1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include "qemu/osdep.h"
21#include "cpu.h"
22#include "exec/helper-proto.h"
23#include "internals.h"
24#ifdef CONFIG_TCG
25#include "qemu/log.h"
26#include "fpu/softfloat.h"
27#endif
28
29
30
31
32
33#ifdef CONFIG_TCG
34
35
36static inline int vfp_exceptbits_from_host(int host_bits)
37{
38 int target_bits = 0;
39
40 if (host_bits & float_flag_invalid) {
41 target_bits |= 1;
42 }
43 if (host_bits & float_flag_divbyzero) {
44 target_bits |= 2;
45 }
46 if (host_bits & float_flag_overflow) {
47 target_bits |= 4;
48 }
49 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
50 target_bits |= 8;
51 }
52 if (host_bits & float_flag_inexact) {
53 target_bits |= 0x10;
54 }
55 if (host_bits & float_flag_input_denormal) {
56 target_bits |= 0x80;
57 }
58 return target_bits;
59}
60
61
62static inline int vfp_exceptbits_to_host(int target_bits)
63{
64 int host_bits = 0;
65
66 if (target_bits & 1) {
67 host_bits |= float_flag_invalid;
68 }
69 if (target_bits & 2) {
70 host_bits |= float_flag_divbyzero;
71 }
72 if (target_bits & 4) {
73 host_bits |= float_flag_overflow;
74 }
75 if (target_bits & 8) {
76 host_bits |= float_flag_underflow;
77 }
78 if (target_bits & 0x10) {
79 host_bits |= float_flag_inexact;
80 }
81 if (target_bits & 0x80) {
82 host_bits |= float_flag_input_denormal;
83 }
84 return host_bits;
85}
86
87static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
88{
89 uint32_t i;
90
91 i = get_float_exception_flags(&env->vfp.fp_status);
92 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
93
94 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
95 & ~float_flag_input_denormal);
96 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
97 & ~float_flag_input_denormal);
98 return vfp_exceptbits_from_host(i);
99}
100
101static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
102{
103 int i;
104 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
105
106 changed ^= val;
107 if (changed & (3 << 22)) {
108 i = (val >> 22) & 3;
109 switch (i) {
110 case FPROUNDING_TIEEVEN:
111 i = float_round_nearest_even;
112 break;
113 case FPROUNDING_POSINF:
114 i = float_round_up;
115 break;
116 case FPROUNDING_NEGINF:
117 i = float_round_down;
118 break;
119 case FPROUNDING_ZERO:
120 i = float_round_to_zero;
121 break;
122 }
123 set_float_rounding_mode(i, &env->vfp.fp_status);
124 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
125 }
126 if (changed & FPCR_FZ16) {
127 bool ftz_enabled = val & FPCR_FZ16;
128 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
129 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
130 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
131 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
132 }
133 if (changed & FPCR_FZ) {
134 bool ftz_enabled = val & FPCR_FZ;
135 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
136 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
137 }
138 if (changed & FPCR_DN) {
139 bool dnan_enabled = val & FPCR_DN;
140 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
141 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
142 }
143
144
145
146
147
148
149 i = vfp_exceptbits_to_host(val);
150 set_float_exception_flags(i, &env->vfp.fp_status);
151 set_float_exception_flags(0, &env->vfp.fp_status_f16);
152 set_float_exception_flags(0, &env->vfp.standard_fp_status);
153 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
154}
155
156#else
157
158static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
159{
160 return 0;
161}
162
163static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
164{
165}
166
167#endif
168
169uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
170{
171 uint32_t i, fpscr;
172
173 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
174 | (env->vfp.vec_len << 16)
175 | (env->vfp.vec_stride << 20);
176
177
178
179
180
181 fpscr |= env->v7m.ltpsize << 16;
182
183 fpscr |= vfp_get_fpscr_from_host(env);
184
185 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
186 fpscr |= i ? FPCR_QC : 0;
187
188 return fpscr;
189}
190
191uint32_t vfp_get_fpscr(CPUARMState *env)
192{
193 return HELPER(vfp_get_fpscr)(env);
194}
195
196void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
197{
198 ARMCPU *cpu = env_archcpu(env);
199
200
201 if (!cpu_isar_feature(any_fp16, cpu)) {
202 val &= ~FPCR_FZ16;
203 }
204
205 vfp_set_fpscr_to_host(env, val);
206
207 if (!arm_feature(env, ARM_FEATURE_M)) {
208
209
210
211
212
213
214
215
216 env->vfp.vec_len = extract32(val, 16, 3);
217 env->vfp.vec_stride = extract32(val, 20, 2);
218 } else if (cpu_isar_feature(aa32_mve, cpu)) {
219 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
220 FPCR_LTPSIZE_LENGTH);
221 }
222
223 if (arm_feature(env, ARM_FEATURE_NEON) ||
224 cpu_isar_feature(aa32_mve, cpu)) {
225
226
227
228
229
230 env->vfp.qc[0] = val & FPCR_QC;
231 env->vfp.qc[1] = 0;
232 env->vfp.qc[2] = 0;
233 env->vfp.qc[3] = 0;
234 }
235
236
237
238
239
240
241
242
243
244
245 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
246}
247
248void vfp_set_fpscr(CPUARMState *env, uint32_t val)
249{
250 HELPER(vfp_set_fpscr)(env, val);
251}
252
253#ifdef CONFIG_TCG
254
255#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
256
257#define VFP_BINOP(name) \
258dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
259{ \
260 float_status *fpst = fpstp; \
261 return float16_ ## name(a, b, fpst); \
262} \
263float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
264{ \
265 float_status *fpst = fpstp; \
266 return float32_ ## name(a, b, fpst); \
267} \
268float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
269{ \
270 float_status *fpst = fpstp; \
271 return float64_ ## name(a, b, fpst); \
272}
273VFP_BINOP(add)
274VFP_BINOP(sub)
275VFP_BINOP(mul)
276VFP_BINOP(div)
277VFP_BINOP(min)
278VFP_BINOP(max)
279VFP_BINOP(minnum)
280VFP_BINOP(maxnum)
281#undef VFP_BINOP
282
283dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
284{
285 return float16_chs(a);
286}
287
288float32 VFP_HELPER(neg, s)(float32 a)
289{
290 return float32_chs(a);
291}
292
293float64 VFP_HELPER(neg, d)(float64 a)
294{
295 return float64_chs(a);
296}
297
298dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
299{
300 return float16_abs(a);
301}
302
303float32 VFP_HELPER(abs, s)(float32 a)
304{
305 return float32_abs(a);
306}
307
308float64 VFP_HELPER(abs, d)(float64 a)
309{
310 return float64_abs(a);
311}
312
313dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
314{
315 return float16_sqrt(a, &env->vfp.fp_status_f16);
316}
317
318float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
319{
320 return float32_sqrt(a, &env->vfp.fp_status);
321}
322
323float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
324{
325 return float64_sqrt(a, &env->vfp.fp_status);
326}
327
328static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
329{
330 uint32_t flags;
331 switch (cmp) {
332 case float_relation_equal:
333 flags = 0x6;
334 break;
335 case float_relation_less:
336 flags = 0x8;
337 break;
338 case float_relation_greater:
339 flags = 0x2;
340 break;
341 case float_relation_unordered:
342 flags = 0x3;
343 break;
344 default:
345 g_assert_not_reached();
346 }
347 env->vfp.xregs[ARM_VFP_FPSCR] =
348 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
349}
350
351
352#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
353void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
354{ \
355 softfloat_to_vfp_compare(env, \
356 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
357} \
358void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
359{ \
360 softfloat_to_vfp_compare(env, \
361 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
362}
363DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
364DO_VFP_cmp(s, float32, float32, fp_status)
365DO_VFP_cmp(d, float64, float64, fp_status)
366#undef DO_VFP_cmp
367
368
369
370#define CONV_ITOF(name, ftype, fsz, sign) \
371ftype HELPER(name)(uint32_t x, void *fpstp) \
372{ \
373 float_status *fpst = fpstp; \
374 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
375}
376
377#define CONV_FTOI(name, ftype, fsz, sign, round) \
378sign##int32_t HELPER(name)(ftype x, void *fpstp) \
379{ \
380 float_status *fpst = fpstp; \
381 if (float##fsz##_is_any_nan(x)) { \
382 float_raise(float_flag_invalid, fpst); \
383 return 0; \
384 } \
385 return float##fsz##_to_##sign##int32##round(x, fpst); \
386}
387
388#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
389 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
390 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
391 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
392
393FLOAT_CONVS(si, h, uint32_t, 16, )
394FLOAT_CONVS(si, s, float32, 32, )
395FLOAT_CONVS(si, d, float64, 64, )
396FLOAT_CONVS(ui, h, uint32_t, 16, u)
397FLOAT_CONVS(ui, s, float32, 32, u)
398FLOAT_CONVS(ui, d, float64, 64, u)
399
400#undef CONV_ITOF
401#undef CONV_FTOI
402#undef FLOAT_CONVS
403
404
405float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
406{
407 return float32_to_float64(x, &env->vfp.fp_status);
408}
409
410float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
411{
412 return float64_to_float32(x, &env->vfp.fp_status);
413}
414
415uint32_t HELPER(bfcvt)(float32 x, void *status)
416{
417 return float32_to_bfloat16(x, status);
418}
419
420uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
421{
422 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
423 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
424 return deposit32(lo, 16, 16, hi);
425}
426
427
428
429
430
431
432
433
434#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
435ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
436 void *fpstp) \
437{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
438
439#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
440 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
441 uint32_t shift, \
442 void *fpstp) \
443 { \
444 ftype ret; \
445 float_status *fpst = fpstp; \
446 FloatRoundMode oldmode = fpst->float_rounding_mode; \
447 fpst->float_rounding_mode = float_round_nearest_even; \
448 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \
449 fpst->float_rounding_mode = oldmode; \
450 return ret; \
451 }
452
453#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
454uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
455 void *fpst) \
456{ \
457 if (unlikely(float##fsz##_is_any_nan(x))) { \
458 float_raise(float_flag_invalid, fpst); \
459 return 0; \
460 } \
461 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
462}
463
464#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
465VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
466VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
467VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
468 float_round_to_zero, _round_to_zero) \
469VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
470 get_float_rounding_mode(fpst), )
471
472#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
473VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
474VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
475 get_float_rounding_mode(fpst), )
476
477VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
478VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
479VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
480VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
481VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
482VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
483VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
484VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
485VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
486VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
487VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
488VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
489VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
490VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
491VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
492VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
493VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
494VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
495
496#undef VFP_CONV_FIX
497#undef VFP_CONV_FIX_FLOAT
498#undef VFP_CONV_FLOAT_FIX_ROUND
499#undef VFP_CONV_FIX_A64
500
501
502
503
504uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
505{
506 float_status *fp_status = fpstp;
507
508 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
509 set_float_rounding_mode(rmode, fp_status);
510
511 return prev_rmode;
512}
513
514
515float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
516{
517
518
519
520 float_status *fpst = fpstp;
521 bool save = get_flush_inputs_to_zero(fpst);
522 set_flush_inputs_to_zero(false, fpst);
523 float32 r = float16_to_float32(a, !ahp_mode, fpst);
524 set_flush_inputs_to_zero(save, fpst);
525 return r;
526}
527
528uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
529{
530
531
532
533 float_status *fpst = fpstp;
534 bool save = get_flush_to_zero(fpst);
535 set_flush_to_zero(false, fpst);
536 float16 r = float32_to_float16(a, !ahp_mode, fpst);
537 set_flush_to_zero(save, fpst);
538 return r;
539}
540
541float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
542{
543
544
545
546 float_status *fpst = fpstp;
547 bool save = get_flush_inputs_to_zero(fpst);
548 set_flush_inputs_to_zero(false, fpst);
549 float64 r = float16_to_float64(a, !ahp_mode, fpst);
550 set_flush_inputs_to_zero(save, fpst);
551 return r;
552}
553
554uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
555{
556
557
558
559 float_status *fpst = fpstp;
560 bool save = get_flush_to_zero(fpst);
561 set_flush_to_zero(false, fpst);
562 float16 r = float64_to_float16(a, !ahp_mode, fpst);
563 set_flush_to_zero(save, fpst);
564 return r;
565}
566
567
568
569
570
571#define float64_256 make_float64(0x4070000000000000LL)
572#define float64_512 make_float64(0x4080000000000000LL)
573#define float16_maxnorm make_float16(0x7bff)
574#define float32_maxnorm make_float32(0x7f7fffff)
575#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590static int recip_estimate(int input)
591{
592 int a, b, r;
593 assert(256 <= input && input < 512);
594 a = (input * 2) + 1;
595 b = (1 << 19) / a;
596 r = (b + 1) >> 1;
597 assert(256 <= r && r < 512);
598 return r;
599}
600
601
602
603
604
605
606
607
608
609
610static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
611{
612 uint32_t scaled, estimate;
613 uint64_t result_frac;
614 int result_exp;
615
616
617 if (*exp == 0) {
618 if (extract64(frac, 51, 1) == 0) {
619 *exp = -1;
620 frac <<= 2;
621 } else {
622 frac <<= 1;
623 }
624 }
625
626
627 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
628 estimate = recip_estimate(scaled);
629
630 result_exp = exp_off - *exp;
631 result_frac = deposit64(0, 44, 8, estimate);
632 if (result_exp == 0) {
633 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
634 } else if (result_exp == -1) {
635 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
636 result_exp = 0;
637 }
638
639 *exp = result_exp;
640
641 return result_frac;
642}
643
644static bool round_to_inf(float_status *fpst, bool sign_bit)
645{
646 switch (fpst->float_rounding_mode) {
647 case float_round_nearest_even:
648 return true;
649 case float_round_up:
650 return !sign_bit;
651 case float_round_down:
652 return sign_bit;
653 case float_round_to_zero:
654 return false;
655 default:
656 g_assert_not_reached();
657 }
658}
659
660uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
661{
662 float_status *fpst = fpstp;
663 float16 f16 = float16_squash_input_denormal(input, fpst);
664 uint32_t f16_val = float16_val(f16);
665 uint32_t f16_sign = float16_is_neg(f16);
666 int f16_exp = extract32(f16_val, 10, 5);
667 uint32_t f16_frac = extract32(f16_val, 0, 10);
668 uint64_t f64_frac;
669
670 if (float16_is_any_nan(f16)) {
671 float16 nan = f16;
672 if (float16_is_signaling_nan(f16, fpst)) {
673 float_raise(float_flag_invalid, fpst);
674 if (!fpst->default_nan_mode) {
675 nan = float16_silence_nan(f16, fpst);
676 }
677 }
678 if (fpst->default_nan_mode) {
679 nan = float16_default_nan(fpst);
680 }
681 return nan;
682 } else if (float16_is_infinity(f16)) {
683 return float16_set_sign(float16_zero, float16_is_neg(f16));
684 } else if (float16_is_zero(f16)) {
685 float_raise(float_flag_divbyzero, fpst);
686 return float16_set_sign(float16_infinity, float16_is_neg(f16));
687 } else if (float16_abs(f16) < (1 << 8)) {
688
689 float_raise(float_flag_overflow | float_flag_inexact, fpst);
690 if (round_to_inf(fpst, f16_sign)) {
691 return float16_set_sign(float16_infinity, f16_sign);
692 } else {
693 return float16_set_sign(float16_maxnorm, f16_sign);
694 }
695 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
696 float_raise(float_flag_underflow, fpst);
697 return float16_set_sign(float16_zero, float16_is_neg(f16));
698 }
699
700 f64_frac = call_recip_estimate(&f16_exp, 29,
701 ((uint64_t) f16_frac) << (52 - 10));
702
703
704 f16_val = deposit32(0, 15, 1, f16_sign);
705 f16_val = deposit32(f16_val, 10, 5, f16_exp);
706 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
707 return make_float16(f16_val);
708}
709
710float32 HELPER(recpe_f32)(float32 input, void *fpstp)
711{
712 float_status *fpst = fpstp;
713 float32 f32 = float32_squash_input_denormal(input, fpst);
714 uint32_t f32_val = float32_val(f32);
715 bool f32_sign = float32_is_neg(f32);
716 int f32_exp = extract32(f32_val, 23, 8);
717 uint32_t f32_frac = extract32(f32_val, 0, 23);
718 uint64_t f64_frac;
719
720 if (float32_is_any_nan(f32)) {
721 float32 nan = f32;
722 if (float32_is_signaling_nan(f32, fpst)) {
723 float_raise(float_flag_invalid, fpst);
724 if (!fpst->default_nan_mode) {
725 nan = float32_silence_nan(f32, fpst);
726 }
727 }
728 if (fpst->default_nan_mode) {
729 nan = float32_default_nan(fpst);
730 }
731 return nan;
732 } else if (float32_is_infinity(f32)) {
733 return float32_set_sign(float32_zero, float32_is_neg(f32));
734 } else if (float32_is_zero(f32)) {
735 float_raise(float_flag_divbyzero, fpst);
736 return float32_set_sign(float32_infinity, float32_is_neg(f32));
737 } else if (float32_abs(f32) < (1ULL << 21)) {
738
739 float_raise(float_flag_overflow | float_flag_inexact, fpst);
740 if (round_to_inf(fpst, f32_sign)) {
741 return float32_set_sign(float32_infinity, f32_sign);
742 } else {
743 return float32_set_sign(float32_maxnorm, f32_sign);
744 }
745 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
746 float_raise(float_flag_underflow, fpst);
747 return float32_set_sign(float32_zero, float32_is_neg(f32));
748 }
749
750 f64_frac = call_recip_estimate(&f32_exp, 253,
751 ((uint64_t) f32_frac) << (52 - 23));
752
753
754 f32_val = deposit32(0, 31, 1, f32_sign);
755 f32_val = deposit32(f32_val, 23, 8, f32_exp);
756 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
757 return make_float32(f32_val);
758}
759
760float64 HELPER(recpe_f64)(float64 input, void *fpstp)
761{
762 float_status *fpst = fpstp;
763 float64 f64 = float64_squash_input_denormal(input, fpst);
764 uint64_t f64_val = float64_val(f64);
765 bool f64_sign = float64_is_neg(f64);
766 int f64_exp = extract64(f64_val, 52, 11);
767 uint64_t f64_frac = extract64(f64_val, 0, 52);
768
769
770 if (float64_is_any_nan(f64)) {
771 float64 nan = f64;
772 if (float64_is_signaling_nan(f64, fpst)) {
773 float_raise(float_flag_invalid, fpst);
774 if (!fpst->default_nan_mode) {
775 nan = float64_silence_nan(f64, fpst);
776 }
777 }
778 if (fpst->default_nan_mode) {
779 nan = float64_default_nan(fpst);
780 }
781 return nan;
782 } else if (float64_is_infinity(f64)) {
783 return float64_set_sign(float64_zero, float64_is_neg(f64));
784 } else if (float64_is_zero(f64)) {
785 float_raise(float_flag_divbyzero, fpst);
786 return float64_set_sign(float64_infinity, float64_is_neg(f64));
787 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
788
789 float_raise(float_flag_overflow | float_flag_inexact, fpst);
790 if (round_to_inf(fpst, f64_sign)) {
791 return float64_set_sign(float64_infinity, f64_sign);
792 } else {
793 return float64_set_sign(float64_maxnorm, f64_sign);
794 }
795 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
796 float_raise(float_flag_underflow, fpst);
797 return float64_set_sign(float64_zero, float64_is_neg(f64));
798 }
799
800 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
801
802
803 f64_val = deposit64(0, 63, 1, f64_sign);
804 f64_val = deposit64(f64_val, 52, 11, f64_exp);
805 f64_val = deposit64(f64_val, 0, 52, f64_frac);
806 return make_float64(f64_val);
807}
808
809
810
811
812
813static int do_recip_sqrt_estimate(int a)
814{
815 int b, estimate;
816
817 assert(128 <= a && a < 512);
818 if (a < 256) {
819 a = a * 2 + 1;
820 } else {
821 a = (a >> 1) << 1;
822 a = (a + 1) * 2;
823 }
824 b = 512;
825 while (a * (b + 1) * (b + 1) < (1 << 28)) {
826 b += 1;
827 }
828 estimate = (b + 1) / 2;
829 assert(256 <= estimate && estimate < 512);
830
831 return estimate;
832}
833
834
835static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
836{
837 int estimate;
838 uint32_t scaled;
839
840 if (*exp == 0) {
841 while (extract64(frac, 51, 1) == 0) {
842 frac = frac << 1;
843 *exp -= 1;
844 }
845 frac = extract64(frac, 0, 51) << 1;
846 }
847
848 if (*exp & 1) {
849
850 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
851 } else {
852
853 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
854 }
855 estimate = do_recip_sqrt_estimate(scaled);
856
857 *exp = (exp_off - *exp) / 2;
858 return extract64(estimate, 0, 8) << 44;
859}
860
861uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
862{
863 float_status *s = fpstp;
864 float16 f16 = float16_squash_input_denormal(input, s);
865 uint16_t val = float16_val(f16);
866 bool f16_sign = float16_is_neg(f16);
867 int f16_exp = extract32(val, 10, 5);
868 uint16_t f16_frac = extract32(val, 0, 10);
869 uint64_t f64_frac;
870
871 if (float16_is_any_nan(f16)) {
872 float16 nan = f16;
873 if (float16_is_signaling_nan(f16, s)) {
874 float_raise(float_flag_invalid, s);
875 if (!s->default_nan_mode) {
876 nan = float16_silence_nan(f16, fpstp);
877 }
878 }
879 if (s->default_nan_mode) {
880 nan = float16_default_nan(s);
881 }
882 return nan;
883 } else if (float16_is_zero(f16)) {
884 float_raise(float_flag_divbyzero, s);
885 return float16_set_sign(float16_infinity, f16_sign);
886 } else if (f16_sign) {
887 float_raise(float_flag_invalid, s);
888 return float16_default_nan(s);
889 } else if (float16_is_infinity(f16)) {
890 return float16_zero;
891 }
892
893
894
895
896 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
897
898 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
899
900
901 val = deposit32(0, 15, 1, f16_sign);
902 val = deposit32(val, 10, 5, f16_exp);
903 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
904 return make_float16(val);
905}
906
907float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
908{
909 float_status *s = fpstp;
910 float32 f32 = float32_squash_input_denormal(input, s);
911 uint32_t val = float32_val(f32);
912 uint32_t f32_sign = float32_is_neg(f32);
913 int f32_exp = extract32(val, 23, 8);
914 uint32_t f32_frac = extract32(val, 0, 23);
915 uint64_t f64_frac;
916
917 if (float32_is_any_nan(f32)) {
918 float32 nan = f32;
919 if (float32_is_signaling_nan(f32, s)) {
920 float_raise(float_flag_invalid, s);
921 if (!s->default_nan_mode) {
922 nan = float32_silence_nan(f32, fpstp);
923 }
924 }
925 if (s->default_nan_mode) {
926 nan = float32_default_nan(s);
927 }
928 return nan;
929 } else if (float32_is_zero(f32)) {
930 float_raise(float_flag_divbyzero, s);
931 return float32_set_sign(float32_infinity, float32_is_neg(f32));
932 } else if (float32_is_neg(f32)) {
933 float_raise(float_flag_invalid, s);
934 return float32_default_nan(s);
935 } else if (float32_is_infinity(f32)) {
936 return float32_zero;
937 }
938
939
940
941
942 f64_frac = ((uint64_t) f32_frac) << 29;
943
944 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
945
946
947 val = deposit32(0, 31, 1, f32_sign);
948 val = deposit32(val, 23, 8, f32_exp);
949 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
950 return make_float32(val);
951}
952
953float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
954{
955 float_status *s = fpstp;
956 float64 f64 = float64_squash_input_denormal(input, s);
957 uint64_t val = float64_val(f64);
958 bool f64_sign = float64_is_neg(f64);
959 int f64_exp = extract64(val, 52, 11);
960 uint64_t f64_frac = extract64(val, 0, 52);
961
962 if (float64_is_any_nan(f64)) {
963 float64 nan = f64;
964 if (float64_is_signaling_nan(f64, s)) {
965 float_raise(float_flag_invalid, s);
966 if (!s->default_nan_mode) {
967 nan = float64_silence_nan(f64, fpstp);
968 }
969 }
970 if (s->default_nan_mode) {
971 nan = float64_default_nan(s);
972 }
973 return nan;
974 } else if (float64_is_zero(f64)) {
975 float_raise(float_flag_divbyzero, s);
976 return float64_set_sign(float64_infinity, float64_is_neg(f64));
977 } else if (float64_is_neg(f64)) {
978 float_raise(float_flag_invalid, s);
979 return float64_default_nan(s);
980 } else if (float64_is_infinity(f64)) {
981 return float64_zero;
982 }
983
984 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
985
986
987 val = deposit64(0, 61, 1, f64_sign);
988 val = deposit64(val, 52, 11, f64_exp);
989 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
990 return make_float64(val);
991}
992
993uint32_t HELPER(recpe_u32)(uint32_t a)
994{
995 int input, estimate;
996
997 if ((a & 0x80000000) == 0) {
998 return 0xffffffff;
999 }
1000
1001 input = extract32(a, 23, 9);
1002 estimate = recip_estimate(input);
1003
1004 return deposit32(0, (32 - 9), 9, estimate);
1005}
1006
1007uint32_t HELPER(rsqrte_u32)(uint32_t a)
1008{
1009 int estimate;
1010
1011 if ((a & 0xc0000000) == 0) {
1012 return 0xffffffff;
1013 }
1014
1015 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1016
1017 return deposit32(0, 23, 9, estimate);
1018}
1019
1020
1021dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1022 dh_ctype_f16 c, void *fpstp)
1023{
1024 float_status *fpst = fpstp;
1025 return float16_muladd(a, b, c, 0, fpst);
1026}
1027
1028float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1029{
1030 float_status *fpst = fpstp;
1031 return float32_muladd(a, b, c, 0, fpst);
1032}
1033
1034float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1035{
1036 float_status *fpst = fpstp;
1037 return float64_muladd(a, b, c, 0, fpst);
1038}
1039
1040
1041dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1042{
1043 return float16_round_to_int(x, fp_status);
1044}
1045
1046float32 HELPER(rints_exact)(float32 x, void *fp_status)
1047{
1048 return float32_round_to_int(x, fp_status);
1049}
1050
1051float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1052{
1053 return float64_round_to_int(x, fp_status);
1054}
1055
1056dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1057{
1058 int old_flags = get_float_exception_flags(fp_status), new_flags;
1059 float16 ret;
1060
1061 ret = float16_round_to_int(x, fp_status);
1062
1063
1064 if (!(old_flags & float_flag_inexact)) {
1065 new_flags = get_float_exception_flags(fp_status);
1066 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1067 }
1068
1069 return ret;
1070}
1071
1072float32 HELPER(rints)(float32 x, void *fp_status)
1073{
1074 int old_flags = get_float_exception_flags(fp_status), new_flags;
1075 float32 ret;
1076
1077 ret = float32_round_to_int(x, fp_status);
1078
1079
1080 if (!(old_flags & float_flag_inexact)) {
1081 new_flags = get_float_exception_flags(fp_status);
1082 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1083 }
1084
1085 return ret;
1086}
1087
1088float64 HELPER(rintd)(float64 x, void *fp_status)
1089{
1090 int old_flags = get_float_exception_flags(fp_status), new_flags;
1091 float64 ret;
1092
1093 ret = float64_round_to_int(x, fp_status);
1094
1095 new_flags = get_float_exception_flags(fp_status);
1096
1097
1098 if (!(old_flags & float_flag_inexact)) {
1099 new_flags = get_float_exception_flags(fp_status);
1100 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1101 }
1102
1103 return ret;
1104}
1105
1106
1107int arm_rmode_to_sf(int rmode)
1108{
1109 switch (rmode) {
1110 case FPROUNDING_TIEAWAY:
1111 rmode = float_round_ties_away;
1112 break;
1113 case FPROUNDING_ODD:
1114
1115 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1116 rmode);
1117
1118 case FPROUNDING_TIEEVEN:
1119 default:
1120 rmode = float_round_nearest_even;
1121 break;
1122 case FPROUNDING_POSINF:
1123 rmode = float_round_up;
1124 break;
1125 case FPROUNDING_NEGINF:
1126 rmode = float_round_down;
1127 break;
1128 case FPROUNDING_ZERO:
1129 rmode = float_round_to_zero;
1130 break;
1131 }
1132 return rmode;
1133}
1134
1135
1136
1137
1138
1139uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1140{
1141 float_status *status = vstatus;
1142 uint32_t exp, sign;
1143 uint64_t frac;
1144 uint32_t inexact = 1;
1145
1146 sign = extract64(value, 63, 1);
1147 exp = extract64(value, 52, 11);
1148 frac = extract64(value, 0, 52);
1149
1150 if (exp == 0) {
1151
1152 inexact = sign;
1153 if (frac != 0) {
1154 if (status->flush_inputs_to_zero) {
1155 float_raise(float_flag_input_denormal, status);
1156 } else {
1157 float_raise(float_flag_inexact, status);
1158 inexact = 1;
1159 }
1160 }
1161 frac = 0;
1162 } else if (exp == 0x7ff) {
1163
1164 float_raise(float_flag_invalid, status);
1165 frac = 0;
1166 } else {
1167 int true_exp = exp - 1023;
1168 int shift = true_exp - 52;
1169
1170
1171 frac |= 1ull << 52;
1172
1173
1174 if (shift >= 0) {
1175
1176 if (shift >= 64) {
1177
1178 frac = 0;
1179 } else {
1180 frac <<= shift;
1181 }
1182 } else if (shift > -64) {
1183
1184 inexact = (frac << (64 + shift)) != 0;
1185 frac >>= -shift;
1186 } else {
1187
1188 frac = 0;
1189 }
1190
1191
1192 if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1193
1194 float_raise(float_flag_invalid, status);
1195 inexact = 1;
1196 } else if (inexact) {
1197 float_raise(float_flag_inexact, status);
1198 }
1199
1200
1201 if (sign) {
1202 frac = -frac;
1203 }
1204 }
1205
1206
1207 return deposit64(frac, 32, 32, inexact);
1208}
1209
1210uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1211{
1212 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1213 uint32_t result = pair;
1214 uint32_t z = (pair >> 32) == 0;
1215
1216
1217 env->vfp.xregs[ARM_VFP_FPSCR]
1218 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1219
1220 return result;
1221}
1222
1223
1224static float32 frint_s(float32 f, float_status *fpst, int intsize)
1225{
1226 int old_flags = get_float_exception_flags(fpst);
1227 uint32_t exp = extract32(f, 23, 8);
1228
1229 if (unlikely(exp == 0xff)) {
1230
1231 goto overflow;
1232 }
1233
1234
1235 f = float32_round_to_int(f, fpst);
1236 exp = extract32(f, 23, 8);
1237
1238
1239 if (exp < 126 + intsize) {
1240
1241 return f;
1242 }
1243 if (exp == 126 + intsize) {
1244 uint32_t sign = extract32(f, 31, 1);
1245 uint32_t frac = extract32(f, 0, 23);
1246 if (sign && frac == 0) {
1247
1248 return f;
1249 }
1250 }
1251
1252 overflow:
1253
1254
1255
1256
1257 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1258 return (0x100u + 126u + intsize) << 23;
1259}
1260
1261float32 HELPER(frint32_s)(float32 f, void *fpst)
1262{
1263 return frint_s(f, fpst, 32);
1264}
1265
1266float32 HELPER(frint64_s)(float32 f, void *fpst)
1267{
1268 return frint_s(f, fpst, 64);
1269}
1270
1271
1272static float64 frint_d(float64 f, float_status *fpst, int intsize)
1273{
1274 int old_flags = get_float_exception_flags(fpst);
1275 uint32_t exp = extract64(f, 52, 11);
1276
1277 if (unlikely(exp == 0x7ff)) {
1278
1279 goto overflow;
1280 }
1281
1282
1283 f = float64_round_to_int(f, fpst);
1284 exp = extract64(f, 52, 11);
1285
1286
1287 if (exp < 1022 + intsize) {
1288
1289 return f;
1290 }
1291 if (exp == 1022 + intsize) {
1292 uint64_t sign = extract64(f, 63, 1);
1293 uint64_t frac = extract64(f, 0, 52);
1294 if (sign && frac == 0) {
1295
1296 return f;
1297 }
1298 }
1299
1300 overflow:
1301
1302
1303
1304
1305 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1306 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1307}
1308
1309float64 HELPER(frint32_d)(float64 f, void *fpst)
1310{
1311 return frint_d(f, fpst, 32);
1312}
1313
1314float64 HELPER(frint64_d)(float64 f, void *fpst)
1315{
1316 return frint_d(f, fpst, 64);
1317}
1318
1319void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1320{
1321 uint32_t syndrome;
1322
1323 switch (reg) {
1324 case ARM_VFP_MVFR0:
1325 case ARM_VFP_MVFR1:
1326 case ARM_VFP_MVFR2:
1327 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1328 return;
1329 }
1330 break;
1331 case ARM_VFP_FPSID:
1332 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1333 return;
1334 }
1335 break;
1336 default:
1337 g_assert_not_reached();
1338 }
1339
1340 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1341 | ARM_EL_IL
1342 | (1 << 24) | (0xe << 20) | (7 << 14)
1343 | (reg << 10) | (rt << 5) | 1);
1344
1345 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1346}
1347
1348#endif
1349