qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6#include <sys/shm.h>
   7
   8#include "qemu.h"
   9#include "user-internals.h"
  10#include "signal-common.h"
  11#include "loader.h"
  12#include "user-mmap.h"
  13#include "disas/disas.h"
  14#include "qemu/bitops.h"
  15#include "qemu/path.h"
  16#include "qemu/queue.h"
  17#include "qemu/guest-random.h"
  18#include "qemu/units.h"
  19#include "qemu/selfmap.h"
  20#include "qapi/error.h"
  21#include "target_signal.h"
  22
  23#ifdef _ARCH_PPC64
  24#undef ARCH_DLINFO
  25#undef ELF_PLATFORM
  26#undef ELF_HWCAP
  27#undef ELF_HWCAP2
  28#undef ELF_CLASS
  29#undef ELF_DATA
  30#undef ELF_ARCH
  31#endif
  32
  33#define ELF_OSABI   ELFOSABI_SYSV
  34
  35/* from personality.h */
  36
  37/*
  38 * Flags for bug emulation.
  39 *
  40 * These occupy the top three bytes.
  41 */
  42enum {
  43    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  44    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  45                                           descriptors (signal handling) */
  46    MMAP_PAGE_ZERO =    0x0100000,
  47    ADDR_COMPAT_LAYOUT = 0x0200000,
  48    READ_IMPLIES_EXEC = 0x0400000,
  49    ADDR_LIMIT_32BIT =  0x0800000,
  50    SHORT_INODE =       0x1000000,
  51    WHOLE_SECONDS =     0x2000000,
  52    STICKY_TIMEOUTS =   0x4000000,
  53    ADDR_LIMIT_3GB =    0x8000000,
  54};
  55
  56/*
  57 * Personality types.
  58 *
  59 * These go in the low byte.  Avoid using the top bit, it will
  60 * conflict with error returns.
  61 */
  62enum {
  63    PER_LINUX =         0x0000,
  64    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  65    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  66    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  67    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  68    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  69    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  70    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  71    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  72    PER_BSD =           0x0006,
  73    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  74    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  75    PER_LINUX32 =       0x0008,
  76    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  77    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  78    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  79    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  80    PER_RISCOS =        0x000c,
  81    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  82    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  83    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  84    PER_HPUX =          0x0010,
  85    PER_MASK =          0x00ff,
  86};
  87
  88/*
  89 * Return the base personality without flags.
  90 */
  91#define personality(pers)       (pers & PER_MASK)
  92
  93int info_is_fdpic(struct image_info *info)
  94{
  95    return info->personality == PER_LINUX_FDPIC;
  96}
  97
  98/* this flag is uneffective under linux too, should be deleted */
  99#ifndef MAP_DENYWRITE
 100#define MAP_DENYWRITE 0
 101#endif
 102
 103/* should probably go in elf.h */
 104#ifndef ELIBBAD
 105#define ELIBBAD 80
 106#endif
 107
 108#if TARGET_BIG_ENDIAN
 109#define ELF_DATA        ELFDATA2MSB
 110#else
 111#define ELF_DATA        ELFDATA2LSB
 112#endif
 113
 114#ifdef TARGET_ABI_MIPSN32
 115typedef abi_ullong      target_elf_greg_t;
 116#define tswapreg(ptr)   tswap64(ptr)
 117#else
 118typedef abi_ulong       target_elf_greg_t;
 119#define tswapreg(ptr)   tswapal(ptr)
 120#endif
 121
 122#ifdef USE_UID16
 123typedef abi_ushort      target_uid_t;
 124typedef abi_ushort      target_gid_t;
 125#else
 126typedef abi_uint        target_uid_t;
 127typedef abi_uint        target_gid_t;
 128#endif
 129typedef abi_int         target_pid_t;
 130
 131#ifdef TARGET_I386
 132
 133#define ELF_HWCAP get_elf_hwcap()
 134
 135static uint32_t get_elf_hwcap(void)
 136{
 137    X86CPU *cpu = X86_CPU(thread_cpu);
 138
 139    return cpu->env.features[FEAT_1_EDX];
 140}
 141
 142#ifdef TARGET_X86_64
 143#define ELF_START_MMAP 0x2aaaaab000ULL
 144
 145#define ELF_CLASS      ELFCLASS64
 146#define ELF_ARCH       EM_X86_64
 147
 148#define ELF_PLATFORM   "x86_64"
 149
 150static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 151{
 152    regs->rax = 0;
 153    regs->rsp = infop->start_stack;
 154    regs->rip = infop->entry;
 155}
 156
 157#define ELF_NREG    27
 158typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 159
 160/*
 161 * Note that ELF_NREG should be 29 as there should be place for
 162 * TRAPNO and ERR "registers" as well but linux doesn't dump
 163 * those.
 164 *
 165 * See linux kernel: arch/x86/include/asm/elf.h
 166 */
 167static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 168{
 169    (*regs)[0] = tswapreg(env->regs[15]);
 170    (*regs)[1] = tswapreg(env->regs[14]);
 171    (*regs)[2] = tswapreg(env->regs[13]);
 172    (*regs)[3] = tswapreg(env->regs[12]);
 173    (*regs)[4] = tswapreg(env->regs[R_EBP]);
 174    (*regs)[5] = tswapreg(env->regs[R_EBX]);
 175    (*regs)[6] = tswapreg(env->regs[11]);
 176    (*regs)[7] = tswapreg(env->regs[10]);
 177    (*regs)[8] = tswapreg(env->regs[9]);
 178    (*regs)[9] = tswapreg(env->regs[8]);
 179    (*regs)[10] = tswapreg(env->regs[R_EAX]);
 180    (*regs)[11] = tswapreg(env->regs[R_ECX]);
 181    (*regs)[12] = tswapreg(env->regs[R_EDX]);
 182    (*regs)[13] = tswapreg(env->regs[R_ESI]);
 183    (*regs)[14] = tswapreg(env->regs[R_EDI]);
 184    (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
 185    (*regs)[16] = tswapreg(env->eip);
 186    (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
 187    (*regs)[18] = tswapreg(env->eflags);
 188    (*regs)[19] = tswapreg(env->regs[R_ESP]);
 189    (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
 190    (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
 191    (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
 192    (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
 193    (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
 194    (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
 195    (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
 196}
 197
 198#if ULONG_MAX > UINT32_MAX
 199#define INIT_GUEST_COMMPAGE
 200static bool init_guest_commpage(void)
 201{
 202    /*
 203     * The vsyscall page is at a high negative address aka kernel space,
 204     * which means that we cannot actually allocate it with target_mmap.
 205     * We still should be able to use page_set_flags, unless the user
 206     * has specified -R reserved_va, which would trigger an assert().
 207     */
 208    if (reserved_va != 0 &&
 209        TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) {
 210        error_report("Cannot allocate vsyscall page");
 211        exit(EXIT_FAILURE);
 212    }
 213    page_set_flags(TARGET_VSYSCALL_PAGE,
 214                   TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE,
 215                   PAGE_EXEC | PAGE_VALID);
 216    return true;
 217}
 218#endif
 219#else
 220
 221#define ELF_START_MMAP 0x80000000
 222
 223/*
 224 * This is used to ensure we don't load something for the wrong architecture.
 225 */
 226#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 227
 228/*
 229 * These are used to set parameters in the core dumps.
 230 */
 231#define ELF_CLASS       ELFCLASS32
 232#define ELF_ARCH        EM_386
 233
 234#define ELF_PLATFORM get_elf_platform()
 235#define EXSTACK_DEFAULT true
 236
 237static const char *get_elf_platform(void)
 238{
 239    static char elf_platform[] = "i386";
 240    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 241    if (family > 6) {
 242        family = 6;
 243    }
 244    if (family >= 3) {
 245        elf_platform[1] = '0' + family;
 246    }
 247    return elf_platform;
 248}
 249
 250static inline void init_thread(struct target_pt_regs *regs,
 251                               struct image_info *infop)
 252{
 253    regs->esp = infop->start_stack;
 254    regs->eip = infop->entry;
 255
 256    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 257       starts %edx contains a pointer to a function which might be
 258       registered using `atexit'.  This provides a mean for the
 259       dynamic linker to call DT_FINI functions for shared libraries
 260       that have been loaded before the code runs.
 261
 262       A value of 0 tells we have no such handler.  */
 263    regs->edx = 0;
 264}
 265
 266#define ELF_NREG    17
 267typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 268
 269/*
 270 * Note that ELF_NREG should be 19 as there should be place for
 271 * TRAPNO and ERR "registers" as well but linux doesn't dump
 272 * those.
 273 *
 274 * See linux kernel: arch/x86/include/asm/elf.h
 275 */
 276static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 277{
 278    (*regs)[0] = tswapreg(env->regs[R_EBX]);
 279    (*regs)[1] = tswapreg(env->regs[R_ECX]);
 280    (*regs)[2] = tswapreg(env->regs[R_EDX]);
 281    (*regs)[3] = tswapreg(env->regs[R_ESI]);
 282    (*regs)[4] = tswapreg(env->regs[R_EDI]);
 283    (*regs)[5] = tswapreg(env->regs[R_EBP]);
 284    (*regs)[6] = tswapreg(env->regs[R_EAX]);
 285    (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
 286    (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
 287    (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
 288    (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
 289    (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
 290    (*regs)[12] = tswapreg(env->eip);
 291    (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
 292    (*regs)[14] = tswapreg(env->eflags);
 293    (*regs)[15] = tswapreg(env->regs[R_ESP]);
 294    (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
 295}
 296#endif
 297
 298#define USE_ELF_CORE_DUMP
 299#define ELF_EXEC_PAGESIZE       4096
 300
 301#endif
 302
 303#ifdef TARGET_ARM
 304
 305#ifndef TARGET_AARCH64
 306/* 32 bit ARM definitions */
 307
 308#define ELF_START_MMAP 0x80000000
 309
 310#define ELF_ARCH        EM_ARM
 311#define ELF_CLASS       ELFCLASS32
 312#define EXSTACK_DEFAULT true
 313
 314static inline void init_thread(struct target_pt_regs *regs,
 315                               struct image_info *infop)
 316{
 317    abi_long stack = infop->start_stack;
 318    memset(regs, 0, sizeof(*regs));
 319
 320    regs->uregs[16] = ARM_CPU_MODE_USR;
 321    if (infop->entry & 1) {
 322        regs->uregs[16] |= CPSR_T;
 323    }
 324    regs->uregs[15] = infop->entry & 0xfffffffe;
 325    regs->uregs[13] = infop->start_stack;
 326    /* FIXME - what to for failure of get_user()? */
 327    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 328    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 329    /* XXX: it seems that r0 is zeroed after ! */
 330    regs->uregs[0] = 0;
 331    /* For uClinux PIC binaries.  */
 332    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 333    regs->uregs[10] = infop->start_data;
 334
 335    /* Support ARM FDPIC.  */
 336    if (info_is_fdpic(infop)) {
 337        /* As described in the ABI document, r7 points to the loadmap info
 338         * prepared by the kernel. If an interpreter is needed, r8 points
 339         * to the interpreter loadmap and r9 points to the interpreter
 340         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 341         * r9 points to the main program PT_DYNAMIC info.
 342         */
 343        regs->uregs[7] = infop->loadmap_addr;
 344        if (infop->interpreter_loadmap_addr) {
 345            /* Executable is dynamically loaded.  */
 346            regs->uregs[8] = infop->interpreter_loadmap_addr;
 347            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 348        } else {
 349            regs->uregs[8] = 0;
 350            regs->uregs[9] = infop->pt_dynamic_addr;
 351        }
 352    }
 353}
 354
 355#define ELF_NREG    18
 356typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 357
 358static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 359{
 360    (*regs)[0] = tswapreg(env->regs[0]);
 361    (*regs)[1] = tswapreg(env->regs[1]);
 362    (*regs)[2] = tswapreg(env->regs[2]);
 363    (*regs)[3] = tswapreg(env->regs[3]);
 364    (*regs)[4] = tswapreg(env->regs[4]);
 365    (*regs)[5] = tswapreg(env->regs[5]);
 366    (*regs)[6] = tswapreg(env->regs[6]);
 367    (*regs)[7] = tswapreg(env->regs[7]);
 368    (*regs)[8] = tswapreg(env->regs[8]);
 369    (*regs)[9] = tswapreg(env->regs[9]);
 370    (*regs)[10] = tswapreg(env->regs[10]);
 371    (*regs)[11] = tswapreg(env->regs[11]);
 372    (*regs)[12] = tswapreg(env->regs[12]);
 373    (*regs)[13] = tswapreg(env->regs[13]);
 374    (*regs)[14] = tswapreg(env->regs[14]);
 375    (*regs)[15] = tswapreg(env->regs[15]);
 376
 377    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 378    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 379}
 380
 381#define USE_ELF_CORE_DUMP
 382#define ELF_EXEC_PAGESIZE       4096
 383
 384enum
 385{
 386    ARM_HWCAP_ARM_SWP       = 1 << 0,
 387    ARM_HWCAP_ARM_HALF      = 1 << 1,
 388    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 389    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 390    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 391    ARM_HWCAP_ARM_FPA       = 1 << 5,
 392    ARM_HWCAP_ARM_VFP       = 1 << 6,
 393    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 394    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 395    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 396    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 397    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 398    ARM_HWCAP_ARM_NEON      = 1 << 12,
 399    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 400    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 401    ARM_HWCAP_ARM_TLS       = 1 << 15,
 402    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 403    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 404    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 405    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 406    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 407    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 408};
 409
 410enum {
 411    ARM_HWCAP2_ARM_AES      = 1 << 0,
 412    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 413    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 414    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 415    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 416};
 417
 418/* The commpage only exists for 32 bit kernels */
 419
 420#define HI_COMMPAGE (intptr_t)0xffff0f00u
 421
 422static bool init_guest_commpage(void)
 423{
 424    abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
 425    void *want = g2h_untagged(commpage);
 426    void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
 427                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
 428
 429    if (addr == MAP_FAILED) {
 430        perror("Allocating guest commpage");
 431        exit(EXIT_FAILURE);
 432    }
 433    if (addr != want) {
 434        return false;
 435    }
 436
 437    /* Set kernel helper versions; rest of page is 0.  */
 438    __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
 439
 440    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
 441        perror("Protecting guest commpage");
 442        exit(EXIT_FAILURE);
 443    }
 444
 445    page_set_flags(commpage, commpage + qemu_host_page_size,
 446                   PAGE_READ | PAGE_EXEC | PAGE_VALID);
 447    return true;
 448}
 449
 450#define ELF_HWCAP get_elf_hwcap()
 451#define ELF_HWCAP2 get_elf_hwcap2()
 452
 453static uint32_t get_elf_hwcap(void)
 454{
 455    ARMCPU *cpu = ARM_CPU(thread_cpu);
 456    uint32_t hwcaps = 0;
 457
 458    hwcaps |= ARM_HWCAP_ARM_SWP;
 459    hwcaps |= ARM_HWCAP_ARM_HALF;
 460    hwcaps |= ARM_HWCAP_ARM_THUMB;
 461    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 462
 463    /* probe for the extra features */
 464#define GET_FEATURE(feat, hwcap) \
 465    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 466
 467#define GET_FEATURE_ID(feat, hwcap) \
 468    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 469
 470    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 471    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 472    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 473    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 474    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 475    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 476    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 477    GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
 478    GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
 479    GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
 480
 481    if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
 482        cpu_isar_feature(aa32_fpdp_v3, cpu)) {
 483        hwcaps |= ARM_HWCAP_ARM_VFPv3;
 484        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 485            hwcaps |= ARM_HWCAP_ARM_VFPD32;
 486        } else {
 487            hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
 488        }
 489    }
 490    GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
 491
 492    return hwcaps;
 493}
 494
 495static uint32_t get_elf_hwcap2(void)
 496{
 497    ARMCPU *cpu = ARM_CPU(thread_cpu);
 498    uint32_t hwcaps = 0;
 499
 500    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 501    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 502    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 503    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 504    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 505    return hwcaps;
 506}
 507
 508#undef GET_FEATURE
 509#undef GET_FEATURE_ID
 510
 511#define ELF_PLATFORM get_elf_platform()
 512
 513static const char *get_elf_platform(void)
 514{
 515    CPUARMState *env = thread_cpu->env_ptr;
 516
 517#if TARGET_BIG_ENDIAN
 518# define END  "b"
 519#else
 520# define END  "l"
 521#endif
 522
 523    if (arm_feature(env, ARM_FEATURE_V8)) {
 524        return "v8" END;
 525    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 526        if (arm_feature(env, ARM_FEATURE_M)) {
 527            return "v7m" END;
 528        } else {
 529            return "v7" END;
 530        }
 531    } else if (arm_feature(env, ARM_FEATURE_V6)) {
 532        return "v6" END;
 533    } else if (arm_feature(env, ARM_FEATURE_V5)) {
 534        return "v5" END;
 535    } else {
 536        return "v4" END;
 537    }
 538
 539#undef END
 540}
 541
 542#else
 543/* 64 bit ARM definitions */
 544#define ELF_START_MMAP 0x80000000
 545
 546#define ELF_ARCH        EM_AARCH64
 547#define ELF_CLASS       ELFCLASS64
 548#if TARGET_BIG_ENDIAN
 549# define ELF_PLATFORM    "aarch64_be"
 550#else
 551# define ELF_PLATFORM    "aarch64"
 552#endif
 553
 554static inline void init_thread(struct target_pt_regs *regs,
 555                               struct image_info *infop)
 556{
 557    abi_long stack = infop->start_stack;
 558    memset(regs, 0, sizeof(*regs));
 559
 560    regs->pc = infop->entry & ~0x3ULL;
 561    regs->sp = stack;
 562}
 563
 564#define ELF_NREG    34
 565typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 566
 567static void elf_core_copy_regs(target_elf_gregset_t *regs,
 568                               const CPUARMState *env)
 569{
 570    int i;
 571
 572    for (i = 0; i < 32; i++) {
 573        (*regs)[i] = tswapreg(env->xregs[i]);
 574    }
 575    (*regs)[32] = tswapreg(env->pc);
 576    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 577}
 578
 579#define USE_ELF_CORE_DUMP
 580#define ELF_EXEC_PAGESIZE       4096
 581
 582enum {
 583    ARM_HWCAP_A64_FP            = 1 << 0,
 584    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 585    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 586    ARM_HWCAP_A64_AES           = 1 << 3,
 587    ARM_HWCAP_A64_PMULL         = 1 << 4,
 588    ARM_HWCAP_A64_SHA1          = 1 << 5,
 589    ARM_HWCAP_A64_SHA2          = 1 << 6,
 590    ARM_HWCAP_A64_CRC32         = 1 << 7,
 591    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 592    ARM_HWCAP_A64_FPHP          = 1 << 9,
 593    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 594    ARM_HWCAP_A64_CPUID         = 1 << 11,
 595    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 596    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 597    ARM_HWCAP_A64_FCMA          = 1 << 14,
 598    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 599    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 600    ARM_HWCAP_A64_SHA3          = 1 << 17,
 601    ARM_HWCAP_A64_SM3           = 1 << 18,
 602    ARM_HWCAP_A64_SM4           = 1 << 19,
 603    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 604    ARM_HWCAP_A64_SHA512        = 1 << 21,
 605    ARM_HWCAP_A64_SVE           = 1 << 22,
 606    ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 607    ARM_HWCAP_A64_DIT           = 1 << 24,
 608    ARM_HWCAP_A64_USCAT         = 1 << 25,
 609    ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 610    ARM_HWCAP_A64_FLAGM         = 1 << 27,
 611    ARM_HWCAP_A64_SSBS          = 1 << 28,
 612    ARM_HWCAP_A64_SB            = 1 << 29,
 613    ARM_HWCAP_A64_PACA          = 1 << 30,
 614    ARM_HWCAP_A64_PACG          = 1UL << 31,
 615
 616    ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 617    ARM_HWCAP2_A64_SVE2         = 1 << 1,
 618    ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 619    ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 620    ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 621    ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 622    ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 623    ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 624    ARM_HWCAP2_A64_FRINT        = 1 << 8,
 625    ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
 626    ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
 627    ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
 628    ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
 629    ARM_HWCAP2_A64_I8MM         = 1 << 13,
 630    ARM_HWCAP2_A64_BF16         = 1 << 14,
 631    ARM_HWCAP2_A64_DGH          = 1 << 15,
 632    ARM_HWCAP2_A64_RNG          = 1 << 16,
 633    ARM_HWCAP2_A64_BTI          = 1 << 17,
 634    ARM_HWCAP2_A64_MTE          = 1 << 18,
 635    ARM_HWCAP2_A64_ECV          = 1 << 19,
 636    ARM_HWCAP2_A64_AFP          = 1 << 20,
 637    ARM_HWCAP2_A64_RPRES        = 1 << 21,
 638    ARM_HWCAP2_A64_MTE3         = 1 << 22,
 639    ARM_HWCAP2_A64_SME          = 1 << 23,
 640    ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
 641    ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
 642    ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
 643    ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
 644    ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
 645    ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
 646    ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
 647};
 648
 649#define ELF_HWCAP   get_elf_hwcap()
 650#define ELF_HWCAP2  get_elf_hwcap2()
 651
 652#define GET_FEATURE_ID(feat, hwcap) \
 653    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 654
 655static uint32_t get_elf_hwcap(void)
 656{
 657    ARMCPU *cpu = ARM_CPU(thread_cpu);
 658    uint32_t hwcaps = 0;
 659
 660    hwcaps |= ARM_HWCAP_A64_FP;
 661    hwcaps |= ARM_HWCAP_A64_ASIMD;
 662    hwcaps |= ARM_HWCAP_A64_CPUID;
 663
 664    /* probe for the extra features */
 665
 666    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 667    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 668    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 669    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 670    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 671    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 672    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 673    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 674    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 675    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 676    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 677    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 678    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 679    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 680    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 681    GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 682    GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 683    GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 684    GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 685    GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 686    GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
 687    GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
 688    GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
 689
 690    return hwcaps;
 691}
 692
 693static uint32_t get_elf_hwcap2(void)
 694{
 695    ARMCPU *cpu = ARM_CPU(thread_cpu);
 696    uint32_t hwcaps = 0;
 697
 698    GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
 699    GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
 700    GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
 701    GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
 702    GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
 703    GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
 704    GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
 705    GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 706    GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 707    GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
 708    GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
 709    GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
 710    GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
 711    GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
 712    GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
 713    GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
 714    GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
 715    GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
 716    GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
 717                              ARM_HWCAP2_A64_SME_F32F32 |
 718                              ARM_HWCAP2_A64_SME_B16F32 |
 719                              ARM_HWCAP2_A64_SME_F16F32 |
 720                              ARM_HWCAP2_A64_SME_I8I32));
 721    GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
 722    GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
 723    GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
 724
 725    return hwcaps;
 726}
 727
 728#undef GET_FEATURE_ID
 729
 730#endif /* not TARGET_AARCH64 */
 731#endif /* TARGET_ARM */
 732
 733#ifdef TARGET_SPARC
 734#ifdef TARGET_SPARC64
 735
 736#define ELF_START_MMAP 0x80000000
 737#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 738                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 739#ifndef TARGET_ABI32
 740#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 741#else
 742#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 743#endif
 744
 745#define ELF_CLASS   ELFCLASS64
 746#define ELF_ARCH    EM_SPARCV9
 747#else
 748#define ELF_START_MMAP 0x80000000
 749#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 750                    | HWCAP_SPARC_MULDIV)
 751#define ELF_CLASS   ELFCLASS32
 752#define ELF_ARCH    EM_SPARC
 753#endif /* TARGET_SPARC64 */
 754
 755static inline void init_thread(struct target_pt_regs *regs,
 756                               struct image_info *infop)
 757{
 758    /* Note that target_cpu_copy_regs does not read psr/tstate. */
 759    regs->pc = infop->entry;
 760    regs->npc = regs->pc + 4;
 761    regs->y = 0;
 762    regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
 763                        - TARGET_STACK_BIAS);
 764}
 765#endif /* TARGET_SPARC */
 766
 767#ifdef TARGET_PPC
 768
 769#define ELF_MACHINE    PPC_ELF_MACHINE
 770#define ELF_START_MMAP 0x80000000
 771
 772#if defined(TARGET_PPC64)
 773
 774#define elf_check_arch(x) ( (x) == EM_PPC64 )
 775
 776#define ELF_CLASS       ELFCLASS64
 777
 778#else
 779
 780#define ELF_CLASS       ELFCLASS32
 781#define EXSTACK_DEFAULT true
 782
 783#endif
 784
 785#define ELF_ARCH        EM_PPC
 786
 787/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 788   See arch/powerpc/include/asm/cputable.h.  */
 789enum {
 790    QEMU_PPC_FEATURE_32 = 0x80000000,
 791    QEMU_PPC_FEATURE_64 = 0x40000000,
 792    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 793    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 794    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 795    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 796    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 797    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 798    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 799    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 800    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 801    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 802    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 803    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 804    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 805    QEMU_PPC_FEATURE_CELL = 0x00010000,
 806    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 807    QEMU_PPC_FEATURE_SMT = 0x00004000,
 808    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 809    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 810    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 811    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 812    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 813    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 814    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 815    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 816
 817    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 818    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 819
 820    /* Feature definitions in AT_HWCAP2.  */
 821    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 822    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 823    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 824    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 825    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 826    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 827    QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 828    QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 829    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 830    QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 831    QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 832    QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 833    QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 834    QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
 835    QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
 836};
 837
 838#define ELF_HWCAP get_elf_hwcap()
 839
 840static uint32_t get_elf_hwcap(void)
 841{
 842    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 843    uint32_t features = 0;
 844
 845    /* We don't have to be terribly complete here; the high points are
 846       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 847#define GET_FEATURE(flag, feature)                                      \
 848    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 849#define GET_FEATURE2(flags, feature) \
 850    do { \
 851        if ((cpu->env.insns_flags2 & flags) == flags) { \
 852            features |= feature; \
 853        } \
 854    } while (0)
 855    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 856    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 857    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 858    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 859    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 860    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 861    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 862    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 863    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 864    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 865    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 866                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 867                  QEMU_PPC_FEATURE_ARCH_2_06);
 868#undef GET_FEATURE
 869#undef GET_FEATURE2
 870
 871    return features;
 872}
 873
 874#define ELF_HWCAP2 get_elf_hwcap2()
 875
 876static uint32_t get_elf_hwcap2(void)
 877{
 878    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 879    uint32_t features = 0;
 880
 881#define GET_FEATURE(flag, feature)                                      \
 882    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 883#define GET_FEATURE2(flag, feature)                                      \
 884    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 885
 886    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 887    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 888    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 889                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 890                  QEMU_PPC_FEATURE2_VEC_CRYPTO);
 891    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 892                 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
 893    GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
 894                 QEMU_PPC_FEATURE2_MMA);
 895
 896#undef GET_FEATURE
 897#undef GET_FEATURE2
 898
 899    return features;
 900}
 901
 902/*
 903 * The requirements here are:
 904 * - keep the final alignment of sp (sp & 0xf)
 905 * - make sure the 32-bit value at the first 16 byte aligned position of
 906 *   AUXV is greater than 16 for glibc compatibility.
 907 *   AT_IGNOREPPC is used for that.
 908 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 909 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 910 */
 911#define DLINFO_ARCH_ITEMS       5
 912#define ARCH_DLINFO                                     \
 913    do {                                                \
 914        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 915        /*                                              \
 916         * Handle glibc compatibility: these magic entries must \
 917         * be at the lowest addresses in the final auxv.        \
 918         */                                             \
 919        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 920        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 921        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 922        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 923        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 924    } while (0)
 925
 926static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 927{
 928    _regs->gpr[1] = infop->start_stack;
 929#if defined(TARGET_PPC64)
 930    if (get_ppc64_abi(infop) < 2) {
 931        uint64_t val;
 932        get_user_u64(val, infop->entry + 8);
 933        _regs->gpr[2] = val + infop->load_bias;
 934        get_user_u64(val, infop->entry);
 935        infop->entry = val + infop->load_bias;
 936    } else {
 937        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 938    }
 939#endif
 940    _regs->nip = infop->entry;
 941}
 942
 943/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 944#define ELF_NREG 48
 945typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 946
 947static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 948{
 949    int i;
 950    target_ulong ccr = 0;
 951
 952    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 953        (*regs)[i] = tswapreg(env->gpr[i]);
 954    }
 955
 956    (*regs)[32] = tswapreg(env->nip);
 957    (*regs)[33] = tswapreg(env->msr);
 958    (*regs)[35] = tswapreg(env->ctr);
 959    (*regs)[36] = tswapreg(env->lr);
 960    (*regs)[37] = tswapreg(cpu_read_xer(env));
 961
 962    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 963        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 964    }
 965    (*regs)[38] = tswapreg(ccr);
 966}
 967
 968#define USE_ELF_CORE_DUMP
 969#define ELF_EXEC_PAGESIZE       4096
 970
 971#endif
 972
 973#ifdef TARGET_LOONGARCH64
 974
 975#define ELF_START_MMAP 0x80000000
 976
 977#define ELF_CLASS   ELFCLASS64
 978#define ELF_ARCH    EM_LOONGARCH
 979#define EXSTACK_DEFAULT true
 980
 981#define elf_check_arch(x) ((x) == EM_LOONGARCH)
 982
 983static inline void init_thread(struct target_pt_regs *regs,
 984                               struct image_info *infop)
 985{
 986    /*Set crmd PG,DA = 1,0 */
 987    regs->csr.crmd = 2 << 3;
 988    regs->csr.era = infop->entry;
 989    regs->regs[3] = infop->start_stack;
 990}
 991
 992/* See linux kernel: arch/loongarch/include/asm/elf.h */
 993#define ELF_NREG 45
 994typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 995
 996enum {
 997    TARGET_EF_R0 = 0,
 998    TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
 999    TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1000};
1001
1002static void elf_core_copy_regs(target_elf_gregset_t *regs,
1003                               const CPULoongArchState *env)
1004{
1005    int i;
1006
1007    (*regs)[TARGET_EF_R0] = 0;
1008
1009    for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1010        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1011    }
1012
1013    (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1014    (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1015}
1016
1017#define USE_ELF_CORE_DUMP
1018#define ELF_EXEC_PAGESIZE        4096
1019
1020#define ELF_HWCAP get_elf_hwcap()
1021
1022/* See arch/loongarch/include/uapi/asm/hwcap.h */
1023enum {
1024    HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1025    HWCAP_LOONGARCH_LAM      = (1 << 1),
1026    HWCAP_LOONGARCH_UAL      = (1 << 2),
1027    HWCAP_LOONGARCH_FPU      = (1 << 3),
1028    HWCAP_LOONGARCH_LSX      = (1 << 4),
1029    HWCAP_LOONGARCH_LASX     = (1 << 5),
1030    HWCAP_LOONGARCH_CRC32    = (1 << 6),
1031    HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1032    HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1033    HWCAP_LOONGARCH_LVZ      = (1 << 9),
1034    HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1035    HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1036    HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1037};
1038
1039static uint32_t get_elf_hwcap(void)
1040{
1041    LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1042    uint32_t hwcaps = 0;
1043
1044    hwcaps |= HWCAP_LOONGARCH_CRC32;
1045
1046    if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1047        hwcaps |= HWCAP_LOONGARCH_UAL;
1048    }
1049
1050    if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1051        hwcaps |= HWCAP_LOONGARCH_FPU;
1052    }
1053
1054    if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1055        hwcaps |= HWCAP_LOONGARCH_LAM;
1056    }
1057
1058    return hwcaps;
1059}
1060
1061#define ELF_PLATFORM "loongarch"
1062
1063#endif /* TARGET_LOONGARCH64 */
1064
1065#ifdef TARGET_MIPS
1066
1067#define ELF_START_MMAP 0x80000000
1068
1069#ifdef TARGET_MIPS64
1070#define ELF_CLASS   ELFCLASS64
1071#else
1072#define ELF_CLASS   ELFCLASS32
1073#endif
1074#define ELF_ARCH    EM_MIPS
1075#define EXSTACK_DEFAULT true
1076
1077#ifdef TARGET_ABI_MIPSN32
1078#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1079#else
1080#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1081#endif
1082
1083#define ELF_BASE_PLATFORM get_elf_base_platform()
1084
1085#define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1086    do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1087    { return _base_platform; } } while (0)
1088
1089static const char *get_elf_base_platform(void)
1090{
1091    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1092
1093    /* 64 bit ISAs goes first */
1094    MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1095    MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1096    MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1097    MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1098    MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1099    MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1100    MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1101
1102    /* 32 bit ISAs */
1103    MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1104    MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1105    MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1106    MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1107    MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1108
1109    /* Fallback */
1110    return "mips";
1111}
1112#undef MATCH_PLATFORM_INSN
1113
1114static inline void init_thread(struct target_pt_regs *regs,
1115                               struct image_info *infop)
1116{
1117    regs->cp0_status = 2 << CP0St_KSU;
1118    regs->cp0_epc = infop->entry;
1119    regs->regs[29] = infop->start_stack;
1120}
1121
1122/* See linux kernel: arch/mips/include/asm/elf.h.  */
1123#define ELF_NREG 45
1124typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
1126/* See linux kernel: arch/mips/include/asm/reg.h.  */
1127enum {
1128#ifdef TARGET_MIPS64
1129    TARGET_EF_R0 = 0,
1130#else
1131    TARGET_EF_R0 = 6,
1132#endif
1133    TARGET_EF_R26 = TARGET_EF_R0 + 26,
1134    TARGET_EF_R27 = TARGET_EF_R0 + 27,
1135    TARGET_EF_LO = TARGET_EF_R0 + 32,
1136    TARGET_EF_HI = TARGET_EF_R0 + 33,
1137    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1138    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1139    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1140    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1141};
1142
1143/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1144static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1145{
1146    int i;
1147
1148    for (i = 0; i < TARGET_EF_R0; i++) {
1149        (*regs)[i] = 0;
1150    }
1151    (*regs)[TARGET_EF_R0] = 0;
1152
1153    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1154        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1155    }
1156
1157    (*regs)[TARGET_EF_R26] = 0;
1158    (*regs)[TARGET_EF_R27] = 0;
1159    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1160    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1161    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1162    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1163    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1164    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1165}
1166
1167#define USE_ELF_CORE_DUMP
1168#define ELF_EXEC_PAGESIZE        4096
1169
1170/* See arch/mips/include/uapi/asm/hwcap.h.  */
1171enum {
1172    HWCAP_MIPS_R6           = (1 << 0),
1173    HWCAP_MIPS_MSA          = (1 << 1),
1174    HWCAP_MIPS_CRC32        = (1 << 2),
1175    HWCAP_MIPS_MIPS16       = (1 << 3),
1176    HWCAP_MIPS_MDMX         = (1 << 4),
1177    HWCAP_MIPS_MIPS3D       = (1 << 5),
1178    HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1179    HWCAP_MIPS_DSP          = (1 << 7),
1180    HWCAP_MIPS_DSP2         = (1 << 8),
1181    HWCAP_MIPS_DSP3         = (1 << 9),
1182    HWCAP_MIPS_MIPS16E2     = (1 << 10),
1183    HWCAP_LOONGSON_MMI      = (1 << 11),
1184    HWCAP_LOONGSON_EXT      = (1 << 12),
1185    HWCAP_LOONGSON_EXT2     = (1 << 13),
1186    HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1187};
1188
1189#define ELF_HWCAP get_elf_hwcap()
1190
1191#define GET_FEATURE_INSN(_flag, _hwcap) \
1192    do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1193
1194#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1195    do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1196
1197#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1198    do { \
1199        if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1200            hwcaps |= _hwcap; \
1201        } \
1202    } while (0)
1203
1204static uint32_t get_elf_hwcap(void)
1205{
1206    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1207    uint32_t hwcaps = 0;
1208
1209    GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1210                        2, HWCAP_MIPS_R6);
1211    GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1212    GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1213    GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1214
1215    return hwcaps;
1216}
1217
1218#undef GET_FEATURE_REG_EQU
1219#undef GET_FEATURE_REG_SET
1220#undef GET_FEATURE_INSN
1221
1222#endif /* TARGET_MIPS */
1223
1224#ifdef TARGET_MICROBLAZE
1225
1226#define ELF_START_MMAP 0x80000000
1227
1228#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1229
1230#define ELF_CLASS   ELFCLASS32
1231#define ELF_ARCH    EM_MICROBLAZE
1232
1233static inline void init_thread(struct target_pt_regs *regs,
1234                               struct image_info *infop)
1235{
1236    regs->pc = infop->entry;
1237    regs->r1 = infop->start_stack;
1238
1239}
1240
1241#define ELF_EXEC_PAGESIZE        4096
1242
1243#define USE_ELF_CORE_DUMP
1244#define ELF_NREG 38
1245typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1246
1247/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1248static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1249{
1250    int i, pos = 0;
1251
1252    for (i = 0; i < 32; i++) {
1253        (*regs)[pos++] = tswapreg(env->regs[i]);
1254    }
1255
1256    (*regs)[pos++] = tswapreg(env->pc);
1257    (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1258    (*regs)[pos++] = 0;
1259    (*regs)[pos++] = tswapreg(env->ear);
1260    (*regs)[pos++] = 0;
1261    (*regs)[pos++] = tswapreg(env->esr);
1262}
1263
1264#endif /* TARGET_MICROBLAZE */
1265
1266#ifdef TARGET_NIOS2
1267
1268#define ELF_START_MMAP 0x80000000
1269
1270#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1271
1272#define ELF_CLASS   ELFCLASS32
1273#define ELF_ARCH    EM_ALTERA_NIOS2
1274
1275static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1276{
1277    regs->ea = infop->entry;
1278    regs->sp = infop->start_stack;
1279}
1280
1281#define LO_COMMPAGE  TARGET_PAGE_SIZE
1282
1283static bool init_guest_commpage(void)
1284{
1285    static const uint8_t kuser_page[4 + 2 * 64] = {
1286        /* __kuser_helper_version */
1287        [0x00] = 0x02, 0x00, 0x00, 0x00,
1288
1289        /* __kuser_cmpxchg */
1290        [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1291                 0x3a, 0x28, 0x00, 0xf8,  /* ret */
1292
1293        /* __kuser_sigtramp */
1294        [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1295                 0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1296    };
1297
1298    void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1299    void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1300                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1301
1302    if (addr == MAP_FAILED) {
1303        perror("Allocating guest commpage");
1304        exit(EXIT_FAILURE);
1305    }
1306    if (addr != want) {
1307        return false;
1308    }
1309
1310    memcpy(addr, kuser_page, sizeof(kuser_page));
1311
1312    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1313        perror("Protecting guest commpage");
1314        exit(EXIT_FAILURE);
1315    }
1316
1317    page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1318                   PAGE_READ | PAGE_EXEC | PAGE_VALID);
1319    return true;
1320}
1321
1322#define ELF_EXEC_PAGESIZE        4096
1323
1324#define USE_ELF_CORE_DUMP
1325#define ELF_NREG 49
1326typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1327
1328/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1329static void elf_core_copy_regs(target_elf_gregset_t *regs,
1330                               const CPUNios2State *env)
1331{
1332    int i;
1333
1334    (*regs)[0] = -1;
1335    for (i = 1; i < 8; i++)    /* r0-r7 */
1336        (*regs)[i] = tswapreg(env->regs[i + 7]);
1337
1338    for (i = 8; i < 16; i++)   /* r8-r15 */
1339        (*regs)[i] = tswapreg(env->regs[i - 8]);
1340
1341    for (i = 16; i < 24; i++)  /* r16-r23 */
1342        (*regs)[i] = tswapreg(env->regs[i + 7]);
1343    (*regs)[24] = -1;    /* R_ET */
1344    (*regs)[25] = -1;    /* R_BT */
1345    (*regs)[26] = tswapreg(env->regs[R_GP]);
1346    (*regs)[27] = tswapreg(env->regs[R_SP]);
1347    (*regs)[28] = tswapreg(env->regs[R_FP]);
1348    (*regs)[29] = tswapreg(env->regs[R_EA]);
1349    (*regs)[30] = -1;    /* R_SSTATUS */
1350    (*regs)[31] = tswapreg(env->regs[R_RA]);
1351
1352    (*regs)[32] = tswapreg(env->pc);
1353
1354    (*regs)[33] = -1; /* R_STATUS */
1355    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1356
1357    for (i = 35; i < 49; i++)    /* ... */
1358        (*regs)[i] = -1;
1359}
1360
1361#endif /* TARGET_NIOS2 */
1362
1363#ifdef TARGET_OPENRISC
1364
1365#define ELF_START_MMAP 0x08000000
1366
1367#define ELF_ARCH EM_OPENRISC
1368#define ELF_CLASS ELFCLASS32
1369#define ELF_DATA  ELFDATA2MSB
1370
1371static inline void init_thread(struct target_pt_regs *regs,
1372                               struct image_info *infop)
1373{
1374    regs->pc = infop->entry;
1375    regs->gpr[1] = infop->start_stack;
1376}
1377
1378#define USE_ELF_CORE_DUMP
1379#define ELF_EXEC_PAGESIZE 8192
1380
1381/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1382#define ELF_NREG 34 /* gprs and pc, sr */
1383typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1384
1385static void elf_core_copy_regs(target_elf_gregset_t *regs,
1386                               const CPUOpenRISCState *env)
1387{
1388    int i;
1389
1390    for (i = 0; i < 32; i++) {
1391        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1392    }
1393    (*regs)[32] = tswapreg(env->pc);
1394    (*regs)[33] = tswapreg(cpu_get_sr(env));
1395}
1396#define ELF_HWCAP 0
1397#define ELF_PLATFORM NULL
1398
1399#endif /* TARGET_OPENRISC */
1400
1401#ifdef TARGET_SH4
1402
1403#define ELF_START_MMAP 0x80000000
1404
1405#define ELF_CLASS ELFCLASS32
1406#define ELF_ARCH  EM_SH
1407
1408static inline void init_thread(struct target_pt_regs *regs,
1409                               struct image_info *infop)
1410{
1411    /* Check other registers XXXXX */
1412    regs->pc = infop->entry;
1413    regs->regs[15] = infop->start_stack;
1414}
1415
1416/* See linux kernel: arch/sh/include/asm/elf.h.  */
1417#define ELF_NREG 23
1418typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1419
1420/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1421enum {
1422    TARGET_REG_PC = 16,
1423    TARGET_REG_PR = 17,
1424    TARGET_REG_SR = 18,
1425    TARGET_REG_GBR = 19,
1426    TARGET_REG_MACH = 20,
1427    TARGET_REG_MACL = 21,
1428    TARGET_REG_SYSCALL = 22
1429};
1430
1431static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1432                                      const CPUSH4State *env)
1433{
1434    int i;
1435
1436    for (i = 0; i < 16; i++) {
1437        (*regs)[i] = tswapreg(env->gregs[i]);
1438    }
1439
1440    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1441    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1442    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1443    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1444    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1445    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1446    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1447}
1448
1449#define USE_ELF_CORE_DUMP
1450#define ELF_EXEC_PAGESIZE        4096
1451
1452enum {
1453    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1454    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1455    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1456    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1457    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1458    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1459    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1460    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1461    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1462    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1463};
1464
1465#define ELF_HWCAP get_elf_hwcap()
1466
1467static uint32_t get_elf_hwcap(void)
1468{
1469    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1470    uint32_t hwcap = 0;
1471
1472    hwcap |= SH_CPU_HAS_FPU;
1473
1474    if (cpu->env.features & SH_FEATURE_SH4A) {
1475        hwcap |= SH_CPU_HAS_LLSC;
1476    }
1477
1478    return hwcap;
1479}
1480
1481#endif
1482
1483#ifdef TARGET_CRIS
1484
1485#define ELF_START_MMAP 0x80000000
1486
1487#define ELF_CLASS ELFCLASS32
1488#define ELF_ARCH  EM_CRIS
1489
1490static inline void init_thread(struct target_pt_regs *regs,
1491                               struct image_info *infop)
1492{
1493    regs->erp = infop->entry;
1494}
1495
1496#define ELF_EXEC_PAGESIZE        8192
1497
1498#endif
1499
1500#ifdef TARGET_M68K
1501
1502#define ELF_START_MMAP 0x80000000
1503
1504#define ELF_CLASS       ELFCLASS32
1505#define ELF_ARCH        EM_68K
1506
1507/* ??? Does this need to do anything?
1508   #define ELF_PLAT_INIT(_r) */
1509
1510static inline void init_thread(struct target_pt_regs *regs,
1511                               struct image_info *infop)
1512{
1513    regs->usp = infop->start_stack;
1514    regs->sr = 0;
1515    regs->pc = infop->entry;
1516}
1517
1518/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1519#define ELF_NREG 20
1520typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1521
1522static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1523{
1524    (*regs)[0] = tswapreg(env->dregs[1]);
1525    (*regs)[1] = tswapreg(env->dregs[2]);
1526    (*regs)[2] = tswapreg(env->dregs[3]);
1527    (*regs)[3] = tswapreg(env->dregs[4]);
1528    (*regs)[4] = tswapreg(env->dregs[5]);
1529    (*regs)[5] = tswapreg(env->dregs[6]);
1530    (*regs)[6] = tswapreg(env->dregs[7]);
1531    (*regs)[7] = tswapreg(env->aregs[0]);
1532    (*regs)[8] = tswapreg(env->aregs[1]);
1533    (*regs)[9] = tswapreg(env->aregs[2]);
1534    (*regs)[10] = tswapreg(env->aregs[3]);
1535    (*regs)[11] = tswapreg(env->aregs[4]);
1536    (*regs)[12] = tswapreg(env->aregs[5]);
1537    (*regs)[13] = tswapreg(env->aregs[6]);
1538    (*regs)[14] = tswapreg(env->dregs[0]);
1539    (*regs)[15] = tswapreg(env->aregs[7]);
1540    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1541    (*regs)[17] = tswapreg(env->sr);
1542    (*regs)[18] = tswapreg(env->pc);
1543    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1544}
1545
1546#define USE_ELF_CORE_DUMP
1547#define ELF_EXEC_PAGESIZE       8192
1548
1549#endif
1550
1551#ifdef TARGET_ALPHA
1552
1553#define ELF_START_MMAP (0x30000000000ULL)
1554
1555#define ELF_CLASS      ELFCLASS64
1556#define ELF_ARCH       EM_ALPHA
1557
1558static inline void init_thread(struct target_pt_regs *regs,
1559                               struct image_info *infop)
1560{
1561    regs->pc = infop->entry;
1562    regs->ps = 8;
1563    regs->usp = infop->start_stack;
1564}
1565
1566#define ELF_EXEC_PAGESIZE        8192
1567
1568#endif /* TARGET_ALPHA */
1569
1570#ifdef TARGET_S390X
1571
1572#define ELF_START_MMAP (0x20000000000ULL)
1573
1574#define ELF_CLASS       ELFCLASS64
1575#define ELF_DATA        ELFDATA2MSB
1576#define ELF_ARCH        EM_S390
1577
1578#include "elf.h"
1579
1580#define ELF_HWCAP get_elf_hwcap()
1581
1582#define GET_FEATURE(_feat, _hwcap) \
1583    do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1584
1585static uint32_t get_elf_hwcap(void)
1586{
1587    /*
1588     * Let's assume we always have esan3 and zarch.
1589     * 31-bit processes can use 64-bit registers (high gprs).
1590     */
1591    uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1592
1593    GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1594    GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1595    GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1596    GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1597    if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1598        s390_has_feat(S390_FEAT_ETF3_ENH)) {
1599        hwcap |= HWCAP_S390_ETF3EH;
1600    }
1601    GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1602    GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1603
1604    return hwcap;
1605}
1606
1607static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1608{
1609    regs->psw.addr = infop->entry;
1610    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1611    regs->gprs[15] = infop->start_stack;
1612}
1613
1614/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1615#define ELF_NREG 27
1616typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1617
1618enum {
1619    TARGET_REG_PSWM = 0,
1620    TARGET_REG_PSWA = 1,
1621    TARGET_REG_GPRS = 2,
1622    TARGET_REG_ARS = 18,
1623    TARGET_REG_ORIG_R2 = 26,
1624};
1625
1626static void elf_core_copy_regs(target_elf_gregset_t *regs,
1627                               const CPUS390XState *env)
1628{
1629    int i;
1630    uint32_t *aregs;
1631
1632    (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1633    (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1634    for (i = 0; i < 16; i++) {
1635        (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1636    }
1637    aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1638    for (i = 0; i < 16; i++) {
1639        aregs[i] = tswap32(env->aregs[i]);
1640    }
1641    (*regs)[TARGET_REG_ORIG_R2] = 0;
1642}
1643
1644#define USE_ELF_CORE_DUMP
1645#define ELF_EXEC_PAGESIZE 4096
1646
1647#endif /* TARGET_S390X */
1648
1649#ifdef TARGET_RISCV
1650
1651#define ELF_START_MMAP 0x80000000
1652#define ELF_ARCH  EM_RISCV
1653
1654#ifdef TARGET_RISCV32
1655#define ELF_CLASS ELFCLASS32
1656#else
1657#define ELF_CLASS ELFCLASS64
1658#endif
1659
1660#define ELF_HWCAP get_elf_hwcap()
1661
1662static uint32_t get_elf_hwcap(void)
1663{
1664#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1665    RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1666    uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1667                    | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1668
1669    return cpu->env.misa_ext & mask;
1670#undef MISA_BIT
1671}
1672
1673static inline void init_thread(struct target_pt_regs *regs,
1674                               struct image_info *infop)
1675{
1676    regs->sepc = infop->entry;
1677    regs->sp = infop->start_stack;
1678}
1679
1680#define ELF_EXEC_PAGESIZE 4096
1681
1682#endif /* TARGET_RISCV */
1683
1684#ifdef TARGET_HPPA
1685
1686#define ELF_START_MMAP  0x80000000
1687#define ELF_CLASS       ELFCLASS32
1688#define ELF_ARCH        EM_PARISC
1689#define ELF_PLATFORM    "PARISC"
1690#define STACK_GROWS_DOWN 0
1691#define STACK_ALIGNMENT  64
1692
1693static inline void init_thread(struct target_pt_regs *regs,
1694                               struct image_info *infop)
1695{
1696    regs->iaoq[0] = infop->entry;
1697    regs->iaoq[1] = infop->entry + 4;
1698    regs->gr[23] = 0;
1699    regs->gr[24] = infop->argv;
1700    regs->gr[25] = infop->argc;
1701    /* The top-of-stack contains a linkage buffer.  */
1702    regs->gr[30] = infop->start_stack + 64;
1703    regs->gr[31] = infop->entry;
1704}
1705
1706#define LO_COMMPAGE  0
1707
1708static bool init_guest_commpage(void)
1709{
1710    void *want = g2h_untagged(LO_COMMPAGE);
1711    void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1712                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1713
1714    if (addr == MAP_FAILED) {
1715        perror("Allocating guest commpage");
1716        exit(EXIT_FAILURE);
1717    }
1718    if (addr != want) {
1719        return false;
1720    }
1721
1722    /*
1723     * On Linux, page zero is normally marked execute only + gateway.
1724     * Normal read or write is supposed to fail (thus PROT_NONE above),
1725     * but specific offsets have kernel code mapped to raise permissions
1726     * and implement syscalls.  Here, simply mark the page executable.
1727     * Special case the entry points during translation (see do_page_zero).
1728     */
1729    page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1730                   PAGE_EXEC | PAGE_VALID);
1731    return true;
1732}
1733
1734#endif /* TARGET_HPPA */
1735
1736#ifdef TARGET_XTENSA
1737
1738#define ELF_START_MMAP 0x20000000
1739
1740#define ELF_CLASS       ELFCLASS32
1741#define ELF_ARCH        EM_XTENSA
1742
1743static inline void init_thread(struct target_pt_regs *regs,
1744                               struct image_info *infop)
1745{
1746    regs->windowbase = 0;
1747    regs->windowstart = 1;
1748    regs->areg[1] = infop->start_stack;
1749    regs->pc = infop->entry;
1750}
1751
1752/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1753#define ELF_NREG 128
1754typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1755
1756enum {
1757    TARGET_REG_PC,
1758    TARGET_REG_PS,
1759    TARGET_REG_LBEG,
1760    TARGET_REG_LEND,
1761    TARGET_REG_LCOUNT,
1762    TARGET_REG_SAR,
1763    TARGET_REG_WINDOWSTART,
1764    TARGET_REG_WINDOWBASE,
1765    TARGET_REG_THREADPTR,
1766    TARGET_REG_AR0 = 64,
1767};
1768
1769static void elf_core_copy_regs(target_elf_gregset_t *regs,
1770                               const CPUXtensaState *env)
1771{
1772    unsigned i;
1773
1774    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1775    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1776    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1777    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1778    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1779    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1780    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1781    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1782    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1783    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1784    for (i = 0; i < env->config->nareg; ++i) {
1785        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1786    }
1787}
1788
1789#define USE_ELF_CORE_DUMP
1790#define ELF_EXEC_PAGESIZE       4096
1791
1792#endif /* TARGET_XTENSA */
1793
1794#ifdef TARGET_HEXAGON
1795
1796#define ELF_START_MMAP 0x20000000
1797
1798#define ELF_CLASS       ELFCLASS32
1799#define ELF_ARCH        EM_HEXAGON
1800
1801static inline void init_thread(struct target_pt_regs *regs,
1802                               struct image_info *infop)
1803{
1804    regs->sepc = infop->entry;
1805    regs->sp = infop->start_stack;
1806}
1807
1808#endif /* TARGET_HEXAGON */
1809
1810#ifndef ELF_BASE_PLATFORM
1811#define ELF_BASE_PLATFORM (NULL)
1812#endif
1813
1814#ifndef ELF_PLATFORM
1815#define ELF_PLATFORM (NULL)
1816#endif
1817
1818#ifndef ELF_MACHINE
1819#define ELF_MACHINE ELF_ARCH
1820#endif
1821
1822#ifndef elf_check_arch
1823#define elf_check_arch(x) ((x) == ELF_ARCH)
1824#endif
1825
1826#ifndef elf_check_abi
1827#define elf_check_abi(x) (1)
1828#endif
1829
1830#ifndef ELF_HWCAP
1831#define ELF_HWCAP 0
1832#endif
1833
1834#ifndef STACK_GROWS_DOWN
1835#define STACK_GROWS_DOWN 1
1836#endif
1837
1838#ifndef STACK_ALIGNMENT
1839#define STACK_ALIGNMENT 16
1840#endif
1841
1842#ifdef TARGET_ABI32
1843#undef ELF_CLASS
1844#define ELF_CLASS ELFCLASS32
1845#undef bswaptls
1846#define bswaptls(ptr) bswap32s(ptr)
1847#endif
1848
1849#ifndef EXSTACK_DEFAULT
1850#define EXSTACK_DEFAULT false
1851#endif
1852
1853#include "elf.h"
1854
1855/* We must delay the following stanzas until after "elf.h". */
1856#if defined(TARGET_AARCH64)
1857
1858static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1859                                    const uint32_t *data,
1860                                    struct image_info *info,
1861                                    Error **errp)
1862{
1863    if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1864        if (pr_datasz != sizeof(uint32_t)) {
1865            error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1866            return false;
1867        }
1868        /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1869        info->note_flags = *data;
1870    }
1871    return true;
1872}
1873#define ARCH_USE_GNU_PROPERTY 1
1874
1875#else
1876
1877static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1878                                    const uint32_t *data,
1879                                    struct image_info *info,
1880                                    Error **errp)
1881{
1882    g_assert_not_reached();
1883}
1884#define ARCH_USE_GNU_PROPERTY 0
1885
1886#endif
1887
1888struct exec
1889{
1890    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1891    unsigned int a_text;   /* length of text, in bytes */
1892    unsigned int a_data;   /* length of data, in bytes */
1893    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1894    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1895    unsigned int a_entry;  /* start address */
1896    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1897    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1898};
1899
1900
1901#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1902#define OMAGIC 0407
1903#define NMAGIC 0410
1904#define ZMAGIC 0413
1905#define QMAGIC 0314
1906
1907/* Necessary parameters */
1908#define TARGET_ELF_EXEC_PAGESIZE \
1909        (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1910         TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1911#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1912#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1913                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1914#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1915
1916#define DLINFO_ITEMS 16
1917
1918static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1919{
1920    memcpy(to, from, n);
1921}
1922
1923#ifdef BSWAP_NEEDED
1924static void bswap_ehdr(struct elfhdr *ehdr)
1925{
1926    bswap16s(&ehdr->e_type);            /* Object file type */
1927    bswap16s(&ehdr->e_machine);         /* Architecture */
1928    bswap32s(&ehdr->e_version);         /* Object file version */
1929    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1930    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1931    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1932    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1933    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1934    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1935    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1936    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1937    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1938    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1939}
1940
1941static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1942{
1943    int i;
1944    for (i = 0; i < phnum; ++i, ++phdr) {
1945        bswap32s(&phdr->p_type);        /* Segment type */
1946        bswap32s(&phdr->p_flags);       /* Segment flags */
1947        bswaptls(&phdr->p_offset);      /* Segment file offset */
1948        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1949        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1950        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1951        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1952        bswaptls(&phdr->p_align);       /* Segment alignment */
1953    }
1954}
1955
1956static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1957{
1958    int i;
1959    for (i = 0; i < shnum; ++i, ++shdr) {
1960        bswap32s(&shdr->sh_name);
1961        bswap32s(&shdr->sh_type);
1962        bswaptls(&shdr->sh_flags);
1963        bswaptls(&shdr->sh_addr);
1964        bswaptls(&shdr->sh_offset);
1965        bswaptls(&shdr->sh_size);
1966        bswap32s(&shdr->sh_link);
1967        bswap32s(&shdr->sh_info);
1968        bswaptls(&shdr->sh_addralign);
1969        bswaptls(&shdr->sh_entsize);
1970    }
1971}
1972
1973static void bswap_sym(struct elf_sym *sym)
1974{
1975    bswap32s(&sym->st_name);
1976    bswaptls(&sym->st_value);
1977    bswaptls(&sym->st_size);
1978    bswap16s(&sym->st_shndx);
1979}
1980
1981#ifdef TARGET_MIPS
1982static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1983{
1984    bswap16s(&abiflags->version);
1985    bswap32s(&abiflags->ases);
1986    bswap32s(&abiflags->isa_ext);
1987    bswap32s(&abiflags->flags1);
1988    bswap32s(&abiflags->flags2);
1989}
1990#endif
1991#else
1992static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1993static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1994static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1995static inline void bswap_sym(struct elf_sym *sym) { }
1996#ifdef TARGET_MIPS
1997static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1998#endif
1999#endif
2000
2001#ifdef USE_ELF_CORE_DUMP
2002static int elf_core_dump(int, const CPUArchState *);
2003#endif /* USE_ELF_CORE_DUMP */
2004static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2005
2006/* Verify the portions of EHDR within E_IDENT for the target.
2007   This can be performed before bswapping the entire header.  */
2008static bool elf_check_ident(struct elfhdr *ehdr)
2009{
2010    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2011            && ehdr->e_ident[EI_MAG1] == ELFMAG1
2012            && ehdr->e_ident[EI_MAG2] == ELFMAG2
2013            && ehdr->e_ident[EI_MAG3] == ELFMAG3
2014            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2015            && ehdr->e_ident[EI_DATA] == ELF_DATA
2016            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2017}
2018
2019/* Verify the portions of EHDR outside of E_IDENT for the target.
2020   This has to wait until after bswapping the header.  */
2021static bool elf_check_ehdr(struct elfhdr *ehdr)
2022{
2023    return (elf_check_arch(ehdr->e_machine)
2024            && elf_check_abi(ehdr->e_flags)
2025            && ehdr->e_ehsize == sizeof(struct elfhdr)
2026            && ehdr->e_phentsize == sizeof(struct elf_phdr)
2027            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2028}
2029
2030/*
2031 * 'copy_elf_strings()' copies argument/envelope strings from user
2032 * memory to free pages in kernel mem. These are in a format ready
2033 * to be put directly into the top of new user memory.
2034 *
2035 */
2036static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2037                                  abi_ulong p, abi_ulong stack_limit)
2038{
2039    char *tmp;
2040    int len, i;
2041    abi_ulong top = p;
2042
2043    if (!p) {
2044        return 0;       /* bullet-proofing */
2045    }
2046
2047    if (STACK_GROWS_DOWN) {
2048        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2049        for (i = argc - 1; i >= 0; --i) {
2050            tmp = argv[i];
2051            if (!tmp) {
2052                fprintf(stderr, "VFS: argc is wrong");
2053                exit(-1);
2054            }
2055            len = strlen(tmp) + 1;
2056            tmp += len;
2057
2058            if (len > (p - stack_limit)) {
2059                return 0;
2060            }
2061            while (len) {
2062                int bytes_to_copy = (len > offset) ? offset : len;
2063                tmp -= bytes_to_copy;
2064                p -= bytes_to_copy;
2065                offset -= bytes_to_copy;
2066                len -= bytes_to_copy;
2067
2068                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2069
2070                if (offset == 0) {
2071                    memcpy_to_target(p, scratch, top - p);
2072                    top = p;
2073                    offset = TARGET_PAGE_SIZE;
2074                }
2075            }
2076        }
2077        if (p != top) {
2078            memcpy_to_target(p, scratch + offset, top - p);
2079        }
2080    } else {
2081        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2082        for (i = 0; i < argc; ++i) {
2083            tmp = argv[i];
2084            if (!tmp) {
2085                fprintf(stderr, "VFS: argc is wrong");
2086                exit(-1);
2087            }
2088            len = strlen(tmp) + 1;
2089            if (len > (stack_limit - p)) {
2090                return 0;
2091            }
2092            while (len) {
2093                int bytes_to_copy = (len > remaining) ? remaining : len;
2094
2095                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2096
2097                tmp += bytes_to_copy;
2098                remaining -= bytes_to_copy;
2099                p += bytes_to_copy;
2100                len -= bytes_to_copy;
2101
2102                if (remaining == 0) {
2103                    memcpy_to_target(top, scratch, p - top);
2104                    top = p;
2105                    remaining = TARGET_PAGE_SIZE;
2106                }
2107            }
2108        }
2109        if (p != top) {
2110            memcpy_to_target(top, scratch, p - top);
2111        }
2112    }
2113
2114    return p;
2115}
2116
2117/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2118 * argument/environment space. Newer kernels (>2.6.33) allow more,
2119 * dependent on stack size, but guarantee at least 32 pages for
2120 * backwards compatibility.
2121 */
2122#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2123
2124static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2125                                 struct image_info *info)
2126{
2127    abi_ulong size, error, guard;
2128    int prot;
2129
2130    size = guest_stack_size;
2131    if (size < STACK_LOWER_LIMIT) {
2132        size = STACK_LOWER_LIMIT;
2133    }
2134
2135    if (STACK_GROWS_DOWN) {
2136        guard = TARGET_PAGE_SIZE;
2137        if (guard < qemu_real_host_page_size()) {
2138            guard = qemu_real_host_page_size();
2139        }
2140    } else {
2141        /* no guard page for hppa target where stack grows upwards. */
2142        guard = 0;
2143    }
2144
2145    prot = PROT_READ | PROT_WRITE;
2146    if (info->exec_stack) {
2147        prot |= PROT_EXEC;
2148    }
2149    error = target_mmap(0, size + guard, prot,
2150                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2151    if (error == -1) {
2152        perror("mmap stack");
2153        exit(-1);
2154    }
2155
2156    /* We reserve one extra page at the top of the stack as guard.  */
2157    if (STACK_GROWS_DOWN) {
2158        target_mprotect(error, guard, PROT_NONE);
2159        info->stack_limit = error + guard;
2160        return info->stack_limit + size - sizeof(void *);
2161    } else {
2162        info->stack_limit = error + size;
2163        return error;
2164    }
2165}
2166
2167/* Map and zero the bss.  We need to explicitly zero any fractional pages
2168   after the data section (i.e. bss).  */
2169static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2170{
2171    uintptr_t host_start, host_map_start, host_end;
2172
2173    last_bss = TARGET_PAGE_ALIGN(last_bss);
2174
2175    /* ??? There is confusion between qemu_real_host_page_size and
2176       qemu_host_page_size here and elsewhere in target_mmap, which
2177       may lead to the end of the data section mapping from the file
2178       not being mapped.  At least there was an explicit test and
2179       comment for that here, suggesting that "the file size must
2180       be known".  The comment probably pre-dates the introduction
2181       of the fstat system call in target_mmap which does in fact
2182       find out the size.  What isn't clear is if the workaround
2183       here is still actually needed.  For now, continue with it,
2184       but merge it with the "normal" mmap that would allocate the bss.  */
2185
2186    host_start = (uintptr_t) g2h_untagged(elf_bss);
2187    host_end = (uintptr_t) g2h_untagged(last_bss);
2188    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2189
2190    if (host_map_start < host_end) {
2191        void *p = mmap((void *)host_map_start, host_end - host_map_start,
2192                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2193        if (p == MAP_FAILED) {
2194            perror("cannot mmap brk");
2195            exit(-1);
2196        }
2197    }
2198
2199    /* Ensure that the bss page(s) are valid */
2200    if ((page_get_flags(last_bss-1) & prot) != prot) {
2201        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
2202    }
2203
2204    if (host_start < host_map_start) {
2205        memset((void *)host_start, 0, host_map_start - host_start);
2206    }
2207}
2208
2209#ifdef TARGET_ARM
2210static int elf_is_fdpic(struct elfhdr *exec)
2211{
2212    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2213}
2214#else
2215/* Default implementation, always false.  */
2216static int elf_is_fdpic(struct elfhdr *exec)
2217{
2218    return 0;
2219}
2220#endif
2221
2222static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2223{
2224    uint16_t n;
2225    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2226
2227    /* elf32_fdpic_loadseg */
2228    n = info->nsegs;
2229    while (n--) {
2230        sp -= 12;
2231        put_user_u32(loadsegs[n].addr, sp+0);
2232        put_user_u32(loadsegs[n].p_vaddr, sp+4);
2233        put_user_u32(loadsegs[n].p_memsz, sp+8);
2234    }
2235
2236    /* elf32_fdpic_loadmap */
2237    sp -= 4;
2238    put_user_u16(0, sp+0); /* version */
2239    put_user_u16(info->nsegs, sp+2); /* nsegs */
2240
2241    info->personality = PER_LINUX_FDPIC;
2242    info->loadmap_addr = sp;
2243
2244    return sp;
2245}
2246
2247static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2248                                   struct elfhdr *exec,
2249                                   struct image_info *info,
2250                                   struct image_info *interp_info)
2251{
2252    abi_ulong sp;
2253    abi_ulong u_argc, u_argv, u_envp, u_auxv;
2254    int size;
2255    int i;
2256    abi_ulong u_rand_bytes;
2257    uint8_t k_rand_bytes[16];
2258    abi_ulong u_platform, u_base_platform;
2259    const char *k_platform, *k_base_platform;
2260    const int n = sizeof(elf_addr_t);
2261
2262    sp = p;
2263
2264    /* Needs to be before we load the env/argc/... */
2265    if (elf_is_fdpic(exec)) {
2266        /* Need 4 byte alignment for these structs */
2267        sp &= ~3;
2268        sp = loader_build_fdpic_loadmap(info, sp);
2269        info->other_info = interp_info;
2270        if (interp_info) {
2271            interp_info->other_info = info;
2272            sp = loader_build_fdpic_loadmap(interp_info, sp);
2273            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2274            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2275        } else {
2276            info->interpreter_loadmap_addr = 0;
2277            info->interpreter_pt_dynamic_addr = 0;
2278        }
2279    }
2280
2281    u_base_platform = 0;
2282    k_base_platform = ELF_BASE_PLATFORM;
2283    if (k_base_platform) {
2284        size_t len = strlen(k_base_platform) + 1;
2285        if (STACK_GROWS_DOWN) {
2286            sp -= (len + n - 1) & ~(n - 1);
2287            u_base_platform = sp;
2288            /* FIXME - check return value of memcpy_to_target() for failure */
2289            memcpy_to_target(sp, k_base_platform, len);
2290        } else {
2291            memcpy_to_target(sp, k_base_platform, len);
2292            u_base_platform = sp;
2293            sp += len + 1;
2294        }
2295    }
2296
2297    u_platform = 0;
2298    k_platform = ELF_PLATFORM;
2299    if (k_platform) {
2300        size_t len = strlen(k_platform) + 1;
2301        if (STACK_GROWS_DOWN) {
2302            sp -= (len + n - 1) & ~(n - 1);
2303            u_platform = sp;
2304            /* FIXME - check return value of memcpy_to_target() for failure */
2305            memcpy_to_target(sp, k_platform, len);
2306        } else {
2307            memcpy_to_target(sp, k_platform, len);
2308            u_platform = sp;
2309            sp += len + 1;
2310        }
2311    }
2312
2313    /* Provide 16 byte alignment for the PRNG, and basic alignment for
2314     * the argv and envp pointers.
2315     */
2316    if (STACK_GROWS_DOWN) {
2317        sp = QEMU_ALIGN_DOWN(sp, 16);
2318    } else {
2319        sp = QEMU_ALIGN_UP(sp, 16);
2320    }
2321
2322    /*
2323     * Generate 16 random bytes for userspace PRNG seeding.
2324     */
2325    qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2326    if (STACK_GROWS_DOWN) {
2327        sp -= 16;
2328        u_rand_bytes = sp;
2329        /* FIXME - check return value of memcpy_to_target() for failure */
2330        memcpy_to_target(sp, k_rand_bytes, 16);
2331    } else {
2332        memcpy_to_target(sp, k_rand_bytes, 16);
2333        u_rand_bytes = sp;
2334        sp += 16;
2335    }
2336
2337    size = (DLINFO_ITEMS + 1) * 2;
2338    if (k_base_platform)
2339        size += 2;
2340    if (k_platform)
2341        size += 2;
2342#ifdef DLINFO_ARCH_ITEMS
2343    size += DLINFO_ARCH_ITEMS * 2;
2344#endif
2345#ifdef ELF_HWCAP2
2346    size += 2;
2347#endif
2348    info->auxv_len = size * n;
2349
2350    size += envc + argc + 2;
2351    size += 1;  /* argc itself */
2352    size *= n;
2353
2354    /* Allocate space and finalize stack alignment for entry now.  */
2355    if (STACK_GROWS_DOWN) {
2356        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2357        sp = u_argc;
2358    } else {
2359        u_argc = sp;
2360        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2361    }
2362
2363    u_argv = u_argc + n;
2364    u_envp = u_argv + (argc + 1) * n;
2365    u_auxv = u_envp + (envc + 1) * n;
2366    info->saved_auxv = u_auxv;
2367    info->argc = argc;
2368    info->envc = envc;
2369    info->argv = u_argv;
2370    info->envp = u_envp;
2371
2372    /* This is correct because Linux defines
2373     * elf_addr_t as Elf32_Off / Elf64_Off
2374     */
2375#define NEW_AUX_ENT(id, val) do {               \
2376        put_user_ual(id, u_auxv);  u_auxv += n; \
2377        put_user_ual(val, u_auxv); u_auxv += n; \
2378    } while(0)
2379
2380#ifdef ARCH_DLINFO
2381    /*
2382     * ARCH_DLINFO must come first so platform specific code can enforce
2383     * special alignment requirements on the AUXV if necessary (eg. PPC).
2384     */
2385    ARCH_DLINFO;
2386#endif
2387    /* There must be exactly DLINFO_ITEMS entries here, or the assert
2388     * on info->auxv_len will trigger.
2389     */
2390    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2391    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2392    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2393    if ((info->alignment & ~qemu_host_page_mask) != 0) {
2394        /* Target doesn't support host page size alignment */
2395        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2396    } else {
2397        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2398                                               qemu_host_page_size)));
2399    }
2400    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2401    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2402    NEW_AUX_ENT(AT_ENTRY, info->entry);
2403    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2404    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2405    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2406    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2407    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2408    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2409    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2410    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2411    NEW_AUX_ENT(AT_EXECFN, info->file_string);
2412
2413#ifdef ELF_HWCAP2
2414    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2415#endif
2416
2417    if (u_base_platform) {
2418        NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2419    }
2420    if (u_platform) {
2421        NEW_AUX_ENT(AT_PLATFORM, u_platform);
2422    }
2423    NEW_AUX_ENT (AT_NULL, 0);
2424#undef NEW_AUX_ENT
2425
2426    /* Check that our initial calculation of the auxv length matches how much
2427     * we actually put into it.
2428     */
2429    assert(info->auxv_len == u_auxv - info->saved_auxv);
2430
2431    put_user_ual(argc, u_argc);
2432
2433    p = info->arg_strings;
2434    for (i = 0; i < argc; ++i) {
2435        put_user_ual(p, u_argv);
2436        u_argv += n;
2437        p += target_strlen(p) + 1;
2438    }
2439    put_user_ual(0, u_argv);
2440
2441    p = info->env_strings;
2442    for (i = 0; i < envc; ++i) {
2443        put_user_ual(p, u_envp);
2444        u_envp += n;
2445        p += target_strlen(p) + 1;
2446    }
2447    put_user_ual(0, u_envp);
2448
2449    return sp;
2450}
2451
2452#if defined(HI_COMMPAGE)
2453#define LO_COMMPAGE -1
2454#elif defined(LO_COMMPAGE)
2455#define HI_COMMPAGE 0
2456#else
2457#define HI_COMMPAGE 0
2458#define LO_COMMPAGE -1
2459#ifndef INIT_GUEST_COMMPAGE
2460#define init_guest_commpage() true
2461#endif
2462#endif
2463
2464static void pgb_fail_in_use(const char *image_name)
2465{
2466    error_report("%s: requires virtual address space that is in use "
2467                 "(omit the -B option or choose a different value)",
2468                 image_name);
2469    exit(EXIT_FAILURE);
2470}
2471
2472static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2473                                abi_ulong guest_hiaddr, long align)
2474{
2475    const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2476    void *addr, *test;
2477
2478    if (!QEMU_IS_ALIGNED(guest_base, align)) {
2479        fprintf(stderr, "Requested guest base %p does not satisfy "
2480                "host minimum alignment (0x%lx)\n",
2481                (void *)guest_base, align);
2482        exit(EXIT_FAILURE);
2483    }
2484
2485    /* Sanity check the guest binary. */
2486    if (reserved_va) {
2487        if (guest_hiaddr > reserved_va) {
2488            error_report("%s: requires more than reserved virtual "
2489                         "address space (0x%" PRIx64 " > 0x%lx)",
2490                         image_name, (uint64_t)guest_hiaddr, reserved_va);
2491            exit(EXIT_FAILURE);
2492        }
2493    } else {
2494#if HOST_LONG_BITS < TARGET_ABI_BITS
2495        if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2496            error_report("%s: requires more virtual address space "
2497                         "than the host can provide (0x%" PRIx64 ")",
2498                         image_name, (uint64_t)guest_hiaddr - guest_base);
2499            exit(EXIT_FAILURE);
2500        }
2501#endif
2502    }
2503
2504    /*
2505     * Expand the allocation to the entire reserved_va.
2506     * Exclude the mmap_min_addr hole.
2507     */
2508    if (reserved_va) {
2509        guest_loaddr = (guest_base >= mmap_min_addr ? 0
2510                        : mmap_min_addr - guest_base);
2511        guest_hiaddr = reserved_va;
2512    }
2513
2514    /* Reserve the address space for the binary, or reserved_va. */
2515    test = g2h_untagged(guest_loaddr);
2516    addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2517    if (test != addr) {
2518        pgb_fail_in_use(image_name);
2519    }
2520    qemu_log_mask(CPU_LOG_PAGE,
2521                  "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2522                  __func__, addr, guest_hiaddr - guest_loaddr);
2523}
2524
2525/**
2526 * pgd_find_hole_fallback: potential mmap address
2527 * @guest_size: size of available space
2528 * @brk: location of break
2529 * @align: memory alignment
2530 *
2531 * This is a fallback method for finding a hole in the host address
2532 * space if we don't have the benefit of being able to access
2533 * /proc/self/map. It can potentially take a very long time as we can
2534 * only dumbly iterate up the host address space seeing if the
2535 * allocation would work.
2536 */
2537static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2538                                        long align, uintptr_t offset)
2539{
2540    uintptr_t base;
2541
2542    /* Start (aligned) at the bottom and work our way up */
2543    base = ROUND_UP(mmap_min_addr, align);
2544
2545    while (true) {
2546        uintptr_t align_start, end;
2547        align_start = ROUND_UP(base, align);
2548        end = align_start + guest_size + offset;
2549
2550        /* if brk is anywhere in the range give ourselves some room to grow. */
2551        if (align_start <= brk && brk < end) {
2552            base = brk + (16 * MiB);
2553            continue;
2554        } else if (align_start + guest_size < align_start) {
2555            /* we have run out of space */
2556            return -1;
2557        } else {
2558            int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2559                MAP_FIXED_NOREPLACE;
2560            void * mmap_start = mmap((void *) align_start, guest_size,
2561                                     PROT_NONE, flags, -1, 0);
2562            if (mmap_start != MAP_FAILED) {
2563                munmap(mmap_start, guest_size);
2564                if (mmap_start == (void *) align_start) {
2565                    qemu_log_mask(CPU_LOG_PAGE,
2566                                  "%s: base @ %p for %" PRIdPTR" bytes\n",
2567                                  __func__, mmap_start + offset, guest_size);
2568                    return (uintptr_t) mmap_start + offset;
2569                }
2570            }
2571            base += qemu_host_page_size;
2572        }
2573    }
2574}
2575
2576/* Return value for guest_base, or -1 if no hole found. */
2577static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2578                               long align, uintptr_t offset)
2579{
2580    GSList *maps, *iter;
2581    uintptr_t this_start, this_end, next_start, brk;
2582    intptr_t ret = -1;
2583
2584    assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2585
2586    maps = read_self_maps();
2587
2588    /* Read brk after we've read the maps, which will malloc. */
2589    brk = (uintptr_t)sbrk(0);
2590
2591    if (!maps) {
2592        return pgd_find_hole_fallback(guest_size, brk, align, offset);
2593    }
2594
2595    /* The first hole is before the first map entry. */
2596    this_start = mmap_min_addr;
2597
2598    for (iter = maps; iter;
2599         this_start = next_start, iter = g_slist_next(iter)) {
2600        uintptr_t align_start, hole_size;
2601
2602        this_end = ((MapInfo *)iter->data)->start;
2603        next_start = ((MapInfo *)iter->data)->end;
2604        align_start = ROUND_UP(this_start + offset, align);
2605
2606        /* Skip holes that are too small. */
2607        if (align_start >= this_end) {
2608            continue;
2609        }
2610        hole_size = this_end - align_start;
2611        if (hole_size < guest_size) {
2612            continue;
2613        }
2614
2615        /* If this hole contains brk, give ourselves some room to grow. */
2616        if (this_start <= brk && brk < this_end) {
2617            hole_size -= guest_size;
2618            if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2619                align_start += 1 * GiB;
2620            } else if (hole_size >= 16 * MiB) {
2621                align_start += 16 * MiB;
2622            } else {
2623                align_start = (this_end - guest_size) & -align;
2624                if (align_start < this_start) {
2625                    continue;
2626                }
2627            }
2628        }
2629
2630        /* Record the lowest successful match. */
2631        if (ret < 0) {
2632            ret = align_start;
2633        }
2634        /* If this hole contains the identity map, select it. */
2635        if (align_start <= guest_loaddr &&
2636            guest_loaddr + guest_size <= this_end) {
2637            ret = 0;
2638        }
2639        /* If this hole ends above the identity map, stop looking. */
2640        if (this_end >= guest_loaddr) {
2641            break;
2642        }
2643    }
2644    free_self_maps(maps);
2645
2646    if (ret != -1) {
2647        qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2648                      " for %" PRIuPTR " bytes\n",
2649                      __func__, ret, guest_size);
2650    }
2651
2652    return ret;
2653}
2654
2655static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2656                       abi_ulong orig_hiaddr, long align)
2657{
2658    uintptr_t loaddr = orig_loaddr;
2659    uintptr_t hiaddr = orig_hiaddr;
2660    uintptr_t offset = 0;
2661    uintptr_t addr;
2662
2663    if (hiaddr != orig_hiaddr) {
2664        error_report("%s: requires virtual address space that the "
2665                     "host cannot provide (0x%" PRIx64 ")",
2666                     image_name, (uint64_t)orig_hiaddr);
2667        exit(EXIT_FAILURE);
2668    }
2669
2670    loaddr &= -align;
2671    if (HI_COMMPAGE) {
2672        /*
2673         * Extend the allocation to include the commpage.
2674         * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2675         * need to ensure there is space bellow the guest_base so we
2676         * can map the commpage in the place needed when the address
2677         * arithmetic wraps around.
2678         */
2679        if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2680            hiaddr = (uintptr_t) 4 << 30;
2681        } else {
2682            offset = -(HI_COMMPAGE & -align);
2683        }
2684    } else if (LO_COMMPAGE != -1) {
2685        loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2686    }
2687
2688    addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2689    if (addr == -1) {
2690        /*
2691         * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2692         * that can satisfy both.  But as the normal arm32 link base address
2693         * is ~32k, and we extend down to include the commpage, making the
2694         * overhead only ~96k, this is unlikely.
2695         */
2696        error_report("%s: Unable to allocate %#zx bytes of "
2697                     "virtual address space", image_name,
2698                     (size_t)(hiaddr - loaddr));
2699        exit(EXIT_FAILURE);
2700    }
2701
2702    guest_base = addr;
2703
2704    qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2705                  __func__, addr, hiaddr - loaddr);
2706}
2707
2708static void pgb_dynamic(const char *image_name, long align)
2709{
2710    /*
2711     * The executable is dynamic and does not require a fixed address.
2712     * All we need is a commpage that satisfies align.
2713     * If we do not need a commpage, leave guest_base == 0.
2714     */
2715    if (HI_COMMPAGE) {
2716        uintptr_t addr, commpage;
2717
2718        /* 64-bit hosts should have used reserved_va. */
2719        assert(sizeof(uintptr_t) == 4);
2720
2721        /*
2722         * By putting the commpage at the first hole, that puts guest_base
2723         * just above that, and maximises the positive guest addresses.
2724         */
2725        commpage = HI_COMMPAGE & -align;
2726        addr = pgb_find_hole(commpage, -commpage, align, 0);
2727        assert(addr != -1);
2728        guest_base = addr;
2729    }
2730}
2731
2732static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2733                            abi_ulong guest_hiaddr, long align)
2734{
2735    int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2736    void *addr, *test;
2737
2738    if (guest_hiaddr > reserved_va) {
2739        error_report("%s: requires more than reserved virtual "
2740                     "address space (0x%" PRIx64 " > 0x%lx)",
2741                     image_name, (uint64_t)guest_hiaddr, reserved_va);
2742        exit(EXIT_FAILURE);
2743    }
2744
2745    /* Widen the "image" to the entire reserved address space. */
2746    pgb_static(image_name, 0, reserved_va, align);
2747
2748    /* osdep.h defines this as 0 if it's missing */
2749    flags |= MAP_FIXED_NOREPLACE;
2750
2751    /* Reserve the memory on the host. */
2752    assert(guest_base != 0);
2753    test = g2h_untagged(0);
2754    addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2755    if (addr == MAP_FAILED || addr != test) {
2756        error_report("Unable to reserve 0x%lx bytes of virtual address "
2757                     "space at %p (%s) for use as guest address space (check your "
2758                     "virtual memory ulimit setting, min_mmap_addr or reserve less "
2759                     "using -R option)", reserved_va, test, strerror(errno));
2760        exit(EXIT_FAILURE);
2761    }
2762
2763    qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2764                  __func__, addr, reserved_va);
2765}
2766
2767void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2768                      abi_ulong guest_hiaddr)
2769{
2770    /* In order to use host shmat, we must be able to honor SHMLBA.  */
2771    uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2772
2773    if (have_guest_base) {
2774        pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2775    } else if (reserved_va) {
2776        pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2777    } else if (guest_loaddr) {
2778        pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2779    } else {
2780        pgb_dynamic(image_name, align);
2781    }
2782
2783    /* Reserve and initialize the commpage. */
2784    if (!init_guest_commpage()) {
2785        /*
2786         * With have_guest_base, the user has selected the address and
2787         * we are trying to work with that.  Otherwise, we have selected
2788         * free space and init_guest_commpage must succeeded.
2789         */
2790        assert(have_guest_base);
2791        pgb_fail_in_use(image_name);
2792    }
2793
2794    assert(QEMU_IS_ALIGNED(guest_base, align));
2795    qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2796                  "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2797}
2798
2799enum {
2800    /* The string "GNU\0" as a magic number. */
2801    GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2802    NOTE_DATA_SZ = 1 * KiB,
2803    NOTE_NAME_SZ = 4,
2804    ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2805};
2806
2807/*
2808 * Process a single gnu_property entry.
2809 * Return false for error.
2810 */
2811static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2812                               struct image_info *info, bool have_prev_type,
2813                               uint32_t *prev_type, Error **errp)
2814{
2815    uint32_t pr_type, pr_datasz, step;
2816
2817    if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2818        goto error_data;
2819    }
2820    datasz -= *off;
2821    data += *off / sizeof(uint32_t);
2822
2823    if (datasz < 2 * sizeof(uint32_t)) {
2824        goto error_data;
2825    }
2826    pr_type = data[0];
2827    pr_datasz = data[1];
2828    data += 2;
2829    datasz -= 2 * sizeof(uint32_t);
2830    step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2831    if (step > datasz) {
2832        goto error_data;
2833    }
2834
2835    /* Properties are supposed to be unique and sorted on pr_type. */
2836    if (have_prev_type && pr_type <= *prev_type) {
2837        if (pr_type == *prev_type) {
2838            error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2839        } else {
2840            error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2841        }
2842        return false;
2843    }
2844    *prev_type = pr_type;
2845
2846    if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2847        return false;
2848    }
2849
2850    *off += 2 * sizeof(uint32_t) + step;
2851    return true;
2852
2853 error_data:
2854    error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2855    return false;
2856}
2857
2858/* Process NT_GNU_PROPERTY_TYPE_0. */
2859static bool parse_elf_properties(int image_fd,
2860                                 struct image_info *info,
2861                                 const struct elf_phdr *phdr,
2862                                 char bprm_buf[BPRM_BUF_SIZE],
2863                                 Error **errp)
2864{
2865    union {
2866        struct elf_note nhdr;
2867        uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2868    } note;
2869
2870    int n, off, datasz;
2871    bool have_prev_type;
2872    uint32_t prev_type;
2873
2874    /* Unless the arch requires properties, ignore them. */
2875    if (!ARCH_USE_GNU_PROPERTY) {
2876        return true;
2877    }
2878
2879    /* If the properties are crazy large, that's too bad. */
2880    n = phdr->p_filesz;
2881    if (n > sizeof(note)) {
2882        error_setg(errp, "PT_GNU_PROPERTY too large");
2883        return false;
2884    }
2885    if (n < sizeof(note.nhdr)) {
2886        error_setg(errp, "PT_GNU_PROPERTY too small");
2887        return false;
2888    }
2889
2890    if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2891        memcpy(&note, bprm_buf + phdr->p_offset, n);
2892    } else {
2893        ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2894        if (len != n) {
2895            error_setg_errno(errp, errno, "Error reading file header");
2896            return false;
2897        }
2898    }
2899
2900    /*
2901     * The contents of a valid PT_GNU_PROPERTY is a sequence
2902     * of uint32_t -- swap them all now.
2903     */
2904#ifdef BSWAP_NEEDED
2905    for (int i = 0; i < n / 4; i++) {
2906        bswap32s(note.data + i);
2907    }
2908#endif
2909
2910    /*
2911     * Note that nhdr is 3 words, and that the "name" described by namesz
2912     * immediately follows nhdr and is thus at the 4th word.  Further, all
2913     * of the inputs to the kernel's round_up are multiples of 4.
2914     */
2915    if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2916        note.nhdr.n_namesz != NOTE_NAME_SZ ||
2917        note.data[3] != GNU0_MAGIC) {
2918        error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2919        return false;
2920    }
2921    off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2922
2923    datasz = note.nhdr.n_descsz + off;
2924    if (datasz > n) {
2925        error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2926        return false;
2927    }
2928
2929    have_prev_type = false;
2930    prev_type = 0;
2931    while (1) {
2932        if (off == datasz) {
2933            return true;  /* end, exit ok */
2934        }
2935        if (!parse_elf_property(note.data, &off, datasz, info,
2936                                have_prev_type, &prev_type, errp)) {
2937            return false;
2938        }
2939        have_prev_type = true;
2940    }
2941}
2942
2943/* Load an ELF image into the address space.
2944
2945   IMAGE_NAME is the filename of the image, to use in error messages.
2946   IMAGE_FD is the open file descriptor for the image.
2947
2948   BPRM_BUF is a copy of the beginning of the file; this of course
2949   contains the elf file header at offset 0.  It is assumed that this
2950   buffer is sufficiently aligned to present no problems to the host
2951   in accessing data at aligned offsets within the buffer.
2952
2953   On return: INFO values will be filled in, as necessary or available.  */
2954
2955static void load_elf_image(const char *image_name, int image_fd,
2956                           struct image_info *info, char **pinterp_name,
2957                           char bprm_buf[BPRM_BUF_SIZE])
2958{
2959    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2960    struct elf_phdr *phdr;
2961    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2962    int i, retval, prot_exec;
2963    Error *err = NULL;
2964
2965    /* First of all, some simple consistency checks */
2966    if (!elf_check_ident(ehdr)) {
2967        error_setg(&err, "Invalid ELF image for this architecture");
2968        goto exit_errmsg;
2969    }
2970    bswap_ehdr(ehdr);
2971    if (!elf_check_ehdr(ehdr)) {
2972        error_setg(&err, "Invalid ELF image for this architecture");
2973        goto exit_errmsg;
2974    }
2975
2976    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2977    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2978        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2979    } else {
2980        phdr = (struct elf_phdr *) alloca(i);
2981        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2982        if (retval != i) {
2983            goto exit_read;
2984        }
2985    }
2986    bswap_phdr(phdr, ehdr->e_phnum);
2987
2988    info->nsegs = 0;
2989    info->pt_dynamic_addr = 0;
2990
2991    mmap_lock();
2992
2993    /*
2994     * Find the maximum size of the image and allocate an appropriate
2995     * amount of memory to handle that.  Locate the interpreter, if any.
2996     */
2997    loaddr = -1, hiaddr = 0;
2998    info->alignment = 0;
2999    info->exec_stack = EXSTACK_DEFAULT;
3000    for (i = 0; i < ehdr->e_phnum; ++i) {
3001        struct elf_phdr *eppnt = phdr + i;
3002        if (eppnt->p_type == PT_LOAD) {
3003            abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3004            if (a < loaddr) {
3005                loaddr = a;
3006            }
3007            a = eppnt->p_vaddr + eppnt->p_memsz;
3008            if (a > hiaddr) {
3009                hiaddr = a;
3010            }
3011            ++info->nsegs;
3012            info->alignment |= eppnt->p_align;
3013        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3014            g_autofree char *interp_name = NULL;
3015
3016            if (*pinterp_name) {
3017                error_setg(&err, "Multiple PT_INTERP entries");
3018                goto exit_errmsg;
3019            }
3020
3021            interp_name = g_malloc(eppnt->p_filesz);
3022
3023            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3024                memcpy(interp_name, bprm_buf + eppnt->p_offset,
3025                       eppnt->p_filesz);
3026            } else {
3027                retval = pread(image_fd, interp_name, eppnt->p_filesz,
3028                               eppnt->p_offset);
3029                if (retval != eppnt->p_filesz) {
3030                    goto exit_read;
3031                }
3032            }
3033            if (interp_name[eppnt->p_filesz - 1] != 0) {
3034                error_setg(&err, "Invalid PT_INTERP entry");
3035                goto exit_errmsg;
3036            }
3037            *pinterp_name = g_steal_pointer(&interp_name);
3038        } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3039            if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3040                goto exit_errmsg;
3041            }
3042        } else if (eppnt->p_type == PT_GNU_STACK) {
3043            info->exec_stack = eppnt->p_flags & PF_X;
3044        }
3045    }
3046
3047    if (pinterp_name != NULL) {
3048        /*
3049         * This is the main executable.
3050         *
3051         * Reserve extra space for brk.
3052         * We hold on to this space while placing the interpreter
3053         * and the stack, lest they be placed immediately after
3054         * the data segment and block allocation from the brk.
3055         *
3056         * 16MB is chosen as "large enough" without being so large as
3057         * to allow the result to not fit with a 32-bit guest on a
3058         * 32-bit host. However some 64 bit guests (e.g. s390x)
3059         * attempt to place their heap further ahead and currently
3060         * nothing stops them smashing into QEMUs address space.
3061         */
3062#if TARGET_LONG_BITS == 64
3063        info->reserve_brk = 32 * MiB;
3064#else
3065        info->reserve_brk = 16 * MiB;
3066#endif
3067        hiaddr += info->reserve_brk;
3068
3069        if (ehdr->e_type == ET_EXEC) {
3070            /*
3071             * Make sure that the low address does not conflict with
3072             * MMAP_MIN_ADDR or the QEMU application itself.
3073             */
3074            probe_guest_base(image_name, loaddr, hiaddr);
3075        } else {
3076            /*
3077             * The binary is dynamic, but we still need to
3078             * select guest_base.  In this case we pass a size.
3079             */
3080            probe_guest_base(image_name, 0, hiaddr - loaddr);
3081        }
3082    }
3083
3084    /*
3085     * Reserve address space for all of this.
3086     *
3087     * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3088     * exactly the address range that is required.
3089     *
3090     * Otherwise this is ET_DYN, and we are searching for a location
3091     * that can hold the memory space required.  If the image is
3092     * pre-linked, LOADDR will be non-zero, and the kernel should
3093     * honor that address if it happens to be free.
3094     *
3095     * In both cases, we will overwrite pages in this range with mappings
3096     * from the executable.
3097     */
3098    load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
3099                            MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3100                            (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3101                            -1, 0);
3102    if (load_addr == -1) {
3103        goto exit_mmap;
3104    }
3105    load_bias = load_addr - loaddr;
3106
3107    if (elf_is_fdpic(ehdr)) {
3108        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3109            g_malloc(sizeof(*loadsegs) * info->nsegs);
3110
3111        for (i = 0; i < ehdr->e_phnum; ++i) {
3112            switch (phdr[i].p_type) {
3113            case PT_DYNAMIC:
3114                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3115                break;
3116            case PT_LOAD:
3117                loadsegs->addr = phdr[i].p_vaddr + load_bias;
3118                loadsegs->p_vaddr = phdr[i].p_vaddr;
3119                loadsegs->p_memsz = phdr[i].p_memsz;
3120                ++loadsegs;
3121                break;
3122            }
3123        }
3124    }
3125
3126    info->load_bias = load_bias;
3127    info->code_offset = load_bias;
3128    info->data_offset = load_bias;
3129    info->load_addr = load_addr;
3130    info->entry = ehdr->e_entry + load_bias;
3131    info->start_code = -1;
3132    info->end_code = 0;
3133    info->start_data = -1;
3134    info->end_data = 0;
3135    info->brk = 0;
3136    info->elf_flags = ehdr->e_flags;
3137
3138    prot_exec = PROT_EXEC;
3139#ifdef TARGET_AARCH64
3140    /*
3141     * If the BTI feature is present, this indicates that the executable
3142     * pages of the startup binary should be mapped with PROT_BTI, so that
3143     * branch targets are enforced.
3144     *
3145     * The startup binary is either the interpreter or the static executable.
3146     * The interpreter is responsible for all pages of a dynamic executable.
3147     *
3148     * Elf notes are backward compatible to older cpus.
3149     * Do not enable BTI unless it is supported.
3150     */
3151    if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3152        && (pinterp_name == NULL || *pinterp_name == 0)
3153        && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3154        prot_exec |= TARGET_PROT_BTI;
3155    }
3156#endif
3157
3158    for (i = 0; i < ehdr->e_phnum; i++) {
3159        struct elf_phdr *eppnt = phdr + i;
3160        if (eppnt->p_type == PT_LOAD) {
3161            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3162            int elf_prot = 0;
3163
3164            if (eppnt->p_flags & PF_R) {
3165                elf_prot |= PROT_READ;
3166            }
3167            if (eppnt->p_flags & PF_W) {
3168                elf_prot |= PROT_WRITE;
3169            }
3170            if (eppnt->p_flags & PF_X) {
3171                elf_prot |= prot_exec;
3172            }
3173
3174            vaddr = load_bias + eppnt->p_vaddr;
3175            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3176            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3177
3178            vaddr_ef = vaddr + eppnt->p_filesz;
3179            vaddr_em = vaddr + eppnt->p_memsz;
3180
3181            /*
3182             * Some segments may be completely empty, with a non-zero p_memsz
3183             * but no backing file segment.
3184             */
3185            if (eppnt->p_filesz != 0) {
3186                vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3187                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3188                                    MAP_PRIVATE | MAP_FIXED,
3189                                    image_fd, eppnt->p_offset - vaddr_po);
3190
3191                if (error == -1) {
3192                    goto exit_mmap;
3193                }
3194
3195                /*
3196                 * If the load segment requests extra zeros (e.g. bss), map it.
3197                 */
3198                if (eppnt->p_filesz < eppnt->p_memsz) {
3199                    zero_bss(vaddr_ef, vaddr_em, elf_prot);
3200                }
3201            } else if (eppnt->p_memsz != 0) {
3202                vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3203                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3204                                    MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3205                                    -1, 0);
3206
3207                if (error == -1) {
3208                    goto exit_mmap;
3209                }
3210            }
3211
3212            /* Find the full program boundaries.  */
3213            if (elf_prot & PROT_EXEC) {
3214                if (vaddr < info->start_code) {
3215                    info->start_code = vaddr;
3216                }
3217                if (vaddr_ef > info->end_code) {
3218                    info->end_code = vaddr_ef;
3219                }
3220            }
3221            if (elf_prot & PROT_WRITE) {
3222                if (vaddr < info->start_data) {
3223                    info->start_data = vaddr;
3224                }
3225                if (vaddr_ef > info->end_data) {
3226                    info->end_data = vaddr_ef;
3227                }
3228            }
3229            if (vaddr_em > info->brk) {
3230                info->brk = vaddr_em;
3231            }
3232#ifdef TARGET_MIPS
3233        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3234            Mips_elf_abiflags_v0 abiflags;
3235            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3236                error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3237                goto exit_errmsg;
3238            }
3239            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3240                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3241                       sizeof(Mips_elf_abiflags_v0));
3242            } else {
3243                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3244                               eppnt->p_offset);
3245                if (retval != sizeof(Mips_elf_abiflags_v0)) {
3246                    goto exit_read;
3247                }
3248            }
3249            bswap_mips_abiflags(&abiflags);
3250            info->fp_abi = abiflags.fp_abi;
3251#endif
3252        }
3253    }
3254
3255    if (info->end_data == 0) {
3256        info->start_data = info->end_code;
3257        info->end_data = info->end_code;
3258    }
3259
3260    if (qemu_log_enabled()) {
3261        load_symbols(ehdr, image_fd, load_bias);
3262    }
3263
3264    mmap_unlock();
3265
3266    close(image_fd);
3267    return;
3268
3269 exit_read:
3270    if (retval >= 0) {
3271        error_setg(&err, "Incomplete read of file header");
3272    } else {
3273        error_setg_errno(&err, errno, "Error reading file header");
3274    }
3275    goto exit_errmsg;
3276 exit_mmap:
3277    error_setg_errno(&err, errno, "Error mapping file");
3278    goto exit_errmsg;
3279 exit_errmsg:
3280    error_reportf_err(err, "%s: ", image_name);
3281    exit(-1);
3282}
3283
3284static void load_elf_interp(const char *filename, struct image_info *info,
3285                            char bprm_buf[BPRM_BUF_SIZE])
3286{
3287    int fd, retval;
3288    Error *err = NULL;
3289
3290    fd = open(path(filename), O_RDONLY);
3291    if (fd < 0) {
3292        error_setg_file_open(&err, errno, filename);
3293        error_report_err(err);
3294        exit(-1);
3295    }
3296
3297    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3298    if (retval < 0) {
3299        error_setg_errno(&err, errno, "Error reading file header");
3300        error_reportf_err(err, "%s: ", filename);
3301        exit(-1);
3302    }
3303
3304    if (retval < BPRM_BUF_SIZE) {
3305        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3306    }
3307
3308    load_elf_image(filename, fd, info, NULL, bprm_buf);
3309}
3310
3311static int symfind(const void *s0, const void *s1)
3312{
3313    target_ulong addr = *(target_ulong *)s0;
3314    struct elf_sym *sym = (struct elf_sym *)s1;
3315    int result = 0;
3316    if (addr < sym->st_value) {
3317        result = -1;
3318    } else if (addr >= sym->st_value + sym->st_size) {
3319        result = 1;
3320    }
3321    return result;
3322}
3323
3324static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3325{
3326#if ELF_CLASS == ELFCLASS32
3327    struct elf_sym *syms = s->disas_symtab.elf32;
3328#else
3329    struct elf_sym *syms = s->disas_symtab.elf64;
3330#endif
3331
3332    // binary search
3333    struct elf_sym *sym;
3334
3335    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3336    if (sym != NULL) {
3337        return s->disas_strtab + sym->st_name;
3338    }
3339
3340    return "";
3341}
3342
3343/* FIXME: This should use elf_ops.h  */
3344static int symcmp(const void *s0, const void *s1)
3345{
3346    struct elf_sym *sym0 = (struct elf_sym *)s0;
3347    struct elf_sym *sym1 = (struct elf_sym *)s1;
3348    return (sym0->st_value < sym1->st_value)
3349        ? -1
3350        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3351}
3352
3353/* Best attempt to load symbols from this ELF object. */
3354static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3355{
3356    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3357    uint64_t segsz;
3358    struct elf_shdr *shdr;
3359    char *strings = NULL;
3360    struct syminfo *s = NULL;
3361    struct elf_sym *new_syms, *syms = NULL;
3362
3363    shnum = hdr->e_shnum;
3364    i = shnum * sizeof(struct elf_shdr);
3365    shdr = (struct elf_shdr *)alloca(i);
3366    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3367        return;
3368    }
3369
3370    bswap_shdr(shdr, shnum);
3371    for (i = 0; i < shnum; ++i) {
3372        if (shdr[i].sh_type == SHT_SYMTAB) {
3373            sym_idx = i;
3374            str_idx = shdr[i].sh_link;
3375            goto found;
3376        }
3377    }
3378
3379    /* There will be no symbol table if the file was stripped.  */
3380    return;
3381
3382 found:
3383    /* Now know where the strtab and symtab are.  Snarf them.  */
3384    s = g_try_new(struct syminfo, 1);
3385    if (!s) {
3386        goto give_up;
3387    }
3388
3389    segsz = shdr[str_idx].sh_size;
3390    s->disas_strtab = strings = g_try_malloc(segsz);
3391    if (!strings ||
3392        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3393        goto give_up;
3394    }
3395
3396    segsz = shdr[sym_idx].sh_size;
3397    syms = g_try_malloc(segsz);
3398    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3399        goto give_up;
3400    }
3401
3402    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3403        /* Implausibly large symbol table: give up rather than ploughing
3404         * on with the number of symbols calculation overflowing
3405         */
3406        goto give_up;
3407    }
3408    nsyms = segsz / sizeof(struct elf_sym);
3409    for (i = 0; i < nsyms; ) {
3410        bswap_sym(syms + i);
3411        /* Throw away entries which we do not need.  */
3412        if (syms[i].st_shndx == SHN_UNDEF
3413            || syms[i].st_shndx >= SHN_LORESERVE
3414            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3415            if (i < --nsyms) {
3416                syms[i] = syms[nsyms];
3417            }
3418        } else {
3419#if defined(TARGET_ARM) || defined (TARGET_MIPS)
3420            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3421            syms[i].st_value &= ~(target_ulong)1;
3422#endif
3423            syms[i].st_value += load_bias;
3424            i++;
3425        }
3426    }
3427
3428    /* No "useful" symbol.  */
3429    if (nsyms == 0) {
3430        goto give_up;
3431    }
3432
3433    /* Attempt to free the storage associated with the local symbols
3434       that we threw away.  Whether or not this has any effect on the
3435       memory allocation depends on the malloc implementation and how
3436       many symbols we managed to discard.  */
3437    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3438    if (new_syms == NULL) {
3439        goto give_up;
3440    }
3441    syms = new_syms;
3442
3443    qsort(syms, nsyms, sizeof(*syms), symcmp);
3444
3445    s->disas_num_syms = nsyms;
3446#if ELF_CLASS == ELFCLASS32
3447    s->disas_symtab.elf32 = syms;
3448#else
3449    s->disas_symtab.elf64 = syms;
3450#endif
3451    s->lookup_symbol = lookup_symbolxx;
3452    s->next = syminfos;
3453    syminfos = s;
3454
3455    return;
3456
3457give_up:
3458    g_free(s);
3459    g_free(strings);
3460    g_free(syms);
3461}
3462
3463uint32_t get_elf_eflags(int fd)
3464{
3465    struct elfhdr ehdr;
3466    off_t offset;
3467    int ret;
3468
3469    /* Read ELF header */
3470    offset = lseek(fd, 0, SEEK_SET);
3471    if (offset == (off_t) -1) {
3472        return 0;
3473    }
3474    ret = read(fd, &ehdr, sizeof(ehdr));
3475    if (ret < sizeof(ehdr)) {
3476        return 0;
3477    }
3478    offset = lseek(fd, offset, SEEK_SET);
3479    if (offset == (off_t) -1) {
3480        return 0;
3481    }
3482
3483    /* Check ELF signature */
3484    if (!elf_check_ident(&ehdr)) {
3485        return 0;
3486    }
3487
3488    /* check header */
3489    bswap_ehdr(&ehdr);
3490    if (!elf_check_ehdr(&ehdr)) {
3491        return 0;
3492    }
3493
3494    /* return architecture id */
3495    return ehdr.e_flags;
3496}
3497
3498int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3499{
3500    struct image_info interp_info;
3501    struct elfhdr elf_ex;
3502    char *elf_interpreter = NULL;
3503    char *scratch;
3504
3505    memset(&interp_info, 0, sizeof(interp_info));
3506#ifdef TARGET_MIPS
3507    interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3508#endif
3509
3510    info->start_mmap = (abi_ulong)ELF_START_MMAP;
3511
3512    load_elf_image(bprm->filename, bprm->fd, info,
3513                   &elf_interpreter, bprm->buf);
3514
3515    /* ??? We need a copy of the elf header for passing to create_elf_tables.
3516       If we do nothing, we'll have overwritten this when we re-use bprm->buf
3517       when we load the interpreter.  */
3518    elf_ex = *(struct elfhdr *)bprm->buf;
3519
3520    /* Do this so that we can load the interpreter, if need be.  We will
3521       change some of these later */
3522    bprm->p = setup_arg_pages(bprm, info);
3523
3524    scratch = g_new0(char, TARGET_PAGE_SIZE);
3525    if (STACK_GROWS_DOWN) {
3526        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3527                                   bprm->p, info->stack_limit);
3528        info->file_string = bprm->p;
3529        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3530                                   bprm->p, info->stack_limit);
3531        info->env_strings = bprm->p;
3532        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3533                                   bprm->p, info->stack_limit);
3534        info->arg_strings = bprm->p;
3535    } else {
3536        info->arg_strings = bprm->p;
3537        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3538                                   bprm->p, info->stack_limit);
3539        info->env_strings = bprm->p;
3540        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3541                                   bprm->p, info->stack_limit);
3542        info->file_string = bprm->p;
3543        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3544                                   bprm->p, info->stack_limit);
3545    }
3546
3547    g_free(scratch);
3548
3549    if (!bprm->p) {
3550        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3551        exit(-1);
3552    }
3553
3554    if (elf_interpreter) {
3555        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3556
3557        /* If the program interpreter is one of these two, then assume
3558           an iBCS2 image.  Otherwise assume a native linux image.  */
3559
3560        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3561            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3562            info->personality = PER_SVR4;
3563
3564            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3565               and some applications "depend" upon this behavior.  Since
3566               we do not have the power to recompile these, we emulate
3567               the SVr4 behavior.  Sigh.  */
3568            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3569                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3570        }
3571#ifdef TARGET_MIPS
3572        info->interp_fp_abi = interp_info.fp_abi;
3573#endif
3574    }
3575
3576    /*
3577     * TODO: load a vdso, which would also contain the signal trampolines.
3578     * Otherwise, allocate a private page to hold them.
3579     */
3580    if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3581        abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3582                                          PROT_READ | PROT_WRITE,
3583                                          MAP_PRIVATE | MAP_ANON, -1, 0);
3584        if (tramp_page == -1) {
3585            return -errno;
3586        }
3587
3588        setup_sigtramp(tramp_page);
3589        target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3590    }
3591
3592    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3593                                info, (elf_interpreter ? &interp_info : NULL));
3594    info->start_stack = bprm->p;
3595
3596    /* If we have an interpreter, set that as the program's entry point.
3597       Copy the load_bias as well, to help PPC64 interpret the entry
3598       point as a function descriptor.  Do this after creating elf tables
3599       so that we copy the original program entry point into the AUXV.  */
3600    if (elf_interpreter) {
3601        info->load_bias = interp_info.load_bias;
3602        info->entry = interp_info.entry;
3603        g_free(elf_interpreter);
3604    }
3605
3606#ifdef USE_ELF_CORE_DUMP
3607    bprm->core_dump = &elf_core_dump;
3608#endif
3609
3610    /*
3611     * If we reserved extra space for brk, release it now.
3612     * The implementation of do_brk in syscalls.c expects to be able
3613     * to mmap pages in this space.
3614     */
3615    if (info->reserve_brk) {
3616        abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3617        abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3618        target_munmap(start_brk, end_brk - start_brk);
3619    }
3620
3621    return 0;
3622}
3623
3624#ifdef USE_ELF_CORE_DUMP
3625/*
3626 * Definitions to generate Intel SVR4-like core files.
3627 * These mostly have the same names as the SVR4 types with "target_elf_"
3628 * tacked on the front to prevent clashes with linux definitions,
3629 * and the typedef forms have been avoided.  This is mostly like
3630 * the SVR4 structure, but more Linuxy, with things that Linux does
3631 * not support and which gdb doesn't really use excluded.
3632 *
3633 * Fields we don't dump (their contents is zero) in linux-user qemu
3634 * are marked with XXX.
3635 *
3636 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3637 *
3638 * Porting ELF coredump for target is (quite) simple process.  First you
3639 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3640 * the target resides):
3641 *
3642 * #define USE_ELF_CORE_DUMP
3643 *
3644 * Next you define type of register set used for dumping.  ELF specification
3645 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3646 *
3647 * typedef <target_regtype> target_elf_greg_t;
3648 * #define ELF_NREG <number of registers>
3649 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3650 *
3651 * Last step is to implement target specific function that copies registers
3652 * from given cpu into just specified register set.  Prototype is:
3653 *
3654 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3655 *                                const CPUArchState *env);
3656 *
3657 * Parameters:
3658 *     regs - copy register values into here (allocated and zeroed by caller)
3659 *     env - copy registers from here
3660 *
3661 * Example for ARM target is provided in this file.
3662 */
3663
3664/* An ELF note in memory */
3665struct memelfnote {
3666    const char *name;
3667    size_t     namesz;
3668    size_t     namesz_rounded;
3669    int        type;
3670    size_t     datasz;
3671    size_t     datasz_rounded;
3672    void       *data;
3673    size_t     notesz;
3674};
3675
3676struct target_elf_siginfo {
3677    abi_int    si_signo; /* signal number */
3678    abi_int    si_code;  /* extra code */
3679    abi_int    si_errno; /* errno */
3680};
3681
3682struct target_elf_prstatus {
3683    struct target_elf_siginfo pr_info;      /* Info associated with signal */
3684    abi_short          pr_cursig;    /* Current signal */
3685    abi_ulong          pr_sigpend;   /* XXX */
3686    abi_ulong          pr_sighold;   /* XXX */
3687    target_pid_t       pr_pid;
3688    target_pid_t       pr_ppid;
3689    target_pid_t       pr_pgrp;
3690    target_pid_t       pr_sid;
3691    struct target_timeval pr_utime;  /* XXX User time */
3692    struct target_timeval pr_stime;  /* XXX System time */
3693    struct target_timeval pr_cutime; /* XXX Cumulative user time */
3694    struct target_timeval pr_cstime; /* XXX Cumulative system time */
3695    target_elf_gregset_t      pr_reg;       /* GP registers */
3696    abi_int            pr_fpvalid;   /* XXX */
3697};
3698
3699#define ELF_PRARGSZ     (80) /* Number of chars for args */
3700
3701struct target_elf_prpsinfo {
3702    char         pr_state;       /* numeric process state */
3703    char         pr_sname;       /* char for pr_state */
3704    char         pr_zomb;        /* zombie */
3705    char         pr_nice;        /* nice val */
3706    abi_ulong    pr_flag;        /* flags */
3707    target_uid_t pr_uid;
3708    target_gid_t pr_gid;
3709    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3710    /* Lots missing */
3711    char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3712    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3713};
3714
3715/* Here is the structure in which status of each thread is captured. */
3716struct elf_thread_status {
3717    QTAILQ_ENTRY(elf_thread_status)  ets_link;
3718    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3719#if 0
3720    elf_fpregset_t fpu;             /* NT_PRFPREG */
3721    struct task_struct *thread;
3722    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3723#endif
3724    struct memelfnote notes[1];
3725    int num_notes;
3726};
3727
3728struct elf_note_info {
3729    struct memelfnote   *notes;
3730    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3731    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3732
3733    QTAILQ_HEAD(, elf_thread_status) thread_list;
3734#if 0
3735    /*
3736     * Current version of ELF coredump doesn't support
3737     * dumping fp regs etc.
3738     */
3739    elf_fpregset_t *fpu;
3740    elf_fpxregset_t *xfpu;
3741    int thread_status_size;
3742#endif
3743    int notes_size;
3744    int numnote;
3745};
3746
3747struct vm_area_struct {
3748    target_ulong   vma_start;  /* start vaddr of memory region */
3749    target_ulong   vma_end;    /* end vaddr of memory region */
3750    abi_ulong      vma_flags;  /* protection etc. flags for the region */
3751    QTAILQ_ENTRY(vm_area_struct) vma_link;
3752};
3753
3754struct mm_struct {
3755    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3756    int mm_count;           /* number of mappings */
3757};
3758
3759static struct mm_struct *vma_init(void);
3760static void vma_delete(struct mm_struct *);
3761static int vma_add_mapping(struct mm_struct *, target_ulong,
3762                           target_ulong, abi_ulong);
3763static int vma_get_mapping_count(const struct mm_struct *);
3764static struct vm_area_struct *vma_first(const struct mm_struct *);
3765static struct vm_area_struct *vma_next(struct vm_area_struct *);
3766static abi_ulong vma_dump_size(const struct vm_area_struct *);
3767static int vma_walker(void *priv, target_ulong start, target_ulong end,
3768                      unsigned long flags);
3769
3770static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3771static void fill_note(struct memelfnote *, const char *, int,
3772                      unsigned int, void *);
3773static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3774static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3775static void fill_auxv_note(struct memelfnote *, const TaskState *);
3776static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3777static size_t note_size(const struct memelfnote *);
3778static void free_note_info(struct elf_note_info *);
3779static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3780static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3781
3782static int dump_write(int, const void *, size_t);
3783static int write_note(struct memelfnote *, int);
3784static int write_note_info(struct elf_note_info *, int);
3785
3786#ifdef BSWAP_NEEDED
3787static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3788{
3789    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3790    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3791    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3792    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3793    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3794    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3795    prstatus->pr_pid = tswap32(prstatus->pr_pid);
3796    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3797    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3798    prstatus->pr_sid = tswap32(prstatus->pr_sid);
3799    /* cpu times are not filled, so we skip them */
3800    /* regs should be in correct format already */
3801    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3802}
3803
3804static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3805{
3806    psinfo->pr_flag = tswapal(psinfo->pr_flag);
3807    psinfo->pr_uid = tswap16(psinfo->pr_uid);
3808    psinfo->pr_gid = tswap16(psinfo->pr_gid);
3809    psinfo->pr_pid = tswap32(psinfo->pr_pid);
3810    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3811    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3812    psinfo->pr_sid = tswap32(psinfo->pr_sid);
3813}
3814
3815static void bswap_note(struct elf_note *en)
3816{
3817    bswap32s(&en->n_namesz);
3818    bswap32s(&en->n_descsz);
3819    bswap32s(&en->n_type);
3820}
3821#else
3822static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3823static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3824static inline void bswap_note(struct elf_note *en) { }
3825#endif /* BSWAP_NEEDED */
3826
3827/*
3828 * Minimal support for linux memory regions.  These are needed
3829 * when we are finding out what memory exactly belongs to
3830 * emulated process.  No locks needed here, as long as
3831 * thread that received the signal is stopped.
3832 */
3833
3834static struct mm_struct *vma_init(void)
3835{
3836    struct mm_struct *mm;
3837
3838    if ((mm = g_malloc(sizeof (*mm))) == NULL)
3839        return (NULL);
3840
3841    mm->mm_count = 0;
3842    QTAILQ_INIT(&mm->mm_mmap);
3843
3844    return (mm);
3845}
3846
3847static void vma_delete(struct mm_struct *mm)
3848{
3849    struct vm_area_struct *vma;
3850
3851    while ((vma = vma_first(mm)) != NULL) {
3852        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3853        g_free(vma);
3854    }
3855    g_free(mm);
3856}
3857
3858static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3859                           target_ulong end, abi_ulong flags)
3860{
3861    struct vm_area_struct *vma;
3862
3863    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3864        return (-1);
3865
3866    vma->vma_start = start;
3867    vma->vma_end = end;
3868    vma->vma_flags = flags;
3869
3870    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3871    mm->mm_count++;
3872
3873    return (0);
3874}
3875
3876static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3877{
3878    return (QTAILQ_FIRST(&mm->mm_mmap));
3879}
3880
3881static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3882{
3883    return (QTAILQ_NEXT(vma, vma_link));
3884}
3885
3886static int vma_get_mapping_count(const struct mm_struct *mm)
3887{
3888    return (mm->mm_count);
3889}
3890
3891/*
3892 * Calculate file (dump) size of given memory region.
3893 */
3894static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3895{
3896    /* if we cannot even read the first page, skip it */
3897    if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3898        return (0);
3899
3900    /*
3901     * Usually we don't dump executable pages as they contain
3902     * non-writable code that debugger can read directly from
3903     * target library etc.  However, thread stacks are marked
3904     * also executable so we read in first page of given region
3905     * and check whether it contains elf header.  If there is
3906     * no elf header, we dump it.
3907     */
3908    if (vma->vma_flags & PROT_EXEC) {
3909        char page[TARGET_PAGE_SIZE];
3910
3911        if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3912            return 0;
3913        }
3914        if ((page[EI_MAG0] == ELFMAG0) &&
3915            (page[EI_MAG1] == ELFMAG1) &&
3916            (page[EI_MAG2] == ELFMAG2) &&
3917            (page[EI_MAG3] == ELFMAG3)) {
3918            /*
3919             * Mappings are possibly from ELF binary.  Don't dump
3920             * them.
3921             */
3922            return (0);
3923        }
3924    }
3925
3926    return (vma->vma_end - vma->vma_start);
3927}
3928
3929static int vma_walker(void *priv, target_ulong start, target_ulong end,
3930                      unsigned long flags)
3931{
3932    struct mm_struct *mm = (struct mm_struct *)priv;
3933
3934    vma_add_mapping(mm, start, end, flags);
3935    return (0);
3936}
3937
3938static void fill_note(struct memelfnote *note, const char *name, int type,
3939                      unsigned int sz, void *data)
3940{
3941    unsigned int namesz;
3942
3943    namesz = strlen(name) + 1;
3944    note->name = name;
3945    note->namesz = namesz;
3946    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3947    note->type = type;
3948    note->datasz = sz;
3949    note->datasz_rounded = roundup(sz, sizeof (int32_t));
3950
3951    note->data = data;
3952
3953    /*
3954     * We calculate rounded up note size here as specified by
3955     * ELF document.
3956     */
3957    note->notesz = sizeof (struct elf_note) +
3958        note->namesz_rounded + note->datasz_rounded;
3959}
3960
3961static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3962                            uint32_t flags)
3963{
3964    (void) memset(elf, 0, sizeof(*elf));
3965
3966    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3967    elf->e_ident[EI_CLASS] = ELF_CLASS;
3968    elf->e_ident[EI_DATA] = ELF_DATA;
3969    elf->e_ident[EI_VERSION] = EV_CURRENT;
3970    elf->e_ident[EI_OSABI] = ELF_OSABI;
3971
3972    elf->e_type = ET_CORE;
3973    elf->e_machine = machine;
3974    elf->e_version = EV_CURRENT;
3975    elf->e_phoff = sizeof(struct elfhdr);
3976    elf->e_flags = flags;
3977    elf->e_ehsize = sizeof(struct elfhdr);
3978    elf->e_phentsize = sizeof(struct elf_phdr);
3979    elf->e_phnum = segs;
3980
3981    bswap_ehdr(elf);
3982}
3983
3984static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3985{
3986    phdr->p_type = PT_NOTE;
3987    phdr->p_offset = offset;
3988    phdr->p_vaddr = 0;
3989    phdr->p_paddr = 0;
3990    phdr->p_filesz = sz;
3991    phdr->p_memsz = 0;
3992    phdr->p_flags = 0;
3993    phdr->p_align = 0;
3994
3995    bswap_phdr(phdr, 1);
3996}
3997
3998static size_t note_size(const struct memelfnote *note)
3999{
4000    return (note->notesz);
4001}
4002
4003static void fill_prstatus(struct target_elf_prstatus *prstatus,
4004                          const TaskState *ts, int signr)
4005{
4006    (void) memset(prstatus, 0, sizeof (*prstatus));
4007    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4008    prstatus->pr_pid = ts->ts_tid;
4009    prstatus->pr_ppid = getppid();
4010    prstatus->pr_pgrp = getpgrp();
4011    prstatus->pr_sid = getsid(0);
4012
4013    bswap_prstatus(prstatus);
4014}
4015
4016static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4017{
4018    char *base_filename;
4019    unsigned int i, len;
4020
4021    (void) memset(psinfo, 0, sizeof (*psinfo));
4022
4023    len = ts->info->env_strings - ts->info->arg_strings;
4024    if (len >= ELF_PRARGSZ)
4025        len = ELF_PRARGSZ - 1;
4026    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4027        return -EFAULT;
4028    }
4029    for (i = 0; i < len; i++)
4030        if (psinfo->pr_psargs[i] == 0)
4031            psinfo->pr_psargs[i] = ' ';
4032    psinfo->pr_psargs[len] = 0;
4033
4034    psinfo->pr_pid = getpid();
4035    psinfo->pr_ppid = getppid();
4036    psinfo->pr_pgrp = getpgrp();
4037    psinfo->pr_sid = getsid(0);
4038    psinfo->pr_uid = getuid();
4039    psinfo->pr_gid = getgid();
4040
4041    base_filename = g_path_get_basename(ts->bprm->filename);
4042    /*
4043     * Using strncpy here is fine: at max-length,
4044     * this field is not NUL-terminated.
4045     */
4046    (void) strncpy(psinfo->pr_fname, base_filename,
4047                   sizeof(psinfo->pr_fname));
4048
4049    g_free(base_filename);
4050    bswap_psinfo(psinfo);
4051    return (0);
4052}
4053
4054static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4055{
4056    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4057    elf_addr_t orig_auxv = auxv;
4058    void *ptr;
4059    int len = ts->info->auxv_len;
4060
4061    /*
4062     * Auxiliary vector is stored in target process stack.  It contains
4063     * {type, value} pairs that we need to dump into note.  This is not
4064     * strictly necessary but we do it here for sake of completeness.
4065     */
4066
4067    /* read in whole auxv vector and copy it to memelfnote */
4068    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4069    if (ptr != NULL) {
4070        fill_note(note, "CORE", NT_AUXV, len, ptr);
4071        unlock_user(ptr, auxv, len);
4072    }
4073}
4074
4075/*
4076 * Constructs name of coredump file.  We have following convention
4077 * for the name:
4078 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4079 *
4080 * Returns the filename
4081 */
4082static char *core_dump_filename(const TaskState *ts)
4083{
4084    g_autoptr(GDateTime) now = g_date_time_new_now_local();
4085    g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4086    g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4087
4088    return g_strdup_printf("qemu_%s_%s_%d.core",
4089                           base_filename, nowstr, (int)getpid());
4090}
4091
4092static int dump_write(int fd, const void *ptr, size_t size)
4093{
4094    const char *bufp = (const char *)ptr;
4095    ssize_t bytes_written, bytes_left;
4096    struct rlimit dumpsize;
4097    off_t pos;
4098
4099    bytes_written = 0;
4100    getrlimit(RLIMIT_CORE, &dumpsize);
4101    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4102        if (errno == ESPIPE) { /* not a seekable stream */
4103            bytes_left = size;
4104        } else {
4105            return pos;
4106        }
4107    } else {
4108        if (dumpsize.rlim_cur <= pos) {
4109            return -1;
4110        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4111            bytes_left = size;
4112        } else {
4113            size_t limit_left=dumpsize.rlim_cur - pos;
4114            bytes_left = limit_left >= size ? size : limit_left ;
4115        }
4116    }
4117
4118    /*
4119     * In normal conditions, single write(2) should do but
4120     * in case of socket etc. this mechanism is more portable.
4121     */
4122    do {
4123        bytes_written = write(fd, bufp, bytes_left);
4124        if (bytes_written < 0) {
4125            if (errno == EINTR)
4126                continue;
4127            return (-1);
4128        } else if (bytes_written == 0) { /* eof */
4129            return (-1);
4130        }
4131        bufp += bytes_written;
4132        bytes_left -= bytes_written;
4133    } while (bytes_left > 0);
4134
4135    return (0);
4136}
4137
4138static int write_note(struct memelfnote *men, int fd)
4139{
4140    struct elf_note en;
4141
4142    en.n_namesz = men->namesz;
4143    en.n_type = men->type;
4144    en.n_descsz = men->datasz;
4145
4146    bswap_note(&en);
4147
4148    if (dump_write(fd, &en, sizeof(en)) != 0)
4149        return (-1);
4150    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4151        return (-1);
4152    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4153        return (-1);
4154
4155    return (0);
4156}
4157
4158static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4159{
4160    CPUState *cpu = env_cpu((CPUArchState *)env);
4161    TaskState *ts = (TaskState *)cpu->opaque;
4162    struct elf_thread_status *ets;
4163
4164    ets = g_malloc0(sizeof (*ets));
4165    ets->num_notes = 1; /* only prstatus is dumped */
4166    fill_prstatus(&ets->prstatus, ts, 0);
4167    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4168    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4169              &ets->prstatus);
4170
4171    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4172
4173    info->notes_size += note_size(&ets->notes[0]);
4174}
4175
4176static void init_note_info(struct elf_note_info *info)
4177{
4178    /* Initialize the elf_note_info structure so that it is at
4179     * least safe to call free_note_info() on it. Must be
4180     * called before calling fill_note_info().
4181     */
4182    memset(info, 0, sizeof (*info));
4183    QTAILQ_INIT(&info->thread_list);
4184}
4185
4186static int fill_note_info(struct elf_note_info *info,
4187                          long signr, const CPUArchState *env)
4188{
4189#define NUMNOTES 3
4190    CPUState *cpu = env_cpu((CPUArchState *)env);
4191    TaskState *ts = (TaskState *)cpu->opaque;
4192    int i;
4193
4194    info->notes = g_new0(struct memelfnote, NUMNOTES);
4195    if (info->notes == NULL)
4196        return (-ENOMEM);
4197    info->prstatus = g_malloc0(sizeof (*info->prstatus));
4198    if (info->prstatus == NULL)
4199        return (-ENOMEM);
4200    info->psinfo = g_malloc0(sizeof (*info->psinfo));
4201    if (info->prstatus == NULL)
4202        return (-ENOMEM);
4203
4204    /*
4205     * First fill in status (and registers) of current thread
4206     * including process info & aux vector.
4207     */
4208    fill_prstatus(info->prstatus, ts, signr);
4209    elf_core_copy_regs(&info->prstatus->pr_reg, env);
4210    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4211              sizeof (*info->prstatus), info->prstatus);
4212    fill_psinfo(info->psinfo, ts);
4213    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4214              sizeof (*info->psinfo), info->psinfo);
4215    fill_auxv_note(&info->notes[2], ts);
4216    info->numnote = 3;
4217
4218    info->notes_size = 0;
4219    for (i = 0; i < info->numnote; i++)
4220        info->notes_size += note_size(&info->notes[i]);
4221
4222    /* read and fill status of all threads */
4223    cpu_list_lock();
4224    CPU_FOREACH(cpu) {
4225        if (cpu == thread_cpu) {
4226            continue;
4227        }
4228        fill_thread_info(info, cpu->env_ptr);
4229    }
4230    cpu_list_unlock();
4231
4232    return (0);
4233}
4234
4235static void free_note_info(struct elf_note_info *info)
4236{
4237    struct elf_thread_status *ets;
4238
4239    while (!QTAILQ_EMPTY(&info->thread_list)) {
4240        ets = QTAILQ_FIRST(&info->thread_list);
4241        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4242        g_free(ets);
4243    }
4244
4245    g_free(info->prstatus);
4246    g_free(info->psinfo);
4247    g_free(info->notes);
4248}
4249
4250static int write_note_info(struct elf_note_info *info, int fd)
4251{
4252    struct elf_thread_status *ets;
4253    int i, error = 0;
4254
4255    /* write prstatus, psinfo and auxv for current thread */
4256    for (i = 0; i < info->numnote; i++)
4257        if ((error = write_note(&info->notes[i], fd)) != 0)
4258            return (error);
4259
4260    /* write prstatus for each thread */
4261    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4262        if ((error = write_note(&ets->notes[0], fd)) != 0)
4263            return (error);
4264    }
4265
4266    return (0);
4267}
4268
4269/*
4270 * Write out ELF coredump.
4271 *
4272 * See documentation of ELF object file format in:
4273 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4274 *
4275 * Coredump format in linux is following:
4276 *
4277 * 0   +----------------------+         \
4278 *     | ELF header           | ET_CORE  |
4279 *     +----------------------+          |
4280 *     | ELF program headers  |          |--- headers
4281 *     | - NOTE section       |          |
4282 *     | - PT_LOAD sections   |          |
4283 *     +----------------------+         /
4284 *     | NOTEs:               |
4285 *     | - NT_PRSTATUS        |
4286 *     | - NT_PRSINFO         |
4287 *     | - NT_AUXV            |
4288 *     +----------------------+ <-- aligned to target page
4289 *     | Process memory dump  |
4290 *     :                      :
4291 *     .                      .
4292 *     :                      :
4293 *     |                      |
4294 *     +----------------------+
4295 *
4296 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4297 * NT_PRSINFO  -> struct elf_prpsinfo
4298 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4299 *
4300 * Format follows System V format as close as possible.  Current
4301 * version limitations are as follows:
4302 *     - no floating point registers are dumped
4303 *
4304 * Function returns 0 in case of success, negative errno otherwise.
4305 *
4306 * TODO: make this work also during runtime: it should be
4307 * possible to force coredump from running process and then
4308 * continue processing.  For example qemu could set up SIGUSR2
4309 * handler (provided that target process haven't registered
4310 * handler for that) that does the dump when signal is received.
4311 */
4312static int elf_core_dump(int signr, const CPUArchState *env)
4313{
4314    const CPUState *cpu = env_cpu((CPUArchState *)env);
4315    const TaskState *ts = (const TaskState *)cpu->opaque;
4316    struct vm_area_struct *vma = NULL;
4317    g_autofree char *corefile = NULL;
4318    struct elf_note_info info;
4319    struct elfhdr elf;
4320    struct elf_phdr phdr;
4321    struct rlimit dumpsize;
4322    struct mm_struct *mm = NULL;
4323    off_t offset = 0, data_offset = 0;
4324    int segs = 0;
4325    int fd = -1;
4326
4327    init_note_info(&info);
4328
4329    errno = 0;
4330    getrlimit(RLIMIT_CORE, &dumpsize);
4331    if (dumpsize.rlim_cur == 0)
4332        return 0;
4333
4334    corefile = core_dump_filename(ts);
4335
4336    if ((fd = open(corefile, O_WRONLY | O_CREAT,
4337                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4338        return (-errno);
4339
4340    /*
4341     * Walk through target process memory mappings and
4342     * set up structure containing this information.  After
4343     * this point vma_xxx functions can be used.
4344     */
4345    if ((mm = vma_init()) == NULL)
4346        goto out;
4347
4348    walk_memory_regions(mm, vma_walker);
4349    segs = vma_get_mapping_count(mm);
4350
4351    /*
4352     * Construct valid coredump ELF header.  We also
4353     * add one more segment for notes.
4354     */
4355    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4356    if (dump_write(fd, &elf, sizeof (elf)) != 0)
4357        goto out;
4358
4359    /* fill in the in-memory version of notes */
4360    if (fill_note_info(&info, signr, env) < 0)
4361        goto out;
4362
4363    offset += sizeof (elf);                             /* elf header */
4364    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4365
4366    /* write out notes program header */
4367    fill_elf_note_phdr(&phdr, info.notes_size, offset);
4368
4369    offset += info.notes_size;
4370    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4371        goto out;
4372
4373    /*
4374     * ELF specification wants data to start at page boundary so
4375     * we align it here.
4376     */
4377    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4378
4379    /*
4380     * Write program headers for memory regions mapped in
4381     * the target process.
4382     */
4383    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4384        (void) memset(&phdr, 0, sizeof (phdr));
4385
4386        phdr.p_type = PT_LOAD;
4387        phdr.p_offset = offset;
4388        phdr.p_vaddr = vma->vma_start;
4389        phdr.p_paddr = 0;
4390        phdr.p_filesz = vma_dump_size(vma);
4391        offset += phdr.p_filesz;
4392        phdr.p_memsz = vma->vma_end - vma->vma_start;
4393        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4394        if (vma->vma_flags & PROT_WRITE)
4395            phdr.p_flags |= PF_W;
4396        if (vma->vma_flags & PROT_EXEC)
4397            phdr.p_flags |= PF_X;
4398        phdr.p_align = ELF_EXEC_PAGESIZE;
4399
4400        bswap_phdr(&phdr, 1);
4401        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4402            goto out;
4403        }
4404    }
4405
4406    /*
4407     * Next we write notes just after program headers.  No
4408     * alignment needed here.
4409     */
4410    if (write_note_info(&info, fd) < 0)
4411        goto out;
4412
4413    /* align data to page boundary */
4414    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4415        goto out;
4416
4417    /*
4418     * Finally we can dump process memory into corefile as well.
4419     */
4420    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4421        abi_ulong addr;
4422        abi_ulong end;
4423
4424        end = vma->vma_start + vma_dump_size(vma);
4425
4426        for (addr = vma->vma_start; addr < end;
4427             addr += TARGET_PAGE_SIZE) {
4428            char page[TARGET_PAGE_SIZE];
4429            int error;
4430
4431            /*
4432             *  Read in page from target process memory and
4433             *  write it to coredump file.
4434             */
4435            error = copy_from_user(page, addr, sizeof (page));
4436            if (error != 0) {
4437                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4438                               addr);
4439                errno = -error;
4440                goto out;
4441            }
4442            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4443                goto out;
4444        }
4445    }
4446
4447 out:
4448    free_note_info(&info);
4449    if (mm != NULL)
4450        vma_delete(mm);
4451    (void) close(fd);
4452
4453    if (errno != 0)
4454        return (-errno);
4455    return (0);
4456}
4457#endif /* USE_ELF_CORE_DUMP */
4458
4459void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4460{
4461    init_thread(regs, infop);
4462}
4463