qemu/hw/dma/sifive_pdma.c
<<
>>
Prefs
   1/*
   2 * SiFive Platform DMA emulation
   3 *
   4 * Copyright (c) 2020 Wind River Systems, Inc.
   5 *
   6 * Author:
   7 *   Bin Meng <bin.meng@windriver.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 or
  12 * (at your option) version 3 of the License.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License along
  20 * with this program; if not, see <http://www.gnu.org/licenses/>.
  21 */
  22
  23#include "qemu/osdep.h"
  24#include "qemu/bitops.h"
  25#include "qemu/log.h"
  26#include "qapi/error.h"
  27#include "hw/irq.h"
  28#include "hw/qdev-properties.h"
  29#include "hw/sysbus.h"
  30#include "migration/vmstate.h"
  31#include "sysemu/dma.h"
  32#include "hw/dma/sifive_pdma.h"
  33
  34#define DMA_CONTROL         0x000
  35#define   CONTROL_CLAIM     BIT(0)
  36#define   CONTROL_RUN       BIT(1)
  37#define   CONTROL_DONE_IE   BIT(14)
  38#define   CONTROL_ERR_IE    BIT(15)
  39#define   CONTROL_DONE      BIT(30)
  40#define   CONTROL_ERR       BIT(31)
  41
  42#define DMA_NEXT_CONFIG     0x004
  43#define   CONFIG_REPEAT     BIT(2)
  44#define   CONFIG_ORDER      BIT(3)
  45#define   CONFIG_WRSZ_SHIFT 24
  46#define   CONFIG_RDSZ_SHIFT 28
  47#define   CONFIG_SZ_MASK    0xf
  48
  49#define DMA_NEXT_BYTES      0x008
  50#define DMA_NEXT_DST        0x010
  51#define DMA_NEXT_SRC        0x018
  52#define DMA_EXEC_CONFIG     0x104
  53#define DMA_EXEC_BYTES      0x108
  54#define DMA_EXEC_DST        0x110
  55#define DMA_EXEC_SRC        0x118
  56
  57/*
  58 * FU540/FU740 docs are incorrect with NextConfig.wsize/rsize reset values.
  59 * The reset values tested on Unleashed/Unmatched boards are 6 instead of 0.
  60 */
  61#define CONFIG_WRSZ_DEFAULT 6
  62#define CONFIG_RDSZ_DEFAULT 6
  63
  64enum dma_chan_state {
  65    DMA_CHAN_STATE_IDLE,
  66    DMA_CHAN_STATE_STARTED,
  67    DMA_CHAN_STATE_ERROR,
  68    DMA_CHAN_STATE_DONE
  69};
  70
  71static void sifive_pdma_run(SiFivePDMAState *s, int ch)
  72{
  73    uint64_t bytes = s->chan[ch].next_bytes;
  74    uint64_t dst = s->chan[ch].next_dst;
  75    uint64_t src = s->chan[ch].next_src;
  76    uint32_t config = s->chan[ch].next_config;
  77    int wsize, rsize, size, remainder;
  78    uint8_t buf[64];
  79    int n;
  80
  81    /* do nothing if bytes to transfer is zero */
  82    if (!bytes) {
  83        goto done;
  84    }
  85
  86    /*
  87     * The manual does not describe how the hardware behaviors when
  88     * config.wsize and config.rsize are given different values.
  89     * A common case is memory to memory DMA, and in this case they
  90     * are normally the same. Abort if this expectation fails.
  91     */
  92    wsize = (config >> CONFIG_WRSZ_SHIFT) & CONFIG_SZ_MASK;
  93    rsize = (config >> CONFIG_RDSZ_SHIFT) & CONFIG_SZ_MASK;
  94    if (wsize != rsize) {
  95        goto error;
  96    }
  97
  98    /*
  99     * Calculate the transaction size
 100     *
 101     * size field is base 2 logarithm of DMA transaction size,
 102     * but there is an upper limit of 64 bytes per transaction.
 103     */
 104    size = wsize;
 105    if (size > 6) {
 106        size = 6;
 107    }
 108    size = 1 << size;
 109    remainder = bytes % size;
 110
 111    /* indicate a DMA transfer is started */
 112    s->chan[ch].state = DMA_CHAN_STATE_STARTED;
 113    s->chan[ch].control &= ~CONTROL_DONE;
 114    s->chan[ch].control &= ~CONTROL_ERR;
 115
 116    /* load the next_ registers into their exec_ counterparts */
 117    s->chan[ch].exec_config = config;
 118    s->chan[ch].exec_bytes = bytes;
 119    s->chan[ch].exec_dst = dst;
 120    s->chan[ch].exec_src = src;
 121
 122    for (n = 0; n < bytes / size; n++) {
 123        cpu_physical_memory_read(s->chan[ch].exec_src, buf, size);
 124        cpu_physical_memory_write(s->chan[ch].exec_dst, buf, size);
 125        s->chan[ch].exec_src += size;
 126        s->chan[ch].exec_dst += size;
 127        s->chan[ch].exec_bytes -= size;
 128    }
 129
 130    if (remainder) {
 131        cpu_physical_memory_read(s->chan[ch].exec_src, buf, remainder);
 132        cpu_physical_memory_write(s->chan[ch].exec_dst, buf, remainder);
 133        s->chan[ch].exec_src += remainder;
 134        s->chan[ch].exec_dst += remainder;
 135        s->chan[ch].exec_bytes -= remainder;
 136    }
 137
 138    /* reload exec_ registers if repeat is required */
 139    if (s->chan[ch].next_config & CONFIG_REPEAT) {
 140        s->chan[ch].exec_bytes = bytes;
 141        s->chan[ch].exec_dst = dst;
 142        s->chan[ch].exec_src = src;
 143    }
 144
 145done:
 146    /* indicate a DMA transfer is done */
 147    s->chan[ch].state = DMA_CHAN_STATE_DONE;
 148    s->chan[ch].control &= ~CONTROL_RUN;
 149    s->chan[ch].control |= CONTROL_DONE;
 150    return;
 151
 152error:
 153    s->chan[ch].state = DMA_CHAN_STATE_ERROR;
 154    s->chan[ch].control |= CONTROL_ERR;
 155    return;
 156}
 157
 158static inline void sifive_pdma_update_irq(SiFivePDMAState *s, int ch)
 159{
 160    bool done_ie, err_ie;
 161
 162    done_ie = !!(s->chan[ch].control & CONTROL_DONE_IE);
 163    err_ie = !!(s->chan[ch].control & CONTROL_ERR_IE);
 164
 165    if (done_ie && (s->chan[ch].control & CONTROL_DONE)) {
 166        qemu_irq_raise(s->irq[ch * 2]);
 167    } else {
 168        qemu_irq_lower(s->irq[ch * 2]);
 169    }
 170
 171    if (err_ie && (s->chan[ch].control & CONTROL_ERR)) {
 172        qemu_irq_raise(s->irq[ch * 2 + 1]);
 173    } else {
 174        qemu_irq_lower(s->irq[ch * 2 + 1]);
 175    }
 176
 177    s->chan[ch].state = DMA_CHAN_STATE_IDLE;
 178}
 179
 180static uint64_t sifive_pdma_readq(SiFivePDMAState *s, int ch, hwaddr offset)
 181{
 182    uint64_t val = 0;
 183
 184    offset &= 0xfff;
 185    switch (offset) {
 186    case DMA_NEXT_BYTES:
 187        val = s->chan[ch].next_bytes;
 188        break;
 189    case DMA_NEXT_DST:
 190        val = s->chan[ch].next_dst;
 191        break;
 192    case DMA_NEXT_SRC:
 193        val = s->chan[ch].next_src;
 194        break;
 195    case DMA_EXEC_BYTES:
 196        val = s->chan[ch].exec_bytes;
 197        break;
 198    case DMA_EXEC_DST:
 199        val = s->chan[ch].exec_dst;
 200        break;
 201    case DMA_EXEC_SRC:
 202        val = s->chan[ch].exec_src;
 203        break;
 204    default:
 205        qemu_log_mask(LOG_GUEST_ERROR,
 206                      "%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n",
 207                      __func__, offset);
 208        break;
 209    }
 210
 211    return val;
 212}
 213
 214static uint32_t sifive_pdma_readl(SiFivePDMAState *s, int ch, hwaddr offset)
 215{
 216    uint32_t val = 0;
 217
 218    offset &= 0xfff;
 219    switch (offset) {
 220    case DMA_CONTROL:
 221        val = s->chan[ch].control;
 222        break;
 223    case DMA_NEXT_CONFIG:
 224        val = s->chan[ch].next_config;
 225        break;
 226    case DMA_NEXT_BYTES:
 227        val = extract64(s->chan[ch].next_bytes, 0, 32);
 228        break;
 229    case DMA_NEXT_BYTES + 4:
 230        val = extract64(s->chan[ch].next_bytes, 32, 32);
 231        break;
 232    case DMA_NEXT_DST:
 233        val = extract64(s->chan[ch].next_dst, 0, 32);
 234        break;
 235    case DMA_NEXT_DST + 4:
 236        val = extract64(s->chan[ch].next_dst, 32, 32);
 237        break;
 238    case DMA_NEXT_SRC:
 239        val = extract64(s->chan[ch].next_src, 0, 32);
 240        break;
 241    case DMA_NEXT_SRC + 4:
 242        val = extract64(s->chan[ch].next_src, 32, 32);
 243        break;
 244    case DMA_EXEC_CONFIG:
 245        val = s->chan[ch].exec_config;
 246        break;
 247    case DMA_EXEC_BYTES:
 248        val = extract64(s->chan[ch].exec_bytes, 0, 32);
 249        break;
 250    case DMA_EXEC_BYTES + 4:
 251        val = extract64(s->chan[ch].exec_bytes, 32, 32);
 252        break;
 253    case DMA_EXEC_DST:
 254        val = extract64(s->chan[ch].exec_dst, 0, 32);
 255        break;
 256    case DMA_EXEC_DST + 4:
 257        val = extract64(s->chan[ch].exec_dst, 32, 32);
 258        break;
 259    case DMA_EXEC_SRC:
 260        val = extract64(s->chan[ch].exec_src, 0, 32);
 261        break;
 262    case DMA_EXEC_SRC + 4:
 263        val = extract64(s->chan[ch].exec_src, 32, 32);
 264        break;
 265    default:
 266        qemu_log_mask(LOG_GUEST_ERROR,
 267                      "%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n",
 268                      __func__, offset);
 269        break;
 270    }
 271
 272    return val;
 273}
 274
 275static uint64_t sifive_pdma_read(void *opaque, hwaddr offset, unsigned size)
 276{
 277    SiFivePDMAState *s = opaque;
 278    int ch = SIFIVE_PDMA_CHAN_NO(offset);
 279    uint64_t val = 0;
 280
 281    if (ch >= SIFIVE_PDMA_CHANS) {
 282        qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n",
 283                      __func__, ch);
 284        return 0;
 285    }
 286
 287    switch (size) {
 288    case 8:
 289        val = sifive_pdma_readq(s, ch, offset);
 290        break;
 291    case 4:
 292        val = sifive_pdma_readl(s, ch, offset);
 293        break;
 294    default:
 295        qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid read size %u to PDMA\n",
 296                      __func__, size);
 297        return 0;
 298    }
 299
 300    return val;
 301}
 302
 303static void sifive_pdma_writeq(SiFivePDMAState *s, int ch,
 304                               hwaddr offset, uint64_t value)
 305{
 306    offset &= 0xfff;
 307    switch (offset) {
 308    case DMA_NEXT_BYTES:
 309        s->chan[ch].next_bytes = value;
 310        break;
 311    case DMA_NEXT_DST:
 312        s->chan[ch].next_dst = value;
 313        break;
 314    case DMA_NEXT_SRC:
 315        s->chan[ch].next_src = value;
 316        break;
 317    case DMA_EXEC_BYTES:
 318    case DMA_EXEC_DST:
 319    case DMA_EXEC_SRC:
 320        /* these are read-only registers */
 321        break;
 322    default:
 323        qemu_log_mask(LOG_GUEST_ERROR,
 324                      "%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n",
 325                      __func__, offset);
 326        break;
 327    }
 328}
 329
 330static void sifive_pdma_writel(SiFivePDMAState *s, int ch,
 331                               hwaddr offset, uint32_t value)
 332{
 333    bool claimed, run;
 334
 335    offset &= 0xfff;
 336    switch (offset) {
 337    case DMA_CONTROL:
 338        claimed = !!(s->chan[ch].control & CONTROL_CLAIM);
 339        run = !!(s->chan[ch].control & CONTROL_RUN);
 340
 341        if (!claimed && (value & CONTROL_CLAIM)) {
 342            /* reset Next* registers */
 343            s->chan[ch].next_config = (CONFIG_RDSZ_DEFAULT << CONFIG_RDSZ_SHIFT) |
 344                                      (CONFIG_WRSZ_DEFAULT << CONFIG_WRSZ_SHIFT);
 345            s->chan[ch].next_bytes = 0;
 346            s->chan[ch].next_dst = 0;
 347            s->chan[ch].next_src = 0;
 348        }
 349
 350        /* claim bit can only be cleared when run is low */
 351        if (run && !(value & CONTROL_CLAIM)) {
 352            value |= CONTROL_CLAIM;
 353        }
 354
 355        s->chan[ch].control = value;
 356
 357        /*
 358         * If channel was not claimed before run bit is set,
 359         * or if the channel is disclaimed when run was low,
 360         * DMA won't run.
 361         */
 362        if (!claimed || (!run && !(value & CONTROL_CLAIM))) {
 363            s->chan[ch].control &= ~CONTROL_RUN;
 364            return;
 365        }
 366
 367        if (value & CONTROL_RUN) {
 368            sifive_pdma_run(s, ch);
 369        }
 370
 371        sifive_pdma_update_irq(s, ch);
 372        break;
 373    case DMA_NEXT_CONFIG:
 374        s->chan[ch].next_config = value;
 375        break;
 376    case DMA_NEXT_BYTES:
 377        s->chan[ch].next_bytes =
 378            deposit64(s->chan[ch].next_bytes, 0, 32, value);
 379        break;
 380    case DMA_NEXT_BYTES + 4:
 381        s->chan[ch].next_bytes =
 382            deposit64(s->chan[ch].next_bytes, 32, 32, value);
 383        break;
 384    case DMA_NEXT_DST:
 385        s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 0, 32, value);
 386        break;
 387    case DMA_NEXT_DST + 4:
 388        s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 32, 32, value);
 389        break;
 390    case DMA_NEXT_SRC:
 391        s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 0, 32, value);
 392        break;
 393    case DMA_NEXT_SRC + 4:
 394        s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 32, 32, value);
 395        break;
 396    case DMA_EXEC_CONFIG:
 397    case DMA_EXEC_BYTES:
 398    case DMA_EXEC_BYTES + 4:
 399    case DMA_EXEC_DST:
 400    case DMA_EXEC_DST + 4:
 401    case DMA_EXEC_SRC:
 402    case DMA_EXEC_SRC + 4:
 403        /* these are read-only registers */
 404        break;
 405    default:
 406        qemu_log_mask(LOG_GUEST_ERROR,
 407                      "%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n",
 408                      __func__, offset);
 409        break;
 410    }
 411}
 412
 413static void sifive_pdma_write(void *opaque, hwaddr offset,
 414                              uint64_t value, unsigned size)
 415{
 416    SiFivePDMAState *s = opaque;
 417    int ch = SIFIVE_PDMA_CHAN_NO(offset);
 418
 419    if (ch >= SIFIVE_PDMA_CHANS) {
 420        qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n",
 421                      __func__, ch);
 422        return;
 423    }
 424
 425    switch (size) {
 426    case 8:
 427        sifive_pdma_writeq(s, ch, offset, value);
 428        break;
 429    case 4:
 430        sifive_pdma_writel(s, ch, offset, (uint32_t) value);
 431        break;
 432    default:
 433        qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid write size %u to PDMA\n",
 434                      __func__, size);
 435        break;
 436    }
 437}
 438
 439static const MemoryRegionOps sifive_pdma_ops = {
 440    .read = sifive_pdma_read,
 441    .write = sifive_pdma_write,
 442    .endianness = DEVICE_LITTLE_ENDIAN,
 443    /* there are 32-bit and 64-bit wide registers */
 444    .impl = {
 445        .min_access_size = 4,
 446        .max_access_size = 8,
 447    },
 448    .valid = {
 449        .min_access_size = 4,
 450        .max_access_size = 8,
 451    }
 452};
 453
 454static void sifive_pdma_realize(DeviceState *dev, Error **errp)
 455{
 456    SiFivePDMAState *s = SIFIVE_PDMA(dev);
 457    int i;
 458
 459    memory_region_init_io(&s->iomem, OBJECT(dev), &sifive_pdma_ops, s,
 460                          TYPE_SIFIVE_PDMA, SIFIVE_PDMA_REG_SIZE);
 461    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
 462
 463    for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
 464        sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
 465    }
 466}
 467
 468static void sifive_pdma_class_init(ObjectClass *klass, void *data)
 469{
 470    DeviceClass *dc = DEVICE_CLASS(klass);
 471
 472    dc->desc = "SiFive Platform DMA controller";
 473    dc->realize = sifive_pdma_realize;
 474}
 475
 476static const TypeInfo sifive_pdma_info = {
 477    .name          = TYPE_SIFIVE_PDMA,
 478    .parent        = TYPE_SYS_BUS_DEVICE,
 479    .instance_size = sizeof(SiFivePDMAState),
 480    .class_init    = sifive_pdma_class_init,
 481};
 482
 483static void sifive_pdma_register_types(void)
 484{
 485    type_register_static(&sifive_pdma_info);
 486}
 487
 488type_init(sifive_pdma_register_types)
 489