qemu/hw/ppc/spapr_drc.c
<<
>>
Prefs
   1/*
   2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
   3 *
   4 * Copyright IBM Corp. 2014
   5 *
   6 * Authors:
   7 *  Michael Roth      <mdroth@linux.vnet.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qapi/error.h"
  15#include "qapi/qmp/qnull.h"
  16#include "qemu/cutils.h"
  17#include "hw/ppc/spapr_drc.h"
  18#include "qom/object.h"
  19#include "migration/vmstate.h"
  20#include "qapi/error.h"
  21#include "qapi/qapi-events-qdev.h"
  22#include "qapi/visitor.h"
  23#include "qemu/error-report.h"
  24#include "hw/ppc/spapr.h" /* for RTAS return codes */
  25#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
  26#include "hw/ppc/spapr_nvdimm.h"
  27#include "sysemu/device_tree.h"
  28#include "sysemu/reset.h"
  29#include "trace.h"
  30
  31#define DRC_CONTAINER_PATH "/dr-connector"
  32#define DRC_INDEX_TYPE_SHIFT 28
  33#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
  34
  35SpaprDrcType spapr_drc_type(SpaprDrc *drc)
  36{
  37    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  38
  39    return 1 << drck->typeshift;
  40}
  41
  42uint32_t spapr_drc_index(SpaprDrc *drc)
  43{
  44    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  45
  46    /* no set format for a drc index: it only needs to be globally
  47     * unique. this is how we encode the DRC type on bare-metal
  48     * however, so might as well do that here
  49     */
  50    return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
  51        | (drc->id & DRC_INDEX_ID_MASK);
  52}
  53
  54static void spapr_drc_release(SpaprDrc *drc)
  55{
  56    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  57
  58    drck->release(drc->dev);
  59
  60    drc->unplug_requested = false;
  61    g_free(drc->fdt);
  62    drc->fdt = NULL;
  63    drc->fdt_start_offset = 0;
  64    object_property_del(OBJECT(drc), "device");
  65    drc->dev = NULL;
  66}
  67
  68static uint32_t drc_isolate_physical(SpaprDrc *drc)
  69{
  70    switch (drc->state) {
  71    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  72        return RTAS_OUT_SUCCESS; /* Nothing to do */
  73    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  74        break; /* see below */
  75    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  76        return RTAS_OUT_PARAM_ERROR; /* not allowed */
  77    default:
  78        g_assert_not_reached();
  79    }
  80
  81    drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
  82
  83    if (drc->unplug_requested) {
  84        uint32_t drc_index = spapr_drc_index(drc);
  85        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
  86        spapr_drc_release(drc);
  87    }
  88
  89    return RTAS_OUT_SUCCESS;
  90}
  91
  92static uint32_t drc_unisolate_physical(SpaprDrc *drc)
  93{
  94    switch (drc->state) {
  95    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  96    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  97        return RTAS_OUT_SUCCESS; /* Nothing to do */
  98    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  99        break; /* see below */
 100    default:
 101        g_assert_not_reached();
 102    }
 103
 104    /* cannot unisolate a non-existent resource, and, or resources
 105     * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
 106     * 13.5.3.5)
 107     */
 108    if (!drc->dev) {
 109        return RTAS_OUT_NO_SUCH_INDICATOR;
 110    }
 111
 112    drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
 113    drc->ccs_offset = drc->fdt_start_offset;
 114    drc->ccs_depth = 0;
 115
 116    return RTAS_OUT_SUCCESS;
 117}
 118
 119static uint32_t drc_isolate_logical(SpaprDrc *drc)
 120{
 121    switch (drc->state) {
 122    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 123    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 124        return RTAS_OUT_SUCCESS; /* Nothing to do */
 125    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 126        break; /* see below */
 127    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 128        return RTAS_OUT_PARAM_ERROR; /* not allowed */
 129    default:
 130        g_assert_not_reached();
 131    }
 132
 133    /*
 134     * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
 135     * belong to a DIMM device that is marked for removal.
 136     *
 137     * Currently the guest userspace tool drmgr that drives the memory
 138     * hotplug/unplug will just try to remove a set of 'removable' LMBs
 139     * in response to a hot unplug request that is based on drc-count.
 140     * If the LMB being removed doesn't belong to a DIMM device that is
 141     * actually being unplugged, fail the isolation request here.
 142     */
 143    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
 144        && !drc->unplug_requested) {
 145        return RTAS_OUT_HW_ERROR;
 146    }
 147
 148    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 149
 150    return RTAS_OUT_SUCCESS;
 151}
 152
 153static uint32_t drc_unisolate_logical(SpaprDrc *drc)
 154{
 155    SpaprMachineState *spapr = NULL;
 156
 157    switch (drc->state) {
 158    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 159    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 160        /*
 161         * Unisolating a logical DRC that was marked for unplug
 162         * means that the kernel is refusing the removal.
 163         */
 164        if (drc->unplug_requested && drc->dev) {
 165            if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
 166                spapr = SPAPR_MACHINE(qdev_get_machine());
 167
 168                spapr_memory_unplug_rollback(spapr, drc->dev);
 169            }
 170
 171            drc->unplug_requested = false;
 172
 173            if (drc->dev->id) {
 174                error_report("Device hotunplug rejected by the guest "
 175                             "for device %s", drc->dev->id);
 176            }
 177
 178            qapi_event_send_device_unplug_guest_error(!!drc->dev->id,
 179                                                      drc->dev->id,
 180                                                      drc->dev->canonical_path);
 181        }
 182
 183        return RTAS_OUT_SUCCESS; /* Nothing to do */
 184    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 185        break; /* see below */
 186    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 187        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 188    default:
 189        g_assert_not_reached();
 190    }
 191
 192    /* Move to AVAILABLE state should have ensured device was present */
 193    g_assert(drc->dev);
 194
 195    drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
 196    drc->ccs_offset = drc->fdt_start_offset;
 197    drc->ccs_depth = 0;
 198
 199    return RTAS_OUT_SUCCESS;
 200}
 201
 202static uint32_t drc_set_usable(SpaprDrc *drc)
 203{
 204    switch (drc->state) {
 205    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 206    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 207    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 208        return RTAS_OUT_SUCCESS; /* Nothing to do */
 209    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 210        break; /* see below */
 211    default:
 212        g_assert_not_reached();
 213    }
 214
 215    /* if there's no resource/device associated with the DRC, there's
 216     * no way for us to put it in an allocation state consistent with
 217     * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
 218     * result in an RTAS return code of -3 / "no such indicator"
 219     */
 220    if (!drc->dev) {
 221        return RTAS_OUT_NO_SUCH_INDICATOR;
 222    }
 223    if (drc->unplug_requested) {
 224        /* Don't allow the guest to move a device away from UNUSABLE
 225         * state when we want to unplug it */
 226        return RTAS_OUT_NO_SUCH_INDICATOR;
 227    }
 228
 229    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 230
 231    return RTAS_OUT_SUCCESS;
 232}
 233
 234static uint32_t drc_set_unusable(SpaprDrc *drc)
 235{
 236    switch (drc->state) {
 237    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 238        return RTAS_OUT_SUCCESS; /* Nothing to do */
 239    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 240        break; /* see below */
 241    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 242    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 243        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 244    default:
 245        g_assert_not_reached();
 246    }
 247
 248    drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 249    if (drc->unplug_requested) {
 250        uint32_t drc_index = spapr_drc_index(drc);
 251        trace_spapr_drc_set_allocation_state_finalizing(drc_index);
 252        spapr_drc_release(drc);
 253    }
 254
 255    return RTAS_OUT_SUCCESS;
 256}
 257
 258static char *spapr_drc_name(SpaprDrc *drc)
 259{
 260    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 261
 262    /* human-readable name for a DRC to encode into the DT
 263     * description. this is mainly only used within a guest in place
 264     * of the unique DRC index.
 265     *
 266     * in the case of VIO/PCI devices, it corresponds to a "location
 267     * code" that maps a logical device/function (DRC index) to a
 268     * physical (or virtual in the case of VIO) location in the system
 269     * by chaining together the "location label" for each
 270     * encapsulating component.
 271     *
 272     * since this is more to do with diagnosing physical hardware
 273     * issues than guest compatibility, we choose location codes/DRC
 274     * names that adhere to the documented format, but avoid encoding
 275     * the entire topology information into the label/code, instead
 276     * just using the location codes based on the labels for the
 277     * endpoints (VIO/PCI adaptor connectors), which is basically just
 278     * "C" followed by an integer ID.
 279     *
 280     * DRC names as documented by PAPR+ v2.7, 13.5.2.4
 281     * location codes as documented by PAPR+ v2.7, 12.3.1.5
 282     */
 283    return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
 284}
 285
 286/*
 287 * dr-entity-sense sensor value
 288 * returned via get-sensor-state RTAS calls
 289 * as expected by state diagram in PAPR+ 2.7, 13.4
 290 * based on the current allocation/indicator/power states
 291 * for the DR connector.
 292 */
 293static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
 294{
 295    /* this assumes all PCI devices are assigned to a 'live insertion'
 296     * power domain, where QEMU manages power state automatically as
 297     * opposed to the guest. present, non-PCI resources are unaffected
 298     * by power state.
 299     */
 300    return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
 301        : SPAPR_DR_ENTITY_SENSE_EMPTY;
 302}
 303
 304static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
 305{
 306    switch (drc->state) {
 307    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 308        return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
 309    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 310    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 311    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 312        g_assert(drc->dev);
 313        return SPAPR_DR_ENTITY_SENSE_PRESENT;
 314    default:
 315        g_assert_not_reached();
 316    }
 317}
 318
 319static void prop_get_index(Object *obj, Visitor *v, const char *name,
 320                           void *opaque, Error **errp)
 321{
 322    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 323    uint32_t value = spapr_drc_index(drc);
 324    visit_type_uint32(v, name, &value, errp);
 325}
 326
 327static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
 328                         void *opaque, Error **errp)
 329{
 330    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 331    QNull *null = NULL;
 332    int fdt_offset_next, fdt_offset, fdt_depth;
 333    void *fdt;
 334
 335    if (!drc->fdt) {
 336        visit_type_null(v, NULL, &null, errp);
 337        qobject_unref(null);
 338        return;
 339    }
 340
 341    fdt = drc->fdt;
 342    fdt_offset = drc->fdt_start_offset;
 343    fdt_depth = 0;
 344
 345    do {
 346        const char *name = NULL;
 347        const struct fdt_property *prop = NULL;
 348        int prop_len = 0, name_len = 0;
 349        uint32_t tag;
 350        bool ok;
 351
 352        tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
 353        switch (tag) {
 354        case FDT_BEGIN_NODE:
 355            fdt_depth++;
 356            name = fdt_get_name(fdt, fdt_offset, &name_len);
 357            if (!visit_start_struct(v, name, NULL, 0, errp)) {
 358                return;
 359            }
 360            break;
 361        case FDT_END_NODE:
 362            /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
 363            g_assert(fdt_depth > 0);
 364            ok = visit_check_struct(v, errp);
 365            visit_end_struct(v, NULL);
 366            if (!ok) {
 367                return;
 368            }
 369            fdt_depth--;
 370            break;
 371        case FDT_PROP: {
 372            int i;
 373            prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
 374            name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
 375            if (!visit_start_list(v, name, NULL, 0, errp)) {
 376                return;
 377            }
 378            for (i = 0; i < prop_len; i++) {
 379                if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
 380                                      errp)) {
 381                    return;
 382                }
 383            }
 384            ok = visit_check_list(v, errp);
 385            visit_end_list(v, NULL);
 386            if (!ok) {
 387                return;
 388            }
 389            break;
 390        }
 391        default:
 392            error_report("device FDT in unexpected state: %d", tag);
 393            abort();
 394        }
 395        fdt_offset = fdt_offset_next;
 396    } while (fdt_depth != 0);
 397}
 398
 399void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
 400{
 401    trace_spapr_drc_attach(spapr_drc_index(drc));
 402
 403    g_assert(!drc->dev);
 404    g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
 405             || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
 406
 407    drc->dev = d;
 408
 409    object_property_add_link(OBJECT(drc), "device",
 410                             object_get_typename(OBJECT(drc->dev)),
 411                             (Object **)(&drc->dev),
 412                             NULL, 0);
 413}
 414
 415void spapr_drc_unplug_request(SpaprDrc *drc)
 416{
 417    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 418
 419    trace_spapr_drc_unplug_request(spapr_drc_index(drc));
 420
 421    g_assert(drc->dev);
 422
 423    drc->unplug_requested = true;
 424
 425    if (drc->state != drck->empty_state) {
 426        trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
 427        return;
 428    }
 429
 430    spapr_drc_release(drc);
 431}
 432
 433bool spapr_drc_reset(SpaprDrc *drc)
 434{
 435    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 436    bool unplug_completed = false;
 437
 438    trace_spapr_drc_reset(spapr_drc_index(drc));
 439
 440    /* immediately upon reset we can safely assume DRCs whose devices
 441     * are pending removal can be safely removed.
 442     */
 443    if (drc->unplug_requested) {
 444        spapr_drc_release(drc);
 445        unplug_completed = true;
 446    }
 447
 448    if (drc->dev) {
 449        /* A device present at reset is ready to go, same as coldplugged */
 450        drc->state = drck->ready_state;
 451        /*
 452         * Ensure that we are able to send the FDT fragment again
 453         * via configure-connector call if the guest requests.
 454         */
 455        drc->ccs_offset = drc->fdt_start_offset;
 456        drc->ccs_depth = 0;
 457    } else {
 458        drc->state = drck->empty_state;
 459        drc->ccs_offset = -1;
 460        drc->ccs_depth = -1;
 461    }
 462
 463    return unplug_completed;
 464}
 465
 466static bool spapr_drc_unplug_requested_needed(void *opaque)
 467{
 468    return spapr_drc_unplug_requested(opaque);
 469}
 470
 471static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
 472    .name = "spapr_drc/unplug_requested",
 473    .version_id = 1,
 474    .minimum_version_id = 1,
 475    .needed = spapr_drc_unplug_requested_needed,
 476    .fields  = (VMStateField []) {
 477        VMSTATE_BOOL(unplug_requested, SpaprDrc),
 478        VMSTATE_END_OF_LIST()
 479    }
 480};
 481
 482static bool spapr_drc_needed(void *opaque)
 483{
 484    SpaprDrc *drc = opaque;
 485    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 486
 487    /*
 488     * If no dev is plugged in there is no need to migrate the DRC state
 489     * nor to reset the DRC at CAS.
 490     */
 491    if (!drc->dev) {
 492        return false;
 493    }
 494
 495    /*
 496     * We need to reset the DRC at CAS or to migrate the DRC state if it's
 497     * not equal to the expected long-term state, which is the same as the
 498     * coldplugged initial state, or if an unplug request is pending.
 499     */
 500    return drc->state != drck->ready_state ||
 501        spapr_drc_unplug_requested(drc);
 502}
 503
 504static const VMStateDescription vmstate_spapr_drc = {
 505    .name = "spapr_drc",
 506    .version_id = 1,
 507    .minimum_version_id = 1,
 508    .needed = spapr_drc_needed,
 509    .fields  = (VMStateField []) {
 510        VMSTATE_UINT32(state, SpaprDrc),
 511        VMSTATE_END_OF_LIST()
 512    },
 513    .subsections = (const VMStateDescription * []) {
 514        &vmstate_spapr_drc_unplug_requested,
 515        NULL
 516    }
 517};
 518
 519static void drc_realize(DeviceState *d, Error **errp)
 520{
 521    SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
 522    g_autofree gchar *link_name = g_strdup_printf("%x", spapr_drc_index(drc));
 523    Object *root_container;
 524    const char *child_name;
 525
 526    trace_spapr_drc_realize(spapr_drc_index(drc));
 527    /* NOTE: we do this as part of realize/unrealize due to the fact
 528     * that the guest will communicate with the DRC via RTAS calls
 529     * referencing the global DRC index. By unlinking the DRC
 530     * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
 531     * inaccessible by the guest, since lookups rely on this path
 532     * existing in the composition tree
 533     */
 534    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 535    child_name = object_get_canonical_path_component(OBJECT(drc));
 536    trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
 537    object_property_add_alias(root_container, link_name,
 538                              drc->owner, child_name);
 539    vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
 540                     drc);
 541    trace_spapr_drc_realize_complete(spapr_drc_index(drc));
 542}
 543
 544static void drc_unrealize(DeviceState *d)
 545{
 546    SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
 547    g_autofree gchar *name = g_strdup_printf("%x", spapr_drc_index(drc));
 548    Object *root_container;
 549
 550    trace_spapr_drc_unrealize(spapr_drc_index(drc));
 551    vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
 552    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 553    object_property_del(root_container, name);
 554}
 555
 556SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
 557                                         uint32_t id)
 558{
 559    SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
 560    g_autofree char *prop_name = NULL;
 561
 562    drc->id = id;
 563    drc->owner = owner;
 564    prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
 565                                spapr_drc_index(drc));
 566    object_property_add_child(owner, prop_name, OBJECT(drc));
 567    object_unref(OBJECT(drc));
 568    qdev_realize(DEVICE(drc), NULL, NULL);
 569
 570    return drc;
 571}
 572
 573static void spapr_dr_connector_instance_init(Object *obj)
 574{
 575    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 576    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 577
 578    object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
 579    object_property_add(obj, "index", "uint32", prop_get_index,
 580                        NULL, NULL, NULL);
 581    object_property_add(obj, "fdt", "struct", prop_get_fdt,
 582                        NULL, NULL, NULL);
 583    drc->state = drck->empty_state;
 584}
 585
 586static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
 587{
 588    DeviceClass *dk = DEVICE_CLASS(k);
 589
 590    dk->realize = drc_realize;
 591    dk->unrealize = drc_unrealize;
 592    /*
 593     * Reason: DR connector needs to be wired to either the machine or to a
 594     * PHB in spapr_dr_connector_new().
 595     */
 596    dk->user_creatable = false;
 597}
 598
 599static bool drc_physical_needed(void *opaque)
 600{
 601    SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
 602    SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
 603
 604    if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
 605        || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
 606        return false;
 607    }
 608    return true;
 609}
 610
 611static const VMStateDescription vmstate_spapr_drc_physical = {
 612    .name = "spapr_drc/physical",
 613    .version_id = 1,
 614    .minimum_version_id = 1,
 615    .needed = drc_physical_needed,
 616    .fields  = (VMStateField []) {
 617        VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
 618        VMSTATE_END_OF_LIST()
 619    }
 620};
 621
 622static void drc_physical_reset(void *opaque)
 623{
 624    SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
 625    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
 626
 627    if (drc->dev) {
 628        drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
 629    } else {
 630        drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
 631    }
 632}
 633
 634static void realize_physical(DeviceState *d, Error **errp)
 635{
 636    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 637    Error *local_err = NULL;
 638
 639    drc_realize(d, &local_err);
 640    if (local_err) {
 641        error_propagate(errp, local_err);
 642        return;
 643    }
 644
 645    vmstate_register(VMSTATE_IF(drcp),
 646                     spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
 647                     &vmstate_spapr_drc_physical, drcp);
 648    qemu_register_reset(drc_physical_reset, drcp);
 649}
 650
 651static void unrealize_physical(DeviceState *d)
 652{
 653    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 654
 655    drc_unrealize(d);
 656    vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
 657    qemu_unregister_reset(drc_physical_reset, drcp);
 658}
 659
 660static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
 661{
 662    DeviceClass *dk = DEVICE_CLASS(k);
 663    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 664
 665    dk->realize = realize_physical;
 666    dk->unrealize = unrealize_physical;
 667    drck->dr_entity_sense = physical_entity_sense;
 668    drck->isolate = drc_isolate_physical;
 669    drck->unisolate = drc_unisolate_physical;
 670    drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
 671    drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
 672}
 673
 674static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
 675{
 676    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 677
 678    drck->dr_entity_sense = logical_entity_sense;
 679    drck->isolate = drc_isolate_logical;
 680    drck->unisolate = drc_unisolate_logical;
 681    drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
 682    drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 683}
 684
 685static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
 686{
 687    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 688
 689    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
 690    drck->typename = "CPU";
 691    drck->drc_name_prefix = "CPU ";
 692    drck->release = spapr_core_release;
 693    drck->dt_populate = spapr_core_dt_populate;
 694}
 695
 696static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
 697{
 698    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 699
 700    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
 701    drck->typename = "28";
 702    drck->drc_name_prefix = "C";
 703    drck->release = spapr_phb_remove_pci_device_cb;
 704    drck->dt_populate = spapr_pci_dt_populate;
 705}
 706
 707static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
 708{
 709    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 710
 711    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
 712    drck->typename = "MEM";
 713    drck->drc_name_prefix = "LMB ";
 714    drck->release = spapr_lmb_release;
 715    drck->dt_populate = spapr_lmb_dt_populate;
 716}
 717
 718static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
 719{
 720    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 721
 722    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
 723    drck->typename = "PHB";
 724    drck->drc_name_prefix = "PHB ";
 725    drck->release = spapr_phb_release;
 726    drck->dt_populate = spapr_phb_dt_populate;
 727}
 728
 729static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
 730{
 731    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 732
 733    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
 734    drck->typename = "PMEM";
 735    drck->drc_name_prefix = "PMEM ";
 736    drck->release = NULL;
 737    drck->dt_populate = spapr_pmem_dt_populate;
 738}
 739
 740static const TypeInfo spapr_dr_connector_info = {
 741    .name          = TYPE_SPAPR_DR_CONNECTOR,
 742    .parent        = TYPE_DEVICE,
 743    .instance_size = sizeof(SpaprDrc),
 744    .instance_init = spapr_dr_connector_instance_init,
 745    .class_size    = sizeof(SpaprDrcClass),
 746    .class_init    = spapr_dr_connector_class_init,
 747    .abstract      = true,
 748};
 749
 750static const TypeInfo spapr_drc_physical_info = {
 751    .name          = TYPE_SPAPR_DRC_PHYSICAL,
 752    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 753    .instance_size = sizeof(SpaprDrcPhysical),
 754    .class_init    = spapr_drc_physical_class_init,
 755    .abstract      = true,
 756};
 757
 758static const TypeInfo spapr_drc_logical_info = {
 759    .name          = TYPE_SPAPR_DRC_LOGICAL,
 760    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 761    .class_init    = spapr_drc_logical_class_init,
 762    .abstract      = true,
 763};
 764
 765static const TypeInfo spapr_drc_cpu_info = {
 766    .name          = TYPE_SPAPR_DRC_CPU,
 767    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 768    .class_init    = spapr_drc_cpu_class_init,
 769};
 770
 771static const TypeInfo spapr_drc_pci_info = {
 772    .name          = TYPE_SPAPR_DRC_PCI,
 773    .parent        = TYPE_SPAPR_DRC_PHYSICAL,
 774    .class_init    = spapr_drc_pci_class_init,
 775};
 776
 777static const TypeInfo spapr_drc_lmb_info = {
 778    .name          = TYPE_SPAPR_DRC_LMB,
 779    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 780    .class_init    = spapr_drc_lmb_class_init,
 781};
 782
 783static const TypeInfo spapr_drc_phb_info = {
 784    .name          = TYPE_SPAPR_DRC_PHB,
 785    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 786    .instance_size = sizeof(SpaprDrc),
 787    .class_init    = spapr_drc_phb_class_init,
 788};
 789
 790static const TypeInfo spapr_drc_pmem_info = {
 791    .name          = TYPE_SPAPR_DRC_PMEM,
 792    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 793    .class_init    = spapr_drc_pmem_class_init,
 794};
 795
 796/* helper functions for external users */
 797
 798SpaprDrc *spapr_drc_by_index(uint32_t index)
 799{
 800    Object *obj;
 801    g_autofree gchar *name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH,
 802                                             index);
 803    obj = object_resolve_path(name, NULL);
 804
 805    return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
 806}
 807
 808SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
 809{
 810    SpaprDrcClass *drck
 811        = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
 812
 813    return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
 814                              | (id & DRC_INDEX_ID_MASK));
 815}
 816
 817/**
 818 * spapr_dt_drc
 819 *
 820 * @fdt: libfdt device tree
 821 * @path: path in the DT to generate properties
 822 * @owner: parent Object/DeviceState for which to generate DRC
 823 *         descriptions for
 824 * @drc_type_mask: mask of SpaprDrcType values corresponding
 825 *   to the types of DRCs to generate entries for
 826 *
 827 * generate OF properties to describe DRC topology/indices to guests
 828 *
 829 * as documented in PAPR+ v2.1, 13.5.2
 830 */
 831int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
 832{
 833    Object *root_container;
 834    ObjectProperty *prop;
 835    ObjectPropertyIterator iter;
 836    uint32_t drc_count = 0;
 837    g_autoptr(GArray) drc_indexes = g_array_new(false, true,
 838                                                sizeof(uint32_t));
 839    g_autoptr(GArray) drc_power_domains = g_array_new(false, true,
 840                                                      sizeof(uint32_t));
 841    g_autoptr(GString) drc_names = g_string_set_size(g_string_new(NULL),
 842                                                     sizeof(uint32_t));
 843    g_autoptr(GString) drc_types = g_string_set_size(g_string_new(NULL),
 844                                                     sizeof(uint32_t));
 845    int ret;
 846
 847    /*
 848     * This should really be only called once per node since it overwrites
 849     * the OF properties if they already exist.
 850     */
 851    g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
 852
 853    /* the first entry of each properties is a 32-bit integer encoding
 854     * the number of elements in the array. we won't know this until
 855     * we complete the iteration through all the matching DRCs, but
 856     * reserve the space now and set the offsets accordingly so we
 857     * can fill them in later.
 858     */
 859    drc_indexes = g_array_set_size(drc_indexes, 1);
 860    drc_power_domains = g_array_set_size(drc_power_domains, 1);
 861
 862    /* aliases for all DRConnector objects will be rooted in QOM
 863     * composition tree at DRC_CONTAINER_PATH
 864     */
 865    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 866
 867    object_property_iter_init(&iter, root_container);
 868    while ((prop = object_property_iter_next(&iter))) {
 869        Object *obj;
 870        SpaprDrc *drc;
 871        SpaprDrcClass *drck;
 872        g_autofree char *drc_name = NULL;
 873        uint32_t drc_index, drc_power_domain;
 874
 875        if (!strstart(prop->type, "link<", NULL)) {
 876            continue;
 877        }
 878
 879        obj = object_property_get_link(root_container, prop->name,
 880                                       &error_abort);
 881        drc = SPAPR_DR_CONNECTOR(obj);
 882        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 883
 884        if (owner && (drc->owner != owner)) {
 885            continue;
 886        }
 887
 888        if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
 889            continue;
 890        }
 891
 892        drc_count++;
 893
 894        /* ibm,drc-indexes */
 895        drc_index = cpu_to_be32(spapr_drc_index(drc));
 896        g_array_append_val(drc_indexes, drc_index);
 897
 898        /* ibm,drc-power-domains */
 899        drc_power_domain = cpu_to_be32(-1);
 900        g_array_append_val(drc_power_domains, drc_power_domain);
 901
 902        /* ibm,drc-names */
 903        drc_name = spapr_drc_name(drc);
 904        drc_names = g_string_append(drc_names, drc_name);
 905        drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
 906
 907        /* ibm,drc-types */
 908        drc_types = g_string_append(drc_types, drck->typename);
 909        drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
 910    }
 911
 912    /* now write the drc count into the space we reserved at the
 913     * beginning of the arrays previously
 914     */
 915    *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
 916    *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
 917    *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
 918    *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
 919
 920    ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
 921                      drc_indexes->data,
 922                      drc_indexes->len * sizeof(uint32_t));
 923    if (ret) {
 924        error_report("Couldn't create ibm,drc-indexes property");
 925        return ret;
 926    }
 927
 928    ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
 929                      drc_power_domains->data,
 930                      drc_power_domains->len * sizeof(uint32_t));
 931    if (ret) {
 932        error_report("Couldn't finalize ibm,drc-power-domains property");
 933        return ret;
 934    }
 935
 936    ret = fdt_setprop(fdt, offset, "ibm,drc-names",
 937                      drc_names->str, drc_names->len);
 938    if (ret) {
 939        error_report("Couldn't finalize ibm,drc-names property");
 940        return ret;
 941    }
 942
 943    ret = fdt_setprop(fdt, offset, "ibm,drc-types",
 944                      drc_types->str, drc_types->len);
 945    if (ret) {
 946        error_report("Couldn't finalize ibm,drc-types property");
 947    }
 948
 949    return ret;
 950}
 951
 952void spapr_drc_reset_all(SpaprMachineState *spapr)
 953{
 954    Object *drc_container;
 955    ObjectProperty *prop;
 956    ObjectPropertyIterator iter;
 957
 958    drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 959restart:
 960    object_property_iter_init(&iter, drc_container);
 961    while ((prop = object_property_iter_next(&iter))) {
 962        SpaprDrc *drc;
 963
 964        if (!strstart(prop->type, "link<", NULL)) {
 965            continue;
 966        }
 967        drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
 968                                                          prop->name,
 969                                                          &error_abort));
 970
 971        /*
 972         * This will complete any pending plug/unplug requests.
 973         * In case of a unplugged PHB or PCI bridge, this will
 974         * cause some DRCs to be destroyed and thus potentially
 975         * invalidate the iterator.
 976         */
 977        if (spapr_drc_reset(drc)) {
 978            goto restart;
 979        }
 980    }
 981}
 982
 983/*
 984 * RTAS calls
 985 */
 986
 987static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
 988{
 989    SpaprDrc *drc = spapr_drc_by_index(idx);
 990    SpaprDrcClass *drck;
 991
 992    if (!drc) {
 993        return RTAS_OUT_NO_SUCH_INDICATOR;
 994    }
 995
 996    trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
 997
 998    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 999
1000    switch (state) {
1001    case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1002        return drck->isolate(drc);
1003
1004    case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1005        return drck->unisolate(drc);
1006
1007    default:
1008        return RTAS_OUT_PARAM_ERROR;
1009    }
1010}
1011
1012static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1013{
1014    SpaprDrc *drc = spapr_drc_by_index(idx);
1015
1016    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1017        return RTAS_OUT_NO_SUCH_INDICATOR;
1018    }
1019
1020    trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1021
1022    switch (state) {
1023    case SPAPR_DR_ALLOCATION_STATE_USABLE:
1024        return drc_set_usable(drc);
1025
1026    case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1027        return drc_set_unusable(drc);
1028
1029    default:
1030        return RTAS_OUT_PARAM_ERROR;
1031    }
1032}
1033
1034static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1035{
1036    SpaprDrc *drc = spapr_drc_by_index(idx);
1037
1038    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1039        return RTAS_OUT_NO_SUCH_INDICATOR;
1040    }
1041    if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1042        && (state != SPAPR_DR_INDICATOR_ACTIVE)
1043        && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1044        && (state != SPAPR_DR_INDICATOR_ACTION)) {
1045        return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1046    }
1047
1048    trace_spapr_drc_set_dr_indicator(idx, state);
1049    SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1050    return RTAS_OUT_SUCCESS;
1051}
1052
1053static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1054                               uint32_t token,
1055                               uint32_t nargs, target_ulong args,
1056                               uint32_t nret, target_ulong rets)
1057{
1058    uint32_t type, idx, state;
1059    uint32_t ret = RTAS_OUT_SUCCESS;
1060
1061    if (nargs != 3 || nret != 1) {
1062        ret = RTAS_OUT_PARAM_ERROR;
1063        goto out;
1064    }
1065
1066    type = rtas_ld(args, 0);
1067    idx = rtas_ld(args, 1);
1068    state = rtas_ld(args, 2);
1069
1070    switch (type) {
1071    case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1072        ret = rtas_set_isolation_state(idx, state);
1073        break;
1074    case RTAS_SENSOR_TYPE_DR:
1075        ret = rtas_set_dr_indicator(idx, state);
1076        break;
1077    case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1078        ret = rtas_set_allocation_state(idx, state);
1079        break;
1080    default:
1081        ret = RTAS_OUT_NOT_SUPPORTED;
1082    }
1083
1084out:
1085    rtas_st(rets, 0, ret);
1086}
1087
1088static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1089                                  uint32_t token, uint32_t nargs,
1090                                  target_ulong args, uint32_t nret,
1091                                  target_ulong rets)
1092{
1093    uint32_t sensor_type;
1094    uint32_t sensor_index;
1095    uint32_t sensor_state = 0;
1096    SpaprDrc *drc;
1097    SpaprDrcClass *drck;
1098    uint32_t ret = RTAS_OUT_SUCCESS;
1099
1100    if (nargs != 2 || nret != 2) {
1101        ret = RTAS_OUT_PARAM_ERROR;
1102        goto out;
1103    }
1104
1105    sensor_type = rtas_ld(args, 0);
1106    sensor_index = rtas_ld(args, 1);
1107
1108    if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1109        /* currently only DR-related sensors are implemented */
1110        trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1111                                                        sensor_type);
1112        ret = RTAS_OUT_NOT_SUPPORTED;
1113        goto out;
1114    }
1115
1116    drc = spapr_drc_by_index(sensor_index);
1117    if (!drc) {
1118        trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1119        ret = RTAS_OUT_PARAM_ERROR;
1120        goto out;
1121    }
1122    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1123    sensor_state = drck->dr_entity_sense(drc);
1124
1125out:
1126    rtas_st(rets, 0, ret);
1127    rtas_st(rets, 1, sensor_state);
1128}
1129
1130/* configure-connector work area offsets, int32_t units for field
1131 * indexes, bytes for field offset/len values.
1132 *
1133 * as documented by PAPR+ v2.7, 13.5.3.5
1134 */
1135#define CC_IDX_NODE_NAME_OFFSET 2
1136#define CC_IDX_PROP_NAME_OFFSET 2
1137#define CC_IDX_PROP_LEN 3
1138#define CC_IDX_PROP_DATA_OFFSET 4
1139#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1140#define CC_WA_LEN 4096
1141
1142static void configure_connector_st(target_ulong addr, target_ulong offset,
1143                                   const void *buf, size_t len)
1144{
1145    cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1146                              buf, MIN(len, CC_WA_LEN - offset));
1147}
1148
1149static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1150                                         SpaprMachineState *spapr,
1151                                         uint32_t token, uint32_t nargs,
1152                                         target_ulong args, uint32_t nret,
1153                                         target_ulong rets)
1154{
1155    uint64_t wa_addr;
1156    uint64_t wa_offset;
1157    uint32_t drc_index;
1158    SpaprDrc *drc;
1159    SpaprDrcClass *drck;
1160    SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1161    int rc;
1162
1163    if (nargs != 2 || nret != 1) {
1164        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1165        return;
1166    }
1167
1168    wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1169
1170    drc_index = rtas_ld(wa_addr, 0);
1171    drc = spapr_drc_by_index(drc_index);
1172    if (!drc) {
1173        trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1174        rc = RTAS_OUT_PARAM_ERROR;
1175        goto out;
1176    }
1177
1178    if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1179        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1180        && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1181        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1182        /*
1183         * Need to unisolate the device before configuring
1184         * or it should already be in configured state to
1185         * allow configure-connector be called repeatedly.
1186         */
1187        rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1188        goto out;
1189    }
1190
1191    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1192
1193    /*
1194     * This indicates that the kernel is reconfiguring a LMB due to
1195     * a failed hotunplug. Rollback the DIMM unplug process.
1196     */
1197    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1198        drc->unplug_requested) {
1199        spapr_memory_unplug_rollback(spapr, drc->dev);
1200    }
1201
1202    if (!drc->fdt) {
1203        void *fdt;
1204        int fdt_size;
1205
1206        fdt = create_device_tree(&fdt_size);
1207
1208        if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1209                              NULL)) {
1210            g_free(fdt);
1211            rc = SPAPR_DR_CC_RESPONSE_ERROR;
1212            goto out;
1213        }
1214
1215        drc->fdt = fdt;
1216        drc->ccs_offset = drc->fdt_start_offset;
1217        drc->ccs_depth = 0;
1218    }
1219
1220    do {
1221        uint32_t tag;
1222        const char *name;
1223        const struct fdt_property *prop;
1224        int fdt_offset_next, prop_len;
1225
1226        tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1227
1228        switch (tag) {
1229        case FDT_BEGIN_NODE:
1230            drc->ccs_depth++;
1231            name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1232
1233            /* provide the name of the next OF node */
1234            wa_offset = CC_VAL_DATA_OFFSET;
1235            rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1236            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1237            resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1238            break;
1239        case FDT_END_NODE:
1240            drc->ccs_depth--;
1241            if (drc->ccs_depth == 0) {
1242                uint32_t drc_index = spapr_drc_index(drc);
1243
1244                /* done sending the device tree, move to configured state */
1245                trace_spapr_drc_set_configured(drc_index);
1246                drc->state = drck->ready_state;
1247                /*
1248                 * Ensure that we are able to send the FDT fragment
1249                 * again via configure-connector call if the guest requests.
1250                 */
1251                drc->ccs_offset = drc->fdt_start_offset;
1252                drc->ccs_depth = 0;
1253                fdt_offset_next = drc->fdt_start_offset;
1254                resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1255            } else {
1256                resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1257            }
1258            break;
1259        case FDT_PROP:
1260            prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1261                                              &prop_len);
1262            name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1263
1264            /* provide the name of the next OF property */
1265            wa_offset = CC_VAL_DATA_OFFSET;
1266            rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1267            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1268
1269            /* provide the length and value of the OF property. data gets
1270             * placed immediately after NULL terminator of the OF property's
1271             * name string
1272             */
1273            wa_offset += strlen(name) + 1,
1274            rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1275            rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1276            configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1277            resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1278            break;
1279        case FDT_END:
1280            resp = SPAPR_DR_CC_RESPONSE_ERROR;
1281        default:
1282            /* keep seeking for an actionable tag */
1283            break;
1284        }
1285        if (drc->ccs_offset >= 0) {
1286            drc->ccs_offset = fdt_offset_next;
1287        }
1288    } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1289
1290    rc = resp;
1291out:
1292    rtas_st(rets, 0, rc);
1293}
1294
1295static void spapr_drc_register_types(void)
1296{
1297    type_register_static(&spapr_dr_connector_info);
1298    type_register_static(&spapr_drc_physical_info);
1299    type_register_static(&spapr_drc_logical_info);
1300    type_register_static(&spapr_drc_cpu_info);
1301    type_register_static(&spapr_drc_pci_info);
1302    type_register_static(&spapr_drc_lmb_info);
1303    type_register_static(&spapr_drc_phb_info);
1304    type_register_static(&spapr_drc_pmem_info);
1305
1306    spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1307                        rtas_set_indicator);
1308    spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1309                        rtas_get_sensor_state);
1310    spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1311                        rtas_ibm_configure_connector);
1312}
1313type_init(spapr_drc_register_types)
1314