qemu/hw/core/loader.c
<<
>>
Prefs
   1/*
   2 * QEMU Executable loader
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 *
  24 * Gunzip functionality in this file is derived from u-boot:
  25 *
  26 * (C) Copyright 2008 Semihalf
  27 *
  28 * (C) Copyright 2000-2005
  29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  30 *
  31 * This program is free software; you can redistribute it and/or
  32 * modify it under the terms of the GNU General Public License as
  33 * published by the Free Software Foundation; either version 2 of
  34 * the License, or (at your option) any later version.
  35 *
  36 * This program is distributed in the hope that it will be useful,
  37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  39 * GNU General Public License for more details.
  40 *
  41 * You should have received a copy of the GNU General Public License along
  42 * with this program; if not, see <http://www.gnu.org/licenses/>.
  43 */
  44
  45#include "qemu/osdep.h"
  46#include "qemu/datadir.h"
  47#include "qapi/error.h"
  48#include "qapi/qapi-commands-machine.h"
  49#include "qapi/type-helpers.h"
  50#include "trace.h"
  51#include "hw/hw.h"
  52#include "disas/disas.h"
  53#include "migration/vmstate.h"
  54#include "monitor/monitor.h"
  55#include "sysemu/reset.h"
  56#include "sysemu/sysemu.h"
  57#include "uboot_image.h"
  58#include "hw/loader.h"
  59#include "hw/nvram/fw_cfg.h"
  60#include "exec/memory.h"
  61#include "hw/boards.h"
  62#include "qemu/cutils.h"
  63#include "sysemu/runstate.h"
  64
  65#include <zlib.h>
  66
  67static int roms_loaded;
  68
  69/* return the size or -1 if error */
  70int64_t get_image_size(const char *filename)
  71{
  72    int fd;
  73    int64_t size;
  74    fd = open(filename, O_RDONLY | O_BINARY);
  75    if (fd < 0)
  76        return -1;
  77    size = lseek(fd, 0, SEEK_END);
  78    close(fd);
  79    return size;
  80}
  81
  82/* return the size or -1 if error */
  83ssize_t load_image_size(const char *filename, void *addr, size_t size)
  84{
  85    int fd;
  86    ssize_t actsize, l = 0;
  87
  88    fd = open(filename, O_RDONLY | O_BINARY);
  89    if (fd < 0) {
  90        return -1;
  91    }
  92
  93    while ((actsize = read(fd, addr + l, size - l)) > 0) {
  94        l += actsize;
  95    }
  96
  97    close(fd);
  98
  99    return actsize < 0 ? -1 : l;
 100}
 101
 102/* read()-like version */
 103ssize_t read_targphys(const char *name,
 104                      int fd, hwaddr dst_addr, size_t nbytes)
 105{
 106    uint8_t *buf;
 107    ssize_t did;
 108
 109    buf = g_malloc(nbytes);
 110    did = read(fd, buf, nbytes);
 111    if (did > 0)
 112        rom_add_blob_fixed("read", buf, did, dst_addr);
 113    g_free(buf);
 114    return did;
 115}
 116
 117ssize_t load_image_targphys(const char *filename,
 118                            hwaddr addr, uint64_t max_sz)
 119{
 120    return load_image_targphys_as(filename, addr, max_sz, NULL);
 121}
 122
 123/* return the size or -1 if error */
 124ssize_t load_image_targphys_as(const char *filename,
 125                               hwaddr addr, uint64_t max_sz, AddressSpace *as)
 126{
 127    ssize_t size;
 128
 129    size = get_image_size(filename);
 130    if (size < 0 || size > max_sz) {
 131        return -1;
 132    }
 133    if (size > 0) {
 134        if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
 135            return -1;
 136        }
 137    }
 138    return size;
 139}
 140
 141ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
 142{
 143    ssize_t size;
 144
 145    if (!memory_access_is_direct(mr, false)) {
 146        /* Can only load an image into RAM or ROM */
 147        return -1;
 148    }
 149
 150    size = get_image_size(filename);
 151
 152    if (size < 0 || size > memory_region_size(mr)) {
 153        return -1;
 154    }
 155    if (size > 0) {
 156        if (rom_add_file_mr(filename, mr, -1) < 0) {
 157            return -1;
 158        }
 159    }
 160    return size;
 161}
 162
 163void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
 164                      const char *source)
 165{
 166    const char *nulp;
 167    char *ptr;
 168
 169    if (buf_size <= 0) return;
 170    nulp = memchr(source, 0, buf_size);
 171    if (nulp) {
 172        rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
 173    } else {
 174        rom_add_blob_fixed(name, source, buf_size, dest);
 175        ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
 176        *ptr = 0;
 177    }
 178}
 179
 180/* A.OUT loader */
 181
 182struct exec
 183{
 184  uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
 185  uint32_t a_text;   /* length of text, in bytes */
 186  uint32_t a_data;   /* length of data, in bytes */
 187  uint32_t a_bss;    /* length of uninitialized data area, in bytes */
 188  uint32_t a_syms;   /* length of symbol table data in file, in bytes */
 189  uint32_t a_entry;  /* start address */
 190  uint32_t a_trsize; /* length of relocation info for text, in bytes */
 191  uint32_t a_drsize; /* length of relocation info for data, in bytes */
 192};
 193
 194static void bswap_ahdr(struct exec *e)
 195{
 196    bswap32s(&e->a_info);
 197    bswap32s(&e->a_text);
 198    bswap32s(&e->a_data);
 199    bswap32s(&e->a_bss);
 200    bswap32s(&e->a_syms);
 201    bswap32s(&e->a_entry);
 202    bswap32s(&e->a_trsize);
 203    bswap32s(&e->a_drsize);
 204}
 205
 206#define N_MAGIC(exec) ((exec).a_info & 0xffff)
 207#define OMAGIC 0407
 208#define NMAGIC 0410
 209#define ZMAGIC 0413
 210#define QMAGIC 0314
 211#define _N_HDROFF(x) (1024 - sizeof (struct exec))
 212#define N_TXTOFF(x)                                                     \
 213    (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :     \
 214     (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
 215#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
 216#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
 217
 218#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
 219
 220#define N_DATADDR(x, target_page_size) \
 221    (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
 222     : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
 223
 224
 225ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
 226                  int bswap_needed, hwaddr target_page_size)
 227{
 228    int fd;
 229    ssize_t size, ret;
 230    struct exec e;
 231    uint32_t magic;
 232
 233    fd = open(filename, O_RDONLY | O_BINARY);
 234    if (fd < 0)
 235        return -1;
 236
 237    size = read(fd, &e, sizeof(e));
 238    if (size < 0)
 239        goto fail;
 240
 241    if (bswap_needed) {
 242        bswap_ahdr(&e);
 243    }
 244
 245    magic = N_MAGIC(e);
 246    switch (magic) {
 247    case ZMAGIC:
 248    case QMAGIC:
 249    case OMAGIC:
 250        if (e.a_text + e.a_data > max_sz)
 251            goto fail;
 252        lseek(fd, N_TXTOFF(e), SEEK_SET);
 253        size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
 254        if (size < 0)
 255            goto fail;
 256        break;
 257    case NMAGIC:
 258        if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
 259            goto fail;
 260        lseek(fd, N_TXTOFF(e), SEEK_SET);
 261        size = read_targphys(filename, fd, addr, e.a_text);
 262        if (size < 0)
 263            goto fail;
 264        ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
 265                            e.a_data);
 266        if (ret < 0)
 267            goto fail;
 268        size += ret;
 269        break;
 270    default:
 271        goto fail;
 272    }
 273    close(fd);
 274    return size;
 275 fail:
 276    close(fd);
 277    return -1;
 278}
 279
 280/* ELF loader */
 281
 282static void *load_at(int fd, off_t offset, size_t size)
 283{
 284    void *ptr;
 285    if (lseek(fd, offset, SEEK_SET) < 0)
 286        return NULL;
 287    ptr = g_malloc(size);
 288    if (read(fd, ptr, size) != size) {
 289        g_free(ptr);
 290        return NULL;
 291    }
 292    return ptr;
 293}
 294
 295#ifdef ELF_CLASS
 296#undef ELF_CLASS
 297#endif
 298
 299#define ELF_CLASS   ELFCLASS32
 300#include "elf.h"
 301
 302#define SZ              32
 303#define elf_word        uint32_t
 304#define elf_sword        int32_t
 305#define bswapSZs        bswap32s
 306#include "hw/elf_ops.h"
 307
 308#undef elfhdr
 309#undef elf_phdr
 310#undef elf_shdr
 311#undef elf_sym
 312#undef elf_rela
 313#undef elf_note
 314#undef elf_word
 315#undef elf_sword
 316#undef bswapSZs
 317#undef SZ
 318#define elfhdr          elf64_hdr
 319#define elf_phdr        elf64_phdr
 320#define elf_note        elf64_note
 321#define elf_shdr        elf64_shdr
 322#define elf_sym         elf64_sym
 323#define elf_rela        elf64_rela
 324#define elf_word        uint64_t
 325#define elf_sword        int64_t
 326#define bswapSZs        bswap64s
 327#define SZ              64
 328#include "hw/elf_ops.h"
 329
 330const char *load_elf_strerror(ssize_t error)
 331{
 332    switch (error) {
 333    case 0:
 334        return "No error";
 335    case ELF_LOAD_FAILED:
 336        return "Failed to load ELF";
 337    case ELF_LOAD_NOT_ELF:
 338        return "The image is not ELF";
 339    case ELF_LOAD_WRONG_ARCH:
 340        return "The image is from incompatible architecture";
 341    case ELF_LOAD_WRONG_ENDIAN:
 342        return "The image has incorrect endianness";
 343    case ELF_LOAD_TOO_BIG:
 344        return "The image segments are too big to load";
 345    default:
 346        return "Unknown error";
 347    }
 348}
 349
 350void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
 351{
 352    int fd;
 353    uint8_t e_ident_local[EI_NIDENT];
 354    uint8_t *e_ident;
 355    size_t hdr_size, off;
 356    bool is64l;
 357
 358    if (!hdr) {
 359        hdr = e_ident_local;
 360    }
 361    e_ident = hdr;
 362
 363    fd = open(filename, O_RDONLY | O_BINARY);
 364    if (fd < 0) {
 365        error_setg_errno(errp, errno, "Failed to open file: %s", filename);
 366        return;
 367    }
 368    if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
 369        error_setg_errno(errp, errno, "Failed to read file: %s", filename);
 370        goto fail;
 371    }
 372    if (e_ident[0] != ELFMAG0 ||
 373        e_ident[1] != ELFMAG1 ||
 374        e_ident[2] != ELFMAG2 ||
 375        e_ident[3] != ELFMAG3) {
 376        error_setg(errp, "Bad ELF magic");
 377        goto fail;
 378    }
 379
 380    is64l = e_ident[EI_CLASS] == ELFCLASS64;
 381    hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
 382    if (is64) {
 383        *is64 = is64l;
 384    }
 385
 386    off = EI_NIDENT;
 387    while (hdr != e_ident_local && off < hdr_size) {
 388        size_t br = read(fd, hdr + off, hdr_size - off);
 389        switch (br) {
 390        case 0:
 391            error_setg(errp, "File too short: %s", filename);
 392            goto fail;
 393        case -1:
 394            error_setg_errno(errp, errno, "Failed to read file: %s",
 395                             filename);
 396            goto fail;
 397        }
 398        off += br;
 399    }
 400
 401fail:
 402    close(fd);
 403}
 404
 405/* return < 0 if error, otherwise the number of bytes loaded in memory */
 406ssize_t load_elf(const char *filename,
 407                 uint64_t (*elf_note_fn)(void *, void *, bool),
 408                 uint64_t (*translate_fn)(void *, uint64_t),
 409                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 410                 uint64_t *highaddr, uint32_t *pflags, int big_endian,
 411                 int elf_machine, int clear_lsb, int data_swab)
 412{
 413    return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
 414                       pentry, lowaddr, highaddr, pflags, big_endian,
 415                       elf_machine, clear_lsb, data_swab, NULL);
 416}
 417
 418/* return < 0 if error, otherwise the number of bytes loaded in memory */
 419ssize_t load_elf_as(const char *filename,
 420                    uint64_t (*elf_note_fn)(void *, void *, bool),
 421                    uint64_t (*translate_fn)(void *, uint64_t),
 422                    void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 423                    uint64_t *highaddr, uint32_t *pflags, int big_endian,
 424                    int elf_machine, int clear_lsb, int data_swab,
 425                    AddressSpace *as)
 426{
 427    return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
 428                        pentry, lowaddr, highaddr, pflags, big_endian,
 429                        elf_machine, clear_lsb, data_swab, as, true);
 430}
 431
 432/* return < 0 if error, otherwise the number of bytes loaded in memory */
 433ssize_t load_elf_ram(const char *filename,
 434                     uint64_t (*elf_note_fn)(void *, void *, bool),
 435                     uint64_t (*translate_fn)(void *, uint64_t),
 436                     void *translate_opaque, uint64_t *pentry,
 437                     uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
 438                     int big_endian, int elf_machine, int clear_lsb,
 439                     int data_swab, AddressSpace *as, bool load_rom)
 440{
 441    return load_elf_ram_sym(filename, elf_note_fn,
 442                            translate_fn, translate_opaque,
 443                            pentry, lowaddr, highaddr, pflags, big_endian,
 444                            elf_machine, clear_lsb, data_swab, as,
 445                            load_rom, NULL);
 446}
 447
 448/* return < 0 if error, otherwise the number of bytes loaded in memory */
 449ssize_t load_elf_ram_sym(const char *filename,
 450                         uint64_t (*elf_note_fn)(void *, void *, bool),
 451                         uint64_t (*translate_fn)(void *, uint64_t),
 452                         void *translate_opaque, uint64_t *pentry,
 453                         uint64_t *lowaddr, uint64_t *highaddr,
 454                         uint32_t *pflags, int big_endian, int elf_machine,
 455                         int clear_lsb, int data_swab,
 456                         AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
 457{
 458    int fd, data_order, target_data_order, must_swab;
 459    ssize_t ret = ELF_LOAD_FAILED;
 460    uint8_t e_ident[EI_NIDENT];
 461
 462    fd = open(filename, O_RDONLY | O_BINARY);
 463    if (fd < 0) {
 464        perror(filename);
 465        return -1;
 466    }
 467    if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
 468        goto fail;
 469    if (e_ident[0] != ELFMAG0 ||
 470        e_ident[1] != ELFMAG1 ||
 471        e_ident[2] != ELFMAG2 ||
 472        e_ident[3] != ELFMAG3) {
 473        ret = ELF_LOAD_NOT_ELF;
 474        goto fail;
 475    }
 476#if HOST_BIG_ENDIAN
 477    data_order = ELFDATA2MSB;
 478#else
 479    data_order = ELFDATA2LSB;
 480#endif
 481    must_swab = data_order != e_ident[EI_DATA];
 482    if (big_endian) {
 483        target_data_order = ELFDATA2MSB;
 484    } else {
 485        target_data_order = ELFDATA2LSB;
 486    }
 487
 488    if (target_data_order != e_ident[EI_DATA]) {
 489        ret = ELF_LOAD_WRONG_ENDIAN;
 490        goto fail;
 491    }
 492
 493    lseek(fd, 0, SEEK_SET);
 494    if (e_ident[EI_CLASS] == ELFCLASS64) {
 495        ret = load_elf64(filename, fd, elf_note_fn,
 496                         translate_fn, translate_opaque, must_swab,
 497                         pentry, lowaddr, highaddr, pflags, elf_machine,
 498                         clear_lsb, data_swab, as, load_rom, sym_cb);
 499    } else {
 500        ret = load_elf32(filename, fd, elf_note_fn,
 501                         translate_fn, translate_opaque, must_swab,
 502                         pentry, lowaddr, highaddr, pflags, elf_machine,
 503                         clear_lsb, data_swab, as, load_rom, sym_cb);
 504    }
 505
 506 fail:
 507    close(fd);
 508    return ret;
 509}
 510
 511static void bswap_uboot_header(uboot_image_header_t *hdr)
 512{
 513#if !HOST_BIG_ENDIAN
 514    bswap32s(&hdr->ih_magic);
 515    bswap32s(&hdr->ih_hcrc);
 516    bswap32s(&hdr->ih_time);
 517    bswap32s(&hdr->ih_size);
 518    bswap32s(&hdr->ih_load);
 519    bswap32s(&hdr->ih_ep);
 520    bswap32s(&hdr->ih_dcrc);
 521#endif
 522}
 523
 524
 525#define ZALLOC_ALIGNMENT        16
 526
 527static void *zalloc(void *x, unsigned items, unsigned size)
 528{
 529    void *p;
 530
 531    size *= items;
 532    size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
 533
 534    p = g_malloc(size);
 535
 536    return (p);
 537}
 538
 539static void zfree(void *x, void *addr)
 540{
 541    g_free(addr);
 542}
 543
 544
 545#define HEAD_CRC        2
 546#define EXTRA_FIELD     4
 547#define ORIG_NAME       8
 548#define COMMENT         0x10
 549#define RESERVED        0xe0
 550
 551#define DEFLATED        8
 552
 553ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
 554{
 555    z_stream s;
 556    ssize_t dstbytes;
 557    int r, i, flags;
 558
 559    /* skip header */
 560    i = 10;
 561    if (srclen < 4) {
 562        goto toosmall;
 563    }
 564    flags = src[3];
 565    if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
 566        puts ("Error: Bad gzipped data\n");
 567        return -1;
 568    }
 569    if ((flags & EXTRA_FIELD) != 0) {
 570        if (srclen < 12) {
 571            goto toosmall;
 572        }
 573        i = 12 + src[10] + (src[11] << 8);
 574    }
 575    if ((flags & ORIG_NAME) != 0) {
 576        while (i < srclen && src[i++] != 0) {
 577            /* do nothing */
 578        }
 579    }
 580    if ((flags & COMMENT) != 0) {
 581        while (i < srclen && src[i++] != 0) {
 582            /* do nothing */
 583        }
 584    }
 585    if ((flags & HEAD_CRC) != 0) {
 586        i += 2;
 587    }
 588    if (i >= srclen) {
 589        goto toosmall;
 590    }
 591
 592    s.zalloc = zalloc;
 593    s.zfree = zfree;
 594
 595    r = inflateInit2(&s, -MAX_WBITS);
 596    if (r != Z_OK) {
 597        printf ("Error: inflateInit2() returned %d\n", r);
 598        return (-1);
 599    }
 600    s.next_in = src + i;
 601    s.avail_in = srclen - i;
 602    s.next_out = dst;
 603    s.avail_out = dstlen;
 604    r = inflate(&s, Z_FINISH);
 605    if (r != Z_OK && r != Z_STREAM_END) {
 606        printf ("Error: inflate() returned %d\n", r);
 607        return -1;
 608    }
 609    dstbytes = s.next_out - (unsigned char *) dst;
 610    inflateEnd(&s);
 611
 612    return dstbytes;
 613
 614toosmall:
 615    puts("Error: gunzip out of data in header\n");
 616    return -1;
 617}
 618
 619/* Load a U-Boot image.  */
 620static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
 621                                hwaddr *loadaddr, int *is_linux,
 622                                uint8_t image_type,
 623                                uint64_t (*translate_fn)(void *, uint64_t),
 624                                void *translate_opaque, AddressSpace *as)
 625{
 626    int fd;
 627    ssize_t size;
 628    hwaddr address;
 629    uboot_image_header_t h;
 630    uboot_image_header_t *hdr = &h;
 631    uint8_t *data = NULL;
 632    int ret = -1;
 633    int do_uncompress = 0;
 634
 635    fd = open(filename, O_RDONLY | O_BINARY);
 636    if (fd < 0)
 637        return -1;
 638
 639    size = read(fd, hdr, sizeof(uboot_image_header_t));
 640    if (size < sizeof(uboot_image_header_t)) {
 641        goto out;
 642    }
 643
 644    bswap_uboot_header(hdr);
 645
 646    if (hdr->ih_magic != IH_MAGIC)
 647        goto out;
 648
 649    if (hdr->ih_type != image_type) {
 650        if (!(image_type == IH_TYPE_KERNEL &&
 651            hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
 652            fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
 653                    image_type);
 654            goto out;
 655        }
 656    }
 657
 658    /* TODO: Implement other image types.  */
 659    switch (hdr->ih_type) {
 660    case IH_TYPE_KERNEL_NOLOAD:
 661        if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
 662            fprintf(stderr, "this image format (kernel_noload) cannot be "
 663                    "loaded on this machine type");
 664            goto out;
 665        }
 666
 667        hdr->ih_load = *loadaddr + sizeof(*hdr);
 668        hdr->ih_ep += hdr->ih_load;
 669        /* fall through */
 670    case IH_TYPE_KERNEL:
 671        address = hdr->ih_load;
 672        if (translate_fn) {
 673            address = translate_fn(translate_opaque, address);
 674        }
 675        if (loadaddr) {
 676            *loadaddr = hdr->ih_load;
 677        }
 678
 679        switch (hdr->ih_comp) {
 680        case IH_COMP_NONE:
 681            break;
 682        case IH_COMP_GZIP:
 683            do_uncompress = 1;
 684            break;
 685        default:
 686            fprintf(stderr,
 687                    "Unable to load u-boot images with compression type %d\n",
 688                    hdr->ih_comp);
 689            goto out;
 690        }
 691
 692        if (ep) {
 693            *ep = hdr->ih_ep;
 694        }
 695
 696        /* TODO: Check CPU type.  */
 697        if (is_linux) {
 698            if (hdr->ih_os == IH_OS_LINUX) {
 699                *is_linux = 1;
 700            } else if (hdr->ih_os == IH_OS_VXWORKS) {
 701                /*
 702                 * VxWorks 7 uses the same boot interface as the Linux kernel
 703                 * on Arm (64-bit only), PowerPC and RISC-V architectures.
 704                 */
 705                switch (hdr->ih_arch) {
 706                case IH_ARCH_ARM64:
 707                case IH_ARCH_PPC:
 708                case IH_ARCH_RISCV:
 709                    *is_linux = 1;
 710                    break;
 711                default:
 712                    *is_linux = 0;
 713                    break;
 714                }
 715            } else {
 716                *is_linux = 0;
 717            }
 718        }
 719
 720        break;
 721    case IH_TYPE_RAMDISK:
 722        address = *loadaddr;
 723        break;
 724    default:
 725        fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
 726        goto out;
 727    }
 728
 729    data = g_malloc(hdr->ih_size);
 730
 731    if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
 732        fprintf(stderr, "Error reading file\n");
 733        goto out;
 734    }
 735
 736    if (do_uncompress) {
 737        uint8_t *compressed_data;
 738        size_t max_bytes;
 739        ssize_t bytes;
 740
 741        compressed_data = data;
 742        max_bytes = UBOOT_MAX_GUNZIP_BYTES;
 743        data = g_malloc(max_bytes);
 744
 745        bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
 746        g_free(compressed_data);
 747        if (bytes < 0) {
 748            fprintf(stderr, "Unable to decompress gzipped image!\n");
 749            goto out;
 750        }
 751        hdr->ih_size = bytes;
 752    }
 753
 754    rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
 755
 756    ret = hdr->ih_size;
 757
 758out:
 759    g_free(data);
 760    close(fd);
 761    return ret;
 762}
 763
 764ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 765                    int *is_linux,
 766                    uint64_t (*translate_fn)(void *, uint64_t),
 767                    void *translate_opaque)
 768{
 769    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 770                            translate_fn, translate_opaque, NULL);
 771}
 772
 773ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 774                       int *is_linux,
 775                       uint64_t (*translate_fn)(void *, uint64_t),
 776                       void *translate_opaque, AddressSpace *as)
 777{
 778    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 779                            translate_fn, translate_opaque, as);
 780}
 781
 782/* Load a ramdisk.  */
 783ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
 784{
 785    return load_ramdisk_as(filename, addr, max_sz, NULL);
 786}
 787
 788ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
 789                        AddressSpace *as)
 790{
 791    return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
 792                            NULL, NULL, as);
 793}
 794
 795/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
 796ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
 797                                  uint8_t **buffer)
 798{
 799    uint8_t *compressed_data = NULL;
 800    uint8_t *data = NULL;
 801    gsize len;
 802    ssize_t bytes;
 803    int ret = -1;
 804
 805    if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
 806                             NULL)) {
 807        goto out;
 808    }
 809
 810    /* Is it a gzip-compressed file? */
 811    if (len < 2 ||
 812        compressed_data[0] != 0x1f ||
 813        compressed_data[1] != 0x8b) {
 814        goto out;
 815    }
 816
 817    if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
 818        max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
 819    }
 820
 821    data = g_malloc(max_sz);
 822    bytes = gunzip(data, max_sz, compressed_data, len);
 823    if (bytes < 0) {
 824        fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
 825                filename);
 826        goto out;
 827    }
 828
 829    /* trim to actual size and return to caller */
 830    *buffer = g_realloc(data, bytes);
 831    ret = bytes;
 832    /* ownership has been transferred to caller */
 833    data = NULL;
 834
 835 out:
 836    g_free(compressed_data);
 837    g_free(data);
 838    return ret;
 839}
 840
 841/* Load a gzip-compressed kernel. */
 842ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
 843{
 844    ssize_t bytes;
 845    uint8_t *data;
 846
 847    bytes = load_image_gzipped_buffer(filename, max_sz, &data);
 848    if (bytes != -1) {
 849        rom_add_blob_fixed(filename, data, bytes, addr);
 850        g_free(data);
 851    }
 852    return bytes;
 853}
 854
 855/*
 856 * Functions for reboot-persistent memory regions.
 857 *  - used for vga bios and option roms.
 858 *  - also linux kernel (-kernel / -initrd).
 859 */
 860
 861typedef struct Rom Rom;
 862
 863struct Rom {
 864    char *name;
 865    char *path;
 866
 867    /* datasize is the amount of memory allocated in "data". If datasize is less
 868     * than romsize, it means that the area from datasize to romsize is filled
 869     * with zeros.
 870     */
 871    size_t romsize;
 872    size_t datasize;
 873
 874    uint8_t *data;
 875    MemoryRegion *mr;
 876    AddressSpace *as;
 877    int isrom;
 878    char *fw_dir;
 879    char *fw_file;
 880    GMappedFile *mapped_file;
 881
 882    bool committed;
 883
 884    hwaddr addr;
 885    QTAILQ_ENTRY(Rom) next;
 886};
 887
 888static FWCfgState *fw_cfg;
 889static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
 890
 891/*
 892 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
 893 * rom_add_elf_program())
 894 */
 895static void rom_free_data(Rom *rom)
 896{
 897    if (rom->mapped_file) {
 898        g_mapped_file_unref(rom->mapped_file);
 899        rom->mapped_file = NULL;
 900    } else {
 901        g_free(rom->data);
 902    }
 903
 904    rom->data = NULL;
 905}
 906
 907static void rom_free(Rom *rom)
 908{
 909    rom_free_data(rom);
 910    g_free(rom->path);
 911    g_free(rom->name);
 912    g_free(rom->fw_dir);
 913    g_free(rom->fw_file);
 914    g_free(rom);
 915}
 916
 917static inline bool rom_order_compare(Rom *rom, Rom *item)
 918{
 919    return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
 920           (rom->as == item->as && rom->addr >= item->addr);
 921}
 922
 923static void rom_insert(Rom *rom)
 924{
 925    Rom *item;
 926
 927    if (roms_loaded) {
 928        hw_error ("ROM images must be loaded at startup\n");
 929    }
 930
 931    /* The user didn't specify an address space, this is the default */
 932    if (!rom->as) {
 933        rom->as = &address_space_memory;
 934    }
 935
 936    rom->committed = false;
 937
 938    /* List is ordered by load address in the same address space */
 939    QTAILQ_FOREACH(item, &roms, next) {
 940        if (rom_order_compare(rom, item)) {
 941            continue;
 942        }
 943        QTAILQ_INSERT_BEFORE(item, rom, next);
 944        return;
 945    }
 946    QTAILQ_INSERT_TAIL(&roms, rom, next);
 947}
 948
 949static void fw_cfg_resized(const char *id, uint64_t length, void *host)
 950{
 951    if (fw_cfg) {
 952        fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
 953    }
 954}
 955
 956static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
 957{
 958    void *data;
 959
 960    rom->mr = g_malloc(sizeof(*rom->mr));
 961    memory_region_init_resizeable_ram(rom->mr, owner, name,
 962                                      rom->datasize, rom->romsize,
 963                                      fw_cfg_resized,
 964                                      &error_fatal);
 965    memory_region_set_readonly(rom->mr, ro);
 966    vmstate_register_ram_global(rom->mr);
 967
 968    data = memory_region_get_ram_ptr(rom->mr);
 969    memcpy(data, rom->data, rom->datasize);
 970
 971    return data;
 972}
 973
 974ssize_t rom_add_file(const char *file, const char *fw_dir,
 975                     hwaddr addr, int32_t bootindex,
 976                     bool option_rom, MemoryRegion *mr,
 977                     AddressSpace *as)
 978{
 979    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 980    Rom *rom;
 981    ssize_t rc;
 982    int fd = -1;
 983    char devpath[100];
 984
 985    if (as && mr) {
 986        fprintf(stderr, "Specifying an Address Space and Memory Region is " \
 987                "not valid when loading a rom\n");
 988        /* We haven't allocated anything so we don't need any cleanup */
 989        return -1;
 990    }
 991
 992    rom = g_malloc0(sizeof(*rom));
 993    rom->name = g_strdup(file);
 994    rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
 995    rom->as = as;
 996    if (rom->path == NULL) {
 997        rom->path = g_strdup(file);
 998    }
 999
1000    fd = open(rom->path, O_RDONLY | O_BINARY);
1001    if (fd == -1) {
1002        fprintf(stderr, "Could not open option rom '%s': %s\n",
1003                rom->path, strerror(errno));
1004        goto err;
1005    }
1006
1007    if (fw_dir) {
1008        rom->fw_dir  = g_strdup(fw_dir);
1009        rom->fw_file = g_strdup(file);
1010    }
1011    rom->addr     = addr;
1012    rom->romsize  = lseek(fd, 0, SEEK_END);
1013    if (rom->romsize == -1) {
1014        fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1015                rom->name, strerror(errno));
1016        goto err;
1017    }
1018
1019    rom->datasize = rom->romsize;
1020    rom->data     = g_malloc0(rom->datasize);
1021    lseek(fd, 0, SEEK_SET);
1022    rc = read(fd, rom->data, rom->datasize);
1023    if (rc != rom->datasize) {
1024        fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1025                rom->name, rc, rom->datasize);
1026        goto err;
1027    }
1028    close(fd);
1029    rom_insert(rom);
1030    if (rom->fw_file && fw_cfg) {
1031        const char *basename;
1032        char fw_file_name[FW_CFG_MAX_FILE_PATH];
1033        void *data;
1034
1035        basename = strrchr(rom->fw_file, '/');
1036        if (basename) {
1037            basename++;
1038        } else {
1039            basename = rom->fw_file;
1040        }
1041        snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1042                 basename);
1043        snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1044
1045        if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1046            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1047        } else {
1048            data = rom->data;
1049        }
1050
1051        fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1052    } else {
1053        if (mr) {
1054            rom->mr = mr;
1055            snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1056        } else {
1057            snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1058        }
1059    }
1060
1061    add_boot_device_path(bootindex, NULL, devpath);
1062    return 0;
1063
1064err:
1065    if (fd != -1)
1066        close(fd);
1067
1068    rom_free(rom);
1069    return -1;
1070}
1071
1072MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1073                   size_t max_len, hwaddr addr, const char *fw_file_name,
1074                   FWCfgCallback fw_callback, void *callback_opaque,
1075                   AddressSpace *as, bool read_only)
1076{
1077    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1078    Rom *rom;
1079    MemoryRegion *mr = NULL;
1080
1081    rom           = g_malloc0(sizeof(*rom));
1082    rom->name     = g_strdup(name);
1083    rom->as       = as;
1084    rom->addr     = addr;
1085    rom->romsize  = max_len ? max_len : len;
1086    rom->datasize = len;
1087    g_assert(rom->romsize >= rom->datasize);
1088    rom->data     = g_malloc0(rom->datasize);
1089    memcpy(rom->data, blob, len);
1090    rom_insert(rom);
1091    if (fw_file_name && fw_cfg) {
1092        char devpath[100];
1093        void *data;
1094
1095        if (read_only) {
1096            snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1097        } else {
1098            snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1099        }
1100
1101        if (mc->rom_file_has_mr) {
1102            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1103            mr = rom->mr;
1104        } else {
1105            data = rom->data;
1106        }
1107
1108        fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1109                                 fw_callback, NULL, callback_opaque,
1110                                 data, rom->datasize, read_only);
1111    }
1112    return mr;
1113}
1114
1115/* This function is specific for elf program because we don't need to allocate
1116 * all the rom. We just allocate the first part and the rest is just zeros. This
1117 * is why romsize and datasize are different. Also, this function takes its own
1118 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1119 */
1120int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1121                        size_t datasize, size_t romsize, hwaddr addr,
1122                        AddressSpace *as)
1123{
1124    Rom *rom;
1125
1126    rom           = g_malloc0(sizeof(*rom));
1127    rom->name     = g_strdup(name);
1128    rom->addr     = addr;
1129    rom->datasize = datasize;
1130    rom->romsize  = romsize;
1131    rom->data     = data;
1132    rom->as       = as;
1133
1134    if (mapped_file && data) {
1135        g_mapped_file_ref(mapped_file);
1136        rom->mapped_file = mapped_file;
1137    }
1138
1139    rom_insert(rom);
1140    return 0;
1141}
1142
1143ssize_t rom_add_vga(const char *file)
1144{
1145    return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1146}
1147
1148ssize_t rom_add_option(const char *file, int32_t bootindex)
1149{
1150    return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1151}
1152
1153static void rom_reset(void *unused)
1154{
1155    Rom *rom;
1156
1157    QTAILQ_FOREACH(rom, &roms, next) {
1158        if (rom->fw_file) {
1159            continue;
1160        }
1161        /*
1162         * We don't need to fill in the RAM with ROM data because we'll fill
1163         * the data in during the next incoming migration in all cases.  Note
1164         * that some of those RAMs can actually be modified by the guest.
1165         */
1166        if (runstate_check(RUN_STATE_INMIGRATE)) {
1167            if (rom->data && rom->isrom) {
1168                /*
1169                 * Free it so that a rom_reset after migration doesn't
1170                 * overwrite a potentially modified 'rom'.
1171                 */
1172                rom_free_data(rom);
1173            }
1174            continue;
1175        }
1176
1177        if (rom->data == NULL) {
1178            continue;
1179        }
1180        if (rom->mr) {
1181            void *host = memory_region_get_ram_ptr(rom->mr);
1182            memcpy(host, rom->data, rom->datasize);
1183            memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1184        } else {
1185            address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1186                                    rom->data, rom->datasize);
1187            address_space_set(rom->as, rom->addr + rom->datasize, 0,
1188                              rom->romsize - rom->datasize,
1189                              MEMTXATTRS_UNSPECIFIED);
1190        }
1191        if (rom->isrom) {
1192            /* rom needs to be written only once */
1193            rom_free_data(rom);
1194        }
1195        /*
1196         * The rom loader is really on the same level as firmware in the guest
1197         * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1198         * that the instruction cache for that new region is clear, so that the
1199         * CPU definitely fetches its instructions from the just written data.
1200         */
1201        cpu_flush_icache_range(rom->addr, rom->datasize);
1202
1203        trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1204    }
1205}
1206
1207/* Return true if two consecutive ROMs in the ROM list overlap */
1208static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1209{
1210    if (!last_rom) {
1211        return false;
1212    }
1213    return last_rom->as == this_rom->as &&
1214        last_rom->addr + last_rom->romsize > this_rom->addr;
1215}
1216
1217static const char *rom_as_name(Rom *rom)
1218{
1219    const char *name = rom->as ? rom->as->name : NULL;
1220    return name ?: "anonymous";
1221}
1222
1223static void rom_print_overlap_error_header(void)
1224{
1225    error_report("Some ROM regions are overlapping");
1226    error_printf(
1227        "These ROM regions might have been loaded by "
1228        "direct user request or by default.\n"
1229        "They could be BIOS/firmware images, a guest kernel, "
1230        "initrd or some other file loaded into guest memory.\n"
1231        "Check whether you intended to load all this guest code, and "
1232        "whether it has been built to load to the correct addresses.\n");
1233}
1234
1235static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1236{
1237    error_printf(
1238        "\nThe following two regions overlap (in the %s address space):\n",
1239        rom_as_name(rom));
1240    error_printf(
1241        "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1242        last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1243    error_printf(
1244        "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1245        rom->name, rom->addr, rom->addr + rom->romsize);
1246}
1247
1248int rom_check_and_register_reset(void)
1249{
1250    MemoryRegionSection section;
1251    Rom *rom, *last_rom = NULL;
1252    bool found_overlap = false;
1253
1254    QTAILQ_FOREACH(rom, &roms, next) {
1255        if (rom->fw_file) {
1256            continue;
1257        }
1258        if (!rom->mr) {
1259            if (roms_overlap(last_rom, rom)) {
1260                if (!found_overlap) {
1261                    found_overlap = true;
1262                    rom_print_overlap_error_header();
1263                }
1264                rom_print_one_overlap_error(last_rom, rom);
1265                /* Keep going through the list so we report all overlaps */
1266            }
1267            last_rom = rom;
1268        }
1269        section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1270                                     rom->addr, 1);
1271        rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1272        memory_region_unref(section.mr);
1273    }
1274    if (found_overlap) {
1275        return -1;
1276    }
1277
1278    qemu_register_reset(rom_reset, NULL);
1279    roms_loaded = 1;
1280    return 0;
1281}
1282
1283void rom_set_fw(FWCfgState *f)
1284{
1285    fw_cfg = f;
1286}
1287
1288void rom_set_order_override(int order)
1289{
1290    if (!fw_cfg)
1291        return;
1292    fw_cfg_set_order_override(fw_cfg, order);
1293}
1294
1295void rom_reset_order_override(void)
1296{
1297    if (!fw_cfg)
1298        return;
1299    fw_cfg_reset_order_override(fw_cfg);
1300}
1301
1302void rom_transaction_begin(void)
1303{
1304    Rom *rom;
1305
1306    /* Ignore ROMs added without the transaction API */
1307    QTAILQ_FOREACH(rom, &roms, next) {
1308        rom->committed = true;
1309    }
1310}
1311
1312void rom_transaction_end(bool commit)
1313{
1314    Rom *rom;
1315    Rom *tmp;
1316
1317    QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1318        if (rom->committed) {
1319            continue;
1320        }
1321        if (commit) {
1322            rom->committed = true;
1323        } else {
1324            QTAILQ_REMOVE(&roms, rom, next);
1325            rom_free(rom);
1326        }
1327    }
1328}
1329
1330static Rom *find_rom(hwaddr addr, size_t size)
1331{
1332    Rom *rom;
1333
1334    QTAILQ_FOREACH(rom, &roms, next) {
1335        if (rom->fw_file) {
1336            continue;
1337        }
1338        if (rom->mr) {
1339            continue;
1340        }
1341        if (rom->addr > addr) {
1342            continue;
1343        }
1344        if (rom->addr + rom->romsize < addr + size) {
1345            continue;
1346        }
1347        return rom;
1348    }
1349    return NULL;
1350}
1351
1352typedef struct RomSec {
1353    hwaddr base;
1354    int se; /* start/end flag */
1355} RomSec;
1356
1357
1358/*
1359 * Sort into address order. We break ties between rom-startpoints
1360 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1361 * transition before the 1->0 transition. Either way round would
1362 * work, but this way saves a little work later by avoiding
1363 * dealing with "gaps" of 0 length.
1364 */
1365static gint sort_secs(gconstpointer a, gconstpointer b)
1366{
1367    RomSec *ra = (RomSec *) a;
1368    RomSec *rb = (RomSec *) b;
1369
1370    if (ra->base == rb->base) {
1371        return ra->se - rb->se;
1372    }
1373    return ra->base > rb->base ? 1 : -1;
1374}
1375
1376static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1377{
1378   RomSec *cand = g_new(RomSec, 1);
1379   cand->base = base;
1380   cand->se = se;
1381   return g_list_prepend(secs, cand);
1382}
1383
1384RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1385{
1386    Rom *rom;
1387    RomSec *cand;
1388    RomGap res = {0, 0};
1389    hwaddr gapstart = base;
1390    GList *it, *secs = NULL;
1391    int count = 0;
1392
1393    QTAILQ_FOREACH(rom, &roms, next) {
1394        /* Ignore blobs being loaded to special places */
1395        if (rom->mr || rom->fw_file) {
1396            continue;
1397        }
1398        /* ignore anything finishing bellow base */
1399        if (rom->addr + rom->romsize <= base) {
1400            continue;
1401        }
1402        /* ignore anything starting above the region */
1403        if (rom->addr >= base + size) {
1404            continue;
1405        }
1406
1407        /* Save the start and end of each relevant ROM */
1408        secs = add_romsec_to_list(secs, rom->addr, 1);
1409
1410        if (rom->addr + rom->romsize < base + size) {
1411            secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1412        }
1413    }
1414
1415    /* sentinel */
1416    secs = add_romsec_to_list(secs, base + size, 1);
1417
1418    secs = g_list_sort(secs, sort_secs);
1419
1420    for (it = g_list_first(secs); it; it = g_list_next(it)) {
1421        cand = (RomSec *) it->data;
1422        if (count == 0 && count + cand->se == 1) {
1423            size_t gap = cand->base - gapstart;
1424            if (gap > res.size) {
1425                res.base = gapstart;
1426                res.size = gap;
1427            }
1428        } else if (count == 1 && count + cand->se == 0) {
1429            gapstart = cand->base;
1430        }
1431        count += cand->se;
1432    }
1433
1434    g_list_free_full(secs, g_free);
1435    return res;
1436}
1437
1438/*
1439 * Copies memory from registered ROMs to dest. Any memory that is contained in
1440 * a ROM between addr and addr + size is copied. Note that this can involve
1441 * multiple ROMs, which need not start at addr and need not end at addr + size.
1442 */
1443int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1444{
1445    hwaddr end = addr + size;
1446    uint8_t *s, *d = dest;
1447    size_t l = 0;
1448    Rom *rom;
1449
1450    QTAILQ_FOREACH(rom, &roms, next) {
1451        if (rom->fw_file) {
1452            continue;
1453        }
1454        if (rom->mr) {
1455            continue;
1456        }
1457        if (rom->addr + rom->romsize < addr) {
1458            continue;
1459        }
1460        if (rom->addr > end || rom->addr < addr) {
1461            break;
1462        }
1463
1464        d = dest + (rom->addr - addr);
1465        s = rom->data;
1466        l = rom->datasize;
1467
1468        if ((d + l) > (dest + size)) {
1469            l = dest - d;
1470        }
1471
1472        if (l > 0) {
1473            memcpy(d, s, l);
1474        }
1475
1476        if (rom->romsize > rom->datasize) {
1477            /* If datasize is less than romsize, it means that we didn't
1478             * allocate all the ROM because the trailing data are only zeros.
1479             */
1480
1481            d += l;
1482            l = rom->romsize - rom->datasize;
1483
1484            if ((d + l) > (dest + size)) {
1485                /* Rom size doesn't fit in the destination area. Adjust to avoid
1486                 * overflow.
1487                 */
1488                l = dest - d;
1489            }
1490
1491            if (l > 0) {
1492                memset(d, 0x0, l);
1493            }
1494        }
1495    }
1496
1497    return (d + l) - dest;
1498}
1499
1500void *rom_ptr(hwaddr addr, size_t size)
1501{
1502    Rom *rom;
1503
1504    rom = find_rom(addr, size);
1505    if (!rom || !rom->data)
1506        return NULL;
1507    return rom->data + (addr - rom->addr);
1508}
1509
1510typedef struct FindRomCBData {
1511    size_t size; /* Amount of data we want from ROM, in bytes */
1512    MemoryRegion *mr; /* MR at the unaliased guest addr */
1513    hwaddr xlat; /* Offset of addr within mr */
1514    void *rom; /* Output: rom data pointer, if found */
1515} FindRomCBData;
1516
1517static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1518                        hwaddr offset_in_region, void *opaque)
1519{
1520    FindRomCBData *cbdata = opaque;
1521    hwaddr alias_addr;
1522
1523    if (mr != cbdata->mr) {
1524        return false;
1525    }
1526
1527    alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1528    cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1529    if (!cbdata->rom) {
1530        return false;
1531    }
1532    /* Found a match, stop iterating */
1533    return true;
1534}
1535
1536void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1537{
1538    /*
1539     * Find any ROM data for the given guest address range.  If there
1540     * is a ROM blob then return a pointer to the host memory
1541     * corresponding to 'addr'; otherwise return NULL.
1542     *
1543     * We look not only for ROM blobs that were loaded directly to
1544     * addr, but also for ROM blobs that were loaded to aliases of
1545     * that memory at other addresses within the AddressSpace.
1546     *
1547     * Note that we do not check @as against the 'as' member in the
1548     * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1549     * AddressSpace which the rom blob should be written to, whereas
1550     * our @as argument is the AddressSpace which we are (effectively)
1551     * reading from, and the same underlying RAM will often be visible
1552     * in multiple AddressSpaces. (A common example is a ROM blob
1553     * written to the 'system' address space but then read back via a
1554     * CPU's cpu->as pointer.) This does mean we might potentially
1555     * return a false-positive match if a ROM blob was loaded into an
1556     * AS which is entirely separate and distinct from the one we're
1557     * querying, but this issue exists also for rom_ptr() and hasn't
1558     * caused any problems in practice.
1559     */
1560    FlatView *fv;
1561    void *rom;
1562    hwaddr len_unused;
1563    FindRomCBData cbdata = {};
1564
1565    /* Easy case: there's data at the actual address */
1566    rom = rom_ptr(addr, size);
1567    if (rom) {
1568        return rom;
1569    }
1570
1571    RCU_READ_LOCK_GUARD();
1572
1573    fv = address_space_to_flatview(as);
1574    cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1575                                   false, MEMTXATTRS_UNSPECIFIED);
1576    if (!cbdata.mr) {
1577        /* Nothing at this address, so there can't be any aliasing */
1578        return NULL;
1579    }
1580    cbdata.size = size;
1581    flatview_for_each_range(fv, find_rom_cb, &cbdata);
1582    return cbdata.rom;
1583}
1584
1585HumanReadableText *qmp_x_query_roms(Error **errp)
1586{
1587    Rom *rom;
1588    g_autoptr(GString) buf = g_string_new("");
1589
1590    QTAILQ_FOREACH(rom, &roms, next) {
1591        if (rom->mr) {
1592            g_string_append_printf(buf, "%s"
1593                                   " size=0x%06zx name=\"%s\"\n",
1594                                   memory_region_name(rom->mr),
1595                                   rom->romsize,
1596                                   rom->name);
1597        } else if (!rom->fw_file) {
1598            g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1599                                   " size=0x%06zx mem=%s name=\"%s\"\n",
1600                                   rom->addr, rom->romsize,
1601                                   rom->isrom ? "rom" : "ram",
1602                                   rom->name);
1603        } else {
1604            g_string_append_printf(buf, "fw=%s/%s"
1605                                   " size=0x%06zx name=\"%s\"\n",
1606                                   rom->fw_dir,
1607                                   rom->fw_file,
1608                                   rom->romsize,
1609                                   rom->name);
1610        }
1611    }
1612
1613    return human_readable_text_from_str(buf);
1614}
1615
1616typedef enum HexRecord HexRecord;
1617enum HexRecord {
1618    DATA_RECORD = 0,
1619    EOF_RECORD,
1620    EXT_SEG_ADDR_RECORD,
1621    START_SEG_ADDR_RECORD,
1622    EXT_LINEAR_ADDR_RECORD,
1623    START_LINEAR_ADDR_RECORD,
1624};
1625
1626/* Each record contains a 16-bit address which is combined with the upper 16
1627 * bits of the implicit "next address" to form a 32-bit address.
1628 */
1629#define NEXT_ADDR_MASK 0xffff0000
1630
1631#define DATA_FIELD_MAX_LEN 0xff
1632#define LEN_EXCEPT_DATA 0x5
1633/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1634 *       sizeof(checksum) */
1635typedef struct {
1636    uint8_t byte_count;
1637    uint16_t address;
1638    uint8_t record_type;
1639    uint8_t data[DATA_FIELD_MAX_LEN];
1640    uint8_t checksum;
1641} HexLine;
1642
1643/* return 0 or -1 if error */
1644static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1645                         uint32_t *index, const bool in_process)
1646{
1647    /* +-------+---------------+-------+---------------------+--------+
1648     * | byte  |               |record |                     |        |
1649     * | count |    address    | type  |        data         |checksum|
1650     * +-------+---------------+-------+---------------------+--------+
1651     * ^       ^               ^       ^                     ^        ^
1652     * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1653     */
1654    uint8_t value = 0;
1655    uint32_t idx = *index;
1656    /* ignore space */
1657    if (g_ascii_isspace(c)) {
1658        return true;
1659    }
1660    if (!g_ascii_isxdigit(c) || !in_process) {
1661        return false;
1662    }
1663    value = g_ascii_xdigit_value(c);
1664    value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1665    if (idx < 2) {
1666        line->byte_count |= value;
1667    } else if (2 <= idx && idx < 6) {
1668        line->address <<= 4;
1669        line->address += g_ascii_xdigit_value(c);
1670    } else if (6 <= idx && idx < 8) {
1671        line->record_type |= value;
1672    } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1673        line->data[(idx - 8) >> 1] |= value;
1674    } else if (8 + 2 * line->byte_count <= idx &&
1675               idx < 10 + 2 * line->byte_count) {
1676        line->checksum |= value;
1677    } else {
1678        return false;
1679    }
1680    *our_checksum += value;
1681    ++(*index);
1682    return true;
1683}
1684
1685typedef struct {
1686    const char *filename;
1687    HexLine line;
1688    uint8_t *bin_buf;
1689    hwaddr *start_addr;
1690    int total_size;
1691    uint32_t next_address_to_write;
1692    uint32_t current_address;
1693    uint32_t current_rom_index;
1694    uint32_t rom_start_address;
1695    AddressSpace *as;
1696    bool complete;
1697} HexParser;
1698
1699/* return size or -1 if error */
1700static int handle_record_type(HexParser *parser)
1701{
1702    HexLine *line = &(parser->line);
1703    switch (line->record_type) {
1704    case DATA_RECORD:
1705        parser->current_address =
1706            (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1707        /* verify this is a contiguous block of memory */
1708        if (parser->current_address != parser->next_address_to_write) {
1709            if (parser->current_rom_index != 0) {
1710                rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1711                                      parser->current_rom_index,
1712                                      parser->rom_start_address, parser->as);
1713            }
1714            parser->rom_start_address = parser->current_address;
1715            parser->current_rom_index = 0;
1716        }
1717
1718        /* copy from line buffer to output bin_buf */
1719        memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1720               line->byte_count);
1721        parser->current_rom_index += line->byte_count;
1722        parser->total_size += line->byte_count;
1723        /* save next address to write */
1724        parser->next_address_to_write =
1725            parser->current_address + line->byte_count;
1726        break;
1727
1728    case EOF_RECORD:
1729        if (parser->current_rom_index != 0) {
1730            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1731                                  parser->current_rom_index,
1732                                  parser->rom_start_address, parser->as);
1733        }
1734        parser->complete = true;
1735        return parser->total_size;
1736    case EXT_SEG_ADDR_RECORD:
1737    case EXT_LINEAR_ADDR_RECORD:
1738        if (line->byte_count != 2 && line->address != 0) {
1739            return -1;
1740        }
1741
1742        if (parser->current_rom_index != 0) {
1743            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1744                                  parser->current_rom_index,
1745                                  parser->rom_start_address, parser->as);
1746        }
1747
1748        /* save next address to write,
1749         * in case of non-contiguous block of memory */
1750        parser->next_address_to_write = (line->data[0] << 12) |
1751                                        (line->data[1] << 4);
1752        if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1753            parser->next_address_to_write <<= 12;
1754        }
1755
1756        parser->rom_start_address = parser->next_address_to_write;
1757        parser->current_rom_index = 0;
1758        break;
1759
1760    case START_SEG_ADDR_RECORD:
1761        if (line->byte_count != 4 && line->address != 0) {
1762            return -1;
1763        }
1764
1765        /* x86 16-bit CS:IP segmented addressing */
1766        *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1767                                ((line->data[2] << 8) | line->data[3]);
1768        break;
1769
1770    case START_LINEAR_ADDR_RECORD:
1771        if (line->byte_count != 4 && line->address != 0) {
1772            return -1;
1773        }
1774
1775        *(parser->start_addr) = ldl_be_p(line->data);
1776        break;
1777
1778    default:
1779        return -1;
1780    }
1781
1782    return parser->total_size;
1783}
1784
1785/* return size or -1 if error */
1786static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1787                          size_t hex_blob_size, AddressSpace *as)
1788{
1789    bool in_process = false; /* avoid re-enter and
1790                              * check whether record begin with ':' */
1791    uint8_t *end = hex_blob + hex_blob_size;
1792    uint8_t our_checksum = 0;
1793    uint32_t record_index = 0;
1794    HexParser parser = {
1795        .filename = filename,
1796        .bin_buf = g_malloc(hex_blob_size),
1797        .start_addr = addr,
1798        .as = as,
1799        .complete = false
1800    };
1801
1802    rom_transaction_begin();
1803
1804    for (; hex_blob < end && !parser.complete; ++hex_blob) {
1805        switch (*hex_blob) {
1806        case '\r':
1807        case '\n':
1808            if (!in_process) {
1809                break;
1810            }
1811
1812            in_process = false;
1813            if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1814                    record_index ||
1815                our_checksum != 0) {
1816                parser.total_size = -1;
1817                goto out;
1818            }
1819
1820            if (handle_record_type(&parser) == -1) {
1821                parser.total_size = -1;
1822                goto out;
1823            }
1824            break;
1825
1826        /* start of a new record. */
1827        case ':':
1828            memset(&parser.line, 0, sizeof(HexLine));
1829            in_process = true;
1830            record_index = 0;
1831            break;
1832
1833        /* decoding lines */
1834        default:
1835            if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1836                              &record_index, in_process)) {
1837                parser.total_size = -1;
1838                goto out;
1839            }
1840            break;
1841        }
1842    }
1843
1844out:
1845    g_free(parser.bin_buf);
1846    rom_transaction_end(parser.total_size != -1);
1847    return parser.total_size;
1848}
1849
1850/* return size or -1 if error */
1851ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1852                             AddressSpace *as)
1853{
1854    gsize hex_blob_size;
1855    gchar *hex_blob;
1856    ssize_t total_size = 0;
1857
1858    if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1859        return -1;
1860    }
1861
1862    total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1863                                hex_blob_size, as);
1864
1865    g_free(hex_blob);
1866    return total_size;
1867}
1868