qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/qdev-properties.h"
  31#include "hw/i386/pc.h"
  32#include "hw/i386/apic-msidef.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "sysemu/dma.h"
  37#include "sysemu/sysemu.h"
  38#include "hw/i386/apic_internal.h"
  39#include "kvm/kvm_i386.h"
  40#include "migration/vmstate.h"
  41#include "trace.h"
  42
  43/* context entry operations */
  44#define VTD_CE_GET_RID2PASID(ce) \
  45    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  46#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  47    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  48
  49/* pe operations */
  50#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  51#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  52
  53/*
  54 * PCI bus number (or SID) is not reliable since the device is usaully
  55 * initalized before guest can configure the PCI bridge
  56 * (SECONDARY_BUS_NUMBER).
  57 */
  58struct vtd_as_key {
  59    PCIBus *bus;
  60    uint8_t devfn;
  61    uint32_t pasid;
  62};
  63
  64struct vtd_iotlb_key {
  65    uint64_t gfn;
  66    uint32_t pasid;
  67    uint32_t level;
  68    uint16_t sid;
  69};
  70
  71static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  72static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  73
  74static void vtd_panic_require_caching_mode(void)
  75{
  76    error_report("We need to set caching-mode=on for intel-iommu to enable "
  77                 "device assignment with IOMMU protection.");
  78    exit(1);
  79}
  80
  81static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  82                            uint64_t wmask, uint64_t w1cmask)
  83{
  84    stq_le_p(&s->csr[addr], val);
  85    stq_le_p(&s->wmask[addr], wmask);
  86    stq_le_p(&s->w1cmask[addr], w1cmask);
  87}
  88
  89static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  90{
  91    stq_le_p(&s->womask[addr], mask);
  92}
  93
  94static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  95                            uint32_t wmask, uint32_t w1cmask)
  96{
  97    stl_le_p(&s->csr[addr], val);
  98    stl_le_p(&s->wmask[addr], wmask);
  99    stl_le_p(&s->w1cmask[addr], w1cmask);
 100}
 101
 102static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
 103{
 104    stl_le_p(&s->womask[addr], mask);
 105}
 106
 107/* "External" get/set operations */
 108static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 109{
 110    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 111    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 112    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 113    stq_le_p(&s->csr[addr],
 114             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 115}
 116
 117static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 118{
 119    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 120    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 121    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 122    stl_le_p(&s->csr[addr],
 123             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 124}
 125
 126static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 127{
 128    uint64_t val = ldq_le_p(&s->csr[addr]);
 129    uint64_t womask = ldq_le_p(&s->womask[addr]);
 130    return val & ~womask;
 131}
 132
 133static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 134{
 135    uint32_t val = ldl_le_p(&s->csr[addr]);
 136    uint32_t womask = ldl_le_p(&s->womask[addr]);
 137    return val & ~womask;
 138}
 139
 140/* "Internal" get/set operations */
 141static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 142{
 143    return ldq_le_p(&s->csr[addr]);
 144}
 145
 146static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 147{
 148    return ldl_le_p(&s->csr[addr]);
 149}
 150
 151static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 152{
 153    stq_le_p(&s->csr[addr], val);
 154}
 155
 156static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 157                                        uint32_t clear, uint32_t mask)
 158{
 159    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 160    stl_le_p(&s->csr[addr], new_val);
 161    return new_val;
 162}
 163
 164static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 165                                        uint64_t clear, uint64_t mask)
 166{
 167    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 168    stq_le_p(&s->csr[addr], new_val);
 169    return new_val;
 170}
 171
 172static inline void vtd_iommu_lock(IntelIOMMUState *s)
 173{
 174    qemu_mutex_lock(&s->iommu_lock);
 175}
 176
 177static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 178{
 179    qemu_mutex_unlock(&s->iommu_lock);
 180}
 181
 182static void vtd_update_scalable_state(IntelIOMMUState *s)
 183{
 184    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 185
 186    if (s->scalable_mode) {
 187        s->root_scalable = val & VTD_RTADDR_SMT;
 188    }
 189}
 190
 191static void vtd_update_iq_dw(IntelIOMMUState *s)
 192{
 193    uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
 194
 195    if (s->ecap & VTD_ECAP_SMTS &&
 196        val & VTD_IQA_DW_MASK) {
 197        s->iq_dw = true;
 198    } else {
 199        s->iq_dw = false;
 200    }
 201}
 202
 203/* Whether the address space needs to notify new mappings */
 204static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 205{
 206    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 207}
 208
 209/* GHashTable functions */
 210static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
 211{
 212    const struct vtd_iotlb_key *key1 = v1;
 213    const struct vtd_iotlb_key *key2 = v2;
 214
 215    return key1->sid == key2->sid &&
 216           key1->pasid == key2->pasid &&
 217           key1->level == key2->level &&
 218           key1->gfn == key2->gfn;
 219}
 220
 221static guint vtd_iotlb_hash(gconstpointer v)
 222{
 223    const struct vtd_iotlb_key *key = v;
 224
 225    return key->gfn | ((key->sid) << VTD_IOTLB_SID_SHIFT) |
 226           (key->level) << VTD_IOTLB_LVL_SHIFT |
 227           (key->pasid) << VTD_IOTLB_PASID_SHIFT;
 228}
 229
 230static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
 231{
 232    const struct vtd_as_key *key1 = v1;
 233    const struct vtd_as_key *key2 = v2;
 234
 235    return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
 236           (key1->pasid == key2->pasid);
 237}
 238
 239/*
 240 * Note that we use pointer to PCIBus as the key, so hashing/shifting
 241 * based on the pointer value is intended. Note that we deal with
 242 * collisions through vtd_as_equal().
 243 */
 244static guint vtd_as_hash(gconstpointer v)
 245{
 246    const struct vtd_as_key *key = v;
 247    guint value = (guint)(uintptr_t)key->bus;
 248
 249    return (guint)(value << 8 | key->devfn);
 250}
 251
 252static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 253                                          gpointer user_data)
 254{
 255    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 256    uint16_t domain_id = *(uint16_t *)user_data;
 257    return entry->domain_id == domain_id;
 258}
 259
 260/* The shift of an addr for a certain level of paging structure */
 261static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 262{
 263    assert(level != 0);
 264    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 265}
 266
 267static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 268{
 269    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 270}
 271
 272static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 273                                        gpointer user_data)
 274{
 275    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 276    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 277    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 278    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 279    return (entry->domain_id == info->domain_id) &&
 280            (((entry->gfn & info->mask) == gfn) ||
 281             (entry->gfn == gfn_tlb));
 282}
 283
 284/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 285 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 286 */
 287static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 288{
 289    VTDAddressSpace *vtd_as;
 290    GHashTableIter as_it;
 291
 292    trace_vtd_context_cache_reset();
 293
 294    g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
 295
 296    while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
 297        vtd_as->context_cache_entry.context_cache_gen = 0;
 298    }
 299    s->context_cache_gen = 1;
 300}
 301
 302/* Must be called with IOMMU lock held. */
 303static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 304{
 305    assert(s->iotlb);
 306    g_hash_table_remove_all(s->iotlb);
 307}
 308
 309static void vtd_reset_iotlb(IntelIOMMUState *s)
 310{
 311    vtd_iommu_lock(s);
 312    vtd_reset_iotlb_locked(s);
 313    vtd_iommu_unlock(s);
 314}
 315
 316static void vtd_reset_caches(IntelIOMMUState *s)
 317{
 318    vtd_iommu_lock(s);
 319    vtd_reset_iotlb_locked(s);
 320    vtd_reset_context_cache_locked(s);
 321    vtd_iommu_unlock(s);
 322}
 323
 324static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 325{
 326    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 327}
 328
 329/* Must be called with IOMMU lock held */
 330static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 331                                       uint32_t pasid, hwaddr addr)
 332{
 333    struct vtd_iotlb_key key;
 334    VTDIOTLBEntry *entry;
 335    int level;
 336
 337    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 338        key.gfn = vtd_get_iotlb_gfn(addr, level);
 339        key.level = level;
 340        key.sid = source_id;
 341        key.pasid = pasid;
 342        entry = g_hash_table_lookup(s->iotlb, &key);
 343        if (entry) {
 344            goto out;
 345        }
 346    }
 347
 348out:
 349    return entry;
 350}
 351
 352/* Must be with IOMMU lock held */
 353static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 354                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 355                             uint8_t access_flags, uint32_t level,
 356                             uint32_t pasid)
 357{
 358    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 359    struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
 360    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 361
 362    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 363    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 364        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 365        vtd_reset_iotlb_locked(s);
 366    }
 367
 368    entry->gfn = gfn;
 369    entry->domain_id = domain_id;
 370    entry->slpte = slpte;
 371    entry->access_flags = access_flags;
 372    entry->mask = vtd_slpt_level_page_mask(level);
 373    entry->pasid = pasid;
 374
 375    key->gfn = gfn;
 376    key->sid = source_id;
 377    key->level = level;
 378    key->pasid = pasid;
 379
 380    g_hash_table_replace(s->iotlb, key, entry);
 381}
 382
 383/* Given the reg addr of both the message data and address, generate an
 384 * interrupt via MSI.
 385 */
 386static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 387                                   hwaddr mesg_data_reg)
 388{
 389    MSIMessage msi;
 390
 391    assert(mesg_data_reg < DMAR_REG_SIZE);
 392    assert(mesg_addr_reg < DMAR_REG_SIZE);
 393
 394    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 395    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 396
 397    trace_vtd_irq_generate(msi.address, msi.data);
 398
 399    apic_get_class(NULL)->send_msi(&msi);
 400}
 401
 402/* Generate a fault event to software via MSI if conditions are met.
 403 * Notice that the value of FSTS_REG being passed to it should be the one
 404 * before any update.
 405 */
 406static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 407{
 408    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 409        pre_fsts & VTD_FSTS_IQE) {
 410        error_report_once("There are previous interrupt conditions "
 411                          "to be serviced by software, fault event "
 412                          "is not generated");
 413        return;
 414    }
 415    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 416    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 417        error_report_once("Interrupt Mask set, irq is not generated");
 418    } else {
 419        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 420        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 421    }
 422}
 423
 424/* Check if the Fault (F) field of the Fault Recording Register referenced by
 425 * @index is Set.
 426 */
 427static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 428{
 429    /* Each reg is 128-bit */
 430    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 431    addr += 8; /* Access the high 64-bit half */
 432
 433    assert(index < DMAR_FRCD_REG_NR);
 434
 435    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 436}
 437
 438/* Update the PPF field of Fault Status Register.
 439 * Should be called whenever change the F field of any fault recording
 440 * registers.
 441 */
 442static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 443{
 444    uint32_t i;
 445    uint32_t ppf_mask = 0;
 446
 447    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 448        if (vtd_is_frcd_set(s, i)) {
 449            ppf_mask = VTD_FSTS_PPF;
 450            break;
 451        }
 452    }
 453    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 454    trace_vtd_fsts_ppf(!!ppf_mask);
 455}
 456
 457static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 458{
 459    /* Each reg is 128-bit */
 460    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 461    addr += 8; /* Access the high 64-bit half */
 462
 463    assert(index < DMAR_FRCD_REG_NR);
 464
 465    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 466    vtd_update_fsts_ppf(s);
 467}
 468
 469/* Must not update F field now, should be done later */
 470static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 471                            uint16_t source_id, hwaddr addr,
 472                            VTDFaultReason fault, bool is_write,
 473                            bool is_pasid, uint32_t pasid)
 474{
 475    uint64_t hi = 0, lo;
 476    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 477
 478    assert(index < DMAR_FRCD_REG_NR);
 479
 480    lo = VTD_FRCD_FI(addr);
 481    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
 482         VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
 483    if (!is_write) {
 484        hi |= VTD_FRCD_T;
 485    }
 486    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 487    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 488
 489    trace_vtd_frr_new(index, hi, lo);
 490}
 491
 492/* Try to collapse multiple pending faults from the same requester */
 493static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 494{
 495    uint32_t i;
 496    uint64_t frcd_reg;
 497    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 498
 499    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 500        frcd_reg = vtd_get_quad_raw(s, addr);
 501        if ((frcd_reg & VTD_FRCD_F) &&
 502            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 503            return true;
 504        }
 505        addr += 16; /* 128-bit for each */
 506    }
 507    return false;
 508}
 509
 510/* Log and report an DMAR (address translation) fault to software */
 511static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 512                                  hwaddr addr, VTDFaultReason fault,
 513                                  bool is_write, bool is_pasid,
 514                                  uint32_t pasid)
 515{
 516    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 517
 518    assert(fault < VTD_FR_MAX);
 519
 520    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 521
 522    if (fsts_reg & VTD_FSTS_PFO) {
 523        error_report_once("New fault is not recorded due to "
 524                          "Primary Fault Overflow");
 525        return;
 526    }
 527
 528    if (vtd_try_collapse_fault(s, source_id)) {
 529        error_report_once("New fault is not recorded due to "
 530                          "compression of faults");
 531        return;
 532    }
 533
 534    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 535        error_report_once("Next Fault Recording Reg is used, "
 536                          "new fault is not recorded, set PFO field");
 537        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 538        return;
 539    }
 540
 541    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
 542                    is_write, is_pasid, pasid);
 543
 544    if (fsts_reg & VTD_FSTS_PPF) {
 545        error_report_once("There are pending faults already, "
 546                          "fault event is not generated");
 547        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 548        s->next_frcd_reg++;
 549        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 550            s->next_frcd_reg = 0;
 551        }
 552    } else {
 553        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 554                                VTD_FSTS_FRI(s->next_frcd_reg));
 555        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 556        s->next_frcd_reg++;
 557        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 558            s->next_frcd_reg = 0;
 559        }
 560        /* This case actually cause the PPF to be Set.
 561         * So generate fault event (interrupt).
 562         */
 563         vtd_generate_fault_event(s, fsts_reg);
 564    }
 565}
 566
 567/* Handle Invalidation Queue Errors of queued invalidation interface error
 568 * conditions.
 569 */
 570static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 571{
 572    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 573
 574    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 575    vtd_generate_fault_event(s, fsts_reg);
 576}
 577
 578/* Set the IWC field and try to generate an invalidation completion interrupt */
 579static void vtd_generate_completion_event(IntelIOMMUState *s)
 580{
 581    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 582        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 583        return;
 584    }
 585    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 586    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 587    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 588        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 589                                    "new event not generated");
 590        return;
 591    } else {
 592        /* Generate the interrupt event */
 593        trace_vtd_inv_desc_wait_irq("Generating complete event");
 594        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 595        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 596    }
 597}
 598
 599static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 600                                          VTDRootEntry *re,
 601                                          uint8_t devfn)
 602{
 603    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 604        return re->hi & VTD_ROOT_ENTRY_P;
 605    }
 606
 607    return re->lo & VTD_ROOT_ENTRY_P;
 608}
 609
 610static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 611                              VTDRootEntry *re)
 612{
 613    dma_addr_t addr;
 614
 615    addr = s->root + index * sizeof(*re);
 616    if (dma_memory_read(&address_space_memory, addr,
 617                        re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
 618        re->lo = 0;
 619        return -VTD_FR_ROOT_TABLE_INV;
 620    }
 621    re->lo = le64_to_cpu(re->lo);
 622    re->hi = le64_to_cpu(re->hi);
 623    return 0;
 624}
 625
 626static inline bool vtd_ce_present(VTDContextEntry *context)
 627{
 628    return context->lo & VTD_CONTEXT_ENTRY_P;
 629}
 630
 631static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 632                                           VTDRootEntry *re,
 633                                           uint8_t index,
 634                                           VTDContextEntry *ce)
 635{
 636    dma_addr_t addr, ce_size;
 637
 638    /* we have checked that root entry is present */
 639    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 640              VTD_CTX_ENTRY_LEGACY_SIZE;
 641
 642    if (s->root_scalable && index > UINT8_MAX / 2) {
 643        index = index & (~VTD_DEVFN_CHECK_MASK);
 644        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 645    } else {
 646        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 647    }
 648
 649    addr = addr + index * ce_size;
 650    if (dma_memory_read(&address_space_memory, addr,
 651                        ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
 652        return -VTD_FR_CONTEXT_TABLE_INV;
 653    }
 654
 655    ce->lo = le64_to_cpu(ce->lo);
 656    ce->hi = le64_to_cpu(ce->hi);
 657    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 658        ce->val[2] = le64_to_cpu(ce->val[2]);
 659        ce->val[3] = le64_to_cpu(ce->val[3]);
 660    }
 661    return 0;
 662}
 663
 664static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 665{
 666    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 667}
 668
 669static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 670{
 671    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 672}
 673
 674/* Whether the pte indicates the address of the page frame */
 675static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 676{
 677    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 678}
 679
 680/* Get the content of a spte located in @base_addr[@index] */
 681static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 682{
 683    uint64_t slpte;
 684
 685    assert(index < VTD_SL_PT_ENTRY_NR);
 686
 687    if (dma_memory_read(&address_space_memory,
 688                        base_addr + index * sizeof(slpte),
 689                        &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
 690        slpte = (uint64_t)-1;
 691        return slpte;
 692    }
 693    slpte = le64_to_cpu(slpte);
 694    return slpte;
 695}
 696
 697/* Given an iova and the level of paging structure, return the offset
 698 * of current level.
 699 */
 700static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 701{
 702    return (iova >> vtd_slpt_level_shift(level)) &
 703            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 704}
 705
 706/* Check Capability Register to see if the @level of page-table is supported */
 707static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 708{
 709    return VTD_CAP_SAGAW_MASK & s->cap &
 710           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 711}
 712
 713/* Return true if check passed, otherwise false */
 714static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 715                                     VTDPASIDEntry *pe)
 716{
 717    switch (VTD_PE_GET_TYPE(pe)) {
 718    case VTD_SM_PASID_ENTRY_FLT:
 719    case VTD_SM_PASID_ENTRY_SLT:
 720    case VTD_SM_PASID_ENTRY_NESTED:
 721        break;
 722    case VTD_SM_PASID_ENTRY_PT:
 723        if (!x86_iommu->pt_supported) {
 724            return false;
 725        }
 726        break;
 727    default:
 728        /* Unknown type */
 729        return false;
 730    }
 731    return true;
 732}
 733
 734static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
 735{
 736    return pdire->val & 1;
 737}
 738
 739/**
 740 * Caller of this function should check present bit if wants
 741 * to use pdir entry for further usage except for fpd bit check.
 742 */
 743static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
 744                                         uint32_t pasid,
 745                                         VTDPASIDDirEntry *pdire)
 746{
 747    uint32_t index;
 748    dma_addr_t addr, entry_size;
 749
 750    index = VTD_PASID_DIR_INDEX(pasid);
 751    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 752    addr = pasid_dir_base + index * entry_size;
 753    if (dma_memory_read(&address_space_memory, addr,
 754                        pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
 755        return -VTD_FR_PASID_TABLE_INV;
 756    }
 757
 758    return 0;
 759}
 760
 761static inline bool vtd_pe_present(VTDPASIDEntry *pe)
 762{
 763    return pe->val[0] & VTD_PASID_ENTRY_P;
 764}
 765
 766static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
 767                                          uint32_t pasid,
 768                                          dma_addr_t addr,
 769                                          VTDPASIDEntry *pe)
 770{
 771    uint32_t index;
 772    dma_addr_t entry_size;
 773    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 774
 775    index = VTD_PASID_TABLE_INDEX(pasid);
 776    entry_size = VTD_PASID_ENTRY_SIZE;
 777    addr = addr + index * entry_size;
 778    if (dma_memory_read(&address_space_memory, addr,
 779                        pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
 780        return -VTD_FR_PASID_TABLE_INV;
 781    }
 782
 783    /* Do translation type check */
 784    if (!vtd_pe_type_check(x86_iommu, pe)) {
 785        return -VTD_FR_PASID_TABLE_INV;
 786    }
 787
 788    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 789        return -VTD_FR_PASID_TABLE_INV;
 790    }
 791
 792    return 0;
 793}
 794
 795/**
 796 * Caller of this function should check present bit if wants
 797 * to use pasid entry for further usage except for fpd bit check.
 798 */
 799static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
 800                                 uint32_t pasid,
 801                                 VTDPASIDDirEntry *pdire,
 802                                 VTDPASIDEntry *pe)
 803{
 804    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 805
 806    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
 807}
 808
 809/**
 810 * This function gets a pasid entry from a specified pasid
 811 * table (includes dir and leaf table) with a specified pasid.
 812 * Sanity check should be done to ensure return a present
 813 * pasid entry to caller.
 814 */
 815static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
 816                                       dma_addr_t pasid_dir_base,
 817                                       uint32_t pasid,
 818                                       VTDPASIDEntry *pe)
 819{
 820    int ret;
 821    VTDPASIDDirEntry pdire;
 822
 823    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
 824                                        pasid, &pdire);
 825    if (ret) {
 826        return ret;
 827    }
 828
 829    if (!vtd_pdire_present(&pdire)) {
 830        return -VTD_FR_PASID_TABLE_INV;
 831    }
 832
 833    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
 834    if (ret) {
 835        return ret;
 836    }
 837
 838    if (!vtd_pe_present(pe)) {
 839        return -VTD_FR_PASID_TABLE_INV;
 840    }
 841
 842    return 0;
 843}
 844
 845static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 846                                      VTDContextEntry *ce,
 847                                      VTDPASIDEntry *pe,
 848                                      uint32_t pasid)
 849{
 850    dma_addr_t pasid_dir_base;
 851    int ret = 0;
 852
 853    if (pasid == PCI_NO_PASID) {
 854        pasid = VTD_CE_GET_RID2PASID(ce);
 855    }
 856    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 857    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
 858
 859    return ret;
 860}
 861
 862static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 863                                VTDContextEntry *ce,
 864                                bool *pe_fpd_set,
 865                                uint32_t pasid)
 866{
 867    int ret;
 868    dma_addr_t pasid_dir_base;
 869    VTDPASIDDirEntry pdire;
 870    VTDPASIDEntry pe;
 871
 872    if (pasid == PCI_NO_PASID) {
 873        pasid = VTD_CE_GET_RID2PASID(ce);
 874    }
 875    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 876
 877    /*
 878     * No present bit check since fpd is meaningful even
 879     * if the present bit is clear.
 880     */
 881    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
 882    if (ret) {
 883        return ret;
 884    }
 885
 886    if (pdire.val & VTD_PASID_DIR_FPD) {
 887        *pe_fpd_set = true;
 888        return 0;
 889    }
 890
 891    if (!vtd_pdire_present(&pdire)) {
 892        return -VTD_FR_PASID_TABLE_INV;
 893    }
 894
 895    /*
 896     * No present bit check since fpd is meaningful even
 897     * if the present bit is clear.
 898     */
 899    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
 900    if (ret) {
 901        return ret;
 902    }
 903
 904    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 905        *pe_fpd_set = true;
 906    }
 907
 908    return 0;
 909}
 910
 911/* Get the page-table level that hardware should use for the second-level
 912 * page-table walk from the Address Width field of context-entry.
 913 */
 914static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 915{
 916    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 917}
 918
 919static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 920                                   VTDContextEntry *ce,
 921                                   uint32_t pasid)
 922{
 923    VTDPASIDEntry pe;
 924
 925    if (s->root_scalable) {
 926        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
 927        return VTD_PE_GET_LEVEL(&pe);
 928    }
 929
 930    return vtd_ce_get_level(ce);
 931}
 932
 933static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 934{
 935    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 936}
 937
 938static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 939                                  VTDContextEntry *ce,
 940                                  uint32_t pasid)
 941{
 942    VTDPASIDEntry pe;
 943
 944    if (s->root_scalable) {
 945        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
 946        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 947    }
 948
 949    return vtd_ce_get_agaw(ce);
 950}
 951
 952static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 953{
 954    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 955}
 956
 957/* Only for Legacy Mode. Return true if check passed, otherwise false */
 958static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 959                                     VTDContextEntry *ce)
 960{
 961    switch (vtd_ce_get_type(ce)) {
 962    case VTD_CONTEXT_TT_MULTI_LEVEL:
 963        /* Always supported */
 964        break;
 965    case VTD_CONTEXT_TT_DEV_IOTLB:
 966        if (!x86_iommu->dt_supported) {
 967            error_report_once("%s: DT specified but not supported", __func__);
 968            return false;
 969        }
 970        break;
 971    case VTD_CONTEXT_TT_PASS_THROUGH:
 972        if (!x86_iommu->pt_supported) {
 973            error_report_once("%s: PT specified but not supported", __func__);
 974            return false;
 975        }
 976        break;
 977    default:
 978        /* Unknown type */
 979        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 980                          vtd_ce_get_type(ce));
 981        return false;
 982    }
 983    return true;
 984}
 985
 986static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 987                                      VTDContextEntry *ce, uint8_t aw,
 988                                      uint32_t pasid)
 989{
 990    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
 991    return 1ULL << MIN(ce_agaw, aw);
 992}
 993
 994/* Return true if IOVA passes range check, otherwise false. */
 995static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 996                                        uint64_t iova, VTDContextEntry *ce,
 997                                        uint8_t aw, uint32_t pasid)
 998{
 999    /*
1000     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1001     * in CAP_REG and AW in context-entry.
1002     */
1003    return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1004}
1005
1006static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1007                                          VTDContextEntry *ce,
1008                                          uint32_t pasid)
1009{
1010    VTDPASIDEntry pe;
1011
1012    if (s->root_scalable) {
1013        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1014        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1015    }
1016
1017    return vtd_ce_get_slpt_base(ce);
1018}
1019
1020/*
1021 * Rsvd field masks for spte:
1022 *     vtd_spte_rsvd 4k pages
1023 *     vtd_spte_rsvd_large large pages
1024 */
1025static uint64_t vtd_spte_rsvd[5];
1026static uint64_t vtd_spte_rsvd_large[5];
1027
1028static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1029{
1030    uint64_t rsvd_mask = vtd_spte_rsvd[level];
1031
1032    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1033        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1034        /* large page */
1035        rsvd_mask = vtd_spte_rsvd_large[level];
1036    }
1037
1038    return slpte & rsvd_mask;
1039}
1040
1041/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1042 * of the translation, can be used for deciding the size of large page.
1043 */
1044static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1045                             uint64_t iova, bool is_write,
1046                             uint64_t *slptep, uint32_t *slpte_level,
1047                             bool *reads, bool *writes, uint8_t aw_bits,
1048                             uint32_t pasid)
1049{
1050    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1051    uint32_t level = vtd_get_iova_level(s, ce, pasid);
1052    uint32_t offset;
1053    uint64_t slpte;
1054    uint64_t access_right_check;
1055    uint64_t xlat, size;
1056
1057    if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1058        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1059                          "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1060        return -VTD_FR_ADDR_BEYOND_MGAW;
1061    }
1062
1063    /* FIXME: what is the Atomics request here? */
1064    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1065
1066    while (true) {
1067        offset = vtd_iova_level_offset(iova, level);
1068        slpte = vtd_get_slpte(addr, offset);
1069
1070        if (slpte == (uint64_t)-1) {
1071            error_report_once("%s: detected read error on DMAR slpte "
1072                              "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1073                              __func__, iova, pasid);
1074            if (level == vtd_get_iova_level(s, ce, pasid)) {
1075                /* Invalid programming of context-entry */
1076                return -VTD_FR_CONTEXT_ENTRY_INV;
1077            } else {
1078                return -VTD_FR_PAGING_ENTRY_INV;
1079            }
1080        }
1081        *reads = (*reads) && (slpte & VTD_SL_R);
1082        *writes = (*writes) && (slpte & VTD_SL_W);
1083        if (!(slpte & access_right_check)) {
1084            error_report_once("%s: detected slpte permission error "
1085                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1086                              "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1087                              PRIx32 ")", __func__, iova, level,
1088                              slpte, is_write, pasid);
1089            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1090        }
1091        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1092            error_report_once("%s: detected splte reserve non-zero "
1093                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1094                              "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1095                              __func__, iova, level, slpte, pasid);
1096            return -VTD_FR_PAGING_ENTRY_RSVD;
1097        }
1098
1099        if (vtd_is_last_slpte(slpte, level)) {
1100            *slptep = slpte;
1101            *slpte_level = level;
1102            break;
1103        }
1104        addr = vtd_get_slpte_addr(slpte, aw_bits);
1105        level--;
1106    }
1107
1108    xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1109    size = ~vtd_slpt_level_page_mask(level) + 1;
1110
1111    /*
1112     * From VT-d spec 3.14: Untranslated requests and translation
1113     * requests that result in an address in the interrupt range will be
1114     * blocked with condition code LGN.4 or SGN.8.
1115     */
1116    if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1117         xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1118        return 0;
1119    } else {
1120        error_report_once("%s: xlat address is in interrupt range "
1121                          "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1122                          "slpte=0x%" PRIx64 ", write=%d, "
1123                          "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1124                          "pasid=0x%" PRIx32 ")",
1125                          __func__, iova, level, slpte, is_write,
1126                          xlat, size, pasid);
1127        return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1128                                  -VTD_FR_INTERRUPT_ADDR;
1129    }
1130}
1131
1132typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1133
1134/**
1135 * Constant information used during page walking
1136 *
1137 * @hook_fn: hook func to be called when detected page
1138 * @private: private data to be passed into hook func
1139 * @notify_unmap: whether we should notify invalid entries
1140 * @as: VT-d address space of the device
1141 * @aw: maximum address width
1142 * @domain: domain ID of the page walk
1143 */
1144typedef struct {
1145    VTDAddressSpace *as;
1146    vtd_page_walk_hook hook_fn;
1147    void *private;
1148    bool notify_unmap;
1149    uint8_t aw;
1150    uint16_t domain_id;
1151} vtd_page_walk_info;
1152
1153static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1154{
1155    VTDAddressSpace *as = info->as;
1156    vtd_page_walk_hook hook_fn = info->hook_fn;
1157    void *private = info->private;
1158    IOMMUTLBEntry *entry = &event->entry;
1159    DMAMap target = {
1160        .iova = entry->iova,
1161        .size = entry->addr_mask,
1162        .translated_addr = entry->translated_addr,
1163        .perm = entry->perm,
1164    };
1165    const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1166
1167    if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1168        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1169        return 0;
1170    }
1171
1172    assert(hook_fn);
1173
1174    /* Update local IOVA mapped ranges */
1175    if (event->type == IOMMU_NOTIFIER_MAP) {
1176        if (mapped) {
1177            /* If it's exactly the same translation, skip */
1178            if (!memcmp(mapped, &target, sizeof(target))) {
1179                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1180                                                 entry->translated_addr);
1181                return 0;
1182            } else {
1183                /*
1184                 * Translation changed.  Normally this should not
1185                 * happen, but it can happen when with buggy guest
1186                 * OSes.  Note that there will be a small window that
1187                 * we don't have map at all.  But that's the best
1188                 * effort we can do.  The ideal way to emulate this is
1189                 * atomically modify the PTE to follow what has
1190                 * changed, but we can't.  One example is that vfio
1191                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1192                 * interface to modify a mapping (meanwhile it seems
1193                 * meaningless to even provide one).  Anyway, let's
1194                 * mark this as a TODO in case one day we'll have
1195                 * a better solution.
1196                 */
1197                IOMMUAccessFlags cache_perm = entry->perm;
1198                int ret;
1199
1200                /* Emulate an UNMAP */
1201                event->type = IOMMU_NOTIFIER_UNMAP;
1202                entry->perm = IOMMU_NONE;
1203                trace_vtd_page_walk_one(info->domain_id,
1204                                        entry->iova,
1205                                        entry->translated_addr,
1206                                        entry->addr_mask,
1207                                        entry->perm);
1208                ret = hook_fn(event, private);
1209                if (ret) {
1210                    return ret;
1211                }
1212                /* Drop any existing mapping */
1213                iova_tree_remove(as->iova_tree, target);
1214                /* Recover the correct type */
1215                event->type = IOMMU_NOTIFIER_MAP;
1216                entry->perm = cache_perm;
1217            }
1218        }
1219        iova_tree_insert(as->iova_tree, &target);
1220    } else {
1221        if (!mapped) {
1222            /* Skip since we didn't map this range at all */
1223            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1224            return 0;
1225        }
1226        iova_tree_remove(as->iova_tree, target);
1227    }
1228
1229    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1230                            entry->translated_addr, entry->addr_mask,
1231                            entry->perm);
1232    return hook_fn(event, private);
1233}
1234
1235/**
1236 * vtd_page_walk_level - walk over specific level for IOVA range
1237 *
1238 * @addr: base GPA addr to start the walk
1239 * @start: IOVA range start address
1240 * @end: IOVA range end address (start <= addr < end)
1241 * @read: whether parent level has read permission
1242 * @write: whether parent level has write permission
1243 * @info: constant information for the page walk
1244 */
1245static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1246                               uint64_t end, uint32_t level, bool read,
1247                               bool write, vtd_page_walk_info *info)
1248{
1249    bool read_cur, write_cur, entry_valid;
1250    uint32_t offset;
1251    uint64_t slpte;
1252    uint64_t subpage_size, subpage_mask;
1253    IOMMUTLBEvent event;
1254    uint64_t iova = start;
1255    uint64_t iova_next;
1256    int ret = 0;
1257
1258    trace_vtd_page_walk_level(addr, level, start, end);
1259
1260    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1261    subpage_mask = vtd_slpt_level_page_mask(level);
1262
1263    while (iova < end) {
1264        iova_next = (iova & subpage_mask) + subpage_size;
1265
1266        offset = vtd_iova_level_offset(iova, level);
1267        slpte = vtd_get_slpte(addr, offset);
1268
1269        if (slpte == (uint64_t)-1) {
1270            trace_vtd_page_walk_skip_read(iova, iova_next);
1271            goto next;
1272        }
1273
1274        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1275            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1276            goto next;
1277        }
1278
1279        /* Permissions are stacked with parents' */
1280        read_cur = read && (slpte & VTD_SL_R);
1281        write_cur = write && (slpte & VTD_SL_W);
1282
1283        /*
1284         * As long as we have either read/write permission, this is a
1285         * valid entry. The rule works for both page entries and page
1286         * table entries.
1287         */
1288        entry_valid = read_cur | write_cur;
1289
1290        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1291            /*
1292             * This is a valid PDE (or even bigger than PDE).  We need
1293             * to walk one further level.
1294             */
1295            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1296                                      iova, MIN(iova_next, end), level - 1,
1297                                      read_cur, write_cur, info);
1298        } else {
1299            /*
1300             * This means we are either:
1301             *
1302             * (1) the real page entry (either 4K page, or huge page)
1303             * (2) the whole range is invalid
1304             *
1305             * In either case, we send an IOTLB notification down.
1306             */
1307            event.entry.target_as = &address_space_memory;
1308            event.entry.iova = iova & subpage_mask;
1309            event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1310            event.entry.addr_mask = ~subpage_mask;
1311            /* NOTE: this is only meaningful if entry_valid == true */
1312            event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1313            event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1314                                            IOMMU_NOTIFIER_UNMAP;
1315            ret = vtd_page_walk_one(&event, info);
1316        }
1317
1318        if (ret < 0) {
1319            return ret;
1320        }
1321
1322next:
1323        iova = iova_next;
1324    }
1325
1326    return 0;
1327}
1328
1329/**
1330 * vtd_page_walk - walk specific IOVA range, and call the hook
1331 *
1332 * @s: intel iommu state
1333 * @ce: context entry to walk upon
1334 * @start: IOVA address to start the walk
1335 * @end: IOVA range end address (start <= addr < end)
1336 * @info: page walking information struct
1337 */
1338static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1339                         uint64_t start, uint64_t end,
1340                         vtd_page_walk_info *info,
1341                         uint32_t pasid)
1342{
1343    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1344    uint32_t level = vtd_get_iova_level(s, ce, pasid);
1345
1346    if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1347        return -VTD_FR_ADDR_BEYOND_MGAW;
1348    }
1349
1350    if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1351        /* Fix end so that it reaches the maximum */
1352        end = vtd_iova_limit(s, ce, info->aw, pasid);
1353    }
1354
1355    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1356}
1357
1358static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1359                                          VTDRootEntry *re)
1360{
1361    /* Legacy Mode reserved bits check */
1362    if (!s->root_scalable &&
1363        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1364        goto rsvd_err;
1365
1366    /* Scalable Mode reserved bits check */
1367    if (s->root_scalable &&
1368        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1369         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1370        goto rsvd_err;
1371
1372    return 0;
1373
1374rsvd_err:
1375    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1376                      ", lo=0x%"PRIx64,
1377                      __func__, re->hi, re->lo);
1378    return -VTD_FR_ROOT_ENTRY_RSVD;
1379}
1380
1381static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1382                                                    VTDContextEntry *ce)
1383{
1384    if (!s->root_scalable &&
1385        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1386         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1387        error_report_once("%s: invalid context entry: hi=%"PRIx64
1388                          ", lo=%"PRIx64" (reserved nonzero)",
1389                          __func__, ce->hi, ce->lo);
1390        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1391    }
1392
1393    if (s->root_scalable &&
1394        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1395         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1396         ce->val[2] ||
1397         ce->val[3])) {
1398        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1399                          ", val[2]=%"PRIx64
1400                          ", val[1]=%"PRIx64
1401                          ", val[0]=%"PRIx64" (reserved nonzero)",
1402                          __func__, ce->val[3], ce->val[2],
1403                          ce->val[1], ce->val[0]);
1404        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1405    }
1406
1407    return 0;
1408}
1409
1410static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1411                                  VTDContextEntry *ce)
1412{
1413    VTDPASIDEntry pe;
1414
1415    /*
1416     * Make sure in Scalable Mode, a present context entry
1417     * has valid rid2pasid setting, which includes valid
1418     * rid2pasid field and corresponding pasid entry setting
1419     */
1420    return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1421}
1422
1423/* Map a device to its corresponding domain (context-entry) */
1424static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1425                                    uint8_t devfn, VTDContextEntry *ce)
1426{
1427    VTDRootEntry re;
1428    int ret_fr;
1429    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1430
1431    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1432    if (ret_fr) {
1433        return ret_fr;
1434    }
1435
1436    if (!vtd_root_entry_present(s, &re, devfn)) {
1437        /* Not error - it's okay we don't have root entry. */
1438        trace_vtd_re_not_present(bus_num);
1439        return -VTD_FR_ROOT_ENTRY_P;
1440    }
1441
1442    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1443    if (ret_fr) {
1444        return ret_fr;
1445    }
1446
1447    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1448    if (ret_fr) {
1449        return ret_fr;
1450    }
1451
1452    if (!vtd_ce_present(ce)) {
1453        /* Not error - it's okay we don't have context entry. */
1454        trace_vtd_ce_not_present(bus_num, devfn);
1455        return -VTD_FR_CONTEXT_ENTRY_P;
1456    }
1457
1458    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1459    if (ret_fr) {
1460        return ret_fr;
1461    }
1462
1463    /* Check if the programming of context-entry is valid */
1464    if (!s->root_scalable &&
1465        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1466        error_report_once("%s: invalid context entry: hi=%"PRIx64
1467                          ", lo=%"PRIx64" (level %d not supported)",
1468                          __func__, ce->hi, ce->lo,
1469                          vtd_ce_get_level(ce));
1470        return -VTD_FR_CONTEXT_ENTRY_INV;
1471    }
1472
1473    if (!s->root_scalable) {
1474        /* Do translation type check */
1475        if (!vtd_ce_type_check(x86_iommu, ce)) {
1476            /* Errors dumped in vtd_ce_type_check() */
1477            return -VTD_FR_CONTEXT_ENTRY_INV;
1478        }
1479    } else {
1480        /*
1481         * Check if the programming of context-entry.rid2pasid
1482         * and corresponding pasid setting is valid, and thus
1483         * avoids to check pasid entry fetching result in future
1484         * helper function calling.
1485         */
1486        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1487        if (ret_fr) {
1488            return ret_fr;
1489        }
1490    }
1491
1492    return 0;
1493}
1494
1495static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1496                                     void *private)
1497{
1498    memory_region_notify_iommu(private, 0, *event);
1499    return 0;
1500}
1501
1502static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1503                                  VTDContextEntry *ce,
1504                                  uint32_t pasid)
1505{
1506    VTDPASIDEntry pe;
1507
1508    if (s->root_scalable) {
1509        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1510        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1511    }
1512
1513    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1514}
1515
1516static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1517                                            VTDContextEntry *ce,
1518                                            hwaddr addr, hwaddr size)
1519{
1520    IntelIOMMUState *s = vtd_as->iommu_state;
1521    vtd_page_walk_info info = {
1522        .hook_fn = vtd_sync_shadow_page_hook,
1523        .private = (void *)&vtd_as->iommu,
1524        .notify_unmap = true,
1525        .aw = s->aw_bits,
1526        .as = vtd_as,
1527        .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1528    };
1529
1530    return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1531}
1532
1533static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1534{
1535    int ret;
1536    VTDContextEntry ce;
1537    IOMMUNotifier *n;
1538
1539    /* If no MAP notifier registered, we simply invalidate all the cache */
1540    if (!vtd_as_has_map_notifier(vtd_as)) {
1541        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1542            memory_region_unmap_iommu_notifier_range(n);
1543        }
1544        return 0;
1545    }
1546
1547    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1548                                   pci_bus_num(vtd_as->bus),
1549                                   vtd_as->devfn, &ce);
1550    if (ret) {
1551        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1552            /*
1553             * It's a valid scenario to have a context entry that is
1554             * not present.  For example, when a device is removed
1555             * from an existing domain then the context entry will be
1556             * zeroed by the guest before it was put into another
1557             * domain.  When this happens, instead of synchronizing
1558             * the shadow pages we should invalidate all existing
1559             * mappings and notify the backends.
1560             */
1561            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1562                vtd_address_space_unmap(vtd_as, n);
1563            }
1564            ret = 0;
1565        }
1566        return ret;
1567    }
1568
1569    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1570}
1571
1572/*
1573 * Check if specific device is configured to bypass address
1574 * translation for DMA requests. In Scalable Mode, bypass
1575 * 1st-level translation or 2nd-level translation, it depends
1576 * on PGTT setting.
1577 */
1578static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1579                               uint32_t pasid)
1580{
1581    VTDPASIDEntry pe;
1582    int ret;
1583
1584    if (s->root_scalable) {
1585        ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1586        if (ret) {
1587            /*
1588             * This error is guest triggerable. We should assumt PT
1589             * not enabled for safety.
1590             */
1591            return false;
1592        }
1593        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1594    }
1595
1596    return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1597
1598}
1599
1600static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1601{
1602    IntelIOMMUState *s;
1603    VTDContextEntry ce;
1604
1605    assert(as);
1606
1607    s = as->iommu_state;
1608    if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1609                                 &ce)) {
1610        /*
1611         * Possibly failed to parse the context entry for some reason
1612         * (e.g., during init, or any guest configuration errors on
1613         * context entries). We should assume PT not enabled for
1614         * safety.
1615         */
1616        return false;
1617    }
1618
1619    return vtd_dev_pt_enabled(s, &ce, as->pasid);
1620}
1621
1622/* Return whether the device is using IOMMU translation. */
1623static bool vtd_switch_address_space(VTDAddressSpace *as)
1624{
1625    bool use_iommu, pt;
1626    /* Whether we need to take the BQL on our own */
1627    bool take_bql = !qemu_mutex_iothread_locked();
1628
1629    assert(as);
1630
1631    use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1632    pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1633
1634    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1635                                   VTD_PCI_SLOT(as->devfn),
1636                                   VTD_PCI_FUNC(as->devfn),
1637                                   use_iommu);
1638
1639    /*
1640     * It's possible that we reach here without BQL, e.g., when called
1641     * from vtd_pt_enable_fast_path(). However the memory APIs need
1642     * it. We'd better make sure we have had it already, or, take it.
1643     */
1644    if (take_bql) {
1645        qemu_mutex_lock_iothread();
1646    }
1647
1648    /* Turn off first then on the other */
1649    if (use_iommu) {
1650        memory_region_set_enabled(&as->nodmar, false);
1651        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1652        /*
1653         * vt-d spec v3.4 3.14:
1654         *
1655         * """
1656         * Requests-with-PASID with input address in range 0xFEEx_xxxx
1657         * are translated normally like any other request-with-PASID
1658         * through DMA-remapping hardware.
1659         * """
1660         *
1661         * Need to disable ir for as with PASID.
1662         */
1663        if (as->pasid != PCI_NO_PASID) {
1664            memory_region_set_enabled(&as->iommu_ir, false);
1665        } else {
1666            memory_region_set_enabled(&as->iommu_ir, true);
1667        }
1668    } else {
1669        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1670        memory_region_set_enabled(&as->nodmar, true);
1671    }
1672
1673    /*
1674     * vtd-spec v3.4 3.14:
1675     *
1676     * """
1677     * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1678     * translated normally like any other request-with-PASID through
1679     * DMA-remapping hardware. However, if such a request is processed
1680     * using pass-through translation, it will be blocked as described
1681     * in the paragraph below.
1682     *
1683     * Software must not program paging-structure entries to remap any
1684     * address to the interrupt address range. Untranslated requests
1685     * and translation requests that result in an address in the
1686     * interrupt range will be blocked with condition code LGN.4 or
1687     * SGN.8.
1688     * """
1689     *
1690     * We enable per as memory region (iommu_ir_fault) for catching
1691     * the tranlsation for interrupt range through PASID + PT.
1692     */
1693    if (pt && as->pasid != PCI_NO_PASID) {
1694        memory_region_set_enabled(&as->iommu_ir_fault, true);
1695    } else {
1696        memory_region_set_enabled(&as->iommu_ir_fault, false);
1697    }
1698
1699    if (take_bql) {
1700        qemu_mutex_unlock_iothread();
1701    }
1702
1703    return use_iommu;
1704}
1705
1706static void vtd_switch_address_space_all(IntelIOMMUState *s)
1707{
1708    VTDAddressSpace *vtd_as;
1709    GHashTableIter iter;
1710
1711    g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1712    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1713        vtd_switch_address_space(vtd_as);
1714    }
1715}
1716
1717static const bool vtd_qualified_faults[] = {
1718    [VTD_FR_RESERVED] = false,
1719    [VTD_FR_ROOT_ENTRY_P] = false,
1720    [VTD_FR_CONTEXT_ENTRY_P] = true,
1721    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1722    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1723    [VTD_FR_WRITE] = true,
1724    [VTD_FR_READ] = true,
1725    [VTD_FR_PAGING_ENTRY_INV] = true,
1726    [VTD_FR_ROOT_TABLE_INV] = false,
1727    [VTD_FR_CONTEXT_TABLE_INV] = false,
1728    [VTD_FR_INTERRUPT_ADDR] = true,
1729    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1730    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1731    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1732    [VTD_FR_PASID_TABLE_INV] = false,
1733    [VTD_FR_SM_INTERRUPT_ADDR] = true,
1734    [VTD_FR_MAX] = false,
1735};
1736
1737/* To see if a fault condition is "qualified", which is reported to software
1738 * only if the FPD field in the context-entry used to process the faulting
1739 * request is 0.
1740 */
1741static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1742{
1743    return vtd_qualified_faults[fault];
1744}
1745
1746static inline bool vtd_is_interrupt_addr(hwaddr addr)
1747{
1748    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1749}
1750
1751static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1752                                   gpointer user_data)
1753{
1754    struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1755    uint16_t target_sid = *(uint16_t *)user_data;
1756    uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1757    return sid == target_sid;
1758}
1759
1760static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1761{
1762    uint8_t bus_num = PCI_BUS_NUM(sid);
1763    VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1764
1765    if (vtd_as &&
1766        (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1767        return vtd_as;
1768    }
1769
1770    vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1771    s->vtd_as_cache[bus_num] = vtd_as;
1772
1773    return vtd_as;
1774}
1775
1776static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1777{
1778    VTDAddressSpace *vtd_as;
1779    bool success = false;
1780
1781    vtd_as = vtd_get_as_by_sid(s, source_id);
1782    if (!vtd_as) {
1783        goto out;
1784    }
1785
1786    if (vtd_switch_address_space(vtd_as) == false) {
1787        /* We switched off IOMMU region successfully. */
1788        success = true;
1789    }
1790
1791out:
1792    trace_vtd_pt_enable_fast_path(source_id, success);
1793}
1794
1795static void vtd_report_fault(IntelIOMMUState *s,
1796                             int err, bool is_fpd_set,
1797                             uint16_t source_id,
1798                             hwaddr addr,
1799                             bool is_write,
1800                             bool is_pasid,
1801                             uint32_t pasid)
1802{
1803    if (is_fpd_set && vtd_is_qualified_fault(err)) {
1804        trace_vtd_fault_disabled();
1805    } else {
1806        vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1807                              is_pasid, pasid);
1808    }
1809}
1810
1811/* Map dev to context-entry then do a paging-structures walk to do a iommu
1812 * translation.
1813 *
1814 * Called from RCU critical section.
1815 *
1816 * @bus_num: The bus number
1817 * @devfn: The devfn, which is the  combined of device and function number
1818 * @is_write: The access is a write operation
1819 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1820 *
1821 * Returns true if translation is successful, otherwise false.
1822 */
1823static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1824                                   uint8_t devfn, hwaddr addr, bool is_write,
1825                                   IOMMUTLBEntry *entry)
1826{
1827    IntelIOMMUState *s = vtd_as->iommu_state;
1828    VTDContextEntry ce;
1829    uint8_t bus_num = pci_bus_num(bus);
1830    VTDContextCacheEntry *cc_entry;
1831    uint64_t slpte, page_mask;
1832    uint32_t level, pasid = vtd_as->pasid;
1833    uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1834    int ret_fr;
1835    bool is_fpd_set = false;
1836    bool reads = true;
1837    bool writes = true;
1838    uint8_t access_flags;
1839    bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1840    VTDIOTLBEntry *iotlb_entry;
1841
1842    /*
1843     * We have standalone memory region for interrupt addresses, we
1844     * should never receive translation requests in this region.
1845     */
1846    assert(!vtd_is_interrupt_addr(addr));
1847
1848    vtd_iommu_lock(s);
1849
1850    cc_entry = &vtd_as->context_cache_entry;
1851
1852    /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1853    if (!rid2pasid) {
1854        iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1855        if (iotlb_entry) {
1856            trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1857                                     iotlb_entry->domain_id);
1858            slpte = iotlb_entry->slpte;
1859            access_flags = iotlb_entry->access_flags;
1860            page_mask = iotlb_entry->mask;
1861            goto out;
1862        }
1863    }
1864
1865    /* Try to fetch context-entry from cache first */
1866    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1867        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1868                               cc_entry->context_entry.lo,
1869                               cc_entry->context_cache_gen);
1870        ce = cc_entry->context_entry;
1871        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1872        if (!is_fpd_set && s->root_scalable) {
1873            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1874            if (ret_fr) {
1875                vtd_report_fault(s, -ret_fr, is_fpd_set,
1876                                 source_id, addr, is_write,
1877                                 false, 0);
1878                goto error;
1879            }
1880        }
1881    } else {
1882        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1883        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1884        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1885            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1886        }
1887        if (ret_fr) {
1888            vtd_report_fault(s, -ret_fr, is_fpd_set,
1889                             source_id, addr, is_write,
1890                             false, 0);
1891            goto error;
1892        }
1893        /* Update context-cache */
1894        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1895                                  cc_entry->context_cache_gen,
1896                                  s->context_cache_gen);
1897        cc_entry->context_entry = ce;
1898        cc_entry->context_cache_gen = s->context_cache_gen;
1899    }
1900
1901    if (rid2pasid) {
1902        pasid = VTD_CE_GET_RID2PASID(&ce);
1903    }
1904
1905    /*
1906     * We don't need to translate for pass-through context entries.
1907     * Also, let's ignore IOTLB caching as well for PT devices.
1908     */
1909    if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1910        entry->iova = addr & VTD_PAGE_MASK_4K;
1911        entry->translated_addr = entry->iova;
1912        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1913        entry->perm = IOMMU_RW;
1914        trace_vtd_translate_pt(source_id, entry->iova);
1915
1916        /*
1917         * When this happens, it means firstly caching-mode is not
1918         * enabled, and this is the first passthrough translation for
1919         * the device. Let's enable the fast path for passthrough.
1920         *
1921         * When passthrough is disabled again for the device, we can
1922         * capture it via the context entry invalidation, then the
1923         * IOMMU region can be swapped back.
1924         */
1925        vtd_pt_enable_fast_path(s, source_id);
1926        vtd_iommu_unlock(s);
1927        return true;
1928    }
1929
1930    /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1931    if (rid2pasid) {
1932        iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1933        if (iotlb_entry) {
1934            trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1935                                     iotlb_entry->domain_id);
1936            slpte = iotlb_entry->slpte;
1937            access_flags = iotlb_entry->access_flags;
1938            page_mask = iotlb_entry->mask;
1939            goto out;
1940        }
1941    }
1942
1943    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1944                               &reads, &writes, s->aw_bits, pasid);
1945    if (ret_fr) {
1946        vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1947                         addr, is_write, pasid != PCI_NO_PASID, pasid);
1948        goto error;
1949    }
1950
1951    page_mask = vtd_slpt_level_page_mask(level);
1952    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1953    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1954                     addr, slpte, access_flags, level, pasid);
1955out:
1956    vtd_iommu_unlock(s);
1957    entry->iova = addr & page_mask;
1958    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1959    entry->addr_mask = ~page_mask;
1960    entry->perm = access_flags;
1961    return true;
1962
1963error:
1964    vtd_iommu_unlock(s);
1965    entry->iova = 0;
1966    entry->translated_addr = 0;
1967    entry->addr_mask = 0;
1968    entry->perm = IOMMU_NONE;
1969    return false;
1970}
1971
1972static void vtd_root_table_setup(IntelIOMMUState *s)
1973{
1974    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1975    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1976
1977    vtd_update_scalable_state(s);
1978
1979    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1980}
1981
1982static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1983                               uint32_t index, uint32_t mask)
1984{
1985    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1986}
1987
1988static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1989{
1990    uint64_t value = 0;
1991    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1992    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1993    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1994    s->intr_eime = value & VTD_IRTA_EIME;
1995
1996    /* Notify global invalidation */
1997    vtd_iec_notify_all(s, true, 0, 0);
1998
1999    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2000}
2001
2002static void vtd_iommu_replay_all(IntelIOMMUState *s)
2003{
2004    VTDAddressSpace *vtd_as;
2005
2006    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2007        vtd_address_space_sync(vtd_as);
2008    }
2009}
2010
2011static void vtd_context_global_invalidate(IntelIOMMUState *s)
2012{
2013    trace_vtd_inv_desc_cc_global();
2014    /* Protects context cache */
2015    vtd_iommu_lock(s);
2016    s->context_cache_gen++;
2017    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2018        vtd_reset_context_cache_locked(s);
2019    }
2020    vtd_iommu_unlock(s);
2021    vtd_address_space_refresh_all(s);
2022    /*
2023     * From VT-d spec 6.5.2.1, a global context entry invalidation
2024     * should be followed by a IOTLB global invalidation, so we should
2025     * be safe even without this. Hoewever, let's replay the region as
2026     * well to be safer, and go back here when we need finer tunes for
2027     * VT-d emulation codes.
2028     */
2029    vtd_iommu_replay_all(s);
2030}
2031
2032/* Do a context-cache device-selective invalidation.
2033 * @func_mask: FM field after shifting
2034 */
2035static void vtd_context_device_invalidate(IntelIOMMUState *s,
2036                                          uint16_t source_id,
2037                                          uint16_t func_mask)
2038{
2039    GHashTableIter as_it;
2040    uint16_t mask;
2041    VTDAddressSpace *vtd_as;
2042    uint8_t bus_n, devfn;
2043
2044    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2045
2046    switch (func_mask & 3) {
2047    case 0:
2048        mask = 0;   /* No bits in the SID field masked */
2049        break;
2050    case 1:
2051        mask = 4;   /* Mask bit 2 in the SID field */
2052        break;
2053    case 2:
2054        mask = 6;   /* Mask bit 2:1 in the SID field */
2055        break;
2056    case 3:
2057        mask = 7;   /* Mask bit 2:0 in the SID field */
2058        break;
2059    default:
2060        g_assert_not_reached();
2061    }
2062    mask = ~mask;
2063
2064    bus_n = VTD_SID_TO_BUS(source_id);
2065    devfn = VTD_SID_TO_DEVFN(source_id);
2066
2067    g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2068    while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2069        if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2070            (vtd_as->devfn & mask) == (devfn & mask)) {
2071            trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2072                                         VTD_PCI_FUNC(vtd_as->devfn));
2073            vtd_iommu_lock(s);
2074            vtd_as->context_cache_entry.context_cache_gen = 0;
2075            vtd_iommu_unlock(s);
2076            /*
2077             * Do switch address space when needed, in case if the
2078             * device passthrough bit is switched.
2079             */
2080            vtd_switch_address_space(vtd_as);
2081            /*
2082             * So a device is moving out of (or moving into) a
2083             * domain, resync the shadow page table.
2084             * This won't bring bad even if we have no such
2085             * notifier registered - the IOMMU notification
2086             * framework will skip MAP notifications if that
2087             * happened.
2088             */
2089            vtd_address_space_sync(vtd_as);
2090        }
2091    }
2092}
2093
2094/* Context-cache invalidation
2095 * Returns the Context Actual Invalidation Granularity.
2096 * @val: the content of the CCMD_REG
2097 */
2098static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2099{
2100    uint64_t caig;
2101    uint64_t type = val & VTD_CCMD_CIRG_MASK;
2102
2103    switch (type) {
2104    case VTD_CCMD_DOMAIN_INVL:
2105        /* Fall through */
2106    case VTD_CCMD_GLOBAL_INVL:
2107        caig = VTD_CCMD_GLOBAL_INVL_A;
2108        vtd_context_global_invalidate(s);
2109        break;
2110
2111    case VTD_CCMD_DEVICE_INVL:
2112        caig = VTD_CCMD_DEVICE_INVL_A;
2113        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2114        break;
2115
2116    default:
2117        error_report_once("%s: invalid context: 0x%" PRIx64,
2118                          __func__, val);
2119        caig = 0;
2120    }
2121    return caig;
2122}
2123
2124static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2125{
2126    trace_vtd_inv_desc_iotlb_global();
2127    vtd_reset_iotlb(s);
2128    vtd_iommu_replay_all(s);
2129}
2130
2131static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2132{
2133    VTDContextEntry ce;
2134    VTDAddressSpace *vtd_as;
2135
2136    trace_vtd_inv_desc_iotlb_domain(domain_id);
2137
2138    vtd_iommu_lock(s);
2139    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2140                                &domain_id);
2141    vtd_iommu_unlock(s);
2142
2143    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2144        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2145                                      vtd_as->devfn, &ce) &&
2146            domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2147            vtd_address_space_sync(vtd_as);
2148        }
2149    }
2150}
2151
2152static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2153                                           uint16_t domain_id, hwaddr addr,
2154                                             uint8_t am, uint32_t pasid)
2155{
2156    VTDAddressSpace *vtd_as;
2157    VTDContextEntry ce;
2158    int ret;
2159    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2160
2161    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2162        if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2163            continue;
2164        }
2165        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2166                                       vtd_as->devfn, &ce);
2167        if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2168            if (vtd_as_has_map_notifier(vtd_as)) {
2169                /*
2170                 * As long as we have MAP notifications registered in
2171                 * any of our IOMMU notifiers, we need to sync the
2172                 * shadow page table.
2173                 */
2174                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2175            } else {
2176                /*
2177                 * For UNMAP-only notifiers, we don't need to walk the
2178                 * page tables.  We just deliver the PSI down to
2179                 * invalidate caches.
2180                 */
2181                IOMMUTLBEvent event = {
2182                    .type = IOMMU_NOTIFIER_UNMAP,
2183                    .entry = {
2184                        .target_as = &address_space_memory,
2185                        .iova = addr,
2186                        .translated_addr = 0,
2187                        .addr_mask = size - 1,
2188                        .perm = IOMMU_NONE,
2189                    },
2190                };
2191                memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2192            }
2193        }
2194    }
2195}
2196
2197static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2198                                      hwaddr addr, uint8_t am)
2199{
2200    VTDIOTLBPageInvInfo info;
2201
2202    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2203
2204    assert(am <= VTD_MAMV);
2205    info.domain_id = domain_id;
2206    info.addr = addr;
2207    info.mask = ~((1 << am) - 1);
2208    vtd_iommu_lock(s);
2209    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2210    vtd_iommu_unlock(s);
2211    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2212}
2213
2214/* Flush IOTLB
2215 * Returns the IOTLB Actual Invalidation Granularity.
2216 * @val: the content of the IOTLB_REG
2217 */
2218static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2219{
2220    uint64_t iaig;
2221    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2222    uint16_t domain_id;
2223    hwaddr addr;
2224    uint8_t am;
2225
2226    switch (type) {
2227    case VTD_TLB_GLOBAL_FLUSH:
2228        iaig = VTD_TLB_GLOBAL_FLUSH_A;
2229        vtd_iotlb_global_invalidate(s);
2230        break;
2231
2232    case VTD_TLB_DSI_FLUSH:
2233        domain_id = VTD_TLB_DID(val);
2234        iaig = VTD_TLB_DSI_FLUSH_A;
2235        vtd_iotlb_domain_invalidate(s, domain_id);
2236        break;
2237
2238    case VTD_TLB_PSI_FLUSH:
2239        domain_id = VTD_TLB_DID(val);
2240        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2241        am = VTD_IVA_AM(addr);
2242        addr = VTD_IVA_ADDR(addr);
2243        if (am > VTD_MAMV) {
2244            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2245                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2246            iaig = 0;
2247            break;
2248        }
2249        iaig = VTD_TLB_PSI_FLUSH_A;
2250        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2251        break;
2252
2253    default:
2254        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2255                          __func__, val);
2256        iaig = 0;
2257    }
2258    return iaig;
2259}
2260
2261static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2262
2263static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2264{
2265    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2266           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2267}
2268
2269static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2270{
2271    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2272
2273    trace_vtd_inv_qi_enable(en);
2274
2275    if (en) {
2276        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2277        /* 2^(x+8) entries */
2278        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2279        s->qi_enabled = true;
2280        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2281        /* Ok - report back to driver */
2282        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2283
2284        if (s->iq_tail != 0) {
2285            /*
2286             * This is a spec violation but Windows guests are known to set up
2287             * Queued Invalidation this way so we allow the write and process
2288             * Invalidation Descriptors right away.
2289             */
2290            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2291            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2292                vtd_fetch_inv_desc(s);
2293            }
2294        }
2295    } else {
2296        if (vtd_queued_inv_disable_check(s)) {
2297            /* disable Queued Invalidation */
2298            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2299            s->iq_head = 0;
2300            s->qi_enabled = false;
2301            /* Ok - report back to driver */
2302            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2303        } else {
2304            error_report_once("%s: detected improper state when disable QI "
2305                              "(head=0x%x, tail=0x%x, last_type=%d)",
2306                              __func__,
2307                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2308        }
2309    }
2310}
2311
2312/* Set Root Table Pointer */
2313static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2314{
2315    vtd_root_table_setup(s);
2316    /* Ok - report back to driver */
2317    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2318    vtd_reset_caches(s);
2319    vtd_address_space_refresh_all(s);
2320}
2321
2322/* Set Interrupt Remap Table Pointer */
2323static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2324{
2325    vtd_interrupt_remap_table_setup(s);
2326    /* Ok - report back to driver */
2327    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2328}
2329
2330/* Handle Translation Enable/Disable */
2331static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2332{
2333    if (s->dmar_enabled == en) {
2334        return;
2335    }
2336
2337    trace_vtd_dmar_enable(en);
2338
2339    if (en) {
2340        s->dmar_enabled = true;
2341        /* Ok - report back to driver */
2342        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2343    } else {
2344        s->dmar_enabled = false;
2345
2346        /* Clear the index of Fault Recording Register */
2347        s->next_frcd_reg = 0;
2348        /* Ok - report back to driver */
2349        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2350    }
2351
2352    vtd_reset_caches(s);
2353    vtd_address_space_refresh_all(s);
2354}
2355
2356/* Handle Interrupt Remap Enable/Disable */
2357static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2358{
2359    trace_vtd_ir_enable(en);
2360
2361    if (en) {
2362        s->intr_enabled = true;
2363        /* Ok - report back to driver */
2364        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2365    } else {
2366        s->intr_enabled = false;
2367        /* Ok - report back to driver */
2368        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2369    }
2370}
2371
2372/* Handle write to Global Command Register */
2373static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2374{
2375    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2376    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2377    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2378    uint32_t changed = status ^ val;
2379
2380    trace_vtd_reg_write_gcmd(status, val);
2381    if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2382        /* Translation enable/disable */
2383        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2384    }
2385    if (val & VTD_GCMD_SRTP) {
2386        /* Set/update the root-table pointer */
2387        vtd_handle_gcmd_srtp(s);
2388    }
2389    if (changed & VTD_GCMD_QIE) {
2390        /* Queued Invalidation Enable */
2391        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2392    }
2393    if (val & VTD_GCMD_SIRTP) {
2394        /* Set/update the interrupt remapping root-table pointer */
2395        vtd_handle_gcmd_sirtp(s);
2396    }
2397    if ((changed & VTD_GCMD_IRE) &&
2398        x86_iommu_ir_supported(x86_iommu)) {
2399        /* Interrupt remap enable/disable */
2400        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2401    }
2402}
2403
2404/* Handle write to Context Command Register */
2405static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2406{
2407    uint64_t ret;
2408    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2409
2410    /* Context-cache invalidation request */
2411    if (val & VTD_CCMD_ICC) {
2412        if (s->qi_enabled) {
2413            error_report_once("Queued Invalidation enabled, "
2414                              "should not use register-based invalidation");
2415            return;
2416        }
2417        ret = vtd_context_cache_invalidate(s, val);
2418        /* Invalidation completed. Change something to show */
2419        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2420        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2421                                      ret);
2422    }
2423}
2424
2425/* Handle write to IOTLB Invalidation Register */
2426static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2427{
2428    uint64_t ret;
2429    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2430
2431    /* IOTLB invalidation request */
2432    if (val & VTD_TLB_IVT) {
2433        if (s->qi_enabled) {
2434            error_report_once("Queued Invalidation enabled, "
2435                              "should not use register-based invalidation");
2436            return;
2437        }
2438        ret = vtd_iotlb_flush(s, val);
2439        /* Invalidation completed. Change something to show */
2440        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2441        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2442                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2443    }
2444}
2445
2446/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2447static bool vtd_get_inv_desc(IntelIOMMUState *s,
2448                             VTDInvDesc *inv_desc)
2449{
2450    dma_addr_t base_addr = s->iq;
2451    uint32_t offset = s->iq_head;
2452    uint32_t dw = s->iq_dw ? 32 : 16;
2453    dma_addr_t addr = base_addr + offset * dw;
2454
2455    if (dma_memory_read(&address_space_memory, addr,
2456                        inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2457        error_report_once("Read INV DESC failed.");
2458        return false;
2459    }
2460    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2461    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2462    if (dw == 32) {
2463        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2464        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2465    }
2466    return true;
2467}
2468
2469static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2470{
2471    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2472        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2473        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2474                          " (reserved nonzero)", __func__, inv_desc->hi,
2475                          inv_desc->lo);
2476        return false;
2477    }
2478    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2479        /* Status Write */
2480        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2481                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2482
2483        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2484
2485        /* FIXME: need to be masked with HAW? */
2486        dma_addr_t status_addr = inv_desc->hi;
2487        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2488        status_data = cpu_to_le32(status_data);
2489        if (dma_memory_write(&address_space_memory, status_addr,
2490                             &status_data, sizeof(status_data),
2491                             MEMTXATTRS_UNSPECIFIED)) {
2492            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2493            return false;
2494        }
2495    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2496        /* Interrupt flag */
2497        vtd_generate_completion_event(s);
2498    } else {
2499        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2500                          " (unknown type)", __func__, inv_desc->hi,
2501                          inv_desc->lo);
2502        return false;
2503    }
2504    return true;
2505}
2506
2507static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2508                                           VTDInvDesc *inv_desc)
2509{
2510    uint16_t sid, fmask;
2511
2512    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2513        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2514                          " (reserved nonzero)", __func__, inv_desc->hi,
2515                          inv_desc->lo);
2516        return false;
2517    }
2518    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2519    case VTD_INV_DESC_CC_DOMAIN:
2520        trace_vtd_inv_desc_cc_domain(
2521            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2522        /* Fall through */
2523    case VTD_INV_DESC_CC_GLOBAL:
2524        vtd_context_global_invalidate(s);
2525        break;
2526
2527    case VTD_INV_DESC_CC_DEVICE:
2528        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2529        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2530        vtd_context_device_invalidate(s, sid, fmask);
2531        break;
2532
2533    default:
2534        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2535                          " (invalid type)", __func__, inv_desc->hi,
2536                          inv_desc->lo);
2537        return false;
2538    }
2539    return true;
2540}
2541
2542static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2543{
2544    uint16_t domain_id;
2545    uint8_t am;
2546    hwaddr addr;
2547
2548    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2549        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2550        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2551                          ", lo=0x%"PRIx64" (reserved bits unzero)",
2552                          __func__, inv_desc->hi, inv_desc->lo);
2553        return false;
2554    }
2555
2556    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2557    case VTD_INV_DESC_IOTLB_GLOBAL:
2558        vtd_iotlb_global_invalidate(s);
2559        break;
2560
2561    case VTD_INV_DESC_IOTLB_DOMAIN:
2562        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2563        vtd_iotlb_domain_invalidate(s, domain_id);
2564        break;
2565
2566    case VTD_INV_DESC_IOTLB_PAGE:
2567        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2568        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2569        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2570        if (am > VTD_MAMV) {
2571            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2572                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2573                              __func__, inv_desc->hi, inv_desc->lo,
2574                              am, (unsigned)VTD_MAMV);
2575            return false;
2576        }
2577        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2578        break;
2579
2580    default:
2581        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2582                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2583                          __func__, inv_desc->hi, inv_desc->lo,
2584                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2585        return false;
2586    }
2587    return true;
2588}
2589
2590static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2591                                     VTDInvDesc *inv_desc)
2592{
2593    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2594                           inv_desc->iec.index,
2595                           inv_desc->iec.index_mask);
2596
2597    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2598                       inv_desc->iec.index,
2599                       inv_desc->iec.index_mask);
2600    return true;
2601}
2602
2603static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2604                                          VTDInvDesc *inv_desc)
2605{
2606    VTDAddressSpace *vtd_dev_as;
2607    IOMMUTLBEvent event;
2608    hwaddr addr;
2609    uint64_t sz;
2610    uint16_t sid;
2611    bool size;
2612
2613    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2614    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2615    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2616
2617    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2618        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2619        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2620                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2621                          inv_desc->hi, inv_desc->lo);
2622        return false;
2623    }
2624
2625    /*
2626     * Using sid is OK since the guest should have finished the
2627     * initialization of both the bus and device.
2628     */
2629    vtd_dev_as = vtd_get_as_by_sid(s, sid);
2630    if (!vtd_dev_as) {
2631        goto done;
2632    }
2633
2634    /* According to ATS spec table 2.4:
2635     * S = 0, bits 15:12 = xxxx     range size: 4K
2636     * S = 1, bits 15:12 = xxx0     range size: 8K
2637     * S = 1, bits 15:12 = xx01     range size: 16K
2638     * S = 1, bits 15:12 = x011     range size: 32K
2639     * S = 1, bits 15:12 = 0111     range size: 64K
2640     * ...
2641     */
2642    if (size) {
2643        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2644        addr &= ~(sz - 1);
2645    } else {
2646        sz = VTD_PAGE_SIZE;
2647    }
2648
2649    event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2650    event.entry.target_as = &vtd_dev_as->as;
2651    event.entry.addr_mask = sz - 1;
2652    event.entry.iova = addr;
2653    event.entry.perm = IOMMU_NONE;
2654    event.entry.translated_addr = 0;
2655    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2656
2657done:
2658    return true;
2659}
2660
2661static bool vtd_process_inv_desc(IntelIOMMUState *s)
2662{
2663    VTDInvDesc inv_desc;
2664    uint8_t desc_type;
2665
2666    trace_vtd_inv_qi_head(s->iq_head);
2667    if (!vtd_get_inv_desc(s, &inv_desc)) {
2668        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2669        return false;
2670    }
2671
2672    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2673    /* FIXME: should update at first or at last? */
2674    s->iq_last_desc_type = desc_type;
2675
2676    switch (desc_type) {
2677    case VTD_INV_DESC_CC:
2678        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2679        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2680            return false;
2681        }
2682        break;
2683
2684    case VTD_INV_DESC_IOTLB:
2685        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2686        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2687            return false;
2688        }
2689        break;
2690
2691    /*
2692     * TODO: the entity of below two cases will be implemented in future series.
2693     * To make guest (which integrates scalable mode support patch set in
2694     * iommu driver) work, just return true is enough so far.
2695     */
2696    case VTD_INV_DESC_PC:
2697        break;
2698
2699    case VTD_INV_DESC_PIOTLB:
2700        break;
2701
2702    case VTD_INV_DESC_WAIT:
2703        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2704        if (!vtd_process_wait_desc(s, &inv_desc)) {
2705            return false;
2706        }
2707        break;
2708
2709    case VTD_INV_DESC_IEC:
2710        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2711        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2712            return false;
2713        }
2714        break;
2715
2716    case VTD_INV_DESC_DEVICE:
2717        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2718        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2719            return false;
2720        }
2721        break;
2722
2723    default:
2724        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2725                          " (unknown type)", __func__, inv_desc.hi,
2726                          inv_desc.lo);
2727        return false;
2728    }
2729    s->iq_head++;
2730    if (s->iq_head == s->iq_size) {
2731        s->iq_head = 0;
2732    }
2733    return true;
2734}
2735
2736/* Try to fetch and process more Invalidation Descriptors */
2737static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2738{
2739    int qi_shift;
2740
2741    /* Refer to 10.4.23 of VT-d spec 3.0 */
2742    qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2743
2744    trace_vtd_inv_qi_fetch();
2745
2746    if (s->iq_tail >= s->iq_size) {
2747        /* Detects an invalid Tail pointer */
2748        error_report_once("%s: detected invalid QI tail "
2749                          "(tail=0x%x, size=0x%x)",
2750                          __func__, s->iq_tail, s->iq_size);
2751        vtd_handle_inv_queue_error(s);
2752        return;
2753    }
2754    while (s->iq_head != s->iq_tail) {
2755        if (!vtd_process_inv_desc(s)) {
2756            /* Invalidation Queue Errors */
2757            vtd_handle_inv_queue_error(s);
2758            break;
2759        }
2760        /* Must update the IQH_REG in time */
2761        vtd_set_quad_raw(s, DMAR_IQH_REG,
2762                         (((uint64_t)(s->iq_head)) << qi_shift) &
2763                         VTD_IQH_QH_MASK);
2764    }
2765}
2766
2767/* Handle write to Invalidation Queue Tail Register */
2768static void vtd_handle_iqt_write(IntelIOMMUState *s)
2769{
2770    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2771
2772    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2773        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2774                          __func__, val);
2775        return;
2776    }
2777    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2778    trace_vtd_inv_qi_tail(s->iq_tail);
2779
2780    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2781        /* Process Invalidation Queue here */
2782        vtd_fetch_inv_desc(s);
2783    }
2784}
2785
2786static void vtd_handle_fsts_write(IntelIOMMUState *s)
2787{
2788    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2789    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2790    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2791
2792    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2793        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2794        trace_vtd_fsts_clear_ip();
2795    }
2796    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2797     * Descriptors if there are any when Queued Invalidation is enabled?
2798     */
2799}
2800
2801static void vtd_handle_fectl_write(IntelIOMMUState *s)
2802{
2803    uint32_t fectl_reg;
2804    /* FIXME: when software clears the IM field, check the IP field. But do we
2805     * need to compare the old value and the new value to conclude that
2806     * software clears the IM field? Or just check if the IM field is zero?
2807     */
2808    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2809
2810    trace_vtd_reg_write_fectl(fectl_reg);
2811
2812    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2813        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2814        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2815    }
2816}
2817
2818static void vtd_handle_ics_write(IntelIOMMUState *s)
2819{
2820    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2821    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2822
2823    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2824        trace_vtd_reg_ics_clear_ip();
2825        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2826    }
2827}
2828
2829static void vtd_handle_iectl_write(IntelIOMMUState *s)
2830{
2831    uint32_t iectl_reg;
2832    /* FIXME: when software clears the IM field, check the IP field. But do we
2833     * need to compare the old value and the new value to conclude that
2834     * software clears the IM field? Or just check if the IM field is zero?
2835     */
2836    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2837
2838    trace_vtd_reg_write_iectl(iectl_reg);
2839
2840    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2841        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2842        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2843    }
2844}
2845
2846static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2847{
2848    IntelIOMMUState *s = opaque;
2849    uint64_t val;
2850
2851    trace_vtd_reg_read(addr, size);
2852
2853    if (addr + size > DMAR_REG_SIZE) {
2854        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2855                          " size=0x%x", __func__, addr, size);
2856        return (uint64_t)-1;
2857    }
2858
2859    switch (addr) {
2860    /* Root Table Address Register, 64-bit */
2861    case DMAR_RTADDR_REG:
2862        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2863        if (size == 4) {
2864            val = val & ((1ULL << 32) - 1);
2865        }
2866        break;
2867
2868    case DMAR_RTADDR_REG_HI:
2869        assert(size == 4);
2870        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2871        break;
2872
2873    /* Invalidation Queue Address Register, 64-bit */
2874    case DMAR_IQA_REG:
2875        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2876        if (size == 4) {
2877            val = val & ((1ULL << 32) - 1);
2878        }
2879        break;
2880
2881    case DMAR_IQA_REG_HI:
2882        assert(size == 4);
2883        val = s->iq >> 32;
2884        break;
2885
2886    default:
2887        if (size == 4) {
2888            val = vtd_get_long(s, addr);
2889        } else {
2890            val = vtd_get_quad(s, addr);
2891        }
2892    }
2893
2894    return val;
2895}
2896
2897static void vtd_mem_write(void *opaque, hwaddr addr,
2898                          uint64_t val, unsigned size)
2899{
2900    IntelIOMMUState *s = opaque;
2901
2902    trace_vtd_reg_write(addr, size, val);
2903
2904    if (addr + size > DMAR_REG_SIZE) {
2905        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2906                          " size=0x%x", __func__, addr, size);
2907        return;
2908    }
2909
2910    switch (addr) {
2911    /* Global Command Register, 32-bit */
2912    case DMAR_GCMD_REG:
2913        vtd_set_long(s, addr, val);
2914        vtd_handle_gcmd_write(s);
2915        break;
2916
2917    /* Context Command Register, 64-bit */
2918    case DMAR_CCMD_REG:
2919        if (size == 4) {
2920            vtd_set_long(s, addr, val);
2921        } else {
2922            vtd_set_quad(s, addr, val);
2923            vtd_handle_ccmd_write(s);
2924        }
2925        break;
2926
2927    case DMAR_CCMD_REG_HI:
2928        assert(size == 4);
2929        vtd_set_long(s, addr, val);
2930        vtd_handle_ccmd_write(s);
2931        break;
2932
2933    /* IOTLB Invalidation Register, 64-bit */
2934    case DMAR_IOTLB_REG:
2935        if (size == 4) {
2936            vtd_set_long(s, addr, val);
2937        } else {
2938            vtd_set_quad(s, addr, val);
2939            vtd_handle_iotlb_write(s);
2940        }
2941        break;
2942
2943    case DMAR_IOTLB_REG_HI:
2944        assert(size == 4);
2945        vtd_set_long(s, addr, val);
2946        vtd_handle_iotlb_write(s);
2947        break;
2948
2949    /* Invalidate Address Register, 64-bit */
2950    case DMAR_IVA_REG:
2951        if (size == 4) {
2952            vtd_set_long(s, addr, val);
2953        } else {
2954            vtd_set_quad(s, addr, val);
2955        }
2956        break;
2957
2958    case DMAR_IVA_REG_HI:
2959        assert(size == 4);
2960        vtd_set_long(s, addr, val);
2961        break;
2962
2963    /* Fault Status Register, 32-bit */
2964    case DMAR_FSTS_REG:
2965        assert(size == 4);
2966        vtd_set_long(s, addr, val);
2967        vtd_handle_fsts_write(s);
2968        break;
2969
2970    /* Fault Event Control Register, 32-bit */
2971    case DMAR_FECTL_REG:
2972        assert(size == 4);
2973        vtd_set_long(s, addr, val);
2974        vtd_handle_fectl_write(s);
2975        break;
2976
2977    /* Fault Event Data Register, 32-bit */
2978    case DMAR_FEDATA_REG:
2979        assert(size == 4);
2980        vtd_set_long(s, addr, val);
2981        break;
2982
2983    /* Fault Event Address Register, 32-bit */
2984    case DMAR_FEADDR_REG:
2985        if (size == 4) {
2986            vtd_set_long(s, addr, val);
2987        } else {
2988            /*
2989             * While the register is 32-bit only, some guests (Xen...) write to
2990             * it with 64-bit.
2991             */
2992            vtd_set_quad(s, addr, val);
2993        }
2994        break;
2995
2996    /* Fault Event Upper Address Register, 32-bit */
2997    case DMAR_FEUADDR_REG:
2998        assert(size == 4);
2999        vtd_set_long(s, addr, val);
3000        break;
3001
3002    /* Protected Memory Enable Register, 32-bit */
3003    case DMAR_PMEN_REG:
3004        assert(size == 4);
3005        vtd_set_long(s, addr, val);
3006        break;
3007
3008    /* Root Table Address Register, 64-bit */
3009    case DMAR_RTADDR_REG:
3010        if (size == 4) {
3011            vtd_set_long(s, addr, val);
3012        } else {
3013            vtd_set_quad(s, addr, val);
3014        }
3015        break;
3016
3017    case DMAR_RTADDR_REG_HI:
3018        assert(size == 4);
3019        vtd_set_long(s, addr, val);
3020        break;
3021
3022    /* Invalidation Queue Tail Register, 64-bit */
3023    case DMAR_IQT_REG:
3024        if (size == 4) {
3025            vtd_set_long(s, addr, val);
3026        } else {
3027            vtd_set_quad(s, addr, val);
3028        }
3029        vtd_handle_iqt_write(s);
3030        break;
3031
3032    case DMAR_IQT_REG_HI:
3033        assert(size == 4);
3034        vtd_set_long(s, addr, val);
3035        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3036        break;
3037
3038    /* Invalidation Queue Address Register, 64-bit */
3039    case DMAR_IQA_REG:
3040        if (size == 4) {
3041            vtd_set_long(s, addr, val);
3042        } else {
3043            vtd_set_quad(s, addr, val);
3044        }
3045        vtd_update_iq_dw(s);
3046        break;
3047
3048    case DMAR_IQA_REG_HI:
3049        assert(size == 4);
3050        vtd_set_long(s, addr, val);
3051        break;
3052
3053    /* Invalidation Completion Status Register, 32-bit */
3054    case DMAR_ICS_REG:
3055        assert(size == 4);
3056        vtd_set_long(s, addr, val);
3057        vtd_handle_ics_write(s);
3058        break;
3059
3060    /* Invalidation Event Control Register, 32-bit */
3061    case DMAR_IECTL_REG:
3062        assert(size == 4);
3063        vtd_set_long(s, addr, val);
3064        vtd_handle_iectl_write(s);
3065        break;
3066
3067    /* Invalidation Event Data Register, 32-bit */
3068    case DMAR_IEDATA_REG:
3069        assert(size == 4);
3070        vtd_set_long(s, addr, val);
3071        break;
3072
3073    /* Invalidation Event Address Register, 32-bit */
3074    case DMAR_IEADDR_REG:
3075        assert(size == 4);
3076        vtd_set_long(s, addr, val);
3077        break;
3078
3079    /* Invalidation Event Upper Address Register, 32-bit */
3080    case DMAR_IEUADDR_REG:
3081        assert(size == 4);
3082        vtd_set_long(s, addr, val);
3083        break;
3084
3085    /* Fault Recording Registers, 128-bit */
3086    case DMAR_FRCD_REG_0_0:
3087        if (size == 4) {
3088            vtd_set_long(s, addr, val);
3089        } else {
3090            vtd_set_quad(s, addr, val);
3091        }
3092        break;
3093
3094    case DMAR_FRCD_REG_0_1:
3095        assert(size == 4);
3096        vtd_set_long(s, addr, val);
3097        break;
3098
3099    case DMAR_FRCD_REG_0_2:
3100        if (size == 4) {
3101            vtd_set_long(s, addr, val);
3102        } else {
3103            vtd_set_quad(s, addr, val);
3104            /* May clear bit 127 (Fault), update PPF */
3105            vtd_update_fsts_ppf(s);
3106        }
3107        break;
3108
3109    case DMAR_FRCD_REG_0_3:
3110        assert(size == 4);
3111        vtd_set_long(s, addr, val);
3112        /* May clear bit 127 (Fault), update PPF */
3113        vtd_update_fsts_ppf(s);
3114        break;
3115
3116    case DMAR_IRTA_REG:
3117        if (size == 4) {
3118            vtd_set_long(s, addr, val);
3119        } else {
3120            vtd_set_quad(s, addr, val);
3121        }
3122        break;
3123
3124    case DMAR_IRTA_REG_HI:
3125        assert(size == 4);
3126        vtd_set_long(s, addr, val);
3127        break;
3128
3129    default:
3130        if (size == 4) {
3131            vtd_set_long(s, addr, val);
3132        } else {
3133            vtd_set_quad(s, addr, val);
3134        }
3135    }
3136}
3137
3138static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3139                                         IOMMUAccessFlags flag, int iommu_idx)
3140{
3141    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3142    IntelIOMMUState *s = vtd_as->iommu_state;
3143    IOMMUTLBEntry iotlb = {
3144        /* We'll fill in the rest later. */
3145        .target_as = &address_space_memory,
3146    };
3147    bool success;
3148
3149    if (likely(s->dmar_enabled)) {
3150        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3151                                         addr, flag & IOMMU_WO, &iotlb);
3152    } else {
3153        /* DMAR disabled, passthrough, use 4k-page*/
3154        iotlb.iova = addr & VTD_PAGE_MASK_4K;
3155        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3156        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3157        iotlb.perm = IOMMU_RW;
3158        success = true;
3159    }
3160
3161    if (likely(success)) {
3162        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3163                                 VTD_PCI_SLOT(vtd_as->devfn),
3164                                 VTD_PCI_FUNC(vtd_as->devfn),
3165                                 iotlb.iova, iotlb.translated_addr,
3166                                 iotlb.addr_mask);
3167    } else {
3168        error_report_once("%s: detected translation failure "
3169                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3170                          __func__, pci_bus_num(vtd_as->bus),
3171                          VTD_PCI_SLOT(vtd_as->devfn),
3172                          VTD_PCI_FUNC(vtd_as->devfn),
3173                          addr);
3174    }
3175
3176    return iotlb;
3177}
3178
3179static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3180                                         IOMMUNotifierFlag old,
3181                                         IOMMUNotifierFlag new,
3182                                         Error **errp)
3183{
3184    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3185    IntelIOMMUState *s = vtd_as->iommu_state;
3186    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3187
3188    /* TODO: add support for VFIO and vhost users */
3189    if (s->snoop_control) {
3190        error_setg_errno(errp, ENOTSUP,
3191                         "Snoop Control with vhost or VFIO is not supported");
3192        return -ENOTSUP;
3193    }
3194    if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3195        error_setg_errno(errp, ENOTSUP,
3196                         "device %02x.%02x.%x requires caching mode",
3197                         pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3198                         PCI_FUNC(vtd_as->devfn));
3199        return -ENOTSUP;
3200    }
3201    if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3202        error_setg_errno(errp, ENOTSUP,
3203                         "device %02x.%02x.%x requires device IOTLB mode",
3204                         pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3205                         PCI_FUNC(vtd_as->devfn));
3206        return -ENOTSUP;
3207    }
3208
3209    /* Update per-address-space notifier flags */
3210    vtd_as->notifier_flags = new;
3211
3212    if (old == IOMMU_NOTIFIER_NONE) {
3213        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3214    } else if (new == IOMMU_NOTIFIER_NONE) {
3215        QLIST_REMOVE(vtd_as, next);
3216    }
3217    return 0;
3218}
3219
3220static int vtd_post_load(void *opaque, int version_id)
3221{
3222    IntelIOMMUState *iommu = opaque;
3223
3224    /*
3225     * We don't need to migrate the root_scalable because we can
3226     * simply do the calculation after the loading is complete.  We
3227     * can actually do similar things with root, dmar_enabled, etc.
3228     * however since we've had them already so we'd better keep them
3229     * for compatibility of migration.
3230     */
3231    vtd_update_scalable_state(iommu);
3232
3233    vtd_update_iq_dw(iommu);
3234
3235    /*
3236     * Memory regions are dynamically turned on/off depending on
3237     * context entry configurations from the guest. After migration,
3238     * we need to make sure the memory regions are still correct.
3239     */
3240    vtd_switch_address_space_all(iommu);
3241
3242    return 0;
3243}
3244
3245static const VMStateDescription vtd_vmstate = {
3246    .name = "iommu-intel",
3247    .version_id = 1,
3248    .minimum_version_id = 1,
3249    .priority = MIG_PRI_IOMMU,
3250    .post_load = vtd_post_load,
3251    .fields = (VMStateField[]) {
3252        VMSTATE_UINT64(root, IntelIOMMUState),
3253        VMSTATE_UINT64(intr_root, IntelIOMMUState),
3254        VMSTATE_UINT64(iq, IntelIOMMUState),
3255        VMSTATE_UINT32(intr_size, IntelIOMMUState),
3256        VMSTATE_UINT16(iq_head, IntelIOMMUState),
3257        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3258        VMSTATE_UINT16(iq_size, IntelIOMMUState),
3259        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3260        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3261        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3262        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3263        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3264        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3265        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3266        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3267        VMSTATE_END_OF_LIST()
3268    }
3269};
3270
3271static const MemoryRegionOps vtd_mem_ops = {
3272    .read = vtd_mem_read,
3273    .write = vtd_mem_write,
3274    .endianness = DEVICE_LITTLE_ENDIAN,
3275    .impl = {
3276        .min_access_size = 4,
3277        .max_access_size = 8,
3278    },
3279    .valid = {
3280        .min_access_size = 4,
3281        .max_access_size = 8,
3282    },
3283};
3284
3285static Property vtd_properties[] = {
3286    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3287    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3288                            ON_OFF_AUTO_AUTO),
3289    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3290    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3291                      VTD_HOST_ADDRESS_WIDTH),
3292    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3293    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3294    DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3295    DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3296    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3297    DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3298    DEFINE_PROP_END_OF_LIST(),
3299};
3300
3301/* Read IRTE entry with specific index */
3302static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3303                        VTD_IR_TableEntry *entry, uint16_t sid)
3304{
3305    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3306        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3307    dma_addr_t addr = 0x00;
3308    uint16_t mask, source_id;
3309    uint8_t bus, bus_max, bus_min;
3310
3311    if (index >= iommu->intr_size) {
3312        error_report_once("%s: index too large: ind=0x%x",
3313                          __func__, index);
3314        return -VTD_FR_IR_INDEX_OVER;
3315    }
3316
3317    addr = iommu->intr_root + index * sizeof(*entry);
3318    if (dma_memory_read(&address_space_memory, addr,
3319                        entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3320        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3321                          __func__, index, addr);
3322        return -VTD_FR_IR_ROOT_INVAL;
3323    }
3324
3325    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3326                          le64_to_cpu(entry->data[0]));
3327
3328    if (!entry->irte.present) {
3329        error_report_once("%s: detected non-present IRTE "
3330                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3331                          __func__, index, le64_to_cpu(entry->data[1]),
3332                          le64_to_cpu(entry->data[0]));
3333        return -VTD_FR_IR_ENTRY_P;
3334    }
3335
3336    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3337        entry->irte.__reserved_2) {
3338        error_report_once("%s: detected non-zero reserved IRTE "
3339                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3340                          __func__, index, le64_to_cpu(entry->data[1]),
3341                          le64_to_cpu(entry->data[0]));
3342        return -VTD_FR_IR_IRTE_RSVD;
3343    }
3344
3345    if (sid != X86_IOMMU_SID_INVALID) {
3346        /* Validate IRTE SID */
3347        source_id = le32_to_cpu(entry->irte.source_id);
3348        switch (entry->irte.sid_vtype) {
3349        case VTD_SVT_NONE:
3350            break;
3351
3352        case VTD_SVT_ALL:
3353            mask = vtd_svt_mask[entry->irte.sid_q];
3354            if ((source_id & mask) != (sid & mask)) {
3355                error_report_once("%s: invalid IRTE SID "
3356                                  "(index=%u, sid=%u, source_id=%u)",
3357                                  __func__, index, sid, source_id);
3358                return -VTD_FR_IR_SID_ERR;
3359            }
3360            break;
3361
3362        case VTD_SVT_BUS:
3363            bus_max = source_id >> 8;
3364            bus_min = source_id & 0xff;
3365            bus = sid >> 8;
3366            if (bus > bus_max || bus < bus_min) {
3367                error_report_once("%s: invalid SVT_BUS "
3368                                  "(index=%u, bus=%u, min=%u, max=%u)",
3369                                  __func__, index, bus, bus_min, bus_max);
3370                return -VTD_FR_IR_SID_ERR;
3371            }
3372            break;
3373
3374        default:
3375            error_report_once("%s: detected invalid IRTE SVT "
3376                              "(index=%u, type=%d)", __func__,
3377                              index, entry->irte.sid_vtype);
3378            /* Take this as verification failure. */
3379            return -VTD_FR_IR_SID_ERR;
3380        }
3381    }
3382
3383    return 0;
3384}
3385
3386/* Fetch IRQ information of specific IR index */
3387static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3388                             X86IOMMUIrq *irq, uint16_t sid)
3389{
3390    VTD_IR_TableEntry irte = {};
3391    int ret = 0;
3392
3393    ret = vtd_irte_get(iommu, index, &irte, sid);
3394    if (ret) {
3395        return ret;
3396    }
3397
3398    irq->trigger_mode = irte.irte.trigger_mode;
3399    irq->vector = irte.irte.vector;
3400    irq->delivery_mode = irte.irte.delivery_mode;
3401    irq->dest = le32_to_cpu(irte.irte.dest_id);
3402    if (!iommu->intr_eime) {
3403#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3404#define  VTD_IR_APIC_DEST_SHIFT        (8)
3405        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3406            VTD_IR_APIC_DEST_SHIFT;
3407    }
3408    irq->dest_mode = irte.irte.dest_mode;
3409    irq->redir_hint = irte.irte.redir_hint;
3410
3411    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3412                       irq->delivery_mode, irq->dest, irq->dest_mode);
3413
3414    return 0;
3415}
3416
3417/* Interrupt remapping for MSI/MSI-X entry */
3418static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3419                                   MSIMessage *origin,
3420                                   MSIMessage *translated,
3421                                   uint16_t sid)
3422{
3423    int ret = 0;
3424    VTD_IR_MSIAddress addr;
3425    uint16_t index;
3426    X86IOMMUIrq irq = {};
3427
3428    assert(origin && translated);
3429
3430    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3431
3432    if (!iommu || !iommu->intr_enabled) {
3433        memcpy(translated, origin, sizeof(*origin));
3434        goto out;
3435    }
3436
3437    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3438        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3439                          "address=0x%" PRIx64, __func__, origin->address);
3440        return -VTD_FR_IR_REQ_RSVD;
3441    }
3442
3443    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3444    if (addr.addr.__head != 0xfee) {
3445        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3446                          __func__, addr.data);
3447        return -VTD_FR_IR_REQ_RSVD;
3448    }
3449
3450    /* This is compatible mode. */
3451    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3452        memcpy(translated, origin, sizeof(*origin));
3453        goto out;
3454    }
3455
3456    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3457
3458#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3459#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3460
3461    if (addr.addr.sub_valid) {
3462        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3463        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3464    }
3465
3466    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3467    if (ret) {
3468        return ret;
3469    }
3470
3471    if (addr.addr.sub_valid) {
3472        trace_vtd_ir_remap_type("MSI");
3473        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3474            error_report_once("%s: invalid IR MSI "
3475                              "(sid=%u, address=0x%" PRIx64
3476                              ", data=0x%" PRIx32 ")",
3477                              __func__, sid, origin->address, origin->data);
3478            return -VTD_FR_IR_REQ_RSVD;
3479        }
3480    } else {
3481        uint8_t vector = origin->data & 0xff;
3482        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3483
3484        trace_vtd_ir_remap_type("IOAPIC");
3485        /* IOAPIC entry vector should be aligned with IRTE vector
3486         * (see vt-d spec 5.1.5.1). */
3487        if (vector != irq.vector) {
3488            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3489        }
3490
3491        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3492         * (see vt-d spec 5.1.5.1). */
3493        if (trigger_mode != irq.trigger_mode) {
3494            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3495                                      irq.trigger_mode);
3496        }
3497    }
3498
3499    /*
3500     * We'd better keep the last two bits, assuming that guest OS
3501     * might modify it. Keep it does not hurt after all.
3502     */
3503    irq.msi_addr_last_bits = addr.addr.__not_care;
3504
3505    /* Translate X86IOMMUIrq to MSI message */
3506    x86_iommu_irq_to_msi_message(&irq, translated);
3507
3508out:
3509    trace_vtd_ir_remap_msi(origin->address, origin->data,
3510                           translated->address, translated->data);
3511    return 0;
3512}
3513
3514static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3515                         MSIMessage *dst, uint16_t sid)
3516{
3517    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3518                                   src, dst, sid);
3519}
3520
3521static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3522                                   uint64_t *data, unsigned size,
3523                                   MemTxAttrs attrs)
3524{
3525    return MEMTX_OK;
3526}
3527
3528static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3529                                    uint64_t value, unsigned size,
3530                                    MemTxAttrs attrs)
3531{
3532    int ret = 0;
3533    MSIMessage from = {}, to = {};
3534    uint16_t sid = X86_IOMMU_SID_INVALID;
3535
3536    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3537    from.data = (uint32_t) value;
3538
3539    if (!attrs.unspecified) {
3540        /* We have explicit Source ID */
3541        sid = attrs.requester_id;
3542    }
3543
3544    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3545    if (ret) {
3546        /* TODO: report error */
3547        /* Drop this interrupt */
3548        return MEMTX_ERROR;
3549    }
3550
3551    apic_get_class(NULL)->send_msi(&to);
3552
3553    return MEMTX_OK;
3554}
3555
3556static const MemoryRegionOps vtd_mem_ir_ops = {
3557    .read_with_attrs = vtd_mem_ir_read,
3558    .write_with_attrs = vtd_mem_ir_write,
3559    .endianness = DEVICE_LITTLE_ENDIAN,
3560    .impl = {
3561        .min_access_size = 4,
3562        .max_access_size = 4,
3563    },
3564    .valid = {
3565        .min_access_size = 4,
3566        .max_access_size = 4,
3567    },
3568};
3569
3570static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3571                                         hwaddr addr, bool is_write)
3572{
3573    IntelIOMMUState *s = vtd_as->iommu_state;
3574    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3575    uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3576    bool is_fpd_set = false;
3577    VTDContextEntry ce;
3578
3579    assert(vtd_as->pasid != PCI_NO_PASID);
3580
3581    /* Try out best to fetch FPD, we can't do anything more */
3582    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3583        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3584        if (!is_fpd_set && s->root_scalable) {
3585            vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3586        }
3587    }
3588
3589    vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3590                     is_fpd_set, sid, addr, is_write,
3591                     true, vtd_as->pasid);
3592}
3593
3594static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3595                                         uint64_t *data, unsigned size,
3596                                         MemTxAttrs attrs)
3597{
3598    vtd_report_ir_illegal_access(opaque, addr, false);
3599
3600    return MEMTX_ERROR;
3601}
3602
3603static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3604                                          uint64_t value, unsigned size,
3605                                          MemTxAttrs attrs)
3606{
3607    vtd_report_ir_illegal_access(opaque, addr, true);
3608
3609    return MEMTX_ERROR;
3610}
3611
3612static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3613    .read_with_attrs = vtd_mem_ir_fault_read,
3614    .write_with_attrs = vtd_mem_ir_fault_write,
3615    .endianness = DEVICE_LITTLE_ENDIAN,
3616    .impl = {
3617        .min_access_size = 1,
3618        .max_access_size = 8,
3619    },
3620    .valid = {
3621        .min_access_size = 1,
3622        .max_access_size = 8,
3623    },
3624};
3625
3626VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3627                                 int devfn, unsigned int pasid)
3628{
3629    /*
3630     * We can't simply use sid here since the bus number might not be
3631     * initialized by the guest.
3632     */
3633    struct vtd_as_key key = {
3634        .bus = bus,
3635        .devfn = devfn,
3636        .pasid = pasid,
3637    };
3638    VTDAddressSpace *vtd_dev_as;
3639    char name[128];
3640
3641    vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3642    if (!vtd_dev_as) {
3643        struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3644
3645        new_key->bus = bus;
3646        new_key->devfn = devfn;
3647        new_key->pasid = pasid;
3648
3649        if (pasid == PCI_NO_PASID) {
3650            snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3651                     PCI_FUNC(devfn));
3652        } else {
3653            snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3654                     PCI_FUNC(devfn), pasid);
3655        }
3656
3657        vtd_dev_as = g_new0(VTDAddressSpace, 1);
3658
3659        vtd_dev_as->bus = bus;
3660        vtd_dev_as->devfn = (uint8_t)devfn;
3661        vtd_dev_as->pasid = pasid;
3662        vtd_dev_as->iommu_state = s;
3663        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3664        vtd_dev_as->iova_tree = iova_tree_new();
3665
3666        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3667        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3668
3669        /*
3670         * Build the DMAR-disabled container with aliases to the
3671         * shared MRs.  Note that aliasing to a shared memory region
3672         * could help the memory API to detect same FlatViews so we
3673         * can have devices to share the same FlatView when DMAR is
3674         * disabled (either by not providing "intel_iommu=on" or with
3675         * "iommu=pt").  It will greatly reduce the total number of
3676         * FlatViews of the system hence VM runs faster.
3677         */
3678        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3679                                 "vtd-nodmar", &s->mr_nodmar, 0,
3680                                 memory_region_size(&s->mr_nodmar));
3681
3682        /*
3683         * Build the per-device DMAR-enabled container.
3684         *
3685         * TODO: currently we have per-device IOMMU memory region only
3686         * because we have per-device IOMMU notifiers for devices.  If
3687         * one day we can abstract the IOMMU notifiers out of the
3688         * memory regions then we can also share the same memory
3689         * region here just like what we've done above with the nodmar
3690         * region.
3691         */
3692        strcat(name, "-dmar");
3693        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3694                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3695                                 name, UINT64_MAX);
3696        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3697                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3698        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3699                                            VTD_INTERRUPT_ADDR_FIRST,
3700                                            &vtd_dev_as->iommu_ir, 1);
3701
3702        /*
3703         * This region is used for catching fault to access interrupt
3704         * range via passthrough + PASID. See also
3705         * vtd_switch_address_space(). We can't use alias since we
3706         * need to know the sid which is valid for MSI who uses
3707         * bus_master_as (see msi_send_message()).
3708         */
3709        memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3710                              &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3711                              VTD_INTERRUPT_ADDR_SIZE);
3712        /*
3713         * Hook to root since when PT is enabled vtd_dev_as->iommu
3714         * will be disabled.
3715         */
3716        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3717                                            VTD_INTERRUPT_ADDR_FIRST,
3718                                            &vtd_dev_as->iommu_ir_fault, 2);
3719
3720        /*
3721         * Hook both the containers under the root container, we
3722         * switch between DMAR & noDMAR by enable/disable
3723         * corresponding sub-containers
3724         */
3725        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3726                                            MEMORY_REGION(&vtd_dev_as->iommu),
3727                                            0);
3728        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3729                                            &vtd_dev_as->nodmar, 0);
3730
3731        vtd_switch_address_space(vtd_dev_as);
3732
3733        g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3734    }
3735    return vtd_dev_as;
3736}
3737
3738/* Unmap the whole range in the notifier's scope. */
3739static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3740{
3741    hwaddr size, remain;
3742    hwaddr start = n->start;
3743    hwaddr end = n->end;
3744    IntelIOMMUState *s = as->iommu_state;
3745    DMAMap map;
3746
3747    /*
3748     * Note: all the codes in this function has a assumption that IOVA
3749     * bits are no more than VTD_MGAW bits (which is restricted by
3750     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3751     */
3752
3753    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3754        /*
3755         * Don't need to unmap regions that is bigger than the whole
3756         * VT-d supported address space size
3757         */
3758        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3759    }
3760
3761    assert(start <= end);
3762    size = remain = end - start + 1;
3763
3764    while (remain >= VTD_PAGE_SIZE) {
3765        IOMMUTLBEvent event;
3766        uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3767        uint64_t size = mask + 1;
3768
3769        assert(size);
3770
3771        event.type = IOMMU_NOTIFIER_UNMAP;
3772        event.entry.iova = start;
3773        event.entry.addr_mask = mask;
3774        event.entry.target_as = &address_space_memory;
3775        event.entry.perm = IOMMU_NONE;
3776        /* This field is meaningless for unmap */
3777        event.entry.translated_addr = 0;
3778
3779        memory_region_notify_iommu_one(n, &event);
3780
3781        start += size;
3782        remain -= size;
3783    }
3784
3785    assert(!remain);
3786
3787    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3788                             VTD_PCI_SLOT(as->devfn),
3789                             VTD_PCI_FUNC(as->devfn),
3790                             n->start, size);
3791
3792    map.iova = n->start;
3793    map.size = size;
3794    iova_tree_remove(as->iova_tree, map);
3795}
3796
3797static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3798{
3799    VTDAddressSpace *vtd_as;
3800    IOMMUNotifier *n;
3801
3802    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3803        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3804            vtd_address_space_unmap(vtd_as, n);
3805        }
3806    }
3807}
3808
3809static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3810{
3811    vtd_address_space_unmap_all(s);
3812    vtd_switch_address_space_all(s);
3813}
3814
3815static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3816{
3817    memory_region_notify_iommu_one(private, event);
3818    return 0;
3819}
3820
3821static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3822{
3823    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3824    IntelIOMMUState *s = vtd_as->iommu_state;
3825    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3826    VTDContextEntry ce;
3827
3828    /*
3829     * The replay can be triggered by either a invalidation or a newly
3830     * created entry. No matter what, we release existing mappings
3831     * (it means flushing caches for UNMAP-only registers).
3832     */
3833    vtd_address_space_unmap(vtd_as, n);
3834
3835    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3836        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3837                                  "legacy mode",
3838                                  bus_n, PCI_SLOT(vtd_as->devfn),
3839                                  PCI_FUNC(vtd_as->devfn),
3840                                  vtd_get_domain_id(s, &ce, vtd_as->pasid),
3841                                  ce.hi, ce.lo);
3842        if (vtd_as_has_map_notifier(vtd_as)) {
3843            /* This is required only for MAP typed notifiers */
3844            vtd_page_walk_info info = {
3845                .hook_fn = vtd_replay_hook,
3846                .private = (void *)n,
3847                .notify_unmap = false,
3848                .aw = s->aw_bits,
3849                .as = vtd_as,
3850                .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3851            };
3852
3853            vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3854        }
3855    } else {
3856        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3857                                    PCI_FUNC(vtd_as->devfn));
3858    }
3859
3860    return;
3861}
3862
3863/* Do the initialization. It will also be called when reset, so pay
3864 * attention when adding new initialization stuff.
3865 */
3866static void vtd_init(IntelIOMMUState *s)
3867{
3868    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3869
3870    memset(s->csr, 0, DMAR_REG_SIZE);
3871    memset(s->wmask, 0, DMAR_REG_SIZE);
3872    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3873    memset(s->womask, 0, DMAR_REG_SIZE);
3874
3875    s->root = 0;
3876    s->root_scalable = false;
3877    s->dmar_enabled = false;
3878    s->intr_enabled = false;
3879    s->iq_head = 0;
3880    s->iq_tail = 0;
3881    s->iq = 0;
3882    s->iq_size = 0;
3883    s->qi_enabled = false;
3884    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3885    s->iq_dw = false;
3886    s->next_frcd_reg = 0;
3887    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3888             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3889             VTD_CAP_MGAW(s->aw_bits);
3890    if (s->dma_drain) {
3891        s->cap |= VTD_CAP_DRAIN;
3892    }
3893    if (s->dma_translation) {
3894            if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3895                    s->cap |= VTD_CAP_SAGAW_39bit;
3896            }
3897            if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3898                    s->cap |= VTD_CAP_SAGAW_48bit;
3899            }
3900    }
3901    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3902
3903    /*
3904     * Rsvd field masks for spte
3905     */
3906    vtd_spte_rsvd[0] = ~0ULL;
3907    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3908                                                  x86_iommu->dt_supported);
3909    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3910    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3911    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3912
3913    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3914                                                         x86_iommu->dt_supported);
3915    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3916                                                         x86_iommu->dt_supported);
3917
3918    if (s->scalable_mode || s->snoop_control) {
3919        vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3920        vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3921        vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3922    }
3923
3924    if (x86_iommu_ir_supported(x86_iommu)) {
3925        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3926        if (s->intr_eim == ON_OFF_AUTO_ON) {
3927            s->ecap |= VTD_ECAP_EIM;
3928        }
3929        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3930    }
3931
3932    if (x86_iommu->dt_supported) {
3933        s->ecap |= VTD_ECAP_DT;
3934    }
3935
3936    if (x86_iommu->pt_supported) {
3937        s->ecap |= VTD_ECAP_PT;
3938    }
3939
3940    if (s->caching_mode) {
3941        s->cap |= VTD_CAP_CM;
3942    }
3943
3944    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3945    if (s->scalable_mode) {
3946        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3947    }
3948
3949    if (s->snoop_control) {
3950        s->ecap |= VTD_ECAP_SC;
3951    }
3952
3953    if (s->pasid) {
3954        s->ecap |= VTD_ECAP_PASID;
3955    }
3956
3957    vtd_reset_caches(s);
3958
3959    /* Define registers with default values and bit semantics */
3960    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3961    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3962    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3963    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3964    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3965    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3966    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3967    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3968    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3969
3970    /* Advanced Fault Logging not supported */
3971    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3972    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3973    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3974    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3975
3976    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3977     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3978     */
3979    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3980
3981    /* Treated as RO for implementations that PLMR and PHMR fields reported
3982     * as Clear in the CAP_REG.
3983     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3984     */
3985    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3986
3987    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3988    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3989    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3990    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3991    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3992    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3993    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3994    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3995    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3996
3997    /* IOTLB registers */
3998    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3999    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4000    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4001
4002    /* Fault Recording Registers, 128-bit */
4003    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4004    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4005
4006    /*
4007     * Interrupt remapping registers.
4008     */
4009    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4010}
4011
4012/* Should not reset address_spaces when reset because devices will still use
4013 * the address space they got at first (won't ask the bus again).
4014 */
4015static void vtd_reset(DeviceState *dev)
4016{
4017    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4018
4019    vtd_init(s);
4020    vtd_address_space_refresh_all(s);
4021}
4022
4023static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4024{
4025    IntelIOMMUState *s = opaque;
4026    VTDAddressSpace *vtd_as;
4027
4028    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4029
4030    vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4031    return &vtd_as->as;
4032}
4033
4034static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4035{
4036    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4037
4038    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4039        error_setg(errp, "eim=on cannot be selected without intremap=on");
4040        return false;
4041    }
4042
4043    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4044        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4045                      && x86_iommu_ir_supported(x86_iommu) ?
4046                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4047    }
4048    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4049        if (!kvm_irqchip_is_split()) {
4050            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4051            return false;
4052        }
4053        if (!kvm_enable_x2apic()) {
4054            error_setg(errp, "eim=on requires support on the KVM side"
4055                             "(X2APIC_API, first shipped in v4.7)");
4056            return false;
4057        }
4058    }
4059
4060    /* Currently only address widths supported are 39 and 48 bits */
4061    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4062        (s->aw_bits != VTD_HOST_AW_48BIT)) {
4063        error_setg(errp, "Supported values for aw-bits are: %d, %d",
4064                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4065        return false;
4066    }
4067
4068    if (s->scalable_mode && !s->dma_drain) {
4069        error_setg(errp, "Need to set dma_drain for scalable mode");
4070        return false;
4071    }
4072
4073    if (s->pasid && !s->scalable_mode) {
4074        error_setg(errp, "Need to set scalable mode for PASID");
4075        return false;
4076    }
4077
4078    return true;
4079}
4080
4081static int vtd_machine_done_notify_one(Object *child, void *unused)
4082{
4083    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4084
4085    /*
4086     * We hard-coded here because vfio-pci is the only special case
4087     * here.  Let's be more elegant in the future when we can, but so
4088     * far there seems to be no better way.
4089     */
4090    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4091        vtd_panic_require_caching_mode();
4092    }
4093
4094    return 0;
4095}
4096
4097static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4098{
4099    object_child_foreach_recursive(object_get_root(),
4100                                   vtd_machine_done_notify_one, NULL);
4101}
4102
4103static Notifier vtd_machine_done_notify = {
4104    .notify = vtd_machine_done_hook,
4105};
4106
4107static void vtd_realize(DeviceState *dev, Error **errp)
4108{
4109    MachineState *ms = MACHINE(qdev_get_machine());
4110    PCMachineState *pcms = PC_MACHINE(ms);
4111    X86MachineState *x86ms = X86_MACHINE(ms);
4112    PCIBus *bus = pcms->bus;
4113    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4114    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4115
4116    if (s->pasid && x86_iommu->dt_supported) {
4117        /*
4118         * PASID-based-Device-TLB Invalidate Descriptor is not
4119         * implemented and it requires support from vhost layer which
4120         * needs to be implemented in the future.
4121         */
4122        error_setg(errp, "PASID based device IOTLB is not supported");
4123        return;
4124    }
4125
4126    if (!vtd_decide_config(s, errp)) {
4127        return;
4128    }
4129
4130    QLIST_INIT(&s->vtd_as_with_notifiers);
4131    qemu_mutex_init(&s->iommu_lock);
4132    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4133                          "intel_iommu", DMAR_REG_SIZE);
4134
4135    /* Create the shared memory regions by all devices */
4136    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4137                       UINT64_MAX);
4138    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4139                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4140    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4141                             "vtd-sys-alias", get_system_memory(), 0,
4142                             memory_region_size(get_system_memory()));
4143    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4144                                        &s->mr_sys_alias, 0);
4145    memory_region_add_subregion_overlap(&s->mr_nodmar,
4146                                        VTD_INTERRUPT_ADDR_FIRST,
4147                                        &s->mr_ir, 1);
4148
4149    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4150    /* No corresponding destroy */
4151    s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4152                                     g_free, g_free);
4153    s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4154                                      g_free, g_free);
4155    vtd_init(s);
4156    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4157    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4158    /* Pseudo address space under root PCI bus. */
4159    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4160    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4161}
4162
4163static void vtd_class_init(ObjectClass *klass, void *data)
4164{
4165    DeviceClass *dc = DEVICE_CLASS(klass);
4166    X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4167
4168    dc->reset = vtd_reset;
4169    dc->vmsd = &vtd_vmstate;
4170    device_class_set_props(dc, vtd_properties);
4171    dc->hotpluggable = false;
4172    x86_class->realize = vtd_realize;
4173    x86_class->int_remap = vtd_int_remap;
4174    /* Supported by the pc-q35-* machine types */
4175    dc->user_creatable = true;
4176    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4177    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4178}
4179
4180static const TypeInfo vtd_info = {
4181    .name          = TYPE_INTEL_IOMMU_DEVICE,
4182    .parent        = TYPE_X86_IOMMU_DEVICE,
4183    .instance_size = sizeof(IntelIOMMUState),
4184    .class_init    = vtd_class_init,
4185};
4186
4187static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4188                                                     void *data)
4189{
4190    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4191
4192    imrc->translate = vtd_iommu_translate;
4193    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4194    imrc->replay = vtd_iommu_replay;
4195}
4196
4197static const TypeInfo vtd_iommu_memory_region_info = {
4198    .parent = TYPE_IOMMU_MEMORY_REGION,
4199    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4200    .class_init = vtd_iommu_memory_region_class_init,
4201};
4202
4203static void vtd_register_types(void)
4204{
4205    type_register_static(&vtd_info);
4206    type_register_static(&vtd_iommu_memory_region_info);
4207}
4208
4209type_init(vtd_register_types)
4210