qemu/target/arm/mte_helper.c
<<
>>
Prefs
   1/*
   2 * ARM v8.5-MemTag Operations
   3 *
   4 * Copyright (c) 2020 Linaro, Ltd.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "cpu.h"
  23#include "internals.h"
  24#include "exec/exec-all.h"
  25#include "exec/ram_addr.h"
  26#include "exec/cpu_ldst.h"
  27#include "exec/helper-proto.h"
  28#include "qapi/error.h"
  29#include "qemu/guest-random.h"
  30
  31
  32static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
  33{
  34    if (exclude == 0xffff) {
  35        return 0;
  36    }
  37    if (offset == 0) {
  38        while (exclude & (1 << tag)) {
  39            tag = (tag + 1) & 15;
  40        }
  41    } else {
  42        do {
  43            do {
  44                tag = (tag + 1) & 15;
  45            } while (exclude & (1 << tag));
  46        } while (--offset > 0);
  47    }
  48    return tag;
  49}
  50
  51/**
  52 * allocation_tag_mem:
  53 * @env: the cpu environment
  54 * @ptr_mmu_idx: the addressing regime to use for the virtual address
  55 * @ptr: the virtual address for which to look up tag memory
  56 * @ptr_access: the access to use for the virtual address
  57 * @ptr_size: the number of bytes in the normal memory access
  58 * @tag_access: the access to use for the tag memory
  59 * @tag_size: the number of bytes in the tag memory access
  60 * @ra: the return address for exception handling
  61 *
  62 * Our tag memory is formatted as a sequence of little-endian nibbles.
  63 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
  64 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
  65 * for the higher addr.
  66 *
  67 * Here, resolve the physical address from the virtual address, and return
  68 * a pointer to the corresponding tag byte.  Exit with exception if the
  69 * virtual address is not accessible for @ptr_access.
  70 *
  71 * The @ptr_size and @tag_size values may not have an obvious relation
  72 * due to the alignment of @ptr, and the number of tag checks required.
  73 *
  74 * If there is no tag storage corresponding to @ptr, return NULL.
  75 */
  76static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
  77                                   uint64_t ptr, MMUAccessType ptr_access,
  78                                   int ptr_size, MMUAccessType tag_access,
  79                                   int tag_size, uintptr_t ra)
  80{
  81#ifdef CONFIG_USER_ONLY
  82    uint64_t clean_ptr = useronly_clean_ptr(ptr);
  83    int flags = page_get_flags(clean_ptr);
  84    uint8_t *tags;
  85    uintptr_t index;
  86
  87    if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
  88        cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
  89                              !(flags & PAGE_VALID), ra);
  90    }
  91
  92    /* Require both MAP_ANON and PROT_MTE for the page. */
  93    if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
  94        return NULL;
  95    }
  96
  97    tags = page_get_target_data(clean_ptr);
  98
  99    index = extract32(ptr, LOG2_TAG_GRANULE + 1,
 100                      TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
 101    return tags + index;
 102#else
 103    CPUTLBEntryFull *full;
 104    MemTxAttrs attrs;
 105    int in_page, flags;
 106    hwaddr ptr_paddr, tag_paddr, xlat;
 107    MemoryRegion *mr;
 108    ARMASIdx tag_asi;
 109    AddressSpace *tag_as;
 110    void *host;
 111
 112    /*
 113     * Probe the first byte of the virtual address.  This raises an
 114     * exception for inaccessible pages, and resolves the virtual address
 115     * into the softmmu tlb.
 116     *
 117     * When RA == 0, this is for mte_probe.  The page is expected to be
 118     * valid.  Indicate to probe_access_flags no-fault, then assert that
 119     * we received a valid page.
 120     */
 121    flags = probe_access_full(env, ptr, ptr_access, ptr_mmu_idx,
 122                              ra == 0, &host, &full, ra);
 123    assert(!(flags & TLB_INVALID_MASK));
 124
 125    /* If the virtual page MemAttr != Tagged, access unchecked. */
 126    if (full->pte_attrs != 0xf0) {
 127        return NULL;
 128    }
 129
 130    /*
 131     * If not backed by host ram, there is no tag storage: access unchecked.
 132     * This is probably a guest os bug though, so log it.
 133     */
 134    if (unlikely(flags & TLB_MMIO)) {
 135        qemu_log_mask(LOG_GUEST_ERROR,
 136                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
 137                      "but is not backed by host ram\n", ptr);
 138        return NULL;
 139    }
 140
 141    /*
 142     * Remember these values across the second lookup below,
 143     * which may invalidate this pointer via tlb resize.
 144     */
 145    ptr_paddr = full->phys_addr;
 146    attrs = full->attrs;
 147    full = NULL;
 148
 149    /*
 150     * The Normal memory access can extend to the next page.  E.g. a single
 151     * 8-byte access to the last byte of a page will check only the last
 152     * tag on the first page.
 153     * Any page access exception has priority over tag check exception.
 154     */
 155    in_page = -(ptr | TARGET_PAGE_MASK);
 156    if (unlikely(ptr_size > in_page)) {
 157        flags |= probe_access_full(env, ptr + in_page, ptr_access,
 158                                   ptr_mmu_idx, ra == 0, &host, &full, ra);
 159        assert(!(flags & TLB_INVALID_MASK));
 160    }
 161
 162    /* Any debug exception has priority over a tag check exception. */
 163    if (unlikely(flags & TLB_WATCHPOINT)) {
 164        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
 165        assert(ra != 0);
 166        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
 167    }
 168
 169    /* Convert to the physical address in tag space.  */
 170    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
 171
 172    /* Look up the address in tag space. */
 173    tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
 174    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
 175    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
 176                                 tag_access == MMU_DATA_STORE, attrs);
 177
 178    /*
 179     * Note that @mr will never be NULL.  If there is nothing in the address
 180     * space at @tag_paddr, the translation will return the unallocated memory
 181     * region.  For our purposes, the result must be ram.
 182     */
 183    if (unlikely(!memory_region_is_ram(mr))) {
 184        /* ??? Failure is a board configuration error. */
 185        qemu_log_mask(LOG_UNIMP,
 186                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
 187                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
 188                      tag_paddr, ptr_paddr);
 189        return NULL;
 190    }
 191
 192    /*
 193     * Ensure the tag memory is dirty on write, for migration.
 194     * Tag memory can never contain code or display memory (vga).
 195     */
 196    if (tag_access == MMU_DATA_STORE) {
 197        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
 198        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
 199    }
 200
 201    return memory_region_get_ram_ptr(mr) + xlat;
 202#endif
 203}
 204
 205uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
 206{
 207    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
 208    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
 209    int start = extract32(env->cp15.rgsr_el1, 0, 4);
 210    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
 211    int offset, i, rtag;
 212
 213    /*
 214     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
 215     * deterministic algorithm.  Except that with RRND==1 the kernel is
 216     * not required to have set RGSR_EL1.SEED != 0, which is required for
 217     * the deterministic algorithm to function.  So we force a non-zero
 218     * SEED for that case.
 219     */
 220    if (unlikely(seed == 0) && rrnd) {
 221        do {
 222            Error *err = NULL;
 223            uint16_t two;
 224
 225            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
 226                /*
 227                 * Failed, for unknown reasons in the crypto subsystem.
 228                 * Best we can do is log the reason and use a constant seed.
 229                 */
 230                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
 231                              error_get_pretty(err));
 232                error_free(err);
 233                two = 1;
 234            }
 235            seed = two;
 236        } while (seed == 0);
 237    }
 238
 239    /* RandomTag */
 240    for (i = offset = 0; i < 4; ++i) {
 241        /* NextRandomTagBit */
 242        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
 243                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
 244        seed = (top << 15) | (seed >> 1);
 245        offset |= top << i;
 246    }
 247    rtag = choose_nonexcluded_tag(start, offset, exclude);
 248    env->cp15.rgsr_el1 = rtag | (seed << 8);
 249
 250    return address_with_allocation_tag(rn, rtag);
 251}
 252
 253uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
 254                         int32_t offset, uint32_t tag_offset)
 255{
 256    int start_tag = allocation_tag_from_addr(ptr);
 257    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
 258    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
 259
 260    return address_with_allocation_tag(ptr + offset, rtag);
 261}
 262
 263static int load_tag1(uint64_t ptr, uint8_t *mem)
 264{
 265    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 266    return extract32(*mem, ofs, 4);
 267}
 268
 269uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 270{
 271    int mmu_idx = cpu_mmu_index(env, false);
 272    uint8_t *mem;
 273    int rtag = 0;
 274
 275    /* Trap if accessing an invalid page.  */
 276    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
 277                             MMU_DATA_LOAD, 1, GETPC());
 278
 279    /* Load if page supports tags. */
 280    if (mem) {
 281        rtag = load_tag1(ptr, mem);
 282    }
 283
 284    return address_with_allocation_tag(xt, rtag);
 285}
 286
 287static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
 288{
 289    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
 290        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
 291                                    cpu_mmu_index(env, false), ra);
 292        g_assert_not_reached();
 293    }
 294}
 295
 296/* For use in a non-parallel context, store to the given nibble.  */
 297static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
 298{
 299    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 300    *mem = deposit32(*mem, ofs, 4, tag);
 301}
 302
 303/* For use in a parallel context, atomically store to the given nibble.  */
 304static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
 305{
 306    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 307    uint8_t old = qatomic_read(mem);
 308
 309    while (1) {
 310        uint8_t new = deposit32(old, ofs, 4, tag);
 311        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
 312        if (likely(cmp == old)) {
 313            return;
 314        }
 315        old = cmp;
 316    }
 317}
 318
 319typedef void stg_store1(uint64_t, uint8_t *, int);
 320
 321static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
 322                          uintptr_t ra, stg_store1 store1)
 323{
 324    int mmu_idx = cpu_mmu_index(env, false);
 325    uint8_t *mem;
 326
 327    check_tag_aligned(env, ptr, ra);
 328
 329    /* Trap if accessing an invalid page.  */
 330    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
 331                             MMU_DATA_STORE, 1, ra);
 332
 333    /* Store if page supports tags. */
 334    if (mem) {
 335        store1(ptr, mem, allocation_tag_from_addr(xt));
 336    }
 337}
 338
 339void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 340{
 341    do_stg(env, ptr, xt, GETPC(), store_tag1);
 342}
 343
 344void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 345{
 346    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
 347}
 348
 349void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
 350{
 351    int mmu_idx = cpu_mmu_index(env, false);
 352    uintptr_t ra = GETPC();
 353
 354    check_tag_aligned(env, ptr, ra);
 355    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 356}
 357
 358static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
 359                           uintptr_t ra, stg_store1 store1)
 360{
 361    int mmu_idx = cpu_mmu_index(env, false);
 362    int tag = allocation_tag_from_addr(xt);
 363    uint8_t *mem1, *mem2;
 364
 365    check_tag_aligned(env, ptr, ra);
 366
 367    /*
 368     * Trap if accessing an invalid page(s).
 369     * This takes priority over !allocation_tag_access_enabled.
 370     */
 371    if (ptr & TAG_GRANULE) {
 372        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
 373        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 374                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 375        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
 376                                  MMU_DATA_STORE, TAG_GRANULE,
 377                                  MMU_DATA_STORE, 1, ra);
 378
 379        /* Store if page(s) support tags. */
 380        if (mem1) {
 381            store1(TAG_GRANULE, mem1, tag);
 382        }
 383        if (mem2) {
 384            store1(0, mem2, tag);
 385        }
 386    } else {
 387        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
 388        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 389                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 390        if (mem1) {
 391            tag |= tag << 4;
 392            qatomic_set(mem1, tag);
 393        }
 394    }
 395}
 396
 397void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 398{
 399    do_st2g(env, ptr, xt, GETPC(), store_tag1);
 400}
 401
 402void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 403{
 404    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
 405}
 406
 407void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
 408{
 409    int mmu_idx = cpu_mmu_index(env, false);
 410    uintptr_t ra = GETPC();
 411    int in_page = -(ptr | TARGET_PAGE_MASK);
 412
 413    check_tag_aligned(env, ptr, ra);
 414
 415    if (likely(in_page >= 2 * TAG_GRANULE)) {
 416        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
 417    } else {
 418        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 419        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
 420    }
 421}
 422
 423#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
 424
 425uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
 426{
 427    int mmu_idx = cpu_mmu_index(env, false);
 428    uintptr_t ra = GETPC();
 429    void *tag_mem;
 430
 431    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 432
 433    /* Trap if accessing an invalid page.  */
 434    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
 435                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 436                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 437
 438    /* The tag is squashed to zero if the page does not support tags.  */
 439    if (!tag_mem) {
 440        return 0;
 441    }
 442
 443    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 444    /*
 445     * We are loading 64-bits worth of tags.  The ordering of elements
 446     * within the word corresponds to a 64-bit little-endian operation.
 447     */
 448    return ldq_le_p(tag_mem);
 449}
 450
 451void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
 452{
 453    int mmu_idx = cpu_mmu_index(env, false);
 454    uintptr_t ra = GETPC();
 455    void *tag_mem;
 456
 457    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 458
 459    /* Trap if accessing an invalid page.  */
 460    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 461                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 462                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 463
 464    /*
 465     * Tag store only happens if the page support tags,
 466     * and if the OS has enabled access to the tags.
 467     */
 468    if (!tag_mem) {
 469        return;
 470    }
 471
 472    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 473    /*
 474     * We are storing 64-bits worth of tags.  The ordering of elements
 475     * within the word corresponds to a 64-bit little-endian operation.
 476     */
 477    stq_le_p(tag_mem, val);
 478}
 479
 480void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
 481{
 482    uintptr_t ra = GETPC();
 483    int mmu_idx = cpu_mmu_index(env, false);
 484    int log2_dcz_bytes, log2_tag_bytes;
 485    intptr_t dcz_bytes, tag_bytes;
 486    uint8_t *mem;
 487
 488    /*
 489     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
 490     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
 491     * to make sure that we can access one complete tag byte here.
 492     */
 493    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 494    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 495    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 496    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 497    ptr &= -dcz_bytes;
 498
 499    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
 500                             MMU_DATA_STORE, tag_bytes, ra);
 501    if (mem) {
 502        int tag_pair = (val & 0xf) * 0x11;
 503        memset(mem, tag_pair, tag_bytes);
 504    }
 505}
 506
 507static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
 508                                uint64_t dirty_ptr, uintptr_t ra)
 509{
 510    int is_write, syn;
 511
 512    env->exception.vaddress = dirty_ptr;
 513
 514    is_write = FIELD_EX32(desc, MTEDESC, WRITE);
 515    syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
 516                                0x11);
 517    raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
 518    g_assert_not_reached();
 519}
 520
 521static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
 522                                 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
 523{
 524    int select;
 525
 526    if (regime_has_2_ranges(arm_mmu_idx)) {
 527        select = extract64(dirty_ptr, 55, 1);
 528    } else {
 529        select = 0;
 530    }
 531    env->cp15.tfsr_el[el] |= 1 << select;
 532#ifdef CONFIG_USER_ONLY
 533    /*
 534     * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
 535     * which then sends a SIGSEGV when the thread is next scheduled.
 536     * This cpu will return to the main loop at the end of the TB,
 537     * which is rather sooner than "normal".  But the alternative
 538     * is waiting until the next syscall.
 539     */
 540    qemu_cpu_kick(env_cpu(env));
 541#endif
 542}
 543
 544/* Record a tag check failure.  */
 545static void mte_check_fail(CPUARMState *env, uint32_t desc,
 546                           uint64_t dirty_ptr, uintptr_t ra)
 547{
 548    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 549    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
 550    int el, reg_el, tcf;
 551    uint64_t sctlr;
 552
 553    reg_el = regime_el(env, arm_mmu_idx);
 554    sctlr = env->cp15.sctlr_el[reg_el];
 555
 556    switch (arm_mmu_idx) {
 557    case ARMMMUIdx_E10_0:
 558    case ARMMMUIdx_E20_0:
 559        el = 0;
 560        tcf = extract64(sctlr, 38, 2);
 561        break;
 562    default:
 563        el = reg_el;
 564        tcf = extract64(sctlr, 40, 2);
 565    }
 566
 567    switch (tcf) {
 568    case 1:
 569        /* Tag check fail causes a synchronous exception. */
 570        mte_sync_check_fail(env, desc, dirty_ptr, ra);
 571        break;
 572
 573    case 0:
 574        /*
 575         * Tag check fail does not affect the PE.
 576         * We eliminate this case by not setting MTE_ACTIVE
 577         * in tb_flags, so that we never make this runtime call.
 578         */
 579        g_assert_not_reached();
 580
 581    case 2:
 582        /* Tag check fail causes asynchronous flag set.  */
 583        mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 584        break;
 585
 586    case 3:
 587        /*
 588         * Tag check fail causes asynchronous flag set for stores, or
 589         * a synchronous exception for loads.
 590         */
 591        if (FIELD_EX32(desc, MTEDESC, WRITE)) {
 592            mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 593        } else {
 594            mte_sync_check_fail(env, desc, dirty_ptr, ra);
 595        }
 596        break;
 597    }
 598}
 599
 600/**
 601 * checkN:
 602 * @tag: tag memory to test
 603 * @odd: true to begin testing at tags at odd nibble
 604 * @cmp: the tag to compare against
 605 * @count: number of tags to test
 606 *
 607 * Return the number of successful tests.
 608 * Thus a return value < @count indicates a failure.
 609 *
 610 * A note about sizes: count is expected to be small.
 611 *
 612 * The most common use will be LDP/STP of two integer registers,
 613 * which means 16 bytes of memory touching at most 2 tags, but
 614 * often the access is aligned and thus just 1 tag.
 615 *
 616 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 617 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 618 * vector length is also 64 bytes; the maximum architectural length
 619 * is 256 bytes touching at most 9 tags.
 620 *
 621 * The loop below uses 7 logical operations and 1 memory operation
 622 * per tag pair.  An implementation that loads an aligned word and
 623 * uses masking to ignore adjacent tags requires 18 logical operations
 624 * and thus does not begin to pay off until 6 tags.
 625 * Which, according to the survey above, is unlikely to be common.
 626 */
 627static int checkN(uint8_t *mem, int odd, int cmp, int count)
 628{
 629    int n = 0, diff;
 630
 631    /* Replicate the test tag and compare.  */
 632    cmp *= 0x11;
 633    diff = *mem++ ^ cmp;
 634
 635    if (odd) {
 636        goto start_odd;
 637    }
 638
 639    while (1) {
 640        /* Test even tag. */
 641        if (unlikely((diff) & 0x0f)) {
 642            break;
 643        }
 644        if (++n == count) {
 645            break;
 646        }
 647
 648    start_odd:
 649        /* Test odd tag. */
 650        if (unlikely((diff) & 0xf0)) {
 651            break;
 652        }
 653        if (++n == count) {
 654            break;
 655        }
 656
 657        diff = *mem++ ^ cmp;
 658    }
 659    return n;
 660}
 661
 662/**
 663 * mte_probe_int() - helper for mte_probe and mte_check
 664 * @env: CPU environment
 665 * @desc: MTEDESC descriptor
 666 * @ptr: virtual address of the base of the access
 667 * @fault: return virtual address of the first check failure
 668 *
 669 * Internal routine for both mte_probe and mte_check.
 670 * Return zero on failure, filling in *fault.
 671 * Return negative on trivial success for tbi disabled.
 672 * Return positive on success with tbi enabled.
 673 */
 674static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
 675                         uintptr_t ra, uint64_t *fault)
 676{
 677    int mmu_idx, ptr_tag, bit55;
 678    uint64_t ptr_last, prev_page, next_page;
 679    uint64_t tag_first, tag_last;
 680    uint64_t tag_byte_first, tag_byte_last;
 681    uint32_t sizem1, tag_count, tag_size, n, c;
 682    uint8_t *mem1, *mem2;
 683    MMUAccessType type;
 684
 685    bit55 = extract64(ptr, 55, 1);
 686    *fault = ptr;
 687
 688    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 689    if (unlikely(!tbi_check(desc, bit55))) {
 690        return -1;
 691    }
 692
 693    ptr_tag = allocation_tag_from_addr(ptr);
 694
 695    if (tcma_check(desc, bit55, ptr_tag)) {
 696        return 1;
 697    }
 698
 699    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 700    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 701    sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
 702
 703    /* Find the addr of the end of the access */
 704    ptr_last = ptr + sizem1;
 705
 706    /* Round the bounds to the tag granule, and compute the number of tags. */
 707    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
 708    tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
 709    tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
 710
 711    /* Round the bounds to twice the tag granule, and compute the bytes. */
 712    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
 713    tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
 714
 715    /* Locate the page boundaries. */
 716    prev_page = ptr & TARGET_PAGE_MASK;
 717    next_page = prev_page + TARGET_PAGE_SIZE;
 718
 719    if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
 720        /* Memory access stays on one page. */
 721        tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
 722        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
 723                                  MMU_DATA_LOAD, tag_size, ra);
 724        if (!mem1) {
 725            return 1;
 726        }
 727        /* Perform all of the comparisons. */
 728        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
 729    } else {
 730        /* Memory access crosses to next page. */
 731        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
 732        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
 733                                  MMU_DATA_LOAD, tag_size, ra);
 734
 735        tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
 736        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
 737                                  ptr_last - next_page + 1,
 738                                  MMU_DATA_LOAD, tag_size, ra);
 739
 740        /*
 741         * Perform all of the comparisons.
 742         * Note the possible but unlikely case of the operation spanning
 743         * two pages that do not both have tagging enabled.
 744         */
 745        n = c = (next_page - tag_first) / TAG_GRANULE;
 746        if (mem1) {
 747            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
 748        }
 749        if (n == c) {
 750            if (!mem2) {
 751                return 1;
 752            }
 753            n += checkN(mem2, 0, ptr_tag, tag_count - c);
 754        }
 755    }
 756
 757    if (likely(n == tag_count)) {
 758        return 1;
 759    }
 760
 761    /*
 762     * If we failed, we know which granule.  For the first granule, the
 763     * failure address is @ptr, the first byte accessed.  Otherwise the
 764     * failure address is the first byte of the nth granule.
 765     */
 766    if (n > 0) {
 767        *fault = tag_first + n * TAG_GRANULE;
 768    }
 769    return 0;
 770}
 771
 772uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
 773{
 774    uint64_t fault;
 775    int ret = mte_probe_int(env, desc, ptr, ra, &fault);
 776
 777    if (unlikely(ret == 0)) {
 778        mte_check_fail(env, desc, fault, ra);
 779    } else if (ret < 0) {
 780        return ptr;
 781    }
 782    return useronly_clean_ptr(ptr);
 783}
 784
 785uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 786{
 787    return mte_check(env, desc, ptr, GETPC());
 788}
 789
 790/*
 791 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
 792 * Returns false if the access is Checked and the check failed.  This
 793 * is only intended to probe the tag -- the validity of the page must
 794 * be checked beforehand.
 795 */
 796bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
 797{
 798    uint64_t fault;
 799    int ret = mte_probe_int(env, desc, ptr, 0, &fault);
 800
 801    return ret != 0;
 802}
 803
 804/*
 805 * Perform an MTE checked access for DC_ZVA.
 806 */
 807uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 808{
 809    uintptr_t ra = GETPC();
 810    int log2_dcz_bytes, log2_tag_bytes;
 811    int mmu_idx, bit55;
 812    intptr_t dcz_bytes, tag_bytes, i;
 813    void *mem;
 814    uint64_t ptr_tag, mem_tag, align_ptr;
 815
 816    bit55 = extract64(ptr, 55, 1);
 817
 818    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 819    if (unlikely(!tbi_check(desc, bit55))) {
 820        return ptr;
 821    }
 822
 823    ptr_tag = allocation_tag_from_addr(ptr);
 824
 825    if (tcma_check(desc, bit55, ptr_tag)) {
 826        goto done;
 827    }
 828
 829    /*
 830     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
 831     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
 832     * sure that we can access one complete tag byte here.
 833     */
 834    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 835    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 836    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 837    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 838    align_ptr = ptr & -dcz_bytes;
 839
 840    /*
 841     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 842     * the original pointer for an invalid page.  But watchpoints require
 843     * that we probe the actual space.  So do both.
 844     */
 845    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 846    (void) probe_write(env, ptr, 1, mmu_idx, ra);
 847    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
 848                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
 849    if (!mem) {
 850        goto done;
 851    }
 852
 853    /*
 854     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
 855     * it is quite easy to perform all of the comparisons at once without
 856     * any extra masking.
 857     *
 858     * The most common zva block size is 64; some of the thunderx cpus use
 859     * a block size of 128.  For user-only, aarch64_max_initfn will set the
 860     * block size to 512.  Fill out the other cases for future-proofing.
 861     *
 862     * In order to be able to find the first miscompare later, we want the
 863     * tag bytes to be in little-endian order.
 864     */
 865    switch (log2_tag_bytes) {
 866    case 0: /* zva_blocksize 32 */
 867        mem_tag = *(uint8_t *)mem;
 868        ptr_tag *= 0x11u;
 869        break;
 870    case 1: /* zva_blocksize 64 */
 871        mem_tag = cpu_to_le16(*(uint16_t *)mem);
 872        ptr_tag *= 0x1111u;
 873        break;
 874    case 2: /* zva_blocksize 128 */
 875        mem_tag = cpu_to_le32(*(uint32_t *)mem);
 876        ptr_tag *= 0x11111111u;
 877        break;
 878    case 3: /* zva_blocksize 256 */
 879        mem_tag = cpu_to_le64(*(uint64_t *)mem);
 880        ptr_tag *= 0x1111111111111111ull;
 881        break;
 882
 883    default: /* zva_blocksize 512, 1024, 2048 */
 884        ptr_tag *= 0x1111111111111111ull;
 885        i = 0;
 886        do {
 887            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
 888            if (unlikely(mem_tag != ptr_tag)) {
 889                goto fail;
 890            }
 891            i += 8;
 892            align_ptr += 16 * TAG_GRANULE;
 893        } while (i < tag_bytes);
 894        goto done;
 895    }
 896
 897    if (likely(mem_tag == ptr_tag)) {
 898        goto done;
 899    }
 900
 901 fail:
 902    /* Locate the first nibble that differs. */
 903    i = ctz64(mem_tag ^ ptr_tag) >> 4;
 904    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
 905
 906 done:
 907    return useronly_clean_ptr(ptr);
 908}
 909