qemu/util/coroutine-sigaltstack.c
<<
>>
Prefs
   1/*
   2 * sigaltstack coroutine initialization code
   3 *
   4 * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
   5 * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
   6 * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
   7** This file is partly based on pth_mctx.c, from the GNU Portable Threads
   8**  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
   9 *
  10 * This library is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU Lesser General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2.1 of the License, or (at your option) any later version.
  14 *
  15 * This library is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * Lesser General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU Lesser General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
  25#ifdef _FORTIFY_SOURCE
  26#undef _FORTIFY_SOURCE
  27#endif
  28#include "qemu/osdep.h"
  29#include <pthread.h>
  30#include "qemu/coroutine_int.h"
  31
  32#ifdef CONFIG_SAFESTACK
  33#error "SafeStack is not compatible with code run in alternate signal stacks"
  34#endif
  35
  36typedef struct {
  37    Coroutine base;
  38    void *stack;
  39    size_t stack_size;
  40    sigjmp_buf env;
  41} CoroutineSigAltStack;
  42
  43/**
  44 * Per-thread coroutine bookkeeping
  45 */
  46typedef struct {
  47    /** Currently executing coroutine */
  48    Coroutine *current;
  49
  50    /** The default coroutine */
  51    CoroutineSigAltStack leader;
  52
  53    /** Information for the signal handler (trampoline) */
  54    sigjmp_buf tr_reenter;
  55    volatile sig_atomic_t tr_called;
  56    void *tr_handler;
  57} CoroutineThreadState;
  58
  59static pthread_key_t thread_state_key;
  60
  61static CoroutineThreadState *coroutine_get_thread_state(void)
  62{
  63    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
  64
  65    if (!s) {
  66        s = g_malloc0(sizeof(*s));
  67        s->current = &s->leader.base;
  68        pthread_setspecific(thread_state_key, s);
  69    }
  70    return s;
  71}
  72
  73static void qemu_coroutine_thread_cleanup(void *opaque)
  74{
  75    CoroutineThreadState *s = opaque;
  76
  77    g_free(s);
  78}
  79
  80static void __attribute__((constructor)) coroutine_init(void)
  81{
  82    int ret;
  83
  84    ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
  85    if (ret != 0) {
  86        fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
  87        abort();
  88    }
  89}
  90
  91/* "boot" function
  92 * This is what starts the coroutine, is called from the trampoline
  93 * (from the signal handler when it is not signal handling, read ahead
  94 * for more information).
  95 */
  96static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co)
  97{
  98    /* Initialize longjmp environment and switch back the caller */
  99    if (!sigsetjmp(self->env, 0)) {
 100        siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
 101    }
 102
 103    while (true) {
 104        co->entry(co->entry_arg);
 105        qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
 106    }
 107}
 108
 109/*
 110 * This is used as the signal handler. This is called with the brand new stack
 111 * (thanks to sigaltstack). We have to return, given that this is a signal
 112 * handler and the sigmask and some other things are changed.
 113 */
 114static void coroutine_trampoline(int signal)
 115{
 116    CoroutineSigAltStack *self;
 117    Coroutine *co;
 118    CoroutineThreadState *coTS;
 119
 120    /* Get the thread specific information */
 121    coTS = coroutine_get_thread_state();
 122    self = coTS->tr_handler;
 123    coTS->tr_called = 1;
 124    co = &self->base;
 125
 126    /*
 127     * Here we have to do a bit of a ping pong between the caller, given that
 128     * this is a signal handler and we have to do a return "soon". Then the
 129     * caller can reestablish everything and do a siglongjmp here again.
 130     */
 131    if (!sigsetjmp(coTS->tr_reenter, 0)) {
 132        return;
 133    }
 134
 135    /*
 136     * Ok, the caller has siglongjmp'ed back to us, so now prepare
 137     * us for the real machine state switching. We have to jump
 138     * into another function here to get a new stack context for
 139     * the auto variables (which have to be auto-variables
 140     * because the start of the thread happens later). Else with
 141     * PIC (i.e. Position Independent Code which is used when PTH
 142     * is built as a shared library) most platforms would
 143     * horrible core dump as experience showed.
 144     */
 145    coroutine_bootstrap(self, co);
 146}
 147
 148Coroutine *qemu_coroutine_new(void)
 149{
 150    CoroutineSigAltStack *co;
 151    CoroutineThreadState *coTS;
 152    struct sigaction sa;
 153    struct sigaction osa;
 154    stack_t ss;
 155    stack_t oss;
 156    sigset_t sigs;
 157    sigset_t osigs;
 158    sigjmp_buf old_env;
 159    static pthread_mutex_t sigusr2_mutex = PTHREAD_MUTEX_INITIALIZER;
 160
 161    /* The way to manipulate stack is with the sigaltstack function. We
 162     * prepare a stack, with it delivering a signal to ourselves and then
 163     * put sigsetjmp/siglongjmp where needed.
 164     * This has been done keeping coroutine-ucontext as a model and with the
 165     * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
 166     * of the coroutines and see pth_mctx.c (from the pth project) for the
 167     * sigaltstack way of manipulating stacks.
 168     */
 169
 170    co = g_malloc0(sizeof(*co));
 171    co->stack_size = COROUTINE_STACK_SIZE;
 172    co->stack = qemu_alloc_stack(&co->stack_size);
 173    co->base.entry_arg = &old_env; /* stash away our jmp_buf */
 174
 175    coTS = coroutine_get_thread_state();
 176    coTS->tr_handler = co;
 177
 178    /*
 179     * Preserve the SIGUSR2 signal state, block SIGUSR2,
 180     * and establish our signal handler. The signal will
 181     * later transfer control onto the signal stack.
 182     */
 183    sigemptyset(&sigs);
 184    sigaddset(&sigs, SIGUSR2);
 185    pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
 186    sa.sa_handler = coroutine_trampoline;
 187    sigfillset(&sa.sa_mask);
 188    sa.sa_flags = SA_ONSTACK;
 189
 190    /*
 191     * sigaction() is a process-global operation.  We must not run
 192     * this code in multiple threads at once.
 193     */
 194    pthread_mutex_lock(&sigusr2_mutex);
 195    if (sigaction(SIGUSR2, &sa, &osa) != 0) {
 196        abort();
 197    }
 198
 199    /*
 200     * Set the new stack.
 201     */
 202    ss.ss_sp = co->stack;
 203    ss.ss_size = co->stack_size;
 204    ss.ss_flags = 0;
 205    if (sigaltstack(&ss, &oss) < 0) {
 206        abort();
 207    }
 208
 209    /*
 210     * Now transfer control onto the signal stack and set it up.
 211     * It will return immediately via "return" after the sigsetjmp()
 212     * was performed. Be careful here with race conditions.  The
 213     * signal can be delivered the first time sigsuspend() is
 214     * called.
 215     */
 216    coTS->tr_called = 0;
 217    pthread_kill(pthread_self(), SIGUSR2);
 218    sigfillset(&sigs);
 219    sigdelset(&sigs, SIGUSR2);
 220    while (!coTS->tr_called) {
 221        sigsuspend(&sigs);
 222    }
 223
 224    /*
 225     * Inform the system that we are back off the signal stack by
 226     * removing the alternative signal stack. Be careful here: It
 227     * first has to be disabled, before it can be removed.
 228     */
 229    sigaltstack(NULL, &ss);
 230    ss.ss_flags = SS_DISABLE;
 231    if (sigaltstack(&ss, NULL) < 0) {
 232        abort();
 233    }
 234    sigaltstack(NULL, &ss);
 235    if (!(oss.ss_flags & SS_DISABLE)) {
 236        sigaltstack(&oss, NULL);
 237    }
 238
 239    /*
 240     * Restore the old SIGUSR2 signal handler and mask
 241     */
 242    sigaction(SIGUSR2, &osa, NULL);
 243    pthread_mutex_unlock(&sigusr2_mutex);
 244
 245    pthread_sigmask(SIG_SETMASK, &osigs, NULL);
 246
 247    /*
 248     * Now enter the trampoline again, but this time not as a signal
 249     * handler. Instead we jump into it directly. The functionally
 250     * redundant ping-pong pointer arithmetic is necessary to avoid
 251     * type-conversion warnings related to the `volatile' qualifier and
 252     * the fact that `jmp_buf' usually is an array type.
 253     */
 254    if (!sigsetjmp(old_env, 0)) {
 255        siglongjmp(coTS->tr_reenter, 1);
 256    }
 257
 258    /*
 259     * Ok, we returned again, so now we're finished
 260     */
 261
 262    return &co->base;
 263}
 264
 265void qemu_coroutine_delete(Coroutine *co_)
 266{
 267    CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_);
 268
 269    qemu_free_stack(co->stack, co->stack_size);
 270    g_free(co);
 271}
 272
 273CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
 274                                      CoroutineAction action)
 275{
 276    CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_);
 277    CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_);
 278    CoroutineThreadState *s = coroutine_get_thread_state();
 279    int ret;
 280
 281    s->current = to_;
 282
 283    ret = sigsetjmp(from->env, 0);
 284    if (ret == 0) {
 285        siglongjmp(to->env, action);
 286    }
 287    return ret;
 288}
 289
 290Coroutine *qemu_coroutine_self(void)
 291{
 292    CoroutineThreadState *s = coroutine_get_thread_state();
 293
 294    return s->current;
 295}
 296
 297bool qemu_in_coroutine(void)
 298{
 299    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
 300
 301    return s && s->current->caller;
 302}
 303
 304