qemu/target/arm/vfp_helper.c
<<
>>
Prefs
   1/*
   2 * ARM VFP floating-point operations
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/helper-proto.h"
  23#include "internals.h"
  24#ifdef CONFIG_TCG
  25#include "qemu/log.h"
  26#include "fpu/softfloat.h"
  27#endif
  28
  29/* VFP support.  We follow the convention used for VFP instructions:
  30   Single precision routines have a "s" suffix, double precision a
  31   "d" suffix.  */
  32
  33#ifdef CONFIG_TCG
  34
  35/* Convert host exception flags to vfp form.  */
  36static inline int vfp_exceptbits_from_host(int host_bits)
  37{
  38    int target_bits = 0;
  39
  40    if (host_bits & float_flag_invalid) {
  41        target_bits |= 1;
  42    }
  43    if (host_bits & float_flag_divbyzero) {
  44        target_bits |= 2;
  45    }
  46    if (host_bits & float_flag_overflow) {
  47        target_bits |= 4;
  48    }
  49    if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
  50        target_bits |= 8;
  51    }
  52    if (host_bits & float_flag_inexact) {
  53        target_bits |= 0x10;
  54    }
  55    if (host_bits & float_flag_input_denormal) {
  56        target_bits |= 0x80;
  57    }
  58    return target_bits;
  59}
  60
  61/* Convert vfp exception flags to target form.  */
  62static inline int vfp_exceptbits_to_host(int target_bits)
  63{
  64    int host_bits = 0;
  65
  66    if (target_bits & 1) {
  67        host_bits |= float_flag_invalid;
  68    }
  69    if (target_bits & 2) {
  70        host_bits |= float_flag_divbyzero;
  71    }
  72    if (target_bits & 4) {
  73        host_bits |= float_flag_overflow;
  74    }
  75    if (target_bits & 8) {
  76        host_bits |= float_flag_underflow;
  77    }
  78    if (target_bits & 0x10) {
  79        host_bits |= float_flag_inexact;
  80    }
  81    if (target_bits & 0x80) {
  82        host_bits |= float_flag_input_denormal;
  83    }
  84    return host_bits;
  85}
  86
  87static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
  88{
  89    uint32_t i;
  90
  91    i = get_float_exception_flags(&env->vfp.fp_status);
  92    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
  93    /* FZ16 does not generate an input denormal exception.  */
  94    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
  95          & ~float_flag_input_denormal);
  96    i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
  97          & ~float_flag_input_denormal);
  98    return vfp_exceptbits_from_host(i);
  99}
 100
 101static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 102{
 103    int i;
 104    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
 105
 106    changed ^= val;
 107    if (changed & (3 << 22)) {
 108        i = (val >> 22) & 3;
 109        switch (i) {
 110        case FPROUNDING_TIEEVEN:
 111            i = float_round_nearest_even;
 112            break;
 113        case FPROUNDING_POSINF:
 114            i = float_round_up;
 115            break;
 116        case FPROUNDING_NEGINF:
 117            i = float_round_down;
 118            break;
 119        case FPROUNDING_ZERO:
 120            i = float_round_to_zero;
 121            break;
 122        }
 123        set_float_rounding_mode(i, &env->vfp.fp_status);
 124        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
 125    }
 126    if (changed & FPCR_FZ16) {
 127        bool ftz_enabled = val & FPCR_FZ16;
 128        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 129        set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
 130        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 131        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
 132    }
 133    if (changed & FPCR_FZ) {
 134        bool ftz_enabled = val & FPCR_FZ;
 135        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
 136        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
 137    }
 138    if (changed & FPCR_DN) {
 139        bool dnan_enabled = val & FPCR_DN;
 140        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
 141        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
 142    }
 143
 144    /*
 145     * The exception flags are ORed together when we read fpscr so we
 146     * only need to preserve the current state in one of our
 147     * float_status values.
 148     */
 149    i = vfp_exceptbits_to_host(val);
 150    set_float_exception_flags(i, &env->vfp.fp_status);
 151    set_float_exception_flags(0, &env->vfp.fp_status_f16);
 152    set_float_exception_flags(0, &env->vfp.standard_fp_status);
 153    set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
 154}
 155
 156#else
 157
 158static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
 159{
 160    return 0;
 161}
 162
 163static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 164{
 165}
 166
 167#endif
 168
 169uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 170{
 171    uint32_t i, fpscr;
 172
 173    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
 174            | (env->vfp.vec_len << 16)
 175            | (env->vfp.vec_stride << 20);
 176
 177    /*
 178     * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
 179     * two is not applicable to this CPU will always be zero.
 180     */
 181    fpscr |= env->v7m.ltpsize << 16;
 182
 183    fpscr |= vfp_get_fpscr_from_host(env);
 184
 185    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
 186    fpscr |= i ? FPCR_QC : 0;
 187
 188    return fpscr;
 189}
 190
 191uint32_t vfp_get_fpscr(CPUARMState *env)
 192{
 193    return HELPER(vfp_get_fpscr)(env);
 194}
 195
 196void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 197{
 198    ARMCPU *cpu = env_archcpu(env);
 199
 200    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
 201    if (!cpu_isar_feature(any_fp16, cpu)) {
 202        val &= ~FPCR_FZ16;
 203    }
 204
 205    vfp_set_fpscr_to_host(env, val);
 206
 207    if (!arm_feature(env, ARM_FEATURE_M)) {
 208        /*
 209         * Short-vector length and stride; on M-profile these bits
 210         * are used for different purposes.
 211         * We can't make this conditional be "if MVFR0.FPShVec != 0",
 212         * because in v7A no-short-vector-support cores still had to
 213         * allow Stride/Len to be written with the only effect that
 214         * some insns are required to UNDEF if the guest sets them.
 215         */
 216        env->vfp.vec_len = extract32(val, 16, 3);
 217        env->vfp.vec_stride = extract32(val, 20, 2);
 218    } else if (cpu_isar_feature(aa32_mve, cpu)) {
 219        env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
 220                                     FPCR_LTPSIZE_LENGTH);
 221    }
 222
 223    if (arm_feature(env, ARM_FEATURE_NEON) ||
 224        cpu_isar_feature(aa32_mve, cpu)) {
 225        /*
 226         * The bit we set within fpscr_q is arbitrary; the register as a
 227         * whole being zero/non-zero is what counts.
 228         * TODO: M-profile MVE also has a QC bit.
 229         */
 230        env->vfp.qc[0] = val & FPCR_QC;
 231        env->vfp.qc[1] = 0;
 232        env->vfp.qc[2] = 0;
 233        env->vfp.qc[3] = 0;
 234    }
 235
 236    /*
 237     * We don't implement trapped exception handling, so the
 238     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
 239     *
 240     * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
 241     * fp_status; QC, Len and Stride are stored separately earlier.
 242     * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
 243     * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
 244     */
 245    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
 246}
 247
 248void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 249{
 250    HELPER(vfp_set_fpscr)(env, val);
 251}
 252
 253#ifdef CONFIG_TCG
 254
 255#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 256
 257#define VFP_BINOP(name) \
 258dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
 259{ \
 260    float_status *fpst = fpstp; \
 261    return float16_ ## name(a, b, fpst); \
 262} \
 263float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 264{ \
 265    float_status *fpst = fpstp; \
 266    return float32_ ## name(a, b, fpst); \
 267} \
 268float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 269{ \
 270    float_status *fpst = fpstp; \
 271    return float64_ ## name(a, b, fpst); \
 272}
 273VFP_BINOP(add)
 274VFP_BINOP(sub)
 275VFP_BINOP(mul)
 276VFP_BINOP(div)
 277VFP_BINOP(min)
 278VFP_BINOP(max)
 279VFP_BINOP(minnum)
 280VFP_BINOP(maxnum)
 281#undef VFP_BINOP
 282
 283dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
 284{
 285    return float16_chs(a);
 286}
 287
 288float32 VFP_HELPER(neg, s)(float32 a)
 289{
 290    return float32_chs(a);
 291}
 292
 293float64 VFP_HELPER(neg, d)(float64 a)
 294{
 295    return float64_chs(a);
 296}
 297
 298dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
 299{
 300    return float16_abs(a);
 301}
 302
 303float32 VFP_HELPER(abs, s)(float32 a)
 304{
 305    return float32_abs(a);
 306}
 307
 308float64 VFP_HELPER(abs, d)(float64 a)
 309{
 310    return float64_abs(a);
 311}
 312
 313dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
 314{
 315    return float16_sqrt(a, &env->vfp.fp_status_f16);
 316}
 317
 318float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 319{
 320    return float32_sqrt(a, &env->vfp.fp_status);
 321}
 322
 323float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 324{
 325    return float64_sqrt(a, &env->vfp.fp_status);
 326}
 327
 328static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
 329{
 330    uint32_t flags;
 331    switch (cmp) {
 332    case float_relation_equal:
 333        flags = 0x6;
 334        break;
 335    case float_relation_less:
 336        flags = 0x8;
 337        break;
 338    case float_relation_greater:
 339        flags = 0x2;
 340        break;
 341    case float_relation_unordered:
 342        flags = 0x3;
 343        break;
 344    default:
 345        g_assert_not_reached();
 346    }
 347    env->vfp.xregs[ARM_VFP_FPSCR] =
 348        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
 349}
 350
 351/* XXX: check quiet/signaling case */
 352#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
 353void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
 354{ \
 355    softfloat_to_vfp_compare(env, \
 356        FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
 357} \
 358void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
 359{ \
 360    softfloat_to_vfp_compare(env, \
 361        FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
 362}
 363DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
 364DO_VFP_cmp(s, float32, float32, fp_status)
 365DO_VFP_cmp(d, float64, float64, fp_status)
 366#undef DO_VFP_cmp
 367
 368/* Integer to float and float to integer conversions */
 369
 370#define CONV_ITOF(name, ftype, fsz, sign)                           \
 371ftype HELPER(name)(uint32_t x, void *fpstp)                         \
 372{                                                                   \
 373    float_status *fpst = fpstp;                                     \
 374    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
 375}
 376
 377#define CONV_FTOI(name, ftype, fsz, sign, round)                \
 378sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
 379{                                                               \
 380    float_status *fpst = fpstp;                                 \
 381    if (float##fsz##_is_any_nan(x)) {                           \
 382        float_raise(float_flag_invalid, fpst);                  \
 383        return 0;                                               \
 384    }                                                           \
 385    return float##fsz##_to_##sign##int32##round(x, fpst);       \
 386}
 387
 388#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
 389    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
 390    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
 391    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
 392
 393FLOAT_CONVS(si, h, uint32_t, 16, )
 394FLOAT_CONVS(si, s, float32, 32, )
 395FLOAT_CONVS(si, d, float64, 64, )
 396FLOAT_CONVS(ui, h, uint32_t, 16, u)
 397FLOAT_CONVS(ui, s, float32, 32, u)
 398FLOAT_CONVS(ui, d, float64, 64, u)
 399
 400#undef CONV_ITOF
 401#undef CONV_FTOI
 402#undef FLOAT_CONVS
 403
 404/* floating point conversion */
 405float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 406{
 407    return float32_to_float64(x, &env->vfp.fp_status);
 408}
 409
 410float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 411{
 412    return float64_to_float32(x, &env->vfp.fp_status);
 413}
 414
 415uint32_t HELPER(bfcvt)(float32 x, void *status)
 416{
 417    return float32_to_bfloat16(x, status);
 418}
 419
 420uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
 421{
 422    bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
 423    bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
 424    return deposit32(lo, 16, 16, hi);
 425}
 426
 427/*
 428 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
 429 * must always round-to-nearest; the AArch64 ones honour the FPSCR
 430 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
 431 * round-to-nearest so either helper will work.) AArch32 float-to-fix
 432 * must round-to-zero.
 433 */
 434#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
 435ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
 436                                     void *fpstp) \
 437{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
 438
 439#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
 440    ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
 441                                                     uint32_t shift,   \
 442                                                     void *fpstp)      \
 443    {                                                                  \
 444        ftype ret;                                                     \
 445        float_status *fpst = fpstp;                                    \
 446        FloatRoundMode oldmode = fpst->float_rounding_mode;            \
 447        fpst->float_rounding_mode = float_round_nearest_even;          \
 448        ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
 449        fpst->float_rounding_mode = oldmode;                           \
 450        return ret;                                                    \
 451    }
 452
 453#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
 454uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
 455                                            void *fpst)                   \
 456{                                                                         \
 457    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
 458        float_raise(float_flag_invalid, fpst);                            \
 459        return 0;                                                         \
 460    }                                                                     \
 461    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
 462}
 463
 464#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
 465VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
 466VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
 467VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 468                         float_round_to_zero, _round_to_zero)    \
 469VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 470                         get_float_rounding_mode(fpst), )
 471
 472#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
 473VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
 474VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 475                         get_float_rounding_mode(fpst), )
 476
 477VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
 478VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
 479VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
 480VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
 481VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
 482VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
 483VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
 484VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
 485VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
 486VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
 487VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
 488VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
 489VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
 490VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
 491VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
 492VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
 493VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
 494VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
 495
 496#undef VFP_CONV_FIX
 497#undef VFP_CONV_FIX_FLOAT
 498#undef VFP_CONV_FLOAT_FIX_ROUND
 499#undef VFP_CONV_FIX_A64
 500
 501/* Set the current fp rounding mode and return the old one.
 502 * The argument is a softfloat float_round_ value.
 503 */
 504uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
 505{
 506    float_status *fp_status = fpstp;
 507
 508    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 509    set_float_rounding_mode(rmode, fp_status);
 510
 511    return prev_rmode;
 512}
 513
 514/* Half precision conversions.  */
 515float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 516{
 517    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 518     * it would affect flushing input denormals.
 519     */
 520    float_status *fpst = fpstp;
 521    bool save = get_flush_inputs_to_zero(fpst);
 522    set_flush_inputs_to_zero(false, fpst);
 523    float32 r = float16_to_float32(a, !ahp_mode, fpst);
 524    set_flush_inputs_to_zero(save, fpst);
 525    return r;
 526}
 527
 528uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
 529{
 530    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 531     * it would affect flushing output denormals.
 532     */
 533    float_status *fpst = fpstp;
 534    bool save = get_flush_to_zero(fpst);
 535    set_flush_to_zero(false, fpst);
 536    float16 r = float32_to_float16(a, !ahp_mode, fpst);
 537    set_flush_to_zero(save, fpst);
 538    return r;
 539}
 540
 541float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 542{
 543    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 544     * it would affect flushing input denormals.
 545     */
 546    float_status *fpst = fpstp;
 547    bool save = get_flush_inputs_to_zero(fpst);
 548    set_flush_inputs_to_zero(false, fpst);
 549    float64 r = float16_to_float64(a, !ahp_mode, fpst);
 550    set_flush_inputs_to_zero(save, fpst);
 551    return r;
 552}
 553
 554uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
 555{
 556    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 557     * it would affect flushing output denormals.
 558     */
 559    float_status *fpst = fpstp;
 560    bool save = get_flush_to_zero(fpst);
 561    set_flush_to_zero(false, fpst);
 562    float16 r = float64_to_float16(a, !ahp_mode, fpst);
 563    set_flush_to_zero(save, fpst);
 564    return r;
 565}
 566
 567/* NEON helpers.  */
 568
 569/* Constants 256 and 512 are used in some helpers; we avoid relying on
 570 * int->float conversions at run-time.  */
 571#define float64_256 make_float64(0x4070000000000000LL)
 572#define float64_512 make_float64(0x4080000000000000LL)
 573#define float16_maxnorm make_float16(0x7bff)
 574#define float32_maxnorm make_float32(0x7f7fffff)
 575#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 576
 577/* Reciprocal functions
 578 *
 579 * The algorithm that must be used to calculate the estimate
 580 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
 581 */
 582
 583/* See RecipEstimate()
 584 *
 585 * input is a 9 bit fixed point number
 586 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 587 * result range 256 .. 511 for a number from 1.0 to 511/256.
 588 */
 589
 590static int recip_estimate(int input)
 591{
 592    int a, b, r;
 593    assert(256 <= input && input < 512);
 594    a = (input * 2) + 1;
 595    b = (1 << 19) / a;
 596    r = (b + 1) >> 1;
 597    assert(256 <= r && r < 512);
 598    return r;
 599}
 600
 601/*
 602 * Common wrapper to call recip_estimate
 603 *
 604 * The parameters are exponent and 64 bit fraction (without implicit
 605 * bit) where the binary point is nominally at bit 52. Returns a
 606 * float64 which can then be rounded to the appropriate size by the
 607 * callee.
 608 */
 609
 610static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
 611{
 612    uint32_t scaled, estimate;
 613    uint64_t result_frac;
 614    int result_exp;
 615
 616    /* Handle sub-normals */
 617    if (*exp == 0) {
 618        if (extract64(frac, 51, 1) == 0) {
 619            *exp = -1;
 620            frac <<= 2;
 621        } else {
 622            frac <<= 1;
 623        }
 624    }
 625
 626    /* scaled = UInt('1':fraction<51:44>) */
 627    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 628    estimate = recip_estimate(scaled);
 629
 630    result_exp = exp_off - *exp;
 631    result_frac = deposit64(0, 44, 8, estimate);
 632    if (result_exp == 0) {
 633        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
 634    } else if (result_exp == -1) {
 635        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
 636        result_exp = 0;
 637    }
 638
 639    *exp = result_exp;
 640
 641    return result_frac;
 642}
 643
 644static bool round_to_inf(float_status *fpst, bool sign_bit)
 645{
 646    switch (fpst->float_rounding_mode) {
 647    case float_round_nearest_even: /* Round to Nearest */
 648        return true;
 649    case float_round_up: /* Round to +Inf */
 650        return !sign_bit;
 651    case float_round_down: /* Round to -Inf */
 652        return sign_bit;
 653    case float_round_to_zero: /* Round to Zero */
 654        return false;
 655    default:
 656        g_assert_not_reached();
 657    }
 658}
 659
 660uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
 661{
 662    float_status *fpst = fpstp;
 663    float16 f16 = float16_squash_input_denormal(input, fpst);
 664    uint32_t f16_val = float16_val(f16);
 665    uint32_t f16_sign = float16_is_neg(f16);
 666    int f16_exp = extract32(f16_val, 10, 5);
 667    uint32_t f16_frac = extract32(f16_val, 0, 10);
 668    uint64_t f64_frac;
 669
 670    if (float16_is_any_nan(f16)) {
 671        float16 nan = f16;
 672        if (float16_is_signaling_nan(f16, fpst)) {
 673            float_raise(float_flag_invalid, fpst);
 674            if (!fpst->default_nan_mode) {
 675                nan = float16_silence_nan(f16, fpst);
 676            }
 677        }
 678        if (fpst->default_nan_mode) {
 679            nan =  float16_default_nan(fpst);
 680        }
 681        return nan;
 682    } else if (float16_is_infinity(f16)) {
 683        return float16_set_sign(float16_zero, float16_is_neg(f16));
 684    } else if (float16_is_zero(f16)) {
 685        float_raise(float_flag_divbyzero, fpst);
 686        return float16_set_sign(float16_infinity, float16_is_neg(f16));
 687    } else if (float16_abs(f16) < (1 << 8)) {
 688        /* Abs(value) < 2.0^-16 */
 689        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 690        if (round_to_inf(fpst, f16_sign)) {
 691            return float16_set_sign(float16_infinity, f16_sign);
 692        } else {
 693            return float16_set_sign(float16_maxnorm, f16_sign);
 694        }
 695    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
 696        float_raise(float_flag_underflow, fpst);
 697        return float16_set_sign(float16_zero, float16_is_neg(f16));
 698    }
 699
 700    f64_frac = call_recip_estimate(&f16_exp, 29,
 701                                   ((uint64_t) f16_frac) << (52 - 10));
 702
 703    /* result = sign : result_exp<4:0> : fraction<51:42> */
 704    f16_val = deposit32(0, 15, 1, f16_sign);
 705    f16_val = deposit32(f16_val, 10, 5, f16_exp);
 706    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
 707    return make_float16(f16_val);
 708}
 709
 710float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 711{
 712    float_status *fpst = fpstp;
 713    float32 f32 = float32_squash_input_denormal(input, fpst);
 714    uint32_t f32_val = float32_val(f32);
 715    bool f32_sign = float32_is_neg(f32);
 716    int f32_exp = extract32(f32_val, 23, 8);
 717    uint32_t f32_frac = extract32(f32_val, 0, 23);
 718    uint64_t f64_frac;
 719
 720    if (float32_is_any_nan(f32)) {
 721        float32 nan = f32;
 722        if (float32_is_signaling_nan(f32, fpst)) {
 723            float_raise(float_flag_invalid, fpst);
 724            if (!fpst->default_nan_mode) {
 725                nan = float32_silence_nan(f32, fpst);
 726            }
 727        }
 728        if (fpst->default_nan_mode) {
 729            nan =  float32_default_nan(fpst);
 730        }
 731        return nan;
 732    } else if (float32_is_infinity(f32)) {
 733        return float32_set_sign(float32_zero, float32_is_neg(f32));
 734    } else if (float32_is_zero(f32)) {
 735        float_raise(float_flag_divbyzero, fpst);
 736        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 737    } else if (float32_abs(f32) < (1ULL << 21)) {
 738        /* Abs(value) < 2.0^-128 */
 739        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 740        if (round_to_inf(fpst, f32_sign)) {
 741            return float32_set_sign(float32_infinity, f32_sign);
 742        } else {
 743            return float32_set_sign(float32_maxnorm, f32_sign);
 744        }
 745    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
 746        float_raise(float_flag_underflow, fpst);
 747        return float32_set_sign(float32_zero, float32_is_neg(f32));
 748    }
 749
 750    f64_frac = call_recip_estimate(&f32_exp, 253,
 751                                   ((uint64_t) f32_frac) << (52 - 23));
 752
 753    /* result = sign : result_exp<7:0> : fraction<51:29> */
 754    f32_val = deposit32(0, 31, 1, f32_sign);
 755    f32_val = deposit32(f32_val, 23, 8, f32_exp);
 756    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
 757    return make_float32(f32_val);
 758}
 759
 760float64 HELPER(recpe_f64)(float64 input, void *fpstp)
 761{
 762    float_status *fpst = fpstp;
 763    float64 f64 = float64_squash_input_denormal(input, fpst);
 764    uint64_t f64_val = float64_val(f64);
 765    bool f64_sign = float64_is_neg(f64);
 766    int f64_exp = extract64(f64_val, 52, 11);
 767    uint64_t f64_frac = extract64(f64_val, 0, 52);
 768
 769    /* Deal with any special cases */
 770    if (float64_is_any_nan(f64)) {
 771        float64 nan = f64;
 772        if (float64_is_signaling_nan(f64, fpst)) {
 773            float_raise(float_flag_invalid, fpst);
 774            if (!fpst->default_nan_mode) {
 775                nan = float64_silence_nan(f64, fpst);
 776            }
 777        }
 778        if (fpst->default_nan_mode) {
 779            nan =  float64_default_nan(fpst);
 780        }
 781        return nan;
 782    } else if (float64_is_infinity(f64)) {
 783        return float64_set_sign(float64_zero, float64_is_neg(f64));
 784    } else if (float64_is_zero(f64)) {
 785        float_raise(float_flag_divbyzero, fpst);
 786        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 787    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
 788        /* Abs(value) < 2.0^-1024 */
 789        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 790        if (round_to_inf(fpst, f64_sign)) {
 791            return float64_set_sign(float64_infinity, f64_sign);
 792        } else {
 793            return float64_set_sign(float64_maxnorm, f64_sign);
 794        }
 795    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
 796        float_raise(float_flag_underflow, fpst);
 797        return float64_set_sign(float64_zero, float64_is_neg(f64));
 798    }
 799
 800    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
 801
 802    /* result = sign : result_exp<10:0> : fraction<51:0>; */
 803    f64_val = deposit64(0, 63, 1, f64_sign);
 804    f64_val = deposit64(f64_val, 52, 11, f64_exp);
 805    f64_val = deposit64(f64_val, 0, 52, f64_frac);
 806    return make_float64(f64_val);
 807}
 808
 809/* The algorithm that must be used to calculate the estimate
 810 * is specified by the ARM ARM.
 811 */
 812
 813static int do_recip_sqrt_estimate(int a)
 814{
 815    int b, estimate;
 816
 817    assert(128 <= a && a < 512);
 818    if (a < 256) {
 819        a = a * 2 + 1;
 820    } else {
 821        a = (a >> 1) << 1;
 822        a = (a + 1) * 2;
 823    }
 824    b = 512;
 825    while (a * (b + 1) * (b + 1) < (1 << 28)) {
 826        b += 1;
 827    }
 828    estimate = (b + 1) / 2;
 829    assert(256 <= estimate && estimate < 512);
 830
 831    return estimate;
 832}
 833
 834
 835static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
 836{
 837    int estimate;
 838    uint32_t scaled;
 839
 840    if (*exp == 0) {
 841        while (extract64(frac, 51, 1) == 0) {
 842            frac = frac << 1;
 843            *exp -= 1;
 844        }
 845        frac = extract64(frac, 0, 51) << 1;
 846    }
 847
 848    if (*exp & 1) {
 849        /* scaled = UInt('01':fraction<51:45>) */
 850        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
 851    } else {
 852        /* scaled = UInt('1':fraction<51:44>) */
 853        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 854    }
 855    estimate = do_recip_sqrt_estimate(scaled);
 856
 857    *exp = (exp_off - *exp) / 2;
 858    return extract64(estimate, 0, 8) << 44;
 859}
 860
 861uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
 862{
 863    float_status *s = fpstp;
 864    float16 f16 = float16_squash_input_denormal(input, s);
 865    uint16_t val = float16_val(f16);
 866    bool f16_sign = float16_is_neg(f16);
 867    int f16_exp = extract32(val, 10, 5);
 868    uint16_t f16_frac = extract32(val, 0, 10);
 869    uint64_t f64_frac;
 870
 871    if (float16_is_any_nan(f16)) {
 872        float16 nan = f16;
 873        if (float16_is_signaling_nan(f16, s)) {
 874            float_raise(float_flag_invalid, s);
 875            if (!s->default_nan_mode) {
 876                nan = float16_silence_nan(f16, fpstp);
 877            }
 878        }
 879        if (s->default_nan_mode) {
 880            nan =  float16_default_nan(s);
 881        }
 882        return nan;
 883    } else if (float16_is_zero(f16)) {
 884        float_raise(float_flag_divbyzero, s);
 885        return float16_set_sign(float16_infinity, f16_sign);
 886    } else if (f16_sign) {
 887        float_raise(float_flag_invalid, s);
 888        return float16_default_nan(s);
 889    } else if (float16_is_infinity(f16)) {
 890        return float16_zero;
 891    }
 892
 893    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 894     * preserving the parity of the exponent.  */
 895
 896    f64_frac = ((uint64_t) f16_frac) << (52 - 10);
 897
 898    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
 899
 900    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
 901    val = deposit32(0, 15, 1, f16_sign);
 902    val = deposit32(val, 10, 5, f16_exp);
 903    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
 904    return make_float16(val);
 905}
 906
 907float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 908{
 909    float_status *s = fpstp;
 910    float32 f32 = float32_squash_input_denormal(input, s);
 911    uint32_t val = float32_val(f32);
 912    uint32_t f32_sign = float32_is_neg(f32);
 913    int f32_exp = extract32(val, 23, 8);
 914    uint32_t f32_frac = extract32(val, 0, 23);
 915    uint64_t f64_frac;
 916
 917    if (float32_is_any_nan(f32)) {
 918        float32 nan = f32;
 919        if (float32_is_signaling_nan(f32, s)) {
 920            float_raise(float_flag_invalid, s);
 921            if (!s->default_nan_mode) {
 922                nan = float32_silence_nan(f32, fpstp);
 923            }
 924        }
 925        if (s->default_nan_mode) {
 926            nan =  float32_default_nan(s);
 927        }
 928        return nan;
 929    } else if (float32_is_zero(f32)) {
 930        float_raise(float_flag_divbyzero, s);
 931        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 932    } else if (float32_is_neg(f32)) {
 933        float_raise(float_flag_invalid, s);
 934        return float32_default_nan(s);
 935    } else if (float32_is_infinity(f32)) {
 936        return float32_zero;
 937    }
 938
 939    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 940     * preserving the parity of the exponent.  */
 941
 942    f64_frac = ((uint64_t) f32_frac) << 29;
 943
 944    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
 945
 946    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
 947    val = deposit32(0, 31, 1, f32_sign);
 948    val = deposit32(val, 23, 8, f32_exp);
 949    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
 950    return make_float32(val);
 951}
 952
 953float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 954{
 955    float_status *s = fpstp;
 956    float64 f64 = float64_squash_input_denormal(input, s);
 957    uint64_t val = float64_val(f64);
 958    bool f64_sign = float64_is_neg(f64);
 959    int f64_exp = extract64(val, 52, 11);
 960    uint64_t f64_frac = extract64(val, 0, 52);
 961
 962    if (float64_is_any_nan(f64)) {
 963        float64 nan = f64;
 964        if (float64_is_signaling_nan(f64, s)) {
 965            float_raise(float_flag_invalid, s);
 966            if (!s->default_nan_mode) {
 967                nan = float64_silence_nan(f64, fpstp);
 968            }
 969        }
 970        if (s->default_nan_mode) {
 971            nan =  float64_default_nan(s);
 972        }
 973        return nan;
 974    } else if (float64_is_zero(f64)) {
 975        float_raise(float_flag_divbyzero, s);
 976        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 977    } else if (float64_is_neg(f64)) {
 978        float_raise(float_flag_invalid, s);
 979        return float64_default_nan(s);
 980    } else if (float64_is_infinity(f64)) {
 981        return float64_zero;
 982    }
 983
 984    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
 985
 986    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
 987    val = deposit64(0, 61, 1, f64_sign);
 988    val = deposit64(val, 52, 11, f64_exp);
 989    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
 990    return make_float64(val);
 991}
 992
 993uint32_t HELPER(recpe_u32)(uint32_t a)
 994{
 995    int input, estimate;
 996
 997    if ((a & 0x80000000) == 0) {
 998        return 0xffffffff;
 999    }
1000
1001    input = extract32(a, 23, 9);
1002    estimate = recip_estimate(input);
1003
1004    return deposit32(0, (32 - 9), 9, estimate);
1005}
1006
1007uint32_t HELPER(rsqrte_u32)(uint32_t a)
1008{
1009    int estimate;
1010
1011    if ((a & 0xc0000000) == 0) {
1012        return 0xffffffff;
1013    }
1014
1015    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1016
1017    return deposit32(0, 23, 9, estimate);
1018}
1019
1020/* VFPv4 fused multiply-accumulate */
1021dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1022                                   dh_ctype_f16 c, void *fpstp)
1023{
1024    float_status *fpst = fpstp;
1025    return float16_muladd(a, b, c, 0, fpst);
1026}
1027
1028float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1029{
1030    float_status *fpst = fpstp;
1031    return float32_muladd(a, b, c, 0, fpst);
1032}
1033
1034float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1035{
1036    float_status *fpst = fpstp;
1037    return float64_muladd(a, b, c, 0, fpst);
1038}
1039
1040/* ARMv8 round to integral */
1041dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1042{
1043    return float16_round_to_int(x, fp_status);
1044}
1045
1046float32 HELPER(rints_exact)(float32 x, void *fp_status)
1047{
1048    return float32_round_to_int(x, fp_status);
1049}
1050
1051float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1052{
1053    return float64_round_to_int(x, fp_status);
1054}
1055
1056dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1057{
1058    int old_flags = get_float_exception_flags(fp_status), new_flags;
1059    float16 ret;
1060
1061    ret = float16_round_to_int(x, fp_status);
1062
1063    /* Suppress any inexact exceptions the conversion produced */
1064    if (!(old_flags & float_flag_inexact)) {
1065        new_flags = get_float_exception_flags(fp_status);
1066        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1067    }
1068
1069    return ret;
1070}
1071
1072float32 HELPER(rints)(float32 x, void *fp_status)
1073{
1074    int old_flags = get_float_exception_flags(fp_status), new_flags;
1075    float32 ret;
1076
1077    ret = float32_round_to_int(x, fp_status);
1078
1079    /* Suppress any inexact exceptions the conversion produced */
1080    if (!(old_flags & float_flag_inexact)) {
1081        new_flags = get_float_exception_flags(fp_status);
1082        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1083    }
1084
1085    return ret;
1086}
1087
1088float64 HELPER(rintd)(float64 x, void *fp_status)
1089{
1090    int old_flags = get_float_exception_flags(fp_status), new_flags;
1091    float64 ret;
1092
1093    ret = float64_round_to_int(x, fp_status);
1094
1095    new_flags = get_float_exception_flags(fp_status);
1096
1097    /* Suppress any inexact exceptions the conversion produced */
1098    if (!(old_flags & float_flag_inexact)) {
1099        new_flags = get_float_exception_flags(fp_status);
1100        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1101    }
1102
1103    return ret;
1104}
1105
1106/* Convert ARM rounding mode to softfloat */
1107int arm_rmode_to_sf(int rmode)
1108{
1109    switch (rmode) {
1110    case FPROUNDING_TIEAWAY:
1111        rmode = float_round_ties_away;
1112        break;
1113    case FPROUNDING_ODD:
1114        /* FIXME: add support for TIEAWAY and ODD */
1115        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1116                      rmode);
1117        /* fall through for now */
1118    case FPROUNDING_TIEEVEN:
1119    default:
1120        rmode = float_round_nearest_even;
1121        break;
1122    case FPROUNDING_POSINF:
1123        rmode = float_round_up;
1124        break;
1125    case FPROUNDING_NEGINF:
1126        rmode = float_round_down;
1127        break;
1128    case FPROUNDING_ZERO:
1129        rmode = float_round_to_zero;
1130        break;
1131    }
1132    return rmode;
1133}
1134
1135/*
1136 * Implement float64 to int32_t conversion without saturation;
1137 * the result is supplied modulo 2^32.
1138 */
1139uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1140{
1141    float_status *status = vstatus;
1142    uint32_t exp, sign;
1143    uint64_t frac;
1144    uint32_t inexact = 1; /* !Z */
1145
1146    sign = extract64(value, 63, 1);
1147    exp = extract64(value, 52, 11);
1148    frac = extract64(value, 0, 52);
1149
1150    if (exp == 0) {
1151        /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
1152        inexact = sign;
1153        if (frac != 0) {
1154            if (status->flush_inputs_to_zero) {
1155                float_raise(float_flag_input_denormal, status);
1156            } else {
1157                float_raise(float_flag_inexact, status);
1158                inexact = 1;
1159            }
1160        }
1161        frac = 0;
1162    } else if (exp == 0x7ff) {
1163        /* This operation raises Invalid for both NaN and overflow (Inf).  */
1164        float_raise(float_flag_invalid, status);
1165        frac = 0;
1166    } else {
1167        int true_exp = exp - 1023;
1168        int shift = true_exp - 52;
1169
1170        /* Restore implicit bit.  */
1171        frac |= 1ull << 52;
1172
1173        /* Shift the fraction into place.  */
1174        if (shift >= 0) {
1175            /* The number is so large we must shift the fraction left.  */
1176            if (shift >= 64) {
1177                /* The fraction is shifted out entirely.  */
1178                frac = 0;
1179            } else {
1180                frac <<= shift;
1181            }
1182        } else if (shift > -64) {
1183            /* Normal case -- shift right and notice if bits shift out.  */
1184            inexact = (frac << (64 + shift)) != 0;
1185            frac >>= -shift;
1186        } else {
1187            /* The fraction is shifted out entirely.  */
1188            frac = 0;
1189        }
1190
1191        /* Notice overflow or inexact exceptions.  */
1192        if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1193            /* Overflow, for which this operation raises invalid.  */
1194            float_raise(float_flag_invalid, status);
1195            inexact = 1;
1196        } else if (inexact) {
1197            float_raise(float_flag_inexact, status);
1198        }
1199
1200        /* Honor the sign.  */
1201        if (sign) {
1202            frac = -frac;
1203        }
1204    }
1205
1206    /* Pack the result and the env->ZF representation of Z together.  */
1207    return deposit64(frac, 32, 32, inexact);
1208}
1209
1210uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1211{
1212    uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1213    uint32_t result = pair;
1214    uint32_t z = (pair >> 32) == 0;
1215
1216    /* Store Z, clear NCV, in FPSCR.NZCV.  */
1217    env->vfp.xregs[ARM_VFP_FPSCR]
1218        = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1219
1220    return result;
1221}
1222
1223/* Round a float32 to an integer that fits in int32_t or int64_t.  */
1224static float32 frint_s(float32 f, float_status *fpst, int intsize)
1225{
1226    int old_flags = get_float_exception_flags(fpst);
1227    uint32_t exp = extract32(f, 23, 8);
1228
1229    if (unlikely(exp == 0xff)) {
1230        /* NaN or Inf.  */
1231        goto overflow;
1232    }
1233
1234    /* Round and re-extract the exponent.  */
1235    f = float32_round_to_int(f, fpst);
1236    exp = extract32(f, 23, 8);
1237
1238    /* Validate the range of the result.  */
1239    if (exp < 126 + intsize) {
1240        /* abs(F) <= INT{N}_MAX */
1241        return f;
1242    }
1243    if (exp == 126 + intsize) {
1244        uint32_t sign = extract32(f, 31, 1);
1245        uint32_t frac = extract32(f, 0, 23);
1246        if (sign && frac == 0) {
1247            /* F == INT{N}_MIN */
1248            return f;
1249        }
1250    }
1251
1252 overflow:
1253    /*
1254     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1255     * inexact exception float32_round_to_int may have raised.
1256     */
1257    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1258    return (0x100u + 126u + intsize) << 23;
1259}
1260
1261float32 HELPER(frint32_s)(float32 f, void *fpst)
1262{
1263    return frint_s(f, fpst, 32);
1264}
1265
1266float32 HELPER(frint64_s)(float32 f, void *fpst)
1267{
1268    return frint_s(f, fpst, 64);
1269}
1270
1271/* Round a float64 to an integer that fits in int32_t or int64_t.  */
1272static float64 frint_d(float64 f, float_status *fpst, int intsize)
1273{
1274    int old_flags = get_float_exception_flags(fpst);
1275    uint32_t exp = extract64(f, 52, 11);
1276
1277    if (unlikely(exp == 0x7ff)) {
1278        /* NaN or Inf.  */
1279        goto overflow;
1280    }
1281
1282    /* Round and re-extract the exponent.  */
1283    f = float64_round_to_int(f, fpst);
1284    exp = extract64(f, 52, 11);
1285
1286    /* Validate the range of the result.  */
1287    if (exp < 1022 + intsize) {
1288        /* abs(F) <= INT{N}_MAX */
1289        return f;
1290    }
1291    if (exp == 1022 + intsize) {
1292        uint64_t sign = extract64(f, 63, 1);
1293        uint64_t frac = extract64(f, 0, 52);
1294        if (sign && frac == 0) {
1295            /* F == INT{N}_MIN */
1296            return f;
1297        }
1298    }
1299
1300 overflow:
1301    /*
1302     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1303     * inexact exception float64_round_to_int may have raised.
1304     */
1305    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1306    return (uint64_t)(0x800 + 1022 + intsize) << 52;
1307}
1308
1309float64 HELPER(frint32_d)(float64 f, void *fpst)
1310{
1311    return frint_d(f, fpst, 32);
1312}
1313
1314float64 HELPER(frint64_d)(float64 f, void *fpst)
1315{
1316    return frint_d(f, fpst, 64);
1317}
1318
1319void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1320{
1321    uint32_t syndrome;
1322
1323    switch (reg) {
1324    case ARM_VFP_MVFR0:
1325    case ARM_VFP_MVFR1:
1326    case ARM_VFP_MVFR2:
1327        if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1328            return;
1329        }
1330        break;
1331    case ARM_VFP_FPSID:
1332        if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1333            return;
1334        }
1335        break;
1336    default:
1337        g_assert_not_reached();
1338    }
1339
1340    syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1341                | ARM_EL_IL
1342                | (1 << 24) | (0xe << 20) | (7 << 14)
1343                | (reg << 10) | (rt << 5) | 1);
1344
1345    raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1346}
1347
1348#endif
1349