
 182        }
 183    }
 184
 185    cpu->kvm_target = arm_host_cpu_features.target;
 186    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 187    cpu->isar = arm_host_cpu_features.isar;
 188    env->features = arm_host_cpu_features.features;
 189}
 190
 191static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
 192{
 193    return !ARM_CPU(obj)->kvm_adjvtime;
 194}
 195
 196static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
 197{
 198    ARM_CPU(obj)->kvm_adjvtime = !value;
 199}
 200
 201static bool kvm_steal_time_get(Object *obj, Error **errp)
 202{
 203    return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
 204}
 205
 206static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 207{
 208    ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
 209}
 210
 211/* KVM VCPU properties should be prefixed with "kvm-". */
 212void kvm_arm_add_vcpu_properties(Object *obj)
 213{
 214    ARMCPU *cpu = ARM_CPU(obj);
 215    CPUARMState *env = &cpu->env;
 216
 217    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 218        cpu->kvm_adjvtime = true;
 219        object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
 220                                 kvm_no_adjvtime_set);
 221        object_property_set_description(obj, "kvm-no-adjvtime",
 222                                        "Set on to disable the adjustment of "
 223                                        "the virtual counter. VM stopped time "
 224                                        "will be counted.");
 225    }
 226
 227    cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
 228    object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
 229                             kvm_steal_time_set);
 230    object_property_set_description(obj, "kvm-steal-time",
 231                                    "Set off to disable KVM steal time.");
 232}
 233
 234bool kvm_arm_pmu_supported(void)
 235{
 236    return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
 237}
 238
 239int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
 240{
 241    KVMState *s = KVM_STATE(ms->accelerator);
 242    int ret;
 243
 244    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 245    *fixed_ipa = ret <= 0;
 246
 247    return ret > 0 ? ret : 40;
 248}
 249
 250int kvm_arch_init(MachineState *ms, KVMState *s)
 251{
 252    int ret = 0;
 253    /* For ARM interrupt delivery is always asynchronous,
 254     * whether we are using an in-kernel VGIC or not.
 255     */
 256    kvm_async_interrupts_allowed = true;
 257
 258    /*
 259     * PSCI wakes up secondary cores, so we always need to
 260     * have vCPUs waiting in kernel space
 261     */
 262    kvm_halt_in_kernel_allowed = true;
 263
 264    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 265
 266    if (ms->smp.cpus > 256 &&
 267        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
 268        error_report("Using more than 256 vcpus requires a host kernel "
 269                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
 270        ret = -EINVAL;
 271    }
 272
 273    if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
 274        if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
 275            error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
 276        } else {
 277            /* Set status for supporting the external dabt injection */
 278            cap_has_inject_ext_dabt = kvm_check_extension(s,
 279                                    KVM_CAP_ARM_INJECT_EXT_DABT);
 280        }
 281    }
 282
 283    return ret;
 284}
 285
 286unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 287{
 288    return cpu->cpu_index;
 289}
 290
 291/* We track all the KVM devices which need their memory addresses
 292 * passing to the kernel in a list of these structures.
 293 * When board init is complete we run through the list and
 294 * tell the kernel the base addresses of the memory regions.
 295 * We use a MemoryListener to track mapping and unmapping of
 296 * the regions during board creation, so the board models don't
 297 * need to do anything special for the KVM case.
 298 *
 299 * Sometimes the address must be OR'ed with some other fields
 300 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 301 * @kda_addr_ormask aims at storing the value of those fields.
 302 */
 303typedef struct KVMDevice {
 304    struct kvm_arm_device_addr kda;
 305    struct kvm_device_attr kdattr;
 306    uint64_t kda_addr_ormask;
 307    MemoryRegion *mr;
 308    QSLIST_ENTRY(KVMDevice) entries;
 309    int dev_fd;
 310} KVMDevice;
 311
 312static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 313
 314static void kvm_arm_devlistener_add(MemoryListener *listener,
 315                                    MemoryRegionSection *section)
 316{
 317    KVMDevice *kd;
 318
 319    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 320        if (section->mr == kd->mr) {
 321            kd->kda.addr = section->offset_within_address_space;
 322        }
 323    }
 324}
 325
 326static void kvm_arm_devlistener_del(MemoryListener *listener,
 327                                    MemoryRegionSection *section)
 328{
 329    KVMDevice *kd;
 330
 331    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 332        if (section->mr == kd->mr) {
 333            kd->kda.addr = -1;
 334        }
 335    }
 336}
 337
 338static MemoryListener devlistener = {
 339    .name = "kvm-arm",
 340    .region_add = kvm_arm_devlistener_add,
 341    .region_del = kvm_arm_devlistener_del,
 342};
 343
 344static void kvm_arm_set_device_addr(KVMDevice *kd)
 345{
 346    struct kvm_device_attr *attr = &kd->kdattr;
 347    int ret;
 348
 349    /* If the device control API is available and we have a device fd on the
 350     * KVMDevice struct, let's use the newer API
 351     */
 352    if (kd->dev_fd >= 0) {
 353        uint64_t addr = kd->kda.addr;
 354
 355        addr |= kd->kda_addr_ormask;
 356        attr->addr = (uintptr_t)&addr;
 357        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 358    } else {
 359        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 360    }
 361
 362    if (ret < 0) {
 363        fprintf(stderr, "Failed to set device address: %s\n",
 364                strerror(-ret));
 365        abort();
 366    }
 367}
 368
 369static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 370{
 371    KVMDevice *kd, *tkd;
 372
 373    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 374        if (kd->kda.addr != -1) {
 375            kvm_arm_set_device_addr(kd);
 376        }
 377        memory_region_unref(kd->mr);
 378        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 379        g_free(kd);
 380    }
 381    memory_listener_unregister(&devlistener);
 382}
 383
 384static Notifier notify = {
 385    .notify = kvm_arm_machine_init_done,
 386};
 387
 388void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 389                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 390{
 391    KVMDevice *kd;
 392
 393    if (!kvm_irqchip_in_kernel()) {
 394        return;
 395    }
 396
 397    if (QSLIST_EMPTY(&kvm_devices_head)) {
 398        memory_listener_register(&devlistener, &address_space_memory);
 399        qemu_add_machine_init_done_notifier(&notify);
 400    }
 401    kd = g_new0(KVMDevice, 1);
 402    kd->mr = mr;
 403    kd->kda.id = devid;
 404    kd->kda.addr = -1;
 405    kd->kdattr.flags = 0;
 406    kd->kdattr.group = group;
 407    kd->kdattr.attr = attr;
 408    kd->dev_fd = dev_fd;
 409    kd->kda_addr_ormask = addr_ormask;
 410    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 411    memory_region_ref(kd->mr);
 412}
 413
 414static int compare_u64(const void *a, const void *b)
 415{
 416    if (*(uint64_t *)a > *(uint64_t *)b) {
 417        return 1;
 418    }
 419    if (*(uint64_t *)a < *(uint64_t *)b) {
 420        return -1;
 421    }
 422    return 0;
 423}
 424
 425/*
 426 * cpreg_values are sorted in ascending order by KVM register ID
 427 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
 428 * the storage for a KVM register by ID with a binary search.
 429 */
 430static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
 431{
 432    uint64_t *res;
 433
 434    res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
 435                  sizeof(uint64_t), compare_u64);
 436    assert(res);
 437
 438    return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 439}
 440
 441/* Initialize the ARMCPU cpreg list according to the kernel's
 442 * definition of what CPU registers it knows about (and throw away
 443 * the previous TCG-created cpreg list).
 444 */
 445int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 446{
 447    struct kvm_reg_list rl;
 448    struct kvm_reg_list *rlp;
 449    int i, ret, arraylen;
 450    CPUState *cs = CPU(cpu);
 451
 452    rl.n = 0;
 453    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 454    if (ret != -E2BIG) {
 455        return ret;
 456    }
 457    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 458    rlp->n = rl.n;
 459    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 460    if (ret) {
 461        goto out;
 462    }
 463    /* Sort the list we get back from the kernel, since cpreg_tuples
 464     * must be in strictly ascending order.
 465     */
 466    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 467
 468    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 469        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 470            continue;
 471        }
 472        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 473        case KVM_REG_SIZE_U32:
 474        case KVM_REG_SIZE_U64:
 475            break;
 476        default:
 477            fprintf(stderr, "Can't handle size of register in kernel list\n");
 478            ret = -EINVAL;
 479            goto out;
 480        }
 481
 482        arraylen++;
 483    }
 484
 485    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 486    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 487    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 488                                         arraylen);
 489    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 490                                        arraylen);
 491    cpu->cpreg_array_len = arraylen;
 492    cpu->cpreg_vmstate_array_len = arraylen;
 493
 494    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 495        uint64_t regidx = rlp->reg[i];
 496        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 497            continue;
 498        }
 499        cpu->cpreg_indexes[arraylen] = regidx;
 500        arraylen++;
 501    }
 502    assert(cpu->cpreg_array_len == arraylen);
 503
 504    if (!write_kvmstate_to_list(cpu)) {
 505        /* Shouldn't happen unless kernel is inconsistent about
 506         * what registers exist.
 507         */
 508        fprintf(stderr, "Initial read of kernel register state failed\n");
 509        ret = -EINVAL;
 510        goto out;
 511    }
 512
 513out:
 514    g_free(rlp);
 515    return ret;
 516}
 517
 518bool write_kvmstate_to_list(ARMCPU *cpu)
 519{
 520    CPUState *cs = CPU(cpu);
 521    int i;
 522    bool ok = true;
 523
 524    for (i = 0; i < cpu->cpreg_array_len; i++) {
 525        struct kvm_one_reg r;
 526        uint64_t regidx = cpu->cpreg_indexes[i];
 527        uint32_t v32;
 528        int ret;
 529
 530        r.id = regidx;
 531
 532        switch (regidx & KVM_REG_SIZE_MASK) {
 533        case KVM_REG_SIZE_U32:
 534            r.addr = (uintptr_t)&v32;
 535            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 536            if (!ret) {
 537                cpu->cpreg_values[i] = v32;
 538            }
 539            break;
 540        case KVM_REG_SIZE_U64:
 541            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 542            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 543            break;
 544        default:
 545            g_assert_not_reached();
 546        }
 547        if (ret) {
 548            ok = false;
 549        }
 550    }
 551    return ok;
 552}
 553
 554bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 555{
 556    CPUState *cs = CPU(cpu);
 557    int i;
 558    bool ok = true;
 559
 560    for (i = 0; i < cpu->cpreg_array_len; i++) {
 561        struct kvm_one_reg r;
 562        uint64_t regidx = cpu->cpreg_indexes[i];
 563        uint32_t v32;
 564        int ret;
 565
 566        if (kvm_arm_cpreg_level(regidx) > level) {
 567            continue;
 568        }
 569
 570        r.id = regidx;
 571        switch (regidx & KVM_REG_SIZE_MASK) {
 572        case KVM_REG_SIZE_U32:
 573            v32 = cpu->cpreg_values[i];
 574            r.addr = (uintptr_t)&v32;
 575            break;
 576        case KVM_REG_SIZE_U64:
 577            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 578            break;
 579        default:
 580            g_assert_not_reached();
 581        }
 582        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 583        if (ret) {
 584            /* We might fail for "unknown register" and also for
 585             * "you tried to set a register which is constant with
 586             * a different value from what it actually contains".
 587             */
 588            ok = false;
 589        }
 590    }
 591    return ok;
 592}
 593
 594void kvm_arm_cpu_pre_save(ARMCPU *cpu)
 595{
 596    /* KVM virtual time adjustment */
 597    if (cpu->kvm_vtime_dirty) {
 598        *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
 599    }
 600}
 601
 602void kvm_arm_cpu_post_load(ARMCPU *cpu)
 603{
 604    /* KVM virtual time adjustment */
 605    if (cpu->kvm_adjvtime) {
 606        cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
 607        cpu->kvm_vtime_dirty = true;
 608    }
 609}
 610
 611void kvm_arm_reset_vcpu(ARMCPU *cpu)
 612{
 613    int ret;
 614
 615    /* Re-init VCPU so that all registers are set to
 616     * their respective reset values.
 617     */
 618    ret = kvm_arm_vcpu_init(CPU(cpu));
 619    if (ret < 0) {
 620        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 621        abort();
 622    }
 623    if (!write_kvmstate_to_list(cpu)) {
 624        fprintf(stderr, "write_kvmstate_to_list failed\n");
 625        abort();
 626    }
 627    /*
 628     * Sync the reset values also into the CPUState. This is necessary
 629     * because the next thing we do will be a kvm_arch_put_registers()
 630     * which will update the list values from the CPUState before copying
 631     * the list values back to KVM. It's OK to ignore failure returns here
 632     * for the same reason we do so in kvm_arch_get_registers().
 633     */
 634    write_list_to_cpustate(cpu);
 635}
 636
 637/*
 638 * Update KVM's MP_STATE based on what QEMU thinks it is
 639 */
 640int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 641{
 642    if (cap_has_mp_state) {
 643        struct kvm_mp_state mp_state = {
 644            .mp_state = (cpu->power_state == PSCI_OFF) ?
 645            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 646        };
 647        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 648        if (ret) {
 649            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 650                    __func__, ret, strerror(-ret));
 651            return -1;
 652        }
 653    }
 654
 655    return 0;
 656}
 657
 658/*
 659 * Sync the KVM MP_STATE into QEMU
 660 */
 661int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 662{
 663    if (cap_has_mp_state) {
 664        struct kvm_mp_state mp_state;
 665        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 666        if (ret) {
 667            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 668                    __func__, ret, strerror(-ret));
 669            abort();
 670        }
 671        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 672            PSCI_OFF : PSCI_ON;
 673    }
 674
 675    return 0;
 676}
 677
 678void kvm_arm_get_virtual_time(CPUState *cs)
 679{
 680    ARMCPU *cpu = ARM_CPU(cs);
 681    struct kvm_one_reg reg = {
 682        .id = KVM_REG_ARM_TIMER_CNT,
 683        .addr = (uintptr_t)&cpu->kvm_vtime,
 684    };
 685    int ret;
 686
 687    if (cpu->kvm_vtime_dirty) {
 688        return;
 689    }
 690
 691    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 692    if (ret) {
 693        error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
 694        abort();
 695    }
 696
 697    cpu->kvm_vtime_dirty = true;
 698}
 699
 700void kvm_arm_put_virtual_time(CPUState *cs)
 701{
 702    ARMCPU *cpu = ARM_CPU(cs);
 703    struct kvm_one_reg reg = {
 704        .id = KVM_REG_ARM_TIMER_CNT,
 705        .addr = (uintptr_t)&cpu->kvm_vtime,
 706    };
 707    int ret;
 708
 709    if (!cpu->kvm_vtime_dirty) {
 710        return;
 711    }
 712
 713    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 714    if (ret) {
 715        error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
 716        abort();
 717    }
 718
 719    cpu->kvm_vtime_dirty = false;
 720}
 721
 722int kvm_put_vcpu_events(ARMCPU *cpu)
 723{
 724    CPUARMState *env = &cpu->env;
 725    struct kvm_vcpu_events events;
 726    int ret;
 727
 728    if (!kvm_has_vcpu_events()) {
 729        return 0;
 730    }
 731
 732    memset(&events, 0, sizeof(events));
 733    events.exception.serror_pending = env->serror.pending;
 734
 735    /* Inject SError to guest with specified syndrome if host kernel
 736     * supports it, otherwise inject SError without syndrome.
 737     */
 738    if (cap_has_inject_serror_esr) {
 739        events.exception.serror_has_esr = env->serror.has_esr;
 740        events.exception.serror_esr = env->serror.esr;
 741    }
 742
 743    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 744    if (ret) {
 745        error_report("failed to put vcpu events");
 746    }
 747
 748    return ret;
 749}
 750
 751int kvm_get_vcpu_events(ARMCPU *cpu)
 752{
 753    CPUARMState *env = &cpu->env;
 754    struct kvm_vcpu_events events;
 755    int ret;
 756
 757    if (!kvm_has_vcpu_events()) {
 758        return 0;
 759    }
 760
 761    memset(&events, 0, sizeof(events));
 762    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 763    if (ret) {
 764        error_report("failed to get vcpu events");
 765        return ret;
 766    }
 767
 768    env->serror.pending = events.exception.serror_pending;
 769    env->serror.has_esr = events.exception.serror_has_esr;
 770    env->serror.esr = events.exception.serror_esr;
 771
 772    return 0;
 773}
 774
 775void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 776{
 777    ARMCPU *cpu = ARM_CPU(cs);
 778    CPUARMState *env = &cpu->env;
 779
 780    if (unlikely(env->ext_dabt_raised)) {
 781        /*
 782         * Verifying that the ext DABT has been properly injected,
 783         * otherwise risking indefinitely re-running the faulting instruction
 784         * Covering a very narrow case for kernels 5.5..5.5.4
 785         * when injected abort was misconfigured to be
 786         * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
 787         */
 788        if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
 789            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
 790
 791            error_report("Data abort exception with no valid ISS generated by "
 792                   "guest memory access. KVM unable to emulate faulting "
 793                   "instruction. Failed to inject an external data abort "
 794                   "into the guest.");
 795            abort();
 796       }
 797       /* Clear the status */
 798       env->ext_dabt_raised = 0;
 799    }
 800}
 801
 802MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 803{
 804    ARMCPU *cpu;
 805    uint32_t switched_level;
 806
 807    if (kvm_irqchip_in_kernel()) {
 808        /*
 809         * We only need to sync timer states with user-space interrupt
 810         * controllers, so return early and save cycles if we don't.
 811         */
 812        return MEMTXATTRS_UNSPECIFIED;
 813    }
 814
 815    cpu = ARM_CPU(cs);
 816
 817    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 818    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 819        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 820
 821        qemu_mutex_lock_iothread();
 822
 823        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 824            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 825                         !!(run->s.regs.device_irq_level &
 826                            KVM_ARM_DEV_EL1_VTIMER));
 827            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 828        }
 829
 830        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 831            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 832                         !!(run->s.regs.device_irq_level &
 833                            KVM_ARM_DEV_EL1_PTIMER));
 834            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 835        }
 836
 837        if (switched_level & KVM_ARM_DEV_PMU) {
 838            qemu_set_irq(cpu->pmu_interrupt,
 839                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 840            switched_level &= ~KVM_ARM_DEV_PMU;
 841        }
 842
 843        if (switched_level) {
 844            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 845                          __func__, switched_level);
 846        }
 847
 848        /* We also mark unknown levels as processed to not waste cycles */
 849        cpu->device_irq_level = run->s.regs.device_irq_level;
 850        qemu_mutex_unlock_iothread();
 851    }
 852
 853    return MEMTXATTRS_UNSPECIFIED;
 854}
 855
 856void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 857{
 858    CPUState *cs = opaque;
 859    ARMCPU *cpu = ARM_CPU(cs);
 860
 861    if (running) {
 862        if (cpu->kvm_adjvtime) {
 863            kvm_arm_put_virtual_time(cs);
 864        }
 865    } else {
 866        if (cpu->kvm_adjvtime) {
 867            kvm_arm_get_virtual_time(cs);
 868        }
 869    }
 870}
 871
 872/**
 873 * kvm_arm_handle_dabt_nisv:
 874 * @cs: CPUState
 875 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
 876 *           ISV bit set to '0b0' -> no valid instruction syndrome
 877 * @fault_ipa: faulting address for the synchronous data abort
 878 *
 879 * Returns: 0 if the exception has been handled, < 0 otherwise
 880 */
 881static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
 882                                    uint64_t fault_ipa)
 883{
 884    ARMCPU *cpu = ARM_CPU(cs);
 885    CPUARMState *env = &cpu->env;
 886    /*
 887     * Request KVM to inject the external data abort into the guest
 888     */
 889    if (cap_has_inject_ext_dabt) {
 890        struct kvm_vcpu_events events = { };
 891        /*
 892         * The external data abort event will be handled immediately by KVM
 893         * using the address fault that triggered the exit on given VCPU.
 894         * Requesting injection of the external data abort does not rely
 895         * on any other VCPU state. Therefore, in this particular case, the VCPU
 896         * synchronization can be exceptionally skipped.
 897         */
 898        events.exception.ext_dabt_pending = 1;
 899        /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
 900        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
 901            env->ext_dabt_raised = 1;
 902            return 0;
 903        }
 904    } else {
 905        error_report("Data abort exception triggered by guest memory access "
 906                     "at physical address: 0x"  TARGET_FMT_lx,
 907                     (target_ulong)fault_ipa);
 908        error_printf("KVM unable to emulate faulting instruction.\n");
 909    }
 910    return -1;
 911}
 912
 913int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 914{
 915    int ret = 0;
 916
 917    switch (run->exit_reason) {
 918    case KVM_EXIT_DEBUG:
 919        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 920            ret = EXCP_DEBUG;
 921        } /* otherwise return to guest */
 922        break;
 923    case KVM_EXIT_ARM_NISV:
 924        /* External DABT with no valid iss to decode */
 925        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
 926                                       run->arm_nisv.fault_ipa);
 927        break;
 928    default:
 929        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 930                      __func__, run->exit_reason);
 931        break;
 932    }
 933    return ret;
 934}
 935
 936bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 937{
 938    return true;
 939}
 940
 941int kvm_arch_process_async_events(CPUState *cs)
 942{
 943    return 0;
 944}
 945
 946void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 947{
 948    if (kvm_sw_breakpoints_active(cs)) {
 949        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 950    }
 951    if (kvm_arm_hw_debug_active(cs)) {
 952        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 953        kvm_arm_copy_hw_debug_data(&dbg->arch);
 954    }
 955}
 956
 957void kvm_arch_init_irq_routing(KVMState *s)
 958{
 959}
 960
 961int kvm_arch_irqchip_create(KVMState *s)
 962{
 963    if (kvm_kernel_irqchip_split()) {
 964        error_report("-machine kernel_irqchip=split is not supported on ARM.");
 965        exit(1);
 966    }
 967
 968    /* If we can create the VGIC using the newer device control API, we
 969     * let the device do this when it initializes itself, otherwise we
 970     * fall back to the old API */
 971    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 972}
 973
 974int kvm_arm_vgic_probe(void)
 975{
 976    int val = 0;
 977
 978    if (kvm_create_device(kvm_state,
 979                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 980        val |= KVM_ARM_VGIC_V3;
 981    }
 982    if (kvm_create_device(kvm_state,
 983                          KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 984        val |= KVM_ARM_VGIC_V2;
 985    }
 986    return val;
 987}
 988
 989int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
 990{
 991    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
 992    int cpu_idx1 = cpu % 256;
 993    int cpu_idx2 = cpu / 256;
 994
 995    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
 996               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
 997
 998    return kvm_set_irq(kvm_state, kvm_irq, !!level);
 999}
1000
1001int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1002                             uint64_t address, uint32_t data, PCIDevice *dev)
1003{
1004    AddressSpace *as = pci_device_iommu_address_space(dev);
1005    hwaddr xlat, len, doorbell_gpa;
1006    MemoryRegionSection mrs;
1007    MemoryRegion *mr;
1008
1009    if (as == &address_space_memory) {
1010        return 0;
1011    }
1012
1013    /* MSI doorbell address is translated by an IOMMU */
1014
1015    RCU_READ_LOCK_GUARD();
1016
1017    mr = address_space_translate(as, address, &xlat, &len, true,
1018                                 MEMTXATTRS_UNSPECIFIED);
1019
1020    if (!mr) {
1021        return 1;
1022    }
1023
1024    mrs = memory_region_find(mr, xlat, 1);
1025
1026    if (!mrs.mr) {
1027        return 1;
1028    }
1029
1030    doorbell_gpa = mrs.offset_within_address_space;
1031    memory_region_unref(mrs.mr);
1032
1033    route->u.msi.address_lo = doorbell_gpa;
1034    route->u.msi.address_hi = doorbell_gpa >> 32;
1035
1036    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1037
1038    return 0;
1039}
1040
1041int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1042                                int vector, PCIDevice *dev)
1043{
1044    return 0;
1045}
1046
1047int kvm_arch_release_virq_post(int virq)
1048{
1049    return 0;
1050}
1051
1052int kvm_arch_msi_data_to_gsi(uint32_t data)
1053{
1054    return (data - 32) & 0xffff;
1055}
1056
1057bool kvm_arch_cpu_check_are_resettable(void)
1058{
1059    return true;
1060}
1061
1062void kvm_arch_accel_class_init(ObjectClass *oc)
1063{
1064}
1065