qemu/target/ppc/fpu_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC floating point and SPE emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/helper-proto.h"
  22#include "exec/exec-all.h"
  23#include "internal.h"
  24#include "fpu/softfloat.h"
  25
  26static inline float128 float128_snan_to_qnan(float128 x)
  27{
  28    float128 r;
  29
  30    r.high = x.high | 0x0000800000000000;
  31    r.low = x.low;
  32    return r;
  33}
  34
  35#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
  36#define float32_snan_to_qnan(x) ((x) | 0x00400000)
  37#define float16_snan_to_qnan(x) ((x) | 0x0200)
  38
  39static inline float32 bfp32_neg(float32 a)
  40{
  41    if (unlikely(float32_is_any_nan(a))) {
  42        return a;
  43    } else {
  44        return float32_chs(a);
  45    }
  46}
  47
  48static inline bool fp_exceptions_enabled(CPUPPCState *env)
  49{
  50#ifdef CONFIG_USER_ONLY
  51    return true;
  52#else
  53    return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
  54#endif
  55}
  56
  57/*****************************************************************************/
  58/* Floating point operations helpers */
  59
  60/*
  61 * This is the non-arithmatic conversion that happens e.g. on loads.
  62 * In the Power ISA pseudocode, this is called DOUBLE.
  63 */
  64uint64_t helper_todouble(uint32_t arg)
  65{
  66    uint32_t abs_arg = arg & 0x7fffffff;
  67    uint64_t ret;
  68
  69    if (likely(abs_arg >= 0x00800000)) {
  70        if (unlikely(extract32(arg, 23, 8) == 0xff)) {
  71            /* Inf or NAN.  */
  72            ret  = (uint64_t)extract32(arg, 31, 1) << 63;
  73            ret |= (uint64_t)0x7ff << 52;
  74            ret |= (uint64_t)extract32(arg, 0, 23) << 29;
  75        } else {
  76            /* Normalized operand.  */
  77            ret  = (uint64_t)extract32(arg, 30, 2) << 62;
  78            ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
  79            ret |= (uint64_t)extract32(arg, 0, 30) << 29;
  80        }
  81    } else {
  82        /* Zero or Denormalized operand.  */
  83        ret = (uint64_t)extract32(arg, 31, 1) << 63;
  84        if (unlikely(abs_arg != 0)) {
  85            /*
  86             * Denormalized operand.
  87             * Shift fraction so that the msb is in the implicit bit position.
  88             * Thus, shift is in the range [1:23].
  89             */
  90            int shift = clz32(abs_arg) - 8;
  91            /*
  92             * The first 3 terms compute the float64 exponent.  We then bias
  93             * this result by -1 so that we can swallow the implicit bit below.
  94             */
  95            int exp = -126 - shift + 1023 - 1;
  96
  97            ret |= (uint64_t)exp << 52;
  98            ret += (uint64_t)abs_arg << (52 - 23 + shift);
  99        }
 100    }
 101    return ret;
 102}
 103
 104/*
 105 * This is the non-arithmatic conversion that happens e.g. on stores.
 106 * In the Power ISA pseudocode, this is called SINGLE.
 107 */
 108uint32_t helper_tosingle(uint64_t arg)
 109{
 110    int exp = extract64(arg, 52, 11);
 111    uint32_t ret;
 112
 113    if (likely(exp > 896)) {
 114        /* No denormalization required (includes Inf, NaN).  */
 115        ret  = extract64(arg, 62, 2) << 30;
 116        ret |= extract64(arg, 29, 30);
 117    } else {
 118        /*
 119         * Zero or Denormal result.  If the exponent is in bounds for
 120         * a single-precision denormal result, extract the proper
 121         * bits.  If the input is not zero, and the exponent is out of
 122         * bounds, then the result is undefined; this underflows to
 123         * zero.
 124         */
 125        ret = extract64(arg, 63, 1) << 31;
 126        if (unlikely(exp >= 874)) {
 127            /* Denormal result.  */
 128            ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
 129        }
 130    }
 131    return ret;
 132}
 133
 134static inline int ppc_float32_get_unbiased_exp(float32 f)
 135{
 136    return ((f >> 23) & 0xFF) - 127;
 137}
 138
 139static inline int ppc_float64_get_unbiased_exp(float64 f)
 140{
 141    return ((f >> 52) & 0x7FF) - 1023;
 142}
 143
 144/* Classify a floating-point number.  */
 145enum {
 146    is_normal   = 1,
 147    is_zero     = 2,
 148    is_denormal = 4,
 149    is_inf      = 8,
 150    is_qnan     = 16,
 151    is_snan     = 32,
 152    is_neg      = 64,
 153};
 154
 155#define COMPUTE_CLASS(tp)                                      \
 156static int tp##_classify(tp arg)                               \
 157{                                                              \
 158    int ret = tp##_is_neg(arg) * is_neg;                       \
 159    if (unlikely(tp##_is_any_nan(arg))) {                      \
 160        float_status dummy = { };  /* snan_bit_is_one = 0 */   \
 161        ret |= (tp##_is_signaling_nan(arg, &dummy)             \
 162                ? is_snan : is_qnan);                          \
 163    } else if (unlikely(tp##_is_infinity(arg))) {              \
 164        ret |= is_inf;                                         \
 165    } else if (tp##_is_zero(arg)) {                            \
 166        ret |= is_zero;                                        \
 167    } else if (tp##_is_zero_or_denormal(arg)) {                \
 168        ret |= is_denormal;                                    \
 169    } else {                                                   \
 170        ret |= is_normal;                                      \
 171    }                                                          \
 172    return ret;                                                \
 173}
 174
 175COMPUTE_CLASS(float16)
 176COMPUTE_CLASS(float32)
 177COMPUTE_CLASS(float64)
 178COMPUTE_CLASS(float128)
 179
 180static void set_fprf_from_class(CPUPPCState *env, int class)
 181{
 182    static const uint8_t fprf[6][2] = {
 183        { 0x04, 0x08 },  /* normalized */
 184        { 0x02, 0x12 },  /* zero */
 185        { 0x14, 0x18 },  /* denormalized */
 186        { 0x05, 0x09 },  /* infinity */
 187        { 0x11, 0x11 },  /* qnan */
 188        { 0x00, 0x00 },  /* snan -- flags are undefined */
 189    };
 190    bool isneg = class & is_neg;
 191
 192    env->fpscr &= ~FP_FPRF;
 193    env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
 194}
 195
 196#define COMPUTE_FPRF(tp)                                \
 197void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
 198{                                                       \
 199    set_fprf_from_class(env, tp##_classify(arg));       \
 200}
 201
 202COMPUTE_FPRF(float16)
 203COMPUTE_FPRF(float32)
 204COMPUTE_FPRF(float64)
 205COMPUTE_FPRF(float128)
 206
 207/* Floating-point invalid operations exception */
 208static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
 209{
 210    /* Update the floating-point invalid operation summary */
 211    env->fpscr |= FP_VX;
 212    /* Update the floating-point exception summary */
 213    env->fpscr |= FP_FX;
 214    if (env->fpscr & FP_VE) {
 215        /* Update the floating-point enabled exception summary */
 216        env->fpscr |= FP_FEX;
 217        if (fp_exceptions_enabled(env)) {
 218            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 219                                   POWERPC_EXCP_FP | op, retaddr);
 220        }
 221    }
 222}
 223
 224static void finish_invalid_op_arith(CPUPPCState *env, int op,
 225                                    bool set_fpcc, uintptr_t retaddr)
 226{
 227    env->fpscr &= ~(FP_FR | FP_FI);
 228    if (!(env->fpscr & FP_VE)) {
 229        if (set_fpcc) {
 230            env->fpscr &= ~FP_FPCC;
 231            env->fpscr |= (FP_C | FP_FU);
 232        }
 233    }
 234    finish_invalid_op_excp(env, op, retaddr);
 235}
 236
 237/* Signalling NaN */
 238static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
 239{
 240    env->fpscr |= FP_VXSNAN;
 241    finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
 242}
 243
 244/* Magnitude subtraction of infinities */
 245static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
 246                                   uintptr_t retaddr)
 247{
 248    env->fpscr |= FP_VXISI;
 249    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
 250}
 251
 252/* Division of infinity by infinity */
 253static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
 254                                   uintptr_t retaddr)
 255{
 256    env->fpscr |= FP_VXIDI;
 257    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
 258}
 259
 260/* Division of zero by zero */
 261static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
 262                                   uintptr_t retaddr)
 263{
 264    env->fpscr |= FP_VXZDZ;
 265    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
 266}
 267
 268/* Multiplication of zero by infinity */
 269static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
 270                                   uintptr_t retaddr)
 271{
 272    env->fpscr |= FP_VXIMZ;
 273    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
 274}
 275
 276/* Square root of a negative number */
 277static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
 278                                    uintptr_t retaddr)
 279{
 280    env->fpscr |= FP_VXSQRT;
 281    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
 282}
 283
 284/* Ordered comparison of NaN */
 285static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
 286                                  uintptr_t retaddr)
 287{
 288    env->fpscr |= FP_VXVC;
 289    if (set_fpcc) {
 290        env->fpscr &= ~FP_FPCC;
 291        env->fpscr |= (FP_C | FP_FU);
 292    }
 293    /* Update the floating-point invalid operation summary */
 294    env->fpscr |= FP_VX;
 295    /* Update the floating-point exception summary */
 296    env->fpscr |= FP_FX;
 297    /* We must update the target FPR before raising the exception */
 298    if (env->fpscr & FP_VE) {
 299        CPUState *cs = env_cpu(env);
 300
 301        cs->exception_index = POWERPC_EXCP_PROGRAM;
 302        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 303        /* Update the floating-point enabled exception summary */
 304        env->fpscr |= FP_FEX;
 305        /* Exception is deferred */
 306    }
 307}
 308
 309/* Invalid conversion */
 310static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
 311                                   uintptr_t retaddr)
 312{
 313    env->fpscr |= FP_VXCVI;
 314    env->fpscr &= ~(FP_FR | FP_FI);
 315    if (!(env->fpscr & FP_VE)) {
 316        if (set_fpcc) {
 317            env->fpscr &= ~FP_FPCC;
 318            env->fpscr |= (FP_C | FP_FU);
 319        }
 320    }
 321    finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
 322}
 323
 324static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
 325{
 326    env->fpscr |= FP_ZX;
 327    env->fpscr &= ~(FP_FR | FP_FI);
 328    /* Update the floating-point exception summary */
 329    env->fpscr |= FP_FX;
 330    if (env->fpscr & FP_ZE) {
 331        /* Update the floating-point enabled exception summary */
 332        env->fpscr |= FP_FEX;
 333        if (fp_exceptions_enabled(env)) {
 334            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 335                                   POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
 336                                   raddr);
 337        }
 338    }
 339}
 340
 341static inline int float_overflow_excp(CPUPPCState *env)
 342{
 343    CPUState *cs = env_cpu(env);
 344
 345    env->fpscr |= FP_OX;
 346    /* Update the floating-point exception summary */
 347    env->fpscr |= FP_FX;
 348
 349    bool overflow_enabled = !!(env->fpscr & FP_OE);
 350    if (overflow_enabled) {
 351        /* Update the floating-point enabled exception summary */
 352        env->fpscr |= FP_FEX;
 353        /* We must update the target FPR before raising the exception */
 354        cs->exception_index = POWERPC_EXCP_PROGRAM;
 355        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 356    }
 357
 358    return overflow_enabled ? 0 : float_flag_inexact;
 359}
 360
 361static inline void float_underflow_excp(CPUPPCState *env)
 362{
 363    CPUState *cs = env_cpu(env);
 364
 365    env->fpscr |= FP_UX;
 366    /* Update the floating-point exception summary */
 367    env->fpscr |= FP_FX;
 368    if (env->fpscr & FP_UE) {
 369        /* Update the floating-point enabled exception summary */
 370        env->fpscr |= FP_FEX;
 371        /* We must update the target FPR before raising the exception */
 372        cs->exception_index = POWERPC_EXCP_PROGRAM;
 373        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 374    }
 375}
 376
 377static inline void float_inexact_excp(CPUPPCState *env)
 378{
 379    CPUState *cs = env_cpu(env);
 380
 381    env->fpscr |= FP_XX;
 382    /* Update the floating-point exception summary */
 383    env->fpscr |= FP_FX;
 384    if (env->fpscr & FP_XE) {
 385        /* Update the floating-point enabled exception summary */
 386        env->fpscr |= FP_FEX;
 387        /* We must update the target FPR before raising the exception */
 388        cs->exception_index = POWERPC_EXCP_PROGRAM;
 389        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 390    }
 391}
 392
 393void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
 394{
 395    uint32_t mask = 1u << bit;
 396    if (env->fpscr & mask) {
 397        ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
 398    }
 399}
 400
 401void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
 402{
 403    uint32_t mask = 1u << bit;
 404    if (!(env->fpscr & mask)) {
 405        ppc_store_fpscr(env, env->fpscr | mask);
 406    }
 407}
 408
 409void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
 410{
 411    target_ulong mask = 0;
 412    int i;
 413
 414    /* TODO: push this extension back to translation time */
 415    for (i = 0; i < sizeof(target_ulong) * 2; i++) {
 416        if (nibbles & (1 << i)) {
 417            mask |= (target_ulong) 0xf << (4 * i);
 418        }
 419    }
 420    val = (val & mask) | (env->fpscr & ~mask);
 421    ppc_store_fpscr(env, val);
 422}
 423
 424static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr)
 425{
 426    CPUState *cs = env_cpu(env);
 427    target_ulong fpscr = env->fpscr;
 428    int error = 0;
 429
 430    if ((fpscr & FP_OX) && (fpscr & FP_OE)) {
 431        error = POWERPC_EXCP_FP_OX;
 432    } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) {
 433        error = POWERPC_EXCP_FP_UX;
 434    } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) {
 435        error = POWERPC_EXCP_FP_XX;
 436    } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) {
 437        error = POWERPC_EXCP_FP_ZX;
 438    } else if (fpscr & FP_VE) {
 439        if (fpscr & FP_VXSOFT) {
 440            error = POWERPC_EXCP_FP_VXSOFT;
 441        } else if (fpscr & FP_VXSNAN) {
 442            error = POWERPC_EXCP_FP_VXSNAN;
 443        } else if (fpscr & FP_VXISI) {
 444            error = POWERPC_EXCP_FP_VXISI;
 445        } else if (fpscr & FP_VXIDI) {
 446            error = POWERPC_EXCP_FP_VXIDI;
 447        } else if (fpscr & FP_VXZDZ) {
 448            error = POWERPC_EXCP_FP_VXZDZ;
 449        } else if (fpscr & FP_VXIMZ) {
 450            error = POWERPC_EXCP_FP_VXIMZ;
 451        } else if (fpscr & FP_VXVC) {
 452            error = POWERPC_EXCP_FP_VXVC;
 453        } else if (fpscr & FP_VXSQRT) {
 454            error = POWERPC_EXCP_FP_VXSQRT;
 455        } else if (fpscr & FP_VXCVI) {
 456            error = POWERPC_EXCP_FP_VXCVI;
 457        } else {
 458            return;
 459        }
 460    } else {
 461        return;
 462    }
 463    cs->exception_index = POWERPC_EXCP_PROGRAM;
 464    env->error_code = error | POWERPC_EXCP_FP;
 465    env->fpscr |= FP_FEX;
 466    /* Deferred floating-point exception after target FPSCR update */
 467    if (fp_exceptions_enabled(env)) {
 468        raise_exception_err_ra(env, cs->exception_index,
 469                               env->error_code, raddr);
 470    }
 471}
 472
 473void helper_fpscr_check_status(CPUPPCState *env)
 474{
 475    do_fpscr_check_status(env, GETPC());
 476}
 477
 478static void do_float_check_status(CPUPPCState *env, bool change_fi,
 479                                  uintptr_t raddr)
 480{
 481    CPUState *cs = env_cpu(env);
 482    int status = get_float_exception_flags(&env->fp_status);
 483
 484    if (status & float_flag_overflow) {
 485        status |= float_overflow_excp(env);
 486    } else if (status & float_flag_underflow) {
 487        float_underflow_excp(env);
 488    }
 489    if (status & float_flag_inexact) {
 490        float_inexact_excp(env);
 491    }
 492    if (change_fi) {
 493        env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI,
 494                                !!(status & float_flag_inexact));
 495    }
 496
 497    if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
 498        (env->error_code & POWERPC_EXCP_FP)) {
 499        /* Deferred floating-point exception after target FPR update */
 500        if (fp_exceptions_enabled(env)) {
 501            raise_exception_err_ra(env, cs->exception_index,
 502                                   env->error_code, raddr);
 503        }
 504    }
 505}
 506
 507void helper_float_check_status(CPUPPCState *env)
 508{
 509    do_float_check_status(env, true, GETPC());
 510}
 511
 512void helper_reset_fpstatus(CPUPPCState *env)
 513{
 514    set_float_exception_flags(0, &env->fp_status);
 515}
 516
 517static void float_invalid_op_addsub(CPUPPCState *env, int flags,
 518                                    bool set_fpcc, uintptr_t retaddr)
 519{
 520    if (flags & float_flag_invalid_isi) {
 521        float_invalid_op_vxisi(env, set_fpcc, retaddr);
 522    } else if (flags & float_flag_invalid_snan) {
 523        float_invalid_op_vxsnan(env, retaddr);
 524    }
 525}
 526
 527/* fadd - fadd. */
 528float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
 529{
 530    float64 ret = float64_add(arg1, arg2, &env->fp_status);
 531    int flags = get_float_exception_flags(&env->fp_status);
 532
 533    if (unlikely(flags & float_flag_invalid)) {
 534        float_invalid_op_addsub(env, flags, 1, GETPC());
 535    }
 536
 537    return ret;
 538}
 539
 540/* fadds - fadds. */
 541float64 helper_fadds(CPUPPCState *env, float64 arg1, float64 arg2)
 542{
 543    float64 ret = float64r32_add(arg1, arg2, &env->fp_status);
 544    int flags = get_float_exception_flags(&env->fp_status);
 545
 546    if (unlikely(flags & float_flag_invalid)) {
 547        float_invalid_op_addsub(env, flags, 1, GETPC());
 548    }
 549    return ret;
 550}
 551
 552/* fsub - fsub. */
 553float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
 554{
 555    float64 ret = float64_sub(arg1, arg2, &env->fp_status);
 556    int flags = get_float_exception_flags(&env->fp_status);
 557
 558    if (unlikely(flags & float_flag_invalid)) {
 559        float_invalid_op_addsub(env, flags, 1, GETPC());
 560    }
 561
 562    return ret;
 563}
 564
 565/* fsubs - fsubs. */
 566float64 helper_fsubs(CPUPPCState *env, float64 arg1, float64 arg2)
 567{
 568    float64 ret = float64r32_sub(arg1, arg2, &env->fp_status);
 569    int flags = get_float_exception_flags(&env->fp_status);
 570
 571    if (unlikely(flags & float_flag_invalid)) {
 572        float_invalid_op_addsub(env, flags, 1, GETPC());
 573    }
 574    return ret;
 575}
 576
 577static void float_invalid_op_mul(CPUPPCState *env, int flags,
 578                                 bool set_fprc, uintptr_t retaddr)
 579{
 580    if (flags & float_flag_invalid_imz) {
 581        float_invalid_op_vximz(env, set_fprc, retaddr);
 582    } else if (flags & float_flag_invalid_snan) {
 583        float_invalid_op_vxsnan(env, retaddr);
 584    }
 585}
 586
 587/* fmul - fmul. */
 588float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
 589{
 590    float64 ret = float64_mul(arg1, arg2, &env->fp_status);
 591    int flags = get_float_exception_flags(&env->fp_status);
 592
 593    if (unlikely(flags & float_flag_invalid)) {
 594        float_invalid_op_mul(env, flags, 1, GETPC());
 595    }
 596
 597    return ret;
 598}
 599
 600/* fmuls - fmuls. */
 601float64 helper_fmuls(CPUPPCState *env, float64 arg1, float64 arg2)
 602{
 603    float64 ret = float64r32_mul(arg1, arg2, &env->fp_status);
 604    int flags = get_float_exception_flags(&env->fp_status);
 605
 606    if (unlikely(flags & float_flag_invalid)) {
 607        float_invalid_op_mul(env, flags, 1, GETPC());
 608    }
 609    return ret;
 610}
 611
 612static void float_invalid_op_div(CPUPPCState *env, int flags,
 613                                 bool set_fprc, uintptr_t retaddr)
 614{
 615    if (flags & float_flag_invalid_idi) {
 616        float_invalid_op_vxidi(env, set_fprc, retaddr);
 617    } else if (flags & float_flag_invalid_zdz) {
 618        float_invalid_op_vxzdz(env, set_fprc, retaddr);
 619    } else if (flags & float_flag_invalid_snan) {
 620        float_invalid_op_vxsnan(env, retaddr);
 621    }
 622}
 623
 624/* fdiv - fdiv. */
 625float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
 626{
 627    float64 ret = float64_div(arg1, arg2, &env->fp_status);
 628    int flags = get_float_exception_flags(&env->fp_status);
 629
 630    if (unlikely(flags & float_flag_invalid)) {
 631        float_invalid_op_div(env, flags, 1, GETPC());
 632    }
 633    if (unlikely(flags & float_flag_divbyzero)) {
 634        float_zero_divide_excp(env, GETPC());
 635    }
 636
 637    return ret;
 638}
 639
 640/* fdivs - fdivs. */
 641float64 helper_fdivs(CPUPPCState *env, float64 arg1, float64 arg2)
 642{
 643    float64 ret = float64r32_div(arg1, arg2, &env->fp_status);
 644    int flags = get_float_exception_flags(&env->fp_status);
 645
 646    if (unlikely(flags & float_flag_invalid)) {
 647        float_invalid_op_div(env, flags, 1, GETPC());
 648    }
 649    if (unlikely(flags & float_flag_divbyzero)) {
 650        float_zero_divide_excp(env, GETPC());
 651    }
 652
 653    return ret;
 654}
 655
 656static uint64_t float_invalid_cvt(CPUPPCState *env, int flags,
 657                                  uint64_t ret, uint64_t ret_nan,
 658                                  bool set_fprc, uintptr_t retaddr)
 659{
 660    /*
 661     * VXCVI is different from most in that it sets two exception bits,
 662     * VXCVI and VXSNAN for an SNaN input.
 663     */
 664    if (flags & float_flag_invalid_snan) {
 665        env->fpscr |= FP_VXSNAN;
 666    }
 667    float_invalid_op_vxcvi(env, set_fprc, retaddr);
 668
 669    return flags & float_flag_invalid_cvti ? ret : ret_nan;
 670}
 671
 672#define FPU_FCTI(op, cvt, nanval)                                      \
 673uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
 674{                                                                      \
 675    uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
 676    int flags = get_float_exception_flags(&env->fp_status);            \
 677    if (unlikely(flags & float_flag_invalid)) {                        \
 678        ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC());  \
 679    }                                                                  \
 680    return ret;                                                        \
 681}
 682
 683FPU_FCTI(fctiw, int32, 0x80000000U)
 684FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
 685FPU_FCTI(fctiwu, uint32, 0x00000000U)
 686FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
 687FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
 688FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
 689FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
 690FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
 691
 692#define FPU_FCFI(op, cvtr, is_single)                      \
 693uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
 694{                                                          \
 695    CPU_DoubleU farg;                                      \
 696                                                           \
 697    if (is_single) {                                       \
 698        float32 tmp = cvtr(arg, &env->fp_status);          \
 699        farg.d = float32_to_float64(tmp, &env->fp_status); \
 700    } else {                                               \
 701        farg.d = cvtr(arg, &env->fp_status);               \
 702    }                                                      \
 703    do_float_check_status(env, true, GETPC());             \
 704    return farg.ll;                                        \
 705}
 706
 707FPU_FCFI(fcfid, int64_to_float64, 0)
 708FPU_FCFI(fcfids, int64_to_float32, 1)
 709FPU_FCFI(fcfidu, uint64_to_float64, 0)
 710FPU_FCFI(fcfidus, uint64_to_float32, 1)
 711
 712static uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 713                       FloatRoundMode rounding_mode)
 714{
 715    FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
 716    int flags;
 717
 718    set_float_rounding_mode(rounding_mode, &env->fp_status);
 719    arg = float64_round_to_int(arg, &env->fp_status);
 720    set_float_rounding_mode(old_rounding_mode, &env->fp_status);
 721
 722    flags = get_float_exception_flags(&env->fp_status);
 723    if (flags & float_flag_invalid_snan) {
 724        float_invalid_op_vxsnan(env, GETPC());
 725    }
 726
 727    /* fri* does not set FPSCR[XX] */
 728    set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status);
 729    do_float_check_status(env, true, GETPC());
 730
 731    return arg;
 732}
 733
 734uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
 735{
 736    return do_fri(env, arg, float_round_ties_away);
 737}
 738
 739uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
 740{
 741    return do_fri(env, arg, float_round_to_zero);
 742}
 743
 744uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
 745{
 746    return do_fri(env, arg, float_round_up);
 747}
 748
 749uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
 750{
 751    return do_fri(env, arg, float_round_down);
 752}
 753
 754static void float_invalid_op_madd(CPUPPCState *env, int flags,
 755                                  bool set_fpcc, uintptr_t retaddr)
 756{
 757    if (flags & float_flag_invalid_imz) {
 758        float_invalid_op_vximz(env, set_fpcc, retaddr);
 759    } else {
 760        float_invalid_op_addsub(env, flags, set_fpcc, retaddr);
 761    }
 762}
 763
 764static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b,
 765                         float64 c, int madd_flags, uintptr_t retaddr)
 766{
 767    float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status);
 768    int flags = get_float_exception_flags(&env->fp_status);
 769
 770    if (unlikely(flags & float_flag_invalid)) {
 771        float_invalid_op_madd(env, flags, 1, retaddr);
 772    }
 773    return ret;
 774}
 775
 776static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b,
 777                          float64 c, int madd_flags, uintptr_t retaddr)
 778{
 779    float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status);
 780    int flags = get_float_exception_flags(&env->fp_status);
 781
 782    if (unlikely(flags & float_flag_invalid)) {
 783        float_invalid_op_madd(env, flags, 1, retaddr);
 784    }
 785    return ret;
 786}
 787
 788#define FPU_FMADD(op, madd_flags)                                    \
 789    uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,            \
 790                         uint64_t arg2, uint64_t arg3)               \
 791    { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
 792    uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1,         \
 793                         uint64_t arg2, uint64_t arg3)               \
 794    { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
 795
 796#define MADD_FLGS 0
 797#define MSUB_FLGS float_muladd_negate_c
 798#define NMADD_FLGS float_muladd_negate_result
 799#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
 800
 801FPU_FMADD(fmadd, MADD_FLGS)
 802FPU_FMADD(fnmadd, NMADD_FLGS)
 803FPU_FMADD(fmsub, MSUB_FLGS)
 804FPU_FMADD(fnmsub, NMSUB_FLGS)
 805
 806/* frsp - frsp. */
 807static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr)
 808{
 809    float32 f32 = float64_to_float32(arg, &env->fp_status);
 810    int flags = get_float_exception_flags(&env->fp_status);
 811
 812    if (unlikely(flags & float_flag_invalid_snan)) {
 813        float_invalid_op_vxsnan(env, retaddr);
 814    }
 815    return helper_todouble(f32);
 816}
 817
 818uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 819{
 820    return do_frsp(env, arg, GETPC());
 821}
 822
 823static void float_invalid_op_sqrt(CPUPPCState *env, int flags,
 824                                  bool set_fpcc, uintptr_t retaddr)
 825{
 826    if (unlikely(flags & float_flag_invalid_sqrt)) {
 827        float_invalid_op_vxsqrt(env, set_fpcc, retaddr);
 828    } else if (unlikely(flags & float_flag_invalid_snan)) {
 829        float_invalid_op_vxsnan(env, retaddr);
 830    }
 831}
 832
 833#define FPU_FSQRT(name, op)                                                   \
 834float64 helper_##name(CPUPPCState *env, float64 arg)                          \
 835{                                                                             \
 836    float64 ret = op(arg, &env->fp_status);                                   \
 837    int flags = get_float_exception_flags(&env->fp_status);                   \
 838                                                                              \
 839    if (unlikely(flags & float_flag_invalid)) {                               \
 840        float_invalid_op_sqrt(env, flags, 1, GETPC());                        \
 841    }                                                                         \
 842                                                                              \
 843    return ret;                                                               \
 844}
 845
 846FPU_FSQRT(FSQRT, float64_sqrt)
 847FPU_FSQRT(FSQRTS, float64r32_sqrt)
 848
 849/* fre - fre. */
 850float64 helper_fre(CPUPPCState *env, float64 arg)
 851{
 852    /* "Estimate" the reciprocal with actual division.  */
 853    float64 ret = float64_div(float64_one, arg, &env->fp_status);
 854    int flags = get_float_exception_flags(&env->fp_status);
 855
 856    if (unlikely(flags & float_flag_invalid_snan)) {
 857        float_invalid_op_vxsnan(env, GETPC());
 858    }
 859    if (unlikely(flags & float_flag_divbyzero)) {
 860        float_zero_divide_excp(env, GETPC());
 861        /* For FPSCR.ZE == 0, the result is 1/2.  */
 862        ret = float64_set_sign(float64_half, float64_is_neg(arg));
 863    }
 864
 865    return ret;
 866}
 867
 868/* fres - fres. */
 869uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 870{
 871    /* "Estimate" the reciprocal with actual division.  */
 872    float64 ret = float64r32_div(float64_one, arg, &env->fp_status);
 873    int flags = get_float_exception_flags(&env->fp_status);
 874
 875    if (unlikely(flags & float_flag_invalid_snan)) {
 876        float_invalid_op_vxsnan(env, GETPC());
 877    }
 878    if (unlikely(flags & float_flag_divbyzero)) {
 879        float_zero_divide_excp(env, GETPC());
 880        /* For FPSCR.ZE == 0, the result is 1/2.  */
 881        ret = float64_set_sign(float64_half, float64_is_neg(arg));
 882    }
 883
 884    return ret;
 885}
 886
 887/* frsqrte  - frsqrte. */
 888float64 helper_frsqrte(CPUPPCState *env, float64 arg)
 889{
 890    /* "Estimate" the reciprocal with actual division.  */
 891    float64 rets = float64_sqrt(arg, &env->fp_status);
 892    float64 retd = float64_div(float64_one, rets, &env->fp_status);
 893    int flags = get_float_exception_flags(&env->fp_status);
 894
 895    if (unlikely(flags & float_flag_invalid)) {
 896        float_invalid_op_sqrt(env, flags, 1, GETPC());
 897    }
 898    if (unlikely(flags & float_flag_divbyzero)) {
 899        /* Reciprocal of (square root of) zero.  */
 900        float_zero_divide_excp(env, GETPC());
 901    }
 902
 903    return retd;
 904}
 905
 906/* frsqrtes  - frsqrtes. */
 907float64 helper_frsqrtes(CPUPPCState *env, float64 arg)
 908{
 909    /* "Estimate" the reciprocal with actual division.  */
 910    float64 rets = float64_sqrt(arg, &env->fp_status);
 911    float64 retd = float64r32_div(float64_one, rets, &env->fp_status);
 912    int flags = get_float_exception_flags(&env->fp_status);
 913
 914    if (unlikely(flags & float_flag_invalid)) {
 915        float_invalid_op_sqrt(env, flags, 1, GETPC());
 916    }
 917    if (unlikely(flags & float_flag_divbyzero)) {
 918        /* Reciprocal of (square root of) zero.  */
 919        float_zero_divide_excp(env, GETPC());
 920    }
 921
 922    return retd;
 923}
 924
 925/* fsel - fsel. */
 926uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c)
 927{
 928    CPU_DoubleU fa;
 929
 930    fa.ll = a;
 931
 932    if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) &&
 933        !float64_is_any_nan(fa.d)) {
 934        return c;
 935    } else {
 936        return b;
 937    }
 938}
 939
 940uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
 941{
 942    int fe_flag = 0;
 943    int fg_flag = 0;
 944
 945    if (unlikely(float64_is_infinity(fra) ||
 946                 float64_is_infinity(frb) ||
 947                 float64_is_zero(frb))) {
 948        fe_flag = 1;
 949        fg_flag = 1;
 950    } else {
 951        int e_a = ppc_float64_get_unbiased_exp(fra);
 952        int e_b = ppc_float64_get_unbiased_exp(frb);
 953
 954        if (unlikely(float64_is_any_nan(fra) ||
 955                     float64_is_any_nan(frb))) {
 956            fe_flag = 1;
 957        } else if ((e_b <= -1022) || (e_b >= 1021)) {
 958            fe_flag = 1;
 959        } else if (!float64_is_zero(fra) &&
 960                   (((e_a - e_b) >= 1023) ||
 961                    ((e_a - e_b) <= -1021) ||
 962                    (e_a <= -970))) {
 963            fe_flag = 1;
 964        }
 965
 966        if (unlikely(float64_is_zero_or_denormal(frb))) {
 967            /* XB is not zero because of the above check and */
 968            /* so must be denormalized.                      */
 969            fg_flag = 1;
 970        }
 971    }
 972
 973    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
 974}
 975
 976uint32_t helper_ftsqrt(uint64_t frb)
 977{
 978    int fe_flag = 0;
 979    int fg_flag = 0;
 980
 981    if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
 982        fe_flag = 1;
 983        fg_flag = 1;
 984    } else {
 985        int e_b = ppc_float64_get_unbiased_exp(frb);
 986
 987        if (unlikely(float64_is_any_nan(frb))) {
 988            fe_flag = 1;
 989        } else if (unlikely(float64_is_zero(frb))) {
 990            fe_flag = 1;
 991        } else if (unlikely(float64_is_neg(frb))) {
 992            fe_flag = 1;
 993        } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
 994            fe_flag = 1;
 995        }
 996
 997        if (unlikely(float64_is_zero_or_denormal(frb))) {
 998            /* XB is not zero because of the above check and */
 999            /* therefore must be denormalized.               */
1000            fg_flag = 1;
1001        }
1002    }
1003
1004    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1005}
1006
1007void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1008                  uint32_t crfD)
1009{
1010    CPU_DoubleU farg1, farg2;
1011    uint32_t ret = 0;
1012
1013    farg1.ll = arg1;
1014    farg2.ll = arg2;
1015
1016    if (unlikely(float64_is_any_nan(farg1.d) ||
1017                 float64_is_any_nan(farg2.d))) {
1018        ret = 0x01UL;
1019    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1020        ret = 0x08UL;
1021    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1022        ret = 0x04UL;
1023    } else {
1024        ret = 0x02UL;
1025    }
1026
1027    env->fpscr &= ~FP_FPCC;
1028    env->fpscr |= ret << FPSCR_FPCC;
1029    env->crf[crfD] = ret;
1030    if (unlikely(ret == 0x01UL
1031                 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1032                     float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1033        /* sNaN comparison */
1034        float_invalid_op_vxsnan(env, GETPC());
1035    }
1036}
1037
1038void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1039                  uint32_t crfD)
1040{
1041    CPU_DoubleU farg1, farg2;
1042    uint32_t ret = 0;
1043
1044    farg1.ll = arg1;
1045    farg2.ll = arg2;
1046
1047    if (unlikely(float64_is_any_nan(farg1.d) ||
1048                 float64_is_any_nan(farg2.d))) {
1049        ret = 0x01UL;
1050    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1051        ret = 0x08UL;
1052    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1053        ret = 0x04UL;
1054    } else {
1055        ret = 0x02UL;
1056    }
1057
1058    env->fpscr &= ~FP_FPCC;
1059    env->fpscr |= ret << FPSCR_FPCC;
1060    env->crf[crfD] = (uint32_t) ret;
1061    if (unlikely(ret == 0x01UL)) {
1062        float_invalid_op_vxvc(env, 1, GETPC());
1063        if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1064            float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1065            /* sNaN comparison */
1066            float_invalid_op_vxsnan(env, GETPC());
1067        }
1068    }
1069}
1070
1071/* Single-precision floating-point conversions */
1072static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1073{
1074    CPU_FloatU u;
1075
1076    u.f = int32_to_float32(val, &env->vec_status);
1077
1078    return u.l;
1079}
1080
1081static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1082{
1083    CPU_FloatU u;
1084
1085    u.f = uint32_to_float32(val, &env->vec_status);
1086
1087    return u.l;
1088}
1089
1090static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1091{
1092    CPU_FloatU u;
1093
1094    u.l = val;
1095    /* NaN are not treated the same way IEEE 754 does */
1096    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1097        return 0;
1098    }
1099
1100    return float32_to_int32(u.f, &env->vec_status);
1101}
1102
1103static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1104{
1105    CPU_FloatU u;
1106
1107    u.l = val;
1108    /* NaN are not treated the same way IEEE 754 does */
1109    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1110        return 0;
1111    }
1112
1113    return float32_to_uint32(u.f, &env->vec_status);
1114}
1115
1116static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1117{
1118    CPU_FloatU u;
1119
1120    u.l = val;
1121    /* NaN are not treated the same way IEEE 754 does */
1122    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1123        return 0;
1124    }
1125
1126    return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1127}
1128
1129static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1130{
1131    CPU_FloatU u;
1132
1133    u.l = val;
1134    /* NaN are not treated the same way IEEE 754 does */
1135    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1136        return 0;
1137    }
1138
1139    return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1140}
1141
1142static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1143{
1144    CPU_FloatU u;
1145    float32 tmp;
1146
1147    u.f = int32_to_float32(val, &env->vec_status);
1148    tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1149    u.f = float32_div(u.f, tmp, &env->vec_status);
1150
1151    return u.l;
1152}
1153
1154static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1155{
1156    CPU_FloatU u;
1157    float32 tmp;
1158
1159    u.f = uint32_to_float32(val, &env->vec_status);
1160    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1161    u.f = float32_div(u.f, tmp, &env->vec_status);
1162
1163    return u.l;
1164}
1165
1166static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1167{
1168    CPU_FloatU u;
1169    float32 tmp;
1170
1171    u.l = val;
1172    /* NaN are not treated the same way IEEE 754 does */
1173    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1174        return 0;
1175    }
1176    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1177    u.f = float32_mul(u.f, tmp, &env->vec_status);
1178
1179    return float32_to_int32(u.f, &env->vec_status);
1180}
1181
1182static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1183{
1184    CPU_FloatU u;
1185    float32 tmp;
1186
1187    u.l = val;
1188    /* NaN are not treated the same way IEEE 754 does */
1189    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1190        return 0;
1191    }
1192    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1193    u.f = float32_mul(u.f, tmp, &env->vec_status);
1194
1195    return float32_to_uint32(u.f, &env->vec_status);
1196}
1197
1198#define HELPER_SPE_SINGLE_CONV(name)                              \
1199    uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1200    {                                                             \
1201        return e##name(env, val);                                 \
1202    }
1203/* efscfsi */
1204HELPER_SPE_SINGLE_CONV(fscfsi);
1205/* efscfui */
1206HELPER_SPE_SINGLE_CONV(fscfui);
1207/* efscfuf */
1208HELPER_SPE_SINGLE_CONV(fscfuf);
1209/* efscfsf */
1210HELPER_SPE_SINGLE_CONV(fscfsf);
1211/* efsctsi */
1212HELPER_SPE_SINGLE_CONV(fsctsi);
1213/* efsctui */
1214HELPER_SPE_SINGLE_CONV(fsctui);
1215/* efsctsiz */
1216HELPER_SPE_SINGLE_CONV(fsctsiz);
1217/* efsctuiz */
1218HELPER_SPE_SINGLE_CONV(fsctuiz);
1219/* efsctsf */
1220HELPER_SPE_SINGLE_CONV(fsctsf);
1221/* efsctuf */
1222HELPER_SPE_SINGLE_CONV(fsctuf);
1223
1224#define HELPER_SPE_VECTOR_CONV(name)                            \
1225    uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1226    {                                                           \
1227        return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1228            (uint64_t)e##name(env, val);                        \
1229    }
1230/* evfscfsi */
1231HELPER_SPE_VECTOR_CONV(fscfsi);
1232/* evfscfui */
1233HELPER_SPE_VECTOR_CONV(fscfui);
1234/* evfscfuf */
1235HELPER_SPE_VECTOR_CONV(fscfuf);
1236/* evfscfsf */
1237HELPER_SPE_VECTOR_CONV(fscfsf);
1238/* evfsctsi */
1239HELPER_SPE_VECTOR_CONV(fsctsi);
1240/* evfsctui */
1241HELPER_SPE_VECTOR_CONV(fsctui);
1242/* evfsctsiz */
1243HELPER_SPE_VECTOR_CONV(fsctsiz);
1244/* evfsctuiz */
1245HELPER_SPE_VECTOR_CONV(fsctuiz);
1246/* evfsctsf */
1247HELPER_SPE_VECTOR_CONV(fsctsf);
1248/* evfsctuf */
1249HELPER_SPE_VECTOR_CONV(fsctuf);
1250
1251/* Single-precision floating-point arithmetic */
1252static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1253{
1254    CPU_FloatU u1, u2;
1255
1256    u1.l = op1;
1257    u2.l = op2;
1258    u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1259    return u1.l;
1260}
1261
1262static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1263{
1264    CPU_FloatU u1, u2;
1265
1266    u1.l = op1;
1267    u2.l = op2;
1268    u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1269    return u1.l;
1270}
1271
1272static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1273{
1274    CPU_FloatU u1, u2;
1275
1276    u1.l = op1;
1277    u2.l = op2;
1278    u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1279    return u1.l;
1280}
1281
1282static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1283{
1284    CPU_FloatU u1, u2;
1285
1286    u1.l = op1;
1287    u2.l = op2;
1288    u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1289    return u1.l;
1290}
1291
1292#define HELPER_SPE_SINGLE_ARITH(name)                                   \
1293    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1294    {                                                                   \
1295        return e##name(env, op1, op2);                                  \
1296    }
1297/* efsadd */
1298HELPER_SPE_SINGLE_ARITH(fsadd);
1299/* efssub */
1300HELPER_SPE_SINGLE_ARITH(fssub);
1301/* efsmul */
1302HELPER_SPE_SINGLE_ARITH(fsmul);
1303/* efsdiv */
1304HELPER_SPE_SINGLE_ARITH(fsdiv);
1305
1306#define HELPER_SPE_VECTOR_ARITH(name)                                   \
1307    uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1308    {                                                                   \
1309        return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1310            (uint64_t)e##name(env, op1, op2);                           \
1311    }
1312/* evfsadd */
1313HELPER_SPE_VECTOR_ARITH(fsadd);
1314/* evfssub */
1315HELPER_SPE_VECTOR_ARITH(fssub);
1316/* evfsmul */
1317HELPER_SPE_VECTOR_ARITH(fsmul);
1318/* evfsdiv */
1319HELPER_SPE_VECTOR_ARITH(fsdiv);
1320
1321/* Single-precision floating-point comparisons */
1322static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1323{
1324    CPU_FloatU u1, u2;
1325
1326    u1.l = op1;
1327    u2.l = op2;
1328    return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1329}
1330
1331static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1332{
1333    CPU_FloatU u1, u2;
1334
1335    u1.l = op1;
1336    u2.l = op2;
1337    return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1338}
1339
1340static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1341{
1342    CPU_FloatU u1, u2;
1343
1344    u1.l = op1;
1345    u2.l = op2;
1346    return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1347}
1348
1349static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1350{
1351    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1352    return efscmplt(env, op1, op2);
1353}
1354
1355static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1356{
1357    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1358    return efscmpgt(env, op1, op2);
1359}
1360
1361static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1362{
1363    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1364    return efscmpeq(env, op1, op2);
1365}
1366
1367#define HELPER_SINGLE_SPE_CMP(name)                                     \
1368    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1369    {                                                                   \
1370        return e##name(env, op1, op2);                                  \
1371    }
1372/* efststlt */
1373HELPER_SINGLE_SPE_CMP(fststlt);
1374/* efststgt */
1375HELPER_SINGLE_SPE_CMP(fststgt);
1376/* efststeq */
1377HELPER_SINGLE_SPE_CMP(fststeq);
1378/* efscmplt */
1379HELPER_SINGLE_SPE_CMP(fscmplt);
1380/* efscmpgt */
1381HELPER_SINGLE_SPE_CMP(fscmpgt);
1382/* efscmpeq */
1383HELPER_SINGLE_SPE_CMP(fscmpeq);
1384
1385static inline uint32_t evcmp_merge(int t0, int t1)
1386{
1387    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1388}
1389
1390#define HELPER_VECTOR_SPE_CMP(name)                                     \
1391    uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1392    {                                                                   \
1393        return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1394                           e##name(env, op1, op2));                     \
1395    }
1396/* evfststlt */
1397HELPER_VECTOR_SPE_CMP(fststlt);
1398/* evfststgt */
1399HELPER_VECTOR_SPE_CMP(fststgt);
1400/* evfststeq */
1401HELPER_VECTOR_SPE_CMP(fststeq);
1402/* evfscmplt */
1403HELPER_VECTOR_SPE_CMP(fscmplt);
1404/* evfscmpgt */
1405HELPER_VECTOR_SPE_CMP(fscmpgt);
1406/* evfscmpeq */
1407HELPER_VECTOR_SPE_CMP(fscmpeq);
1408
1409/* Double-precision floating-point conversion */
1410uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1411{
1412    CPU_DoubleU u;
1413
1414    u.d = int32_to_float64(val, &env->vec_status);
1415
1416    return u.ll;
1417}
1418
1419uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1420{
1421    CPU_DoubleU u;
1422
1423    u.d = int64_to_float64(val, &env->vec_status);
1424
1425    return u.ll;
1426}
1427
1428uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1429{
1430    CPU_DoubleU u;
1431
1432    u.d = uint32_to_float64(val, &env->vec_status);
1433
1434    return u.ll;
1435}
1436
1437uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1438{
1439    CPU_DoubleU u;
1440
1441    u.d = uint64_to_float64(val, &env->vec_status);
1442
1443    return u.ll;
1444}
1445
1446uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1447{
1448    CPU_DoubleU u;
1449
1450    u.ll = val;
1451    /* NaN are not treated the same way IEEE 754 does */
1452    if (unlikely(float64_is_any_nan(u.d))) {
1453        return 0;
1454    }
1455
1456    return float64_to_int32(u.d, &env->vec_status);
1457}
1458
1459uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1460{
1461    CPU_DoubleU u;
1462
1463    u.ll = val;
1464    /* NaN are not treated the same way IEEE 754 does */
1465    if (unlikely(float64_is_any_nan(u.d))) {
1466        return 0;
1467    }
1468
1469    return float64_to_uint32(u.d, &env->vec_status);
1470}
1471
1472uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1473{
1474    CPU_DoubleU u;
1475
1476    u.ll = val;
1477    /* NaN are not treated the same way IEEE 754 does */
1478    if (unlikely(float64_is_any_nan(u.d))) {
1479        return 0;
1480    }
1481
1482    return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1483}
1484
1485uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1486{
1487    CPU_DoubleU u;
1488
1489    u.ll = val;
1490    /* NaN are not treated the same way IEEE 754 does */
1491    if (unlikely(float64_is_any_nan(u.d))) {
1492        return 0;
1493    }
1494
1495    return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1496}
1497
1498uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1499{
1500    CPU_DoubleU u;
1501
1502    u.ll = val;
1503    /* NaN are not treated the same way IEEE 754 does */
1504    if (unlikely(float64_is_any_nan(u.d))) {
1505        return 0;
1506    }
1507
1508    return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1509}
1510
1511uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1512{
1513    CPU_DoubleU u;
1514
1515    u.ll = val;
1516    /* NaN are not treated the same way IEEE 754 does */
1517    if (unlikely(float64_is_any_nan(u.d))) {
1518        return 0;
1519    }
1520
1521    return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1522}
1523
1524uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1525{
1526    CPU_DoubleU u;
1527    float64 tmp;
1528
1529    u.d = int32_to_float64(val, &env->vec_status);
1530    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1531    u.d = float64_div(u.d, tmp, &env->vec_status);
1532
1533    return u.ll;
1534}
1535
1536uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1537{
1538    CPU_DoubleU u;
1539    float64 tmp;
1540
1541    u.d = uint32_to_float64(val, &env->vec_status);
1542    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1543    u.d = float64_div(u.d, tmp, &env->vec_status);
1544
1545    return u.ll;
1546}
1547
1548uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1549{
1550    CPU_DoubleU u;
1551    float64 tmp;
1552
1553    u.ll = val;
1554    /* NaN are not treated the same way IEEE 754 does */
1555    if (unlikely(float64_is_any_nan(u.d))) {
1556        return 0;
1557    }
1558    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1559    u.d = float64_mul(u.d, tmp, &env->vec_status);
1560
1561    return float64_to_int32(u.d, &env->vec_status);
1562}
1563
1564uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1565{
1566    CPU_DoubleU u;
1567    float64 tmp;
1568
1569    u.ll = val;
1570    /* NaN are not treated the same way IEEE 754 does */
1571    if (unlikely(float64_is_any_nan(u.d))) {
1572        return 0;
1573    }
1574    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1575    u.d = float64_mul(u.d, tmp, &env->vec_status);
1576
1577    return float64_to_uint32(u.d, &env->vec_status);
1578}
1579
1580uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1581{
1582    CPU_DoubleU u1;
1583    CPU_FloatU u2;
1584
1585    u1.ll = val;
1586    u2.f = float64_to_float32(u1.d, &env->vec_status);
1587
1588    return u2.l;
1589}
1590
1591uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1592{
1593    CPU_DoubleU u2;
1594    CPU_FloatU u1;
1595
1596    u1.l = val;
1597    u2.d = float32_to_float64(u1.f, &env->vec_status);
1598
1599    return u2.ll;
1600}
1601
1602/* Double precision fixed-point arithmetic */
1603uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1604{
1605    CPU_DoubleU u1, u2;
1606
1607    u1.ll = op1;
1608    u2.ll = op2;
1609    u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1610    return u1.ll;
1611}
1612
1613uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1614{
1615    CPU_DoubleU u1, u2;
1616
1617    u1.ll = op1;
1618    u2.ll = op2;
1619    u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1620    return u1.ll;
1621}
1622
1623uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1624{
1625    CPU_DoubleU u1, u2;
1626
1627    u1.ll = op1;
1628    u2.ll = op2;
1629    u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1630    return u1.ll;
1631}
1632
1633uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1634{
1635    CPU_DoubleU u1, u2;
1636
1637    u1.ll = op1;
1638    u2.ll = op2;
1639    u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1640    return u1.ll;
1641}
1642
1643/* Double precision floating point helpers */
1644uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1645{
1646    CPU_DoubleU u1, u2;
1647
1648    u1.ll = op1;
1649    u2.ll = op2;
1650    return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1651}
1652
1653uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1654{
1655    CPU_DoubleU u1, u2;
1656
1657    u1.ll = op1;
1658    u2.ll = op2;
1659    return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1660}
1661
1662uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1663{
1664    CPU_DoubleU u1, u2;
1665
1666    u1.ll = op1;
1667    u2.ll = op2;
1668    return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1669}
1670
1671uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1672{
1673    /* XXX: TODO: test special values (NaN, infinites, ...) */
1674    return helper_efdtstlt(env, op1, op2);
1675}
1676
1677uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1678{
1679    /* XXX: TODO: test special values (NaN, infinites, ...) */
1680    return helper_efdtstgt(env, op1, op2);
1681}
1682
1683uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1684{
1685    /* XXX: TODO: test special values (NaN, infinites, ...) */
1686    return helper_efdtsteq(env, op1, op2);
1687}
1688
1689#define float64_to_float64(x, env) x
1690
1691
1692/*
1693 * VSX_ADD_SUB - VSX floating point add/subtract
1694 *   name  - instruction mnemonic
1695 *   op    - operation (add or sub)
1696 *   nels  - number of elements (1, 2 or 4)
1697 *   tp    - type (float32 or float64)
1698 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1699 *   sfifprf - set FI and FPRF
1700 */
1701#define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp)                  \
1702void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \
1703                   ppc_vsr_t *xa, ppc_vsr_t *xb)                             \
1704{                                                                            \
1705    ppc_vsr_t t = { };                                                       \
1706    int i;                                                                   \
1707                                                                             \
1708    helper_reset_fpstatus(env);                                              \
1709                                                                             \
1710    for (i = 0; i < nels; i++) {                                             \
1711        float_status tstat = env->fp_status;                                 \
1712        set_float_exception_flags(0, &tstat);                                \
1713        t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \
1714        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1715                                                                             \
1716        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1717            float_invalid_op_addsub(env, tstat.float_exception_flags,        \
1718                                    sfifprf, GETPC());                       \
1719        }                                                                    \
1720                                                                             \
1721        if (r2sp) {                                                          \
1722            t.fld = do_frsp(env, t.fld, GETPC());                            \
1723        }                                                                    \
1724                                                                             \
1725        if (sfifprf) {                                                       \
1726            helper_compute_fprf_float64(env, t.fld);                         \
1727        }                                                                    \
1728    }                                                                        \
1729    *xt = t;                                                                 \
1730    do_float_check_status(env, sfifprf, GETPC());                            \
1731}
1732
1733VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1734VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1735VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1736VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1737VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1738VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1739VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1740VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1741
1742void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1743                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1744{
1745    ppc_vsr_t t = *xt;
1746    float_status tstat;
1747
1748    helper_reset_fpstatus(env);
1749
1750    tstat = env->fp_status;
1751    if (unlikely(Rc(opcode) != 0)) {
1752        tstat.float_rounding_mode = float_round_to_odd;
1753    }
1754
1755    set_float_exception_flags(0, &tstat);
1756    t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1757    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1758
1759    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1760        float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
1761    }
1762
1763    helper_compute_fprf_float128(env, t.f128);
1764
1765    *xt = t;
1766    do_float_check_status(env, true, GETPC());
1767}
1768
1769/*
1770 * VSX_MUL - VSX floating point multiply
1771 *   op    - instruction mnemonic
1772 *   nels  - number of elements (1, 2 or 4)
1773 *   tp    - type (float32 or float64)
1774 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1775 *   sfifprf - set FI and FPRF
1776 */
1777#define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp)                            \
1778void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \
1779                 ppc_vsr_t *xa, ppc_vsr_t *xb)                               \
1780{                                                                            \
1781    ppc_vsr_t t = { };                                                       \
1782    int i;                                                                   \
1783                                                                             \
1784    helper_reset_fpstatus(env);                                              \
1785                                                                             \
1786    for (i = 0; i < nels; i++) {                                             \
1787        float_status tstat = env->fp_status;                                 \
1788        set_float_exception_flags(0, &tstat);                                \
1789        t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \
1790        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1791                                                                             \
1792        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1793            float_invalid_op_mul(env, tstat.float_exception_flags,           \
1794                                 sfifprf, GETPC());                          \
1795        }                                                                    \
1796                                                                             \
1797        if (r2sp) {                                                          \
1798            t.fld = do_frsp(env, t.fld, GETPC());                            \
1799        }                                                                    \
1800                                                                             \
1801        if (sfifprf) {                                                       \
1802            helper_compute_fprf_float64(env, t.fld);                         \
1803        }                                                                    \
1804    }                                                                        \
1805                                                                             \
1806    *xt = t;                                                                 \
1807    do_float_check_status(env, sfifprf, GETPC());                            \
1808}
1809
1810VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1811VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1812VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1813VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1814
1815void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1816                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1817{
1818    ppc_vsr_t t = *xt;
1819    float_status tstat;
1820
1821    helper_reset_fpstatus(env);
1822    tstat = env->fp_status;
1823    if (unlikely(Rc(opcode) != 0)) {
1824        tstat.float_rounding_mode = float_round_to_odd;
1825    }
1826
1827    set_float_exception_flags(0, &tstat);
1828    t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1829    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1830
1831    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1832        float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC());
1833    }
1834    helper_compute_fprf_float128(env, t.f128);
1835
1836    *xt = t;
1837    do_float_check_status(env, true, GETPC());
1838}
1839
1840/*
1841 * VSX_DIV - VSX floating point divide
1842 *   op    - instruction mnemonic
1843 *   nels  - number of elements (1, 2 or 4)
1844 *   tp    - type (float32 or float64)
1845 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1846 *   sfifprf - set FI and FPRF
1847 */
1848#define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp)                             \
1849void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
1850                 ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
1851{                                                                             \
1852    ppc_vsr_t t = { };                                                        \
1853    int i;                                                                    \
1854                                                                              \
1855    helper_reset_fpstatus(env);                                               \
1856                                                                              \
1857    for (i = 0; i < nels; i++) {                                              \
1858        float_status tstat = env->fp_status;                                  \
1859        set_float_exception_flags(0, &tstat);                                 \
1860        t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \
1861        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1862                                                                              \
1863        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1864            float_invalid_op_div(env, tstat.float_exception_flags,            \
1865                                 sfifprf, GETPC());                           \
1866        }                                                                     \
1867        if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1868            float_zero_divide_excp(env, GETPC());                             \
1869        }                                                                     \
1870                                                                              \
1871        if (r2sp) {                                                           \
1872            t.fld = do_frsp(env, t.fld, GETPC());                             \
1873        }                                                                     \
1874                                                                              \
1875        if (sfifprf) {                                                        \
1876            helper_compute_fprf_float64(env, t.fld);                          \
1877        }                                                                     \
1878    }                                                                         \
1879                                                                              \
1880    *xt = t;                                                                  \
1881    do_float_check_status(env, sfifprf, GETPC());                             \
1882}
1883
1884VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1885VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1886VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1887VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1888
1889void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1890                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1891{
1892    ppc_vsr_t t = *xt;
1893    float_status tstat;
1894
1895    helper_reset_fpstatus(env);
1896    tstat = env->fp_status;
1897    if (unlikely(Rc(opcode) != 0)) {
1898        tstat.float_rounding_mode = float_round_to_odd;
1899    }
1900
1901    set_float_exception_flags(0, &tstat);
1902    t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1903    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1904
1905    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1906        float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC());
1907    }
1908    if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1909        float_zero_divide_excp(env, GETPC());
1910    }
1911
1912    helper_compute_fprf_float128(env, t.f128);
1913    *xt = t;
1914    do_float_check_status(env, true, GETPC());
1915}
1916
1917/*
1918 * VSX_RE  - VSX floating point reciprocal estimate
1919 *   op    - instruction mnemonic
1920 *   nels  - number of elements (1, 2 or 4)
1921 *   tp    - type (float32 or float64)
1922 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1923 *   sfifprf - set FI and FPRF
1924 */
1925#define VSX_RE(op, nels, tp, fld, sfifprf, r2sp)                              \
1926void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \
1927{                                                                             \
1928    ppc_vsr_t t = { };                                                        \
1929    int i;                                                                    \
1930                                                                              \
1931    helper_reset_fpstatus(env);                                               \
1932                                                                              \
1933    for (i = 0; i < nels; i++) {                                              \
1934        if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
1935            float_invalid_op_vxsnan(env, GETPC());                            \
1936        }                                                                     \
1937        t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \
1938                                                                              \
1939        if (r2sp) {                                                           \
1940            t.fld = do_frsp(env, t.fld, GETPC());                             \
1941        }                                                                     \
1942                                                                              \
1943        if (sfifprf) {                                                        \
1944            helper_compute_fprf_float64(env, t.fld);                          \
1945        }                                                                     \
1946    }                                                                         \
1947                                                                              \
1948    *xt = t;                                                                  \
1949    do_float_check_status(env, sfifprf, GETPC());                             \
1950}
1951
1952VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1953VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1954VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1955VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1956
1957/*
1958 * VSX_SQRT - VSX floating point square root
1959 *   op    - instruction mnemonic
1960 *   nels  - number of elements (1, 2 or 4)
1961 *   tp    - type (float32 or float64)
1962 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1963 *   sfifprf - set FI and FPRF
1964 */
1965#define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp)                           \
1966void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1967{                                                                            \
1968    ppc_vsr_t t = { };                                                       \
1969    int i;                                                                   \
1970                                                                             \
1971    helper_reset_fpstatus(env);                                              \
1972                                                                             \
1973    for (i = 0; i < nels; i++) {                                             \
1974        float_status tstat = env->fp_status;                                 \
1975        set_float_exception_flags(0, &tstat);                                \
1976        t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1977        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1978                                                                             \
1979        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1980            float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
1981                                  sfifprf, GETPC());                         \
1982        }                                                                    \
1983                                                                             \
1984        if (r2sp) {                                                          \
1985            t.fld = do_frsp(env, t.fld, GETPC());                            \
1986        }                                                                    \
1987                                                                             \
1988        if (sfifprf) {                                                       \
1989            helper_compute_fprf_float64(env, t.fld);                         \
1990        }                                                                    \
1991    }                                                                        \
1992                                                                             \
1993    *xt = t;                                                                 \
1994    do_float_check_status(env, sfifprf, GETPC());                            \
1995}
1996
1997VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1998VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1999VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2000VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2001
2002/*
2003 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2004 *   op    - instruction mnemonic
2005 *   nels  - number of elements (1, 2 or 4)
2006 *   tp    - type (float32 or float64)
2007 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2008 *   sfifprf - set FI and FPRF
2009 */
2010#define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp)                         \
2011void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2012{                                                                            \
2013    ppc_vsr_t t = { };                                                       \
2014    int i;                                                                   \
2015                                                                             \
2016    helper_reset_fpstatus(env);                                              \
2017                                                                             \
2018    for (i = 0; i < nels; i++) {                                             \
2019        float_status tstat = env->fp_status;                                 \
2020        set_float_exception_flags(0, &tstat);                                \
2021        t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
2022        t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \
2023        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2024        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2025            float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
2026                                  sfifprf, GETPC());                         \
2027        }                                                                    \
2028        if (r2sp) {                                                          \
2029            t.fld = do_frsp(env, t.fld, GETPC());                            \
2030        }                                                                    \
2031                                                                             \
2032        if (sfifprf) {                                                       \
2033            helper_compute_fprf_float64(env, t.fld);                         \
2034        }                                                                    \
2035    }                                                                        \
2036                                                                             \
2037    *xt = t;                                                                 \
2038    do_float_check_status(env, sfifprf, GETPC());                            \
2039}
2040
2041VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2042VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2043VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2044VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2045
2046/*
2047 * VSX_TDIV - VSX floating point test for divide
2048 *   op    - instruction mnemonic
2049 *   nels  - number of elements (1, 2 or 4)
2050 *   tp    - type (float32 or float64)
2051 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2052 *   emin  - minimum unbiased exponent
2053 *   emax  - maximum unbiased exponent
2054 *   nbits - number of fraction bits
2055 */
2056#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2057void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2058                 ppc_vsr_t *xa, ppc_vsr_t *xb)                          \
2059{                                                                       \
2060    int i;                                                              \
2061    int fe_flag = 0;                                                    \
2062    int fg_flag = 0;                                                    \
2063                                                                        \
2064    for (i = 0; i < nels; i++) {                                        \
2065        if (unlikely(tp##_is_infinity(xa->fld) ||                       \
2066                     tp##_is_infinity(xb->fld) ||                       \
2067                     tp##_is_zero(xb->fld))) {                          \
2068            fe_flag = 1;                                                \
2069            fg_flag = 1;                                                \
2070        } else {                                                        \
2071            int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \
2072            int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2073                                                                        \
2074            if (unlikely(tp##_is_any_nan(xa->fld) ||                    \
2075                         tp##_is_any_nan(xb->fld))) {                   \
2076                fe_flag = 1;                                            \
2077            } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
2078                fe_flag = 1;                                            \
2079            } else if (!tp##_is_zero(xa->fld) &&                        \
2080                       (((e_a - e_b) >= emax) ||                        \
2081                        ((e_a - e_b) <= (emin + 1)) ||                  \
2082                        (e_a <= (emin + nbits)))) {                     \
2083                fe_flag = 1;                                            \
2084            }                                                           \
2085                                                                        \
2086            if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2087                /*                                                      \
2088                 * XB is not zero because of the above check and so     \
2089                 * must be denormalized.                                \
2090                 */                                                     \
2091                fg_flag = 1;                                            \
2092            }                                                           \
2093        }                                                               \
2094    }                                                                   \
2095                                                                        \
2096    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2097}
2098
2099VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2100VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2101VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2102
2103/*
2104 * VSX_TSQRT - VSX floating point test for square root
2105 *   op    - instruction mnemonic
2106 *   nels  - number of elements (1, 2 or 4)
2107 *   tp    - type (float32 or float64)
2108 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2109 *   emin  - minimum unbiased exponent
2110 *   emax  - maximum unbiased exponent
2111 *   nbits - number of fraction bits
2112 */
2113#define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2114void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \
2115{                                                                       \
2116    int i;                                                              \
2117    int fe_flag = 0;                                                    \
2118    int fg_flag = 0;                                                    \
2119                                                                        \
2120    for (i = 0; i < nels; i++) {                                        \
2121        if (unlikely(tp##_is_infinity(xb->fld) ||                       \
2122                     tp##_is_zero(xb->fld))) {                          \
2123            fe_flag = 1;                                                \
2124            fg_flag = 1;                                                \
2125        } else {                                                        \
2126            int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2127                                                                        \
2128            if (unlikely(tp##_is_any_nan(xb->fld))) {                   \
2129                fe_flag = 1;                                            \
2130            } else if (unlikely(tp##_is_zero(xb->fld))) {               \
2131                fe_flag = 1;                                            \
2132            } else if (unlikely(tp##_is_neg(xb->fld))) {                \
2133                fe_flag = 1;                                            \
2134            } else if (!tp##_is_zero(xb->fld) &&                        \
2135                       (e_b <= (emin + nbits))) {                       \
2136                fe_flag = 1;                                            \
2137            }                                                           \
2138                                                                        \
2139            if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2140                /*                                                      \
2141                 * XB is not zero because of the above check and        \
2142                 * therefore must be denormalized.                      \
2143                 */                                                     \
2144                fg_flag = 1;                                            \
2145            }                                                           \
2146        }                                                               \
2147    }                                                                   \
2148                                                                        \
2149    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2150}
2151
2152VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2153VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2154VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2155
2156/*
2157 * VSX_MADD - VSX floating point muliply/add variations
2158 *   op    - instruction mnemonic
2159 *   nels  - number of elements (1, 2 or 4)
2160 *   tp    - type (float32 or float64)
2161 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2162 *   maddflgs - flags for the float*muladd routine that control the
2163 *           various forms (madd, msub, nmadd, nmsub)
2164 *   sfifprf - set FI and FPRF
2165 */
2166#define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf)                        \
2167void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2168                 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3)                 \
2169{                                                                             \
2170    ppc_vsr_t t = { };                                                        \
2171    int i;                                                                    \
2172                                                                              \
2173    helper_reset_fpstatus(env);                                               \
2174                                                                              \
2175    for (i = 0; i < nels; i++) {                                              \
2176        float_status tstat = env->fp_status;                                  \
2177        set_float_exception_flags(0, &tstat);                                 \
2178        t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat);     \
2179        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2180                                                                              \
2181        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2182            float_invalid_op_madd(env, tstat.float_exception_flags,           \
2183                                  sfifprf, GETPC());                          \
2184        }                                                                     \
2185                                                                              \
2186        if (sfifprf) {                                                        \
2187            helper_compute_fprf_float64(env, t.fld);                          \
2188        }                                                                     \
2189    }                                                                         \
2190    *xt = t;                                                                  \
2191    do_float_check_status(env, sfifprf, GETPC());                             \
2192}
2193
2194VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1)
2195VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1)
2196VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1)
2197VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1)
2198VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1)
2199VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1)
2200VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1)
2201VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1)
2202
2203VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0)
2204VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0)
2205VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0)
2206VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0)
2207
2208VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0)
2209VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0)
2210VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0)
2211VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0)
2212
2213/*
2214 * VSX_MADDQ - VSX floating point quad-precision muliply/add
2215 *   op    - instruction mnemonic
2216 *   maddflgs - flags for the float*muladd routine that control the
2217 *           various forms (madd, msub, nmadd, nmsub)
2218 *   ro    - round to odd
2219 */
2220#define VSX_MADDQ(op, maddflgs, ro)                                            \
2221void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2222                 ppc_vsr_t *s3)                                                \
2223{                                                                              \
2224    ppc_vsr_t t = *xt;                                                         \
2225                                                                               \
2226    helper_reset_fpstatus(env);                                                \
2227                                                                               \
2228    float_status tstat = env->fp_status;                                       \
2229    set_float_exception_flags(0, &tstat);                                      \
2230    if (ro) {                                                                  \
2231        tstat.float_rounding_mode = float_round_to_odd;                        \
2232    }                                                                          \
2233    t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat);  \
2234    env->fp_status.float_exception_flags |= tstat.float_exception_flags;       \
2235                                                                               \
2236    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {          \
2237        float_invalid_op_madd(env, tstat.float_exception_flags,                \
2238                              false, GETPC());                                 \
2239    }                                                                          \
2240                                                                               \
2241    helper_compute_fprf_float128(env, t.f128);                                 \
2242    *xt = t;                                                                   \
2243    do_float_check_status(env, true, GETPC());                                 \
2244}
2245
2246VSX_MADDQ(XSMADDQP, MADD_FLGS, 0)
2247VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1)
2248VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0)
2249VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1)
2250VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0)
2251VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1)
2252VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0)
2253VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0)
2254
2255/*
2256 * VSX_SCALAR_CMP - VSX scalar floating point compare
2257 *   op    - instruction mnemonic
2258 *   tp    - type
2259 *   cmp   - comparison operation
2260 *   fld   - vsr_t field
2261 *   svxvc - set VXVC bit
2262 */
2263#define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc)                               \
2264        void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2265                ppc_vsr_t *xa, ppc_vsr_t *xb)                                 \
2266{                                                                             \
2267    int flags;                                                                \
2268    bool r, vxvc;                                                             \
2269                                                                              \
2270    helper_reset_fpstatus(env);                                               \
2271                                                                              \
2272    if (svxvc) {                                                              \
2273        r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status);                    \
2274    } else {                                                                  \
2275        r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status);            \
2276    }                                                                         \
2277                                                                              \
2278    flags = get_float_exception_flags(&env->fp_status);                       \
2279    if (unlikely(flags & float_flag_invalid)) {                               \
2280        vxvc = svxvc;                                                         \
2281        if (flags & float_flag_invalid_snan) {                                \
2282            float_invalid_op_vxsnan(env, GETPC());                            \
2283            vxvc &= !(env->fpscr & FP_VE);                                    \
2284        }                                                                     \
2285        if (vxvc) {                                                           \
2286            float_invalid_op_vxvc(env, 0, GETPC());                           \
2287        }                                                                     \
2288    }                                                                         \
2289                                                                              \
2290    memset(xt, 0, sizeof(*xt));                                               \
2291    memset(&xt->fld, -r, sizeof(xt->fld));                                    \
2292    do_float_check_status(env, false, GETPC());                               \
2293}
2294
2295VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0)
2296VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1)
2297VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1)
2298VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0)
2299VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1)
2300VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1)
2301
2302void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2303                       ppc_vsr_t *xa, ppc_vsr_t *xb)
2304{
2305    int64_t exp_a, exp_b;
2306    uint32_t cc;
2307
2308    exp_a = extract64(xa->VsrD(0), 52, 11);
2309    exp_b = extract64(xb->VsrD(0), 52, 11);
2310
2311    if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2312                 float64_is_any_nan(xb->VsrD(0)))) {
2313        cc = CRF_SO;
2314    } else {
2315        if (exp_a < exp_b) {
2316            cc = CRF_LT;
2317        } else if (exp_a > exp_b) {
2318            cc = CRF_GT;
2319        } else {
2320            cc = CRF_EQ;
2321        }
2322    }
2323
2324    env->fpscr &= ~FP_FPCC;
2325    env->fpscr |= cc << FPSCR_FPCC;
2326    env->crf[BF(opcode)] = cc;
2327
2328    do_float_check_status(env, false, GETPC());
2329}
2330
2331void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2332                       ppc_vsr_t *xa, ppc_vsr_t *xb)
2333{
2334    int64_t exp_a, exp_b;
2335    uint32_t cc;
2336
2337    exp_a = extract64(xa->VsrD(0), 48, 15);
2338    exp_b = extract64(xb->VsrD(0), 48, 15);
2339
2340    if (unlikely(float128_is_any_nan(xa->f128) ||
2341                 float128_is_any_nan(xb->f128))) {
2342        cc = CRF_SO;
2343    } else {
2344        if (exp_a < exp_b) {
2345            cc = CRF_LT;
2346        } else if (exp_a > exp_b) {
2347            cc = CRF_GT;
2348        } else {
2349            cc = CRF_EQ;
2350        }
2351    }
2352
2353    env->fpscr &= ~FP_FPCC;
2354    env->fpscr |= cc << FPSCR_FPCC;
2355    env->crf[BF(opcode)] = cc;
2356
2357    do_float_check_status(env, false, GETPC());
2358}
2359
2360static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2361                                 int crf_idx, bool ordered)
2362{
2363    uint32_t cc;
2364    bool vxsnan_flag = false, vxvc_flag = false;
2365
2366    helper_reset_fpstatus(env);
2367
2368    switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2369    case float_relation_less:
2370        cc = CRF_LT;
2371        break;
2372    case float_relation_equal:
2373        cc = CRF_EQ;
2374        break;
2375    case float_relation_greater:
2376        cc = CRF_GT;
2377        break;
2378    case float_relation_unordered:
2379        cc = CRF_SO;
2380
2381        if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2382            float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2383            vxsnan_flag = true;
2384            if (!(env->fpscr & FP_VE) && ordered) {
2385                vxvc_flag = true;
2386            }
2387        } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2388                   float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2389            if (ordered) {
2390                vxvc_flag = true;
2391            }
2392        }
2393
2394        break;
2395    default:
2396        g_assert_not_reached();
2397    }
2398
2399    env->fpscr &= ~FP_FPCC;
2400    env->fpscr |= cc << FPSCR_FPCC;
2401    env->crf[crf_idx] = cc;
2402
2403    if (vxsnan_flag) {
2404        float_invalid_op_vxsnan(env, GETPC());
2405    }
2406    if (vxvc_flag) {
2407        float_invalid_op_vxvc(env, 0, GETPC());
2408    }
2409
2410    do_float_check_status(env, false, GETPC());
2411}
2412
2413void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2414                     ppc_vsr_t *xb)
2415{
2416    do_scalar_cmp(env, xa, xb, BF(opcode), true);
2417}
2418
2419void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2420                     ppc_vsr_t *xb)
2421{
2422    do_scalar_cmp(env, xa, xb, BF(opcode), false);
2423}
2424
2425static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2426                                  ppc_vsr_t *xb, int crf_idx, bool ordered)
2427{
2428    uint32_t cc;
2429    bool vxsnan_flag = false, vxvc_flag = false;
2430
2431    helper_reset_fpstatus(env);
2432
2433    switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2434    case float_relation_less:
2435        cc = CRF_LT;
2436        break;
2437    case float_relation_equal:
2438        cc = CRF_EQ;
2439        break;
2440    case float_relation_greater:
2441        cc = CRF_GT;
2442        break;
2443    case float_relation_unordered:
2444        cc = CRF_SO;
2445
2446        if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2447            float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2448            vxsnan_flag = true;
2449            if (!(env->fpscr & FP_VE) && ordered) {
2450                vxvc_flag = true;
2451            }
2452        } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2453                   float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2454            if (ordered) {
2455                vxvc_flag = true;
2456            }
2457        }
2458
2459        break;
2460    default:
2461        g_assert_not_reached();
2462    }
2463
2464    env->fpscr &= ~FP_FPCC;
2465    env->fpscr |= cc << FPSCR_FPCC;
2466    env->crf[crf_idx] = cc;
2467
2468    if (vxsnan_flag) {
2469        float_invalid_op_vxsnan(env, GETPC());
2470    }
2471    if (vxvc_flag) {
2472        float_invalid_op_vxvc(env, 0, GETPC());
2473    }
2474
2475    do_float_check_status(env, false, GETPC());
2476}
2477
2478void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2479                     ppc_vsr_t *xb)
2480{
2481    do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2482}
2483
2484void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2485                     ppc_vsr_t *xb)
2486{
2487    do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2488}
2489
2490/*
2491 * VSX_MAX_MIN - VSX floating point maximum/minimum
2492 *   name  - instruction mnemonic
2493 *   op    - operation (max or min)
2494 *   nels  - number of elements (1, 2 or 4)
2495 *   tp    - type (float32 or float64)
2496 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2497 */
2498#define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2499void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \
2500                   ppc_vsr_t *xa, ppc_vsr_t *xb)                              \
2501{                                                                             \
2502    ppc_vsr_t t = { };                                                        \
2503    int i;                                                                    \
2504                                                                              \
2505    for (i = 0; i < nels; i++) {                                              \
2506        t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \
2507        if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \
2508                     tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2509            float_invalid_op_vxsnan(env, GETPC());                            \
2510        }                                                                     \
2511    }                                                                         \
2512                                                                              \
2513    *xt = t;                                                                  \
2514    do_float_check_status(env, false, GETPC());                               \
2515}
2516
2517VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2518VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2519VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2520VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2521VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2522VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2523
2524#define VSX_MAX_MINC(name, max, tp, fld)                                      \
2525void helper_##name(CPUPPCState *env,                                          \
2526                   ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2527{                                                                             \
2528    ppc_vsr_t t = { };                                                        \
2529    bool first;                                                               \
2530                                                                              \
2531    helper_reset_fpstatus(env);                                               \
2532                                                                              \
2533    if (max) {                                                                \
2534        first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status);             \
2535    } else {                                                                  \
2536        first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status);             \
2537    }                                                                         \
2538                                                                              \
2539    if (first) {                                                              \
2540        t.fld = xa->fld;                                                      \
2541    } else {                                                                  \
2542        t.fld = xb->fld;                                                      \
2543        if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2544            float_invalid_op_vxsnan(env, GETPC());                            \
2545        }                                                                     \
2546    }                                                                         \
2547                                                                              \
2548    *xt = t;                                                                  \
2549}
2550
2551VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0));
2552VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0));
2553VSX_MAX_MINC(XSMAXCQP, true, float128, f128);
2554VSX_MAX_MINC(XSMINCQP, false, float128, f128);
2555
2556#define VSX_MAX_MINJ(name, max)                                               \
2557void helper_##name(CPUPPCState *env,                                          \
2558                   ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2559{                                                                             \
2560    ppc_vsr_t t = { };                                                        \
2561    bool vxsnan_flag = false, vex_flag = false;                               \
2562                                                                              \
2563    if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \
2564        if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \
2565            vxsnan_flag = true;                                               \
2566        }                                                                     \
2567        t.VsrD(0) = xa->VsrD(0);                                              \
2568    } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \
2569        if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2570            vxsnan_flag = true;                                               \
2571        }                                                                     \
2572        t.VsrD(0) = xb->VsrD(0);                                              \
2573    } else if (float64_is_zero(xa->VsrD(0)) &&                                \
2574               float64_is_zero(xb->VsrD(0))) {                                \
2575        if (max) {                                                            \
2576            if (!float64_is_neg(xa->VsrD(0)) ||                               \
2577                !float64_is_neg(xb->VsrD(0))) {                               \
2578                t.VsrD(0) = 0ULL;                                             \
2579            } else {                                                          \
2580                t.VsrD(0) = 0x8000000000000000ULL;                            \
2581            }                                                                 \
2582        } else {                                                              \
2583            if (float64_is_neg(xa->VsrD(0)) ||                                \
2584                float64_is_neg(xb->VsrD(0))) {                                \
2585                t.VsrD(0) = 0x8000000000000000ULL;                            \
2586            } else {                                                          \
2587                t.VsrD(0) = 0ULL;                                             \
2588            }                                                                 \
2589        }                                                                     \
2590    } else if ((max &&                                                        \
2591               !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2592               (!max &&                                                       \
2593               float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2594        t.VsrD(0) = xa->VsrD(0);                                              \
2595    } else {                                                                  \
2596        t.VsrD(0) = xb->VsrD(0);                                              \
2597    }                                                                         \
2598                                                                              \
2599    vex_flag = (env->fpscr & FP_VE) && vxsnan_flag;                           \
2600    if (vxsnan_flag) {                                                        \
2601        float_invalid_op_vxsnan(env, GETPC());                                \
2602    }                                                                         \
2603    if (!vex_flag) {                                                          \
2604        *xt = t;                                                              \
2605    }                                                                         \
2606}                                                                             \
2607
2608VSX_MAX_MINJ(XSMAXJDP, 1);
2609VSX_MAX_MINJ(XSMINJDP, 0);
2610
2611/*
2612 * VSX_CMP - VSX floating point compare
2613 *   op    - instruction mnemonic
2614 *   nels  - number of elements (1, 2 or 4)
2615 *   tp    - type (float32 or float64)
2616 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2617 *   cmp   - comparison operation
2618 *   svxvc - set VXVC bit
2619 *   exp   - expected result of comparison
2620 */
2621#define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2622uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2623                     ppc_vsr_t *xa, ppc_vsr_t *xb)                        \
2624{                                                                         \
2625    ppc_vsr_t t = *xt;                                                    \
2626    uint32_t crf6 = 0;                                                    \
2627    int i;                                                                \
2628    int all_true = 1;                                                     \
2629    int all_false = 1;                                                    \
2630                                                                          \
2631    helper_reset_fpstatus(env);                                           \
2632                                                                          \
2633    for (i = 0; i < nels; i++) {                                          \
2634        if (unlikely(tp##_is_any_nan(xa->fld) ||                          \
2635                     tp##_is_any_nan(xb->fld))) {                         \
2636            if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \
2637                tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \
2638                float_invalid_op_vxsnan(env, GETPC());                    \
2639            }                                                             \
2640            if (svxvc) {                                                  \
2641                float_invalid_op_vxvc(env, 0, GETPC());                   \
2642            }                                                             \
2643            t.fld = 0;                                                    \
2644            all_true = 0;                                                 \
2645        } else {                                                          \
2646            if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \
2647                t.fld = -1;                                               \
2648                all_false = 0;                                            \
2649            } else {                                                      \
2650                t.fld = 0;                                                \
2651                all_true = 0;                                             \
2652            }                                                             \
2653        }                                                                 \
2654    }                                                                     \
2655                                                                          \
2656    *xt = t;                                                              \
2657    crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \
2658    return crf6;                                                          \
2659}
2660
2661VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2662VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2663VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2664VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2665VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2666VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2667VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2668VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2669
2670/*
2671 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2672 *   op    - instruction mnemonic
2673 *   nels  - number of elements (1, 2 or 4)
2674 *   stp   - source type (float32 or float64)
2675 *   ttp   - target type (float32 or float64)
2676 *   sfld  - source vsr_t field
2677 *   tfld  - target vsr_t field (f32 or f64)
2678 *   sfifprf - set FI and FPRF
2679 */
2680#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf)  \
2681void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2682{                                                                  \
2683    ppc_vsr_t t = { };                                             \
2684    int i;                                                         \
2685                                                                   \
2686    helper_reset_fpstatus(env);                                    \
2687                                                                   \
2688    for (i = 0; i < nels; i++) {                                   \
2689        t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \
2690        if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2691                                            &env->fp_status))) {   \
2692            float_invalid_op_vxsnan(env, GETPC());                 \
2693            t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2694        }                                                          \
2695        if (sfifprf) {                                             \
2696            helper_compute_fprf_##ttp(env, t.tfld);                \
2697        }                                                          \
2698    }                                                              \
2699                                                                   \
2700    *xt = t;                                                       \
2701    do_float_check_status(env, sfifprf, GETPC());                  \
2702}
2703
2704VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2705VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2706
2707#define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf)                \
2708void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)      \
2709{                                                                     \
2710    ppc_vsr_t t = { };                                                \
2711    int i;                                                            \
2712                                                                      \
2713    helper_reset_fpstatus(env);                                       \
2714                                                                      \
2715    for (i = 0; i < nels; i++) {                                      \
2716        t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2717        if (unlikely(stp##_is_signaling_nan(xb->VsrD(i),              \
2718                                            &env->fp_status))) {      \
2719            float_invalid_op_vxsnan(env, GETPC());                    \
2720            t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i));        \
2721        }                                                             \
2722        if (sfifprf) {                                                \
2723            helper_compute_fprf_##ttp(env, t.VsrW(2 * i));            \
2724        }                                                             \
2725        t.VsrW(2 * i + 1) = t.VsrW(2 * i);                            \
2726    }                                                                 \
2727                                                                      \
2728    *xt = t;                                                          \
2729    do_float_check_status(env, sfifprf, GETPC());                     \
2730}
2731
2732VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0)
2733VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1)
2734
2735/*
2736 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2737 *   op    - instruction mnemonic
2738 *   nels  - number of elements (1, 2 or 4)
2739 *   stp   - source type (float32 or float64)
2740 *   ttp   - target type (float32 or float64)
2741 *   sfld  - source vsr_t field
2742 *   tfld  - target vsr_t field (f32 or f64)
2743 *   sfprf - set FPRF
2744 */
2745#define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)  \
2746void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2747                 ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
2748{                                                                       \
2749    ppc_vsr_t t = *xt;                                                  \
2750    int i;                                                              \
2751                                                                        \
2752    helper_reset_fpstatus(env);                                         \
2753                                                                        \
2754    for (i = 0; i < nels; i++) {                                        \
2755        t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2756        if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \
2757                                            &env->fp_status))) {        \
2758            float_invalid_op_vxsnan(env, GETPC());                      \
2759            t.tfld = ttp##_snan_to_qnan(t.tfld);                        \
2760        }                                                               \
2761        if (sfprf) {                                                    \
2762            helper_compute_fprf_##ttp(env, t.tfld);                     \
2763        }                                                               \
2764    }                                                                   \
2765                                                                        \
2766    *xt = t;                                                            \
2767    do_float_check_status(env, true, GETPC());                          \
2768}
2769
2770VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2771
2772/*
2773 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2774 *                       involving one half precision value
2775 *   op    - instruction mnemonic
2776 *   nels  - number of elements (1, 2 or 4)
2777 *   stp   - source type
2778 *   ttp   - target type
2779 *   sfld  - source vsr_t field
2780 *   tfld  - target vsr_t field
2781 *   sfifprf - set FI and FPRF
2782 */
2783#define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2784void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2785{                                                                  \
2786    ppc_vsr_t t = { };                                             \
2787    int i;                                                         \
2788                                                                   \
2789    helper_reset_fpstatus(env);                                    \
2790                                                                   \
2791    for (i = 0; i < nels; i++) {                                   \
2792        t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \
2793        if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2794                                            &env->fp_status))) {   \
2795            float_invalid_op_vxsnan(env, GETPC());                 \
2796            t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2797        }                                                          \
2798        if (sfifprf) {                                             \
2799            helper_compute_fprf_##ttp(env, t.tfld);                \
2800        }                                                          \
2801    }                                                              \
2802                                                                   \
2803    *xt = t;                                                       \
2804    do_float_check_status(env, sfifprf, GETPC());                  \
2805}
2806
2807VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2808VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2809VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2810VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2811
2812void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
2813{
2814    ppc_vsr_t t = { };
2815    int i, status;
2816
2817    helper_reset_fpstatus(env);
2818
2819    for (i = 0; i < 4; i++) {
2820        t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status);
2821    }
2822
2823    status = get_float_exception_flags(&env->fp_status);
2824    if (unlikely(status & float_flag_invalid_snan)) {
2825        float_invalid_op_vxsnan(env, GETPC());
2826    }
2827
2828    *xt = t;
2829    do_float_check_status(env, false, GETPC());
2830}
2831
2832void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt,
2833                     ppc_vsr_t *xb)
2834{
2835    ppc_vsr_t t = { };
2836    float_status tstat;
2837
2838    helper_reset_fpstatus(env);
2839
2840    tstat = env->fp_status;
2841    if (ro != 0) {
2842        tstat.float_rounding_mode = float_round_to_odd;
2843    }
2844
2845    t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2846    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2847    if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2848        float_invalid_op_vxsnan(env, GETPC());
2849        t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2850    }
2851    helper_compute_fprf_float64(env, t.VsrD(0));
2852
2853    *xt = t;
2854    do_float_check_status(env, true, GETPC());
2855}
2856
2857uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2858{
2859    uint64_t result, sign, exp, frac;
2860
2861    helper_reset_fpstatus(env);
2862    float_status tstat = env->fp_status;
2863    set_float_exception_flags(0, &tstat);
2864
2865    sign = extract64(xb, 63,  1);
2866    exp  = extract64(xb, 52, 11);
2867    frac = extract64(xb,  0, 52) | 0x10000000000000ULL;
2868
2869    if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2870        /* DP denormal operand.  */
2871        /* Exponent override to DP min exp.  */
2872        exp = 1;
2873        /* Implicit bit override to 0.  */
2874        frac = deposit64(frac, 53, 1, 0);
2875    }
2876
2877    if (unlikely(exp < 897 && frac != 0)) {
2878        /* SP tiny operand.  */
2879        if (897 - exp > 63) {
2880            frac = 0;
2881        } else {
2882            /* Denormalize until exp = SP min exp.  */
2883            frac >>= (897 - exp);
2884        }
2885        /* Exponent override to SP min exp - 1.  */
2886        exp = 896;
2887    }
2888
2889    result = sign << 31;
2890    result |= extract64(exp, 10, 1) << 30;
2891    result |= extract64(exp, 0, 7) << 23;
2892    result |= extract64(frac, 29, 23);
2893
2894    /* hardware replicates result to both words of the doubleword result.  */
2895    return (result << 32) | result;
2896}
2897
2898uint64_t helper_XSCVSPDPN(uint64_t xb)
2899{
2900    return helper_todouble(xb >> 32);
2901}
2902
2903/*
2904 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2905 *   op    - instruction mnemonic
2906 *   nels  - number of elements (1, 2 or 4)
2907 *   stp   - source type (float32 or float64)
2908 *   ttp   - target type (int32, uint32, int64 or uint64)
2909 *   sfld  - source vsr_t field
2910 *   tfld  - target vsr_t field
2911 *   sfi   - set FI
2912 *   rnan  - resulting NaN
2913 */
2914#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan)         \
2915void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2916{                                                                            \
2917    ppc_vsr_t t = { };                                                       \
2918    int i, flags;                                                            \
2919                                                                             \
2920    helper_reset_fpstatus(env);                                              \
2921                                                                             \
2922    for (i = 0; i < nels; i++) {                                             \
2923        t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \
2924        flags = env->fp_status.float_exception_flags;                        \
2925        if (unlikely(flags & float_flag_invalid)) {                          \
2926            t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2927        }                                                                    \
2928    }                                                                        \
2929                                                                             \
2930    *xt = t;                                                                 \
2931    do_float_check_status(env, sfi, GETPC());                                \
2932}
2933
2934VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \
2935                  0x8000000000000000ULL)
2936VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL)
2937VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \
2938                  0x8000000000000000ULL)
2939VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \
2940                  0ULL)
2941VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \
2942                  0x8000000000000000ULL)
2943VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \
2944                  0x80000000ULL)
2945VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \
2946                  false, 0ULL)
2947VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U)
2948
2949#define VSX_CVT_FP_TO_INT128(op, tp, rnan)                                     \
2950void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)               \
2951{                                                                              \
2952    ppc_vsr_t t;                                                               \
2953    int flags;                                                                 \
2954                                                                               \
2955    helper_reset_fpstatus(env);                                                \
2956    t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status);      \
2957    flags = get_float_exception_flags(&env->fp_status);                        \
2958    if (unlikely(flags & float_flag_invalid)) {                                \
2959        t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2960        t.VsrD(1) = -(t.VsrD(0) & 1);                                          \
2961    }                                                                          \
2962                                                                               \
2963    *xt = t;                                                                   \
2964    do_float_check_status(env, true, GETPC());                                 \
2965}
2966
2967VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0)
2968VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL);
2969
2970/*
2971 * Likewise, except that the result is duplicated into both subwords.
2972 * Power ISA v3.1 has Programming Notes for these insns:
2973 *     Previous versions of the architecture allowed the contents of
2974 *     word 0 of the result register to be undefined. However, all
2975 *     processors that support this instruction write the result into
2976 *     words 0 and 1 (and words 2 and 3) of the result register, as
2977 *     is required by this version of the architecture.
2978 */
2979#define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan)                    \
2980void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2981{                                                                            \
2982    ppc_vsr_t t = { };                                                       \
2983    int i, flags;                                                            \
2984                                                                             \
2985    helper_reset_fpstatus(env);                                              \
2986                                                                             \
2987    for (i = 0; i < nels; i++) {                                             \
2988        t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i),          \
2989                                                       &env->fp_status);     \
2990        flags = env->fp_status.float_exception_flags;                        \
2991        if (unlikely(flags & float_flag_invalid)) {                          \
2992            t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i),     \
2993                                              rnan, 0, GETPC());             \
2994        }                                                                    \
2995        t.VsrW(2 * i + 1) = t.VsrW(2 * i);                                   \
2996    }                                                                        \
2997                                                                             \
2998    *xt = t;                                                                 \
2999    do_float_check_status(env, sfi, GETPC());                                \
3000}
3001
3002VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U)
3003VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U)
3004VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U)
3005VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U)
3006
3007/*
3008 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3009 *   op    - instruction mnemonic
3010 *   stp   - source type (float32 or float64)
3011 *   ttp   - target type (int32, uint32, int64 or uint64)
3012 *   sfld  - source vsr_t field
3013 *   tfld  - target vsr_t field
3014 *   rnan  - resulting NaN
3015 */
3016#define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
3017void helper_##op(CPUPPCState *env, uint32_t opcode,                          \
3018                 ppc_vsr_t *xt, ppc_vsr_t *xb)                               \
3019{                                                                            \
3020    ppc_vsr_t t = { };                                                       \
3021    int flags;                                                               \
3022                                                                             \
3023    helper_reset_fpstatus(env);                                              \
3024                                                                             \
3025    t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \
3026    flags = get_float_exception_flags(&env->fp_status);                      \
3027    if (flags & float_flag_invalid) {                                        \
3028        t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());    \
3029    }                                                                        \
3030                                                                             \
3031    *xt = t;                                                                 \
3032    do_float_check_status(env, true, GETPC());                               \
3033}
3034
3035VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
3036                  0x8000000000000000ULL)
3037VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
3038                  0xffffffff80000000ULL)
3039VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3040VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3041
3042/*
3043 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3044 *   op    - instruction mnemonic
3045 *   nels  - number of elements (1, 2 or 4)
3046 *   stp   - source type (int32, uint32, int64 or uint64)
3047 *   ttp   - target type (float32 or float64)
3048 *   sfld  - source vsr_t field
3049 *   tfld  - target vsr_t field
3050 *   jdef  - definition of the j index (i or 2*i)
3051 *   sfifprf - set FI and FPRF
3052 */
3053#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
3054void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
3055{                                                                       \
3056    ppc_vsr_t t = { };                                                  \
3057    int i;                                                              \
3058                                                                        \
3059    helper_reset_fpstatus(env);                                         \
3060                                                                        \
3061    for (i = 0; i < nels; i++) {                                        \
3062        t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
3063        if (r2sp) {                                                     \
3064            t.tfld = do_frsp(env, t.tfld, GETPC());                     \
3065        }                                                               \
3066        if (sfifprf) {                                                  \
3067            helper_compute_fprf_float64(env, t.tfld);                   \
3068        }                                                               \
3069    }                                                                   \
3070                                                                        \
3071    *xt = t;                                                            \
3072    do_float_check_status(env, sfifprf, GETPC());                       \
3073}
3074
3075VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3076VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3077VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3078VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3079VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3080VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3081VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3082VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3083VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3084VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3085
3086#define VSX_CVT_INT_TO_FP2(op, stp, ttp)                                \
3087void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
3088{                                                                       \
3089    ppc_vsr_t t = { };                                                  \
3090    int i;                                                              \
3091                                                                        \
3092    for (i = 0; i < 2; i++) {                                           \
3093        t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status);   \
3094        t.VsrW(2 * i + 1) = t.VsrW(2 * i);                              \
3095    }                                                                   \
3096                                                                        \
3097    *xt = t;                                                            \
3098    do_float_check_status(env, false, GETPC());                         \
3099}
3100
3101VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32)
3102VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32)
3103
3104#define VSX_CVT_INT128_TO_FP(op, tp)                            \
3105void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
3106{                                                               \
3107    helper_reset_fpstatus(env);                                 \
3108    xt->f128 = tp##_to_float128(xb->s128, &env->fp_status);     \
3109    helper_compute_fprf_float128(env, xt->f128);                \
3110    do_float_check_status(env, true, GETPC());                  \
3111}
3112
3113VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128);
3114VSX_CVT_INT128_TO_FP(XSCVSQQP, int128);
3115
3116/*
3117 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3118 *   op    - instruction mnemonic
3119 *   stp   - source type (int32, uint32, int64 or uint64)
3120 *   ttp   - target type (float32 or float64)
3121 *   sfld  - source vsr_t field
3122 *   tfld  - target vsr_t field
3123 */
3124#define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3125void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
3126                 ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
3127{                                                                       \
3128    ppc_vsr_t t = *xt;                                                  \
3129                                                                        \
3130    helper_reset_fpstatus(env);                                         \
3131    t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \
3132    helper_compute_fprf_##ttp(env, t.tfld);                             \
3133                                                                        \
3134    *xt = t;                                                            \
3135    do_float_check_status(env, true, GETPC());                          \
3136}
3137
3138VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3139VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3140
3141/*
3142 * For "use current rounding mode", define a value that will not be
3143 * one of the existing rounding model enums.
3144 */
3145#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3146  float_round_up + float_round_to_zero)
3147
3148/*
3149 * VSX_ROUND - VSX floating point round
3150 *   op    - instruction mnemonic
3151 *   nels  - number of elements (1, 2 or 4)
3152 *   tp    - type (float32 or float64)
3153 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3154 *   rmode - rounding mode
3155 *   sfifprf - set FI and FPRF
3156 */
3157#define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf)                   \
3158void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \
3159{                                                                      \
3160    ppc_vsr_t t = { };                                                 \
3161    int i;                                                             \
3162    FloatRoundMode curr_rounding_mode;                                 \
3163                                                                       \
3164    helper_reset_fpstatus(env);                                        \
3165                                                                       \
3166    if (rmode != FLOAT_ROUND_CURRENT) {                                \
3167        curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3168        set_float_rounding_mode(rmode, &env->fp_status);               \
3169    }                                                                  \
3170                                                                       \
3171    for (i = 0; i < nels; i++) {                                       \
3172        if (unlikely(tp##_is_signaling_nan(xb->fld,                    \
3173                                           &env->fp_status))) {        \
3174            float_invalid_op_vxsnan(env, GETPC());                     \
3175            t.fld = tp##_snan_to_qnan(xb->fld);                        \
3176        } else {                                                       \
3177            t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \
3178        }                                                              \
3179        if (sfifprf) {                                                 \
3180            helper_compute_fprf_float64(env, t.fld);                   \
3181        }                                                              \
3182    }                                                                  \
3183                                                                       \
3184    /*                                                                 \
3185     * If this is not a "use current rounding mode" instruction,       \
3186     * then inhibit setting of the XX bit and restore rounding         \
3187     * mode from FPSCR                                                 \
3188     */                                                                \
3189    if (rmode != FLOAT_ROUND_CURRENT) {                                \
3190        set_float_rounding_mode(curr_rounding_mode, &env->fp_status);  \
3191        env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3192    }                                                                  \
3193                                                                       \
3194    *xt = t;                                                           \
3195    do_float_check_status(env, sfifprf, GETPC());                      \
3196}
3197
3198VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3199VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3200VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3201VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3202VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3203
3204VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3205VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3206VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3207VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3208VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3209
3210VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3211VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3212VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3213VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3214VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3215
3216uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3217{
3218    helper_reset_fpstatus(env);
3219
3220    uint64_t xt = do_frsp(env, xb, GETPC());
3221
3222    helper_compute_fprf_float64(env, xt);
3223    do_float_check_status(env, true, GETPC());
3224    return xt;
3225}
3226
3227void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb)
3228{
3229    ppc_vsr_t t = { };
3230    uint32_t exp, i, fraction;
3231
3232    for (i = 0; i < 4; i++) {
3233        exp = (xb->VsrW(i) >> 23) & 0xFF;
3234        fraction = xb->VsrW(i) & 0x7FFFFF;
3235        if (exp != 0 && exp != 255) {
3236            t.VsrW(i) = fraction | 0x00800000;
3237        } else {
3238            t.VsrW(i) = fraction;
3239        }
3240    }
3241    *xt = t;
3242}
3243
3244#define VSX_TSTDC(tp)                                       \
3245static int32_t tp##_tstdc(tp b, uint32_t dcmx)              \
3246{                                                           \
3247    uint32_t match = 0;                                     \
3248    uint32_t sign = tp##_is_neg(b);                         \
3249    if (tp##_is_any_nan(b)) {                               \
3250        match = extract32(dcmx, 6, 1);                      \
3251    } else if (tp##_is_infinity(b)) {                       \
3252        match = extract32(dcmx, 4 + !sign, 1);              \
3253    } else if (tp##_is_zero(b)) {                           \
3254        match = extract32(dcmx, 2 + !sign, 1);              \
3255    } else if (tp##_is_zero_or_denormal(b)) {               \
3256        match = extract32(dcmx, 0 + !sign, 1);              \
3257    }                                                       \
3258    return (match != 0);                                    \
3259}
3260
3261VSX_TSTDC(float32)
3262VSX_TSTDC(float64)
3263VSX_TSTDC(float128)
3264#undef VSX_TSTDC
3265
3266void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3267{
3268    int i;
3269    for (i = 0; i < 2; i++) {
3270        t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx);
3271    }
3272}
3273
3274void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3275{
3276    int i;
3277    for (i = 0; i < 4; i++) {
3278        t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx);
3279    }
3280}
3281
3282static bool not_SP_value(float64 val)
3283{
3284    return val != helper_todouble(helper_tosingle(val));
3285}
3286
3287/*
3288 * VSX_XS_TSTDC - VSX Scalar Test Data Class
3289 *   NAME  - instruction name
3290 *   FLD   - vsr_t field (VsrD(0) or f128)
3291 *   TP    - type (float64 or float128)
3292 */
3293#define VSX_XS_TSTDC(NAME, FLD, TP)                                         \
3294    void helper_##NAME(CPUPPCState *env, uint32_t bf,                       \
3295                       uint32_t dcmx, ppc_vsr_t *b)                         \
3296    {                                                                       \
3297        uint32_t cc, match, sign = TP##_is_neg(b->FLD);                     \
3298        match = TP##_tstdc(b->FLD, dcmx);                                   \
3299        cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;                      \
3300        env->fpscr &= ~FP_FPCC;                                             \
3301        env->fpscr |= cc << FPSCR_FPCC;                                     \
3302        env->crf[bf] = cc;                                                  \
3303    }
3304
3305VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64)
3306VSX_XS_TSTDC(XSTSTDCQP, f128, float128)
3307#undef VSX_XS_TSTDC
3308
3309void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf,
3310                      uint32_t dcmx, ppc_vsr_t *b)
3311{
3312    uint32_t cc, match, sign = float64_is_neg(b->VsrD(0));
3313    uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF;
3314    int not_sp = (int)not_SP_value(b->VsrD(0));
3315    match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381);
3316    cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3317    env->fpscr &= ~FP_FPCC;
3318    env->fpscr |= cc << FPSCR_FPCC;
3319    env->crf[bf] = cc;
3320}
3321
3322void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3323                   ppc_vsr_t *xt, ppc_vsr_t *xb)
3324{
3325    ppc_vsr_t t = { };
3326    uint8_t r = Rrm(opcode);
3327    uint8_t ex = Rc(opcode);
3328    uint8_t rmc = RMC(opcode);
3329    uint8_t rmode = 0;
3330    float_status tstat;
3331
3332    helper_reset_fpstatus(env);
3333
3334    if (r == 0 && rmc == 0) {
3335        rmode = float_round_ties_away;
3336    } else if (r == 0 && rmc == 0x3) {
3337        rmode = env->fpscr & FP_RN;
3338    } else if (r == 1) {
3339        switch (rmc) {
3340        case 0:
3341            rmode = float_round_nearest_even;
3342            break;
3343        case 1:
3344            rmode = float_round_to_zero;
3345            break;
3346        case 2:
3347            rmode = float_round_up;
3348            break;
3349        case 3:
3350            rmode = float_round_down;
3351            break;
3352        default:
3353            abort();
3354        }
3355    }
3356
3357    tstat = env->fp_status;
3358    set_float_exception_flags(0, &tstat);
3359    set_float_rounding_mode(rmode, &tstat);
3360    t.f128 = float128_round_to_int(xb->f128, &tstat);
3361    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3362
3363    if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3364        float_invalid_op_vxsnan(env, GETPC());
3365    }
3366
3367    if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3368        env->fp_status.float_exception_flags &= ~float_flag_inexact;
3369    }
3370
3371    helper_compute_fprf_float128(env, t.f128);
3372    do_float_check_status(env, true, GETPC());
3373    *xt = t;
3374}
3375
3376void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3377                    ppc_vsr_t *xt, ppc_vsr_t *xb)
3378{
3379    ppc_vsr_t t = { };
3380    uint8_t r = Rrm(opcode);
3381    uint8_t rmc = RMC(opcode);
3382    uint8_t rmode = 0;
3383    floatx80 round_res;
3384    float_status tstat;
3385
3386    helper_reset_fpstatus(env);
3387
3388    if (r == 0 && rmc == 0) {
3389        rmode = float_round_ties_away;
3390    } else if (r == 0 && rmc == 0x3) {
3391        rmode = env->fpscr & FP_RN;
3392    } else if (r == 1) {
3393        switch (rmc) {
3394        case 0:
3395            rmode = float_round_nearest_even;
3396            break;
3397        case 1:
3398            rmode = float_round_to_zero;
3399            break;
3400        case 2:
3401            rmode = float_round_up;
3402            break;
3403        case 3:
3404            rmode = float_round_down;
3405            break;
3406        default:
3407            abort();
3408        }
3409    }
3410
3411    tstat = env->fp_status;
3412    set_float_exception_flags(0, &tstat);
3413    set_float_rounding_mode(rmode, &tstat);
3414    round_res = float128_to_floatx80(xb->f128, &tstat);
3415    t.f128 = floatx80_to_float128(round_res, &tstat);
3416    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3417
3418    if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3419        float_invalid_op_vxsnan(env, GETPC());
3420        t.f128 = float128_snan_to_qnan(t.f128);
3421    }
3422
3423    helper_compute_fprf_float128(env, t.f128);
3424    *xt = t;
3425    do_float_check_status(env, true, GETPC());
3426}
3427
3428void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3429                     ppc_vsr_t *xt, ppc_vsr_t *xb)
3430{
3431    ppc_vsr_t t = { };
3432    float_status tstat;
3433
3434    helper_reset_fpstatus(env);
3435
3436    tstat = env->fp_status;
3437    if (unlikely(Rc(opcode) != 0)) {
3438        tstat.float_rounding_mode = float_round_to_odd;
3439    }
3440
3441    set_float_exception_flags(0, &tstat);
3442    t.f128 = float128_sqrt(xb->f128, &tstat);
3443    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3444
3445    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3446        float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC());
3447    }
3448
3449    helper_compute_fprf_float128(env, t.f128);
3450    *xt = t;
3451    do_float_check_status(env, true, GETPC());
3452}
3453
3454void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3455                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3456{
3457    ppc_vsr_t t = *xt;
3458    float_status tstat;
3459
3460    helper_reset_fpstatus(env);
3461
3462    tstat = env->fp_status;
3463    if (unlikely(Rc(opcode) != 0)) {
3464        tstat.float_rounding_mode = float_round_to_odd;
3465    }
3466
3467    set_float_exception_flags(0, &tstat);
3468    t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3469    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3470
3471    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3472        float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
3473    }
3474
3475    helper_compute_fprf_float128(env, t.f128);
3476    *xt = t;
3477    do_float_check_status(env, true, GETPC());
3478}
3479
3480static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr)
3481{
3482    /*
3483     * XV*GER instructions execute and set the FPSCR as if exceptions
3484     * are disabled and only at the end throw an exception
3485     */
3486    target_ulong enable;
3487    enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR);
3488    env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR);
3489    int status = get_float_exception_flags(&env->fp_status);
3490    if (unlikely(status & float_flag_invalid)) {
3491        if (status & float_flag_invalid_snan) {
3492            float_invalid_op_vxsnan(env, 0);
3493        }
3494        if (status & float_flag_invalid_imz) {
3495            float_invalid_op_vximz(env, false, 0);
3496        }
3497        if (status & float_flag_invalid_isi) {
3498            float_invalid_op_vxisi(env, false, 0);
3499        }
3500    }
3501    do_float_check_status(env, false, retaddr);
3502    env->fpscr |= enable;
3503    do_fpscr_check_status(env, retaddr);
3504}
3505
3506typedef float64 extract_f16(float16, float_status *);
3507
3508static float64 extract_hf16(float16 in, float_status *fp_status)
3509{
3510    return float16_to_float64(in, true, fp_status);
3511}
3512
3513static float64 extract_bf16(bfloat16 in, float_status *fp_status)
3514{
3515    return bfloat16_to_float64(in, fp_status);
3516}
3517
3518static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3519                     ppc_acc_t  *at, uint32_t mask, bool acc,
3520                     bool neg_mul, bool neg_acc, extract_f16 extract)
3521{
3522    float32 r, aux_acc;
3523    float64 psum, va, vb, vc, vd;
3524    int i, j, xmsk_bit, ymsk_bit;
3525    uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK),
3526            xmsk = FIELD_EX32(mask, GER_MSK, XMSK),
3527            ymsk = FIELD_EX32(mask, GER_MSK, YMSK);
3528    float_status *excp_ptr = &env->fp_status;
3529    for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3530        for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3531            if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3532                va = !(pmsk & 2) ? float64_zero :
3533                                   extract(a->VsrHF(2 * i), excp_ptr);
3534                vb = !(pmsk & 2) ? float64_zero :
3535                                   extract(b->VsrHF(2 * j), excp_ptr);
3536                vc = !(pmsk & 1) ? float64_zero :
3537                                   extract(a->VsrHF(2 * i + 1), excp_ptr);
3538                vd = !(pmsk & 1) ? float64_zero :
3539                                   extract(b->VsrHF(2 * j + 1), excp_ptr);
3540                psum = float64_mul(va, vb, excp_ptr);
3541                psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr);
3542                r = float64_to_float32(psum, excp_ptr);
3543                if (acc) {
3544                    aux_acc = at[i].VsrSF(j);
3545                    if (neg_mul) {
3546                        r = bfp32_neg(r);
3547                    }
3548                    if (neg_acc) {
3549                        aux_acc = bfp32_neg(aux_acc);
3550                    }
3551                    r = float32_add(r, aux_acc, excp_ptr);
3552                }
3553                at[i].VsrSF(j) = r;
3554            } else {
3555                at[i].VsrSF(j) = float32_zero;
3556            }
3557        }
3558    }
3559    vsxger_excp(env, GETPC());
3560}
3561
3562typedef void vsxger_zero(ppc_vsr_t *at, int, int);
3563
3564typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int,
3565                             int flags, float_status *s);
3566
3567static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3568                            int j, int flags, float_status *s)
3569{
3570    at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j),
3571                                    at[i].VsrSF(j), flags, s);
3572}
3573
3574static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3575                         int j, int flags, float_status *s)
3576{
3577    at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s);
3578}
3579
3580static void vsxger_zero32(ppc_vsr_t *at, int i, int j)
3581{
3582    at[i].VsrSF(j) = float32_zero;
3583}
3584
3585static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3586                            int j, int flags, float_status *s)
3587{
3588    if (j >= 2) {
3589        j -= 2;
3590        at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j),
3591                                        at[i].VsrDF(j), flags, s);
3592    }
3593}
3594
3595static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3596                         int j, int flags, float_status *s)
3597{
3598    if (j >= 2) {
3599        j -= 2;
3600        at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s);
3601    }
3602}
3603
3604static void vsxger_zero64(ppc_vsr_t *at, int i, int j)
3605{
3606    if (j >= 2) {
3607        j -= 2;
3608        at[i].VsrDF(j) = float64_zero;
3609    }
3610}
3611
3612static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3613                   ppc_acc_t  *at, uint32_t mask, bool acc, bool neg_mul,
3614                   bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd,
3615                   vsxger_zero zero)
3616{
3617    int i, j, xmsk_bit, ymsk_bit, op_flags;
3618    uint8_t xmsk = mask & 0x0F;
3619    uint8_t ymsk = (mask >> 4) & 0x0F;
3620    float_status *excp_ptr = &env->fp_status;
3621    op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0;
3622    op_flags |= (neg_mul) ? float_muladd_negate_result : 0;
3623    helper_reset_fpstatus(env);
3624    for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3625        for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3626            if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3627                if (acc) {
3628                    muladd(at, a, b, i, j, op_flags, excp_ptr);
3629                } else {
3630                    mul(at, a, b, i, j, op_flags, excp_ptr);
3631                }
3632            } else {
3633                zero(at, i, j);
3634            }
3635        }
3636    }
3637    vsxger_excp(env, GETPC());
3638}
3639
3640QEMU_FLATTEN
3641void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3642                       ppc_acc_t *at, uint32_t mask)
3643{
3644    vsxger16(env, a, b, at, mask, false, false, false, extract_bf16);
3645}
3646
3647QEMU_FLATTEN
3648void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3649                         ppc_acc_t *at, uint32_t mask)
3650{
3651    vsxger16(env, a, b, at, mask, true, false, false, extract_bf16);
3652}
3653
3654QEMU_FLATTEN
3655void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3656                         ppc_acc_t *at, uint32_t mask)
3657{
3658    vsxger16(env, a, b, at, mask, true, false, true, extract_bf16);
3659}
3660
3661QEMU_FLATTEN
3662void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3663                         ppc_acc_t *at, uint32_t mask)
3664{
3665    vsxger16(env, a, b, at, mask, true, true, false, extract_bf16);
3666}
3667
3668QEMU_FLATTEN
3669void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3670                         ppc_acc_t *at, uint32_t mask)
3671{
3672    vsxger16(env, a, b, at, mask, true, true, true, extract_bf16);
3673}
3674
3675QEMU_FLATTEN
3676void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3677                     ppc_acc_t *at, uint32_t mask)
3678{
3679    vsxger16(env, a, b, at, mask, false, false, false, extract_hf16);
3680}
3681
3682QEMU_FLATTEN
3683void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3684                        ppc_acc_t *at, uint32_t mask)
3685{
3686    vsxger16(env, a, b, at, mask, true, false, false, extract_hf16);
3687}
3688
3689QEMU_FLATTEN
3690void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3691                        ppc_acc_t *at, uint32_t mask)
3692{
3693    vsxger16(env, a, b, at, mask, true, false, true, extract_hf16);
3694}
3695
3696QEMU_FLATTEN
3697void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3698                        ppc_acc_t *at, uint32_t mask)
3699{
3700    vsxger16(env, a, b, at, mask, true, true, false, extract_hf16);
3701}
3702
3703QEMU_FLATTEN
3704void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3705                        ppc_acc_t *at, uint32_t mask)
3706{
3707    vsxger16(env, a, b, at, mask, true, true, true, extract_hf16);
3708}
3709
3710QEMU_FLATTEN
3711void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3712                     ppc_acc_t *at, uint32_t mask)
3713{
3714    vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32,
3715           vsxger_muladd32, vsxger_zero32);
3716}
3717
3718QEMU_FLATTEN
3719void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3720                       ppc_acc_t *at, uint32_t mask)
3721{
3722    vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32,
3723           vsxger_muladd32, vsxger_zero32);
3724}
3725
3726QEMU_FLATTEN
3727void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3728                       ppc_acc_t *at, uint32_t mask)
3729{
3730    vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32,
3731           vsxger_muladd32, vsxger_zero32);
3732}
3733
3734QEMU_FLATTEN
3735void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3736                       ppc_acc_t *at, uint32_t mask)
3737{
3738    vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32,
3739           vsxger_muladd32, vsxger_zero32);
3740}
3741
3742QEMU_FLATTEN
3743void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3744                       ppc_acc_t *at, uint32_t mask)
3745{
3746    vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32,
3747           vsxger_muladd32, vsxger_zero32);
3748}
3749
3750QEMU_FLATTEN
3751void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3752                     ppc_acc_t *at, uint32_t mask)
3753{
3754    vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64,
3755           vsxger_muladd64, vsxger_zero64);
3756}
3757
3758QEMU_FLATTEN
3759void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3760                       ppc_acc_t *at, uint32_t mask)
3761{
3762    vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64,
3763           vsxger_muladd64, vsxger_zero64);
3764}
3765
3766QEMU_FLATTEN
3767void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3768                       ppc_acc_t *at, uint32_t mask)
3769{
3770    vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64,
3771           vsxger_muladd64, vsxger_zero64);
3772}
3773
3774QEMU_FLATTEN
3775void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3776                       ppc_acc_t *at, uint32_t mask)
3777{
3778    vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64,
3779           vsxger_muladd64, vsxger_zero64);
3780}
3781
3782QEMU_FLATTEN
3783void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3784                       ppc_acc_t *at, uint32_t mask)
3785{
3786    vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64,
3787           vsxger_muladd64, vsxger_zero64);
3788}
3789