1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18#ifndef HEXAGON_MACROS_H
19#define HEXAGON_MACROS_H
20
21#include "cpu.h"
22#include "hex_regs.h"
23#include "reg_fields.h"
24
25#ifdef QEMU_GENERATE
26#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
27#else
28#define READ_REG(NUM) (env->gpr[(NUM)])
29#define READ_PREG(NUM) (env->pred[NUM])
30
31#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
32#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
33#endif
34
35#define PCALIGN 4
36#define PCALIGN_MASK (PCALIGN - 1)
37
38#define GET_FIELD(FIELD, REGIN) \
39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40 reg_field_info[FIELD].offset)
41
42#ifdef QEMU_GENERATE
43#define GET_USR_FIELD(FIELD, DST) \
44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45 reg_field_info[FIELD].offset, \
46 reg_field_info[FIELD].width)
47
48#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
49#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
50#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
51
52#define SET_USR_FIELD_FUNC(X) \
53 __builtin_choose_expr(TYPE_INT(X), \
54 gen_set_usr_fieldi, \
55 __builtin_choose_expr(TYPE_TCGV(X), \
56 gen_set_usr_field, (void)0))
57#define SET_USR_FIELD(FIELD, VAL) \
58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59#else
60#define GET_USR_FIELD(FIELD) \
61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62 reg_field_info[FIELD].offset)
63
64#define SET_USR_FIELD(FIELD, VAL) \
65 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
66 reg_field_info[FIELD].offset, (VAL))
67#endif
68
69#ifdef QEMU_GENERATE
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95#define CHECK_NOSHUF(VA, SIZE) \
96 do { \
97 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
98 probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
99 process_store(ctx, pkt, 1); \
100 } \
101 } while (0)
102
103#define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
104 do { \
105 TCGLabel *label = gen_new_label(); \
106 tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
107 GET_EA; \
108 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
109 probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
110 } \
111 gen_set_label(label); \
112 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
113 process_store(ctx, pkt, 1); \
114 } \
115 } while (0)
116
117#define MEM_LOAD1s(DST, VA) \
118 do { \
119 CHECK_NOSHUF(VA, 1); \
120 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
121 } while (0)
122#define MEM_LOAD1u(DST, VA) \
123 do { \
124 CHECK_NOSHUF(VA, 1); \
125 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
126 } while (0)
127#define MEM_LOAD2s(DST, VA) \
128 do { \
129 CHECK_NOSHUF(VA, 2); \
130 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
131 } while (0)
132#define MEM_LOAD2u(DST, VA) \
133 do { \
134 CHECK_NOSHUF(VA, 2); \
135 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
136 } while (0)
137#define MEM_LOAD4s(DST, VA) \
138 do { \
139 CHECK_NOSHUF(VA, 4); \
140 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
141 } while (0)
142#define MEM_LOAD4u(DST, VA) \
143 do { \
144 CHECK_NOSHUF(VA, 4); \
145 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
146 } while (0)
147#define MEM_LOAD8u(DST, VA) \
148 do { \
149 CHECK_NOSHUF(VA, 8); \
150 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
151 } while (0)
152
153#define MEM_STORE1_FUNC(X) \
154 __builtin_choose_expr(TYPE_INT(X), \
155 gen_store1i, \
156 __builtin_choose_expr(TYPE_TCGV(X), \
157 gen_store1, (void)0))
158#define MEM_STORE1(VA, DATA, SLOT) \
159 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
160
161#define MEM_STORE2_FUNC(X) \
162 __builtin_choose_expr(TYPE_INT(X), \
163 gen_store2i, \
164 __builtin_choose_expr(TYPE_TCGV(X), \
165 gen_store2, (void)0))
166#define MEM_STORE2(VA, DATA, SLOT) \
167 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
168
169#define MEM_STORE4_FUNC(X) \
170 __builtin_choose_expr(TYPE_INT(X), \
171 gen_store4i, \
172 __builtin_choose_expr(TYPE_TCGV(X), \
173 gen_store4, (void)0))
174#define MEM_STORE4(VA, DATA, SLOT) \
175 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
176
177#define MEM_STORE8_FUNC(X) \
178 __builtin_choose_expr(TYPE_INT(X), \
179 gen_store8i, \
180 __builtin_choose_expr(TYPE_TCGV_I64(X), \
181 gen_store8, (void)0))
182#define MEM_STORE8(VA, DATA, SLOT) \
183 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
184#else
185#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
186#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
187#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
188#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
189#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
190#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
191#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
192#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
193
194#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
195#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
196#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
197#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
198#endif
199
200#define CANCEL cancel_slot(env, slot)
201
202#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
203
204#ifdef QEMU_GENERATE
205static inline void gen_pred_cancel(TCGv pred, int slot_num)
206 {
207 TCGv slot_mask = tcg_temp_new();
208 TCGv tmp = tcg_temp_new();
209 TCGv zero = tcg_constant_tl(0);
210 tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
211 tcg_gen_andi_tl(tmp, pred, 1);
212 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
213 slot_mask, hex_slot_cancelled);
214 tcg_temp_free(slot_mask);
215 tcg_temp_free(tmp);
216}
217#define PRED_LOAD_CANCEL(PRED, EA) \
218 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
219#endif
220
221#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
222
223#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
224
225#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
226
227#define fABS(A) (((A) < 0) ? (-(A)) : (A))
228#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
229 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
230#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
231 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
232#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
233 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
234#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
235 (((HIBIT) - (LOWBIT) + 1) ? \
236 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
237 0LL)
238#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
239 do { \
240 int width = ((HIBIT) - (LOWBIT) + 1); \
241 INREG = (width >= 0 ? \
242 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
243 INREG); \
244 } while (0)
245
246#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
247
248#ifdef QEMU_GENERATE
249#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
250#else
251#define fLSBOLD(VAL) ((VAL) & 1)
252#endif
253
254#ifdef QEMU_GENERATE
255#define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
256#define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
257#define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
258#else
259#define fLSBNEW(PVAL) ((PVAL) & 1)
260#define fLSBNEW0 (env->new_pred_value[0] & 1)
261#define fLSBNEW1 (env->new_pred_value[1] & 1)
262#endif
263
264#ifdef QEMU_GENERATE
265#define fLSBOLDNOT(VAL) \
266 do { \
267 tcg_gen_andi_tl(LSB, (VAL), 1); \
268 tcg_gen_xori_tl(LSB, LSB, 1); \
269 } while (0)
270#define fLSBNEWNOT(PNUM) \
271 do { \
272 tcg_gen_andi_tl(LSB, (PNUM), 1); \
273 tcg_gen_xori_tl(LSB, LSB, 1); \
274 } while (0)
275#else
276#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
277#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
278#define fLSBNEW0NOT (!fLSBNEW0)
279#define fLSBNEW1NOT (!fLSBNEW1)
280#endif
281
282#define fNEWREG(VAL) ((int32_t)(VAL))
283
284#define fNEWREG_ST(VAL) (VAL)
285
286#define fVSATUVALN(N, VAL) \
287 ({ \
288 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
289 })
290#define fSATUVALN(N, VAL) \
291 ({ \
292 fSET_OVERFLOW(); \
293 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
294 })
295#define fSATVALN(N, VAL) \
296 ({ \
297 fSET_OVERFLOW(); \
298 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
299 })
300#define fVSATVALN(N, VAL) \
301 ({ \
302 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
303 })
304#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
305#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
306#define fSATN(N, VAL) \
307 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
308#define fVSATN(N, VAL) \
309 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
310#define fADDSAT64(DST, A, B) \
311 do { \
312 uint64_t __a = fCAST8u(A); \
313 uint64_t __b = fCAST8u(B); \
314 uint64_t __sum = __a + __b; \
315 uint64_t __xor = __a ^ __b; \
316 const uint64_t __mask = 0x8000000000000000ULL; \
317 if (__xor & __mask) { \
318 DST = __sum; \
319 } \
320 else if ((__a ^ __sum) & __mask) { \
321 if (__sum & __mask) { \
322 DST = 0x7FFFFFFFFFFFFFFFLL; \
323 fSET_OVERFLOW(); \
324 } else { \
325 DST = 0x8000000000000000LL; \
326 fSET_OVERFLOW(); \
327 } \
328 } else { \
329 DST = __sum; \
330 } \
331 } while (0)
332#define fVSATUN(N, VAL) \
333 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
334#define fSATUN(N, VAL) \
335 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
336#define fSATH(VAL) (fSATN(16, VAL))
337#define fSATUH(VAL) (fSATUN(16, VAL))
338#define fVSATH(VAL) (fVSATN(16, VAL))
339#define fVSATUH(VAL) (fVSATUN(16, VAL))
340#define fSATUB(VAL) (fSATUN(8, VAL))
341#define fSATB(VAL) (fSATN(8, VAL))
342#define fVSATUB(VAL) (fVSATUN(8, VAL))
343#define fVSATB(VAL) (fVSATN(8, VAL))
344#define fIMMEXT(IMM) (IMM = IMM)
345#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
346
347#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
348
349#ifdef QEMU_GENERATE
350static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
351{
352
353
354
355
356
357
358
359
360
361
362 TCGv msb = tcg_temp_new();
363 TCGv lsb = tcg_temp_new();
364
365 tcg_gen_extract_tl(lsb, val, 17, 7);
366 tcg_gen_sari_tl(msb, val, 21);
367 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
368
369 tcg_gen_shli_tl(result, result, shift);
370
371 tcg_temp_free(msb);
372 tcg_temp_free(lsb);
373
374 return result;
375}
376#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
377#else
378#define fREAD_IREG(VAL) \
379 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
380#endif
381
382#define fREAD_LR() (READ_REG(HEX_REG_LR))
383
384#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
385#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
386#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
387
388#define fREAD_SP() (READ_REG(HEX_REG_SP))
389#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
390#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
391#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
392#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
393#define fREAD_FP() (READ_REG(HEX_REG_FP))
394#ifdef FIXME
395
396#define fREAD_GP() \
397 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
398#else
399#define fREAD_GP() READ_REG(HEX_REG_GP)
400#endif
401#define fREAD_PC() (READ_REG(HEX_REG_PC))
402
403#define fREAD_NPC() (env->next_PC & (0xfffffffe))
404
405#define fREAD_P0() (READ_PREG(0))
406#define fREAD_P3() (READ_PREG(3))
407
408#define fCHECK_PCALIGN(A)
409
410#define fWRITE_NPC(A) write_new_pc(env, A)
411
412#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
413#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
414#define fHINTJR(TARGET) { }
415#define fCALL(A) \
416 do { \
417 fWRITE_LR(fREAD_NPC()); \
418 fBRANCH(A, COF_TYPE_CALL); \
419 } while (0)
420#define fCALLR(A) \
421 do { \
422 fWRITE_LR(fREAD_NPC()); \
423 fBRANCH(A, COF_TYPE_CALLR); \
424 } while (0)
425#define fWRITE_LOOP_REGS0(START, COUNT) \
426 do { \
427 WRITE_RREG(HEX_REG_LC0, COUNT); \
428 WRITE_RREG(HEX_REG_SA0, START); \
429 } while (0)
430#define fWRITE_LOOP_REGS1(START, COUNT) \
431 do { \
432 WRITE_RREG(HEX_REG_LC1, COUNT); \
433 WRITE_RREG(HEX_REG_SA1, START);\
434 } while (0)
435#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
436#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
437
438#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
439#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
440#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
441#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
442#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
443#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
444#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
445#define fPART1(WORK) if (part1) { WORK; return; }
446#define fCAST4u(A) ((uint32_t)(A))
447#define fCAST4s(A) ((int32_t)(A))
448#define fCAST8u(A) ((uint64_t)(A))
449#define fCAST8s(A) ((int64_t)(A))
450#define fCAST2_2s(A) ((int16_t)(A))
451#define fCAST2_2u(A) ((uint16_t)(A))
452#define fCAST4_4s(A) ((int32_t)(A))
453#define fCAST4_4u(A) ((uint32_t)(A))
454#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
455#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
456#define fCAST8_8s(A) ((int64_t)(A))
457#define fCAST8_8u(A) ((uint64_t)(A))
458#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
459#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
460#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
461#define fSE8_16(A) ((int16_t)((int8_t)(A)))
462#define fSE16_32(A) ((int32_t)((int16_t)(A)))
463#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
464#define fSE32_64(A) ((int64_t)((int32_t)(A)))
465#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
466#define fSE8_32(A) ((int32_t)((int8_t)(A)))
467#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
468#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
469#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
470#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
471#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
472#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
473#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
474#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
475#define fMPY16US(A, B) fMPY16SU(B, A)
476#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
477#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
478#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
479#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
480#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
481#define fROUND(A) (A + 0x8000)
482#define fCLIP(DST, SRC, U) \
483 do { \
484 int32_t maxv = (1 << U) - 1; \
485 int32_t minv = -(1 << U); \
486 DST = fMIN(maxv, fMAX(SRC, minv)); \
487 } while (0)
488#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
489#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
490#define fCRNDN(A, N) (conv_round(A, N))
491#define fADD128(A, B) (int128_add(A, B))
492#define fSUB128(A, B) (int128_sub(A, B))
493#define fSHIFTR128(A, B) (int128_rshift(A, B))
494#define fSHIFTL128(A, B) (int128_lshift(A, B))
495#define fAND128(A, B) (int128_and(A, B))
496#define fCAST8S_16S(A) (int128_exts64(A))
497#define fCAST16S_8S(A) (int128_getlo(A))
498
499#ifdef QEMU_GENERATE
500#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
501#define fEA_RRs(REG, REG2, SCALE) \
502 do { \
503 TCGv tmp = tcg_temp_new(); \
504 tcg_gen_shli_tl(tmp, REG2, SCALE); \
505 tcg_gen_add_tl(EA, REG, tmp); \
506 tcg_temp_free(tmp); \
507 } while (0)
508#define fEA_IRs(IMM, REG, SCALE) \
509 do { \
510 tcg_gen_shli_tl(EA, REG, SCALE); \
511 tcg_gen_addi_tl(EA, EA, IMM); \
512 } while (0)
513#else
514#define fEA_RI(REG, IMM) \
515 do { \
516 EA = REG + IMM; \
517 } while (0)
518#define fEA_RRs(REG, REG2, SCALE) \
519 do { \
520 EA = REG + (REG2 << SCALE); \
521 } while (0)
522#define fEA_IRs(IMM, REG, SCALE) \
523 do { \
524 EA = IMM + (REG << SCALE); \
525 } while (0)
526#endif
527
528#ifdef QEMU_GENERATE
529#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
530#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
531#define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
532#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
533#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
534#define fPM_CIRI(REG, IMM, MVAL) \
535 do { \
536 TCGv tcgv_siV = tcg_constant_tl(siV); \
537 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
538 hex_gpr[HEX_REG_CS0 + MuN]); \
539 } while (0)
540#else
541#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
542#define fEA_REG(REG) do { EA = (REG); } while (0)
543#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
544#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
545#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
546#endif
547#define fSCALE(N, A) (((int64_t)(A)) << N)
548#define fVSATW(A) fVSATN(32, ((long long)A))
549#define fSATW(A) fSATN(32, ((long long)A))
550#define fVSAT(A) fVSATN(32, (A))
551#define fSAT(A) fSATN(32, (A))
552#define fSAT_ORIG_SHL(A, ORIG_REG) \
553 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
554 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
555 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
556 : fSAT(A)))
557#define fPASS(A) A
558#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
559 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
560 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
561#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
562 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
563#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
564 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
565#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
566 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
567 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
568#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
569 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
570 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
571#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
572 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
573#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
574 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
575#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
576 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
577 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
578 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
579#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
580#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
581 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
582#define fROTL(SRC, SHAMT, REGSTYPE) \
583 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
584 ((fCAST##REGSTYPE##u(SRC) >> \
585 ((sizeof(SRC) * 8) - (SHAMT))))))
586#define fROTR(SRC, SHAMT, REGSTYPE) \
587 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
588 ((fCAST##REGSTYPE##u(SRC) << \
589 ((sizeof(SRC) * 8) - (SHAMT))))))
590#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
591 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
592
593#ifdef QEMU_GENERATE
594#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
595#else
596#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
597 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
598#endif
599
600#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
601
602#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
603#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
604#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
605
606#ifdef CONFIG_USER_ONLY
607#define fFRAMECHECK(ADDR, EA) do { } while (0)
608#else
609
610#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
611#endif
612
613#ifdef QEMU_GENERATE
614#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
615 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
616#endif
617
618#ifdef QEMU_GENERATE
619#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
620#else
621#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
622#endif
623
624#ifdef QEMU_GENERATE
625#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
626 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
627#endif
628
629#ifdef QEMU_GENERATE
630#define GETBYTE_FUNC(X) \
631 __builtin_choose_expr(TYPE_TCGV(X), \
632 gen_get_byte, \
633 __builtin_choose_expr(TYPE_TCGV_I64(X), \
634 gen_get_byte_i64, (void)0))
635#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
636#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
637#else
638#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
639#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
640#endif
641
642#define fSETBYTE(N, DST, VAL) \
643 do { \
644 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
645 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
646 } while (0)
647
648#ifdef QEMU_GENERATE
649#define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
650#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
651#else
652#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
653#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
654#endif
655#define fSETHALF(N, DST, VAL) \
656 do { \
657 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
658 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
659 } while (0)
660#define fSETHALFw fSETHALF
661#define fSETHALFd fSETHALF
662
663#define fGETWORD(N, SRC) \
664 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
665#define fGETUWORD(N, SRC) \
666 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
667
668#define fSETWORD(N, DST, VAL) \
669 do { \
670 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
671 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
672 } while (0)
673
674#define fSETBIT(N, DST, VAL) \
675 do { \
676 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
677 } while (0)
678
679#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
680#define fSETBITS(HI, LO, DST, VAL) \
681 do { \
682 int j; \
683 for (j = LO; j <= HI; j++) { \
684 fSETBIT(j, DST, VAL); \
685 } \
686 } while (0)
687#define fCOUNTONES_2(VAL) ctpop16(VAL)
688#define fCOUNTONES_4(VAL) ctpop32(VAL)
689#define fCOUNTONES_8(VAL) ctpop64(VAL)
690#define fBREV_8(VAL) revbit64(VAL)
691#define fBREV_4(VAL) revbit32(VAL)
692#define fCL1_8(VAL) clo64(VAL)
693#define fCL1_4(VAL) clo32(VAL)
694#define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
695#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
696#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
697#define fHIDE(A) A
698#define fCONSTLL(A) A##LL
699#define fECHO(A) (A)
700
701#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
702#define fPAUSE(IMM)
703
704#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
705 ((VAL) << reg_field_info[FIELD].offset)
706#define fGET_REG_FIELD_MASK(FIELD) \
707 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
708#define fREAD_REG_FIELD(REG, FIELD) \
709 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
710 reg_field_info[FIELD].width, \
711 reg_field_info[FIELD].offset)
712#define fGET_FIELD(VAL, FIELD)
713#define fSET_FIELD(VAL, FIELD, NEWVAL)
714#define fBARRIER()
715#define fSYNCH()
716#define fISYNC()
717#define fDCFETCH(REG) \
718 do { (void)REG; } while (0)
719#define fICINVA(REG) \
720 do { (void)REG; } while (0)
721#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
722#define fDCCLEANA(REG) \
723 do { (void)REG; } while (0)
724#define fDCCLEANINVA(REG) \
725 do { (void)REG; } while (0)
726
727#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
728
729#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
730 STRBITNUM)
731
732
733#endif
734