qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "qemu/datadir.h"
  29#include "qemu/memalign.h"
  30#include "qemu/guest-random.h"
  31#include "qapi/error.h"
  32#include "qapi/qapi-events-machine.h"
  33#include "qapi/qapi-events-qdev.h"
  34#include "qapi/visitor.h"
  35#include "sysemu/sysemu.h"
  36#include "sysemu/hostmem.h"
  37#include "sysemu/numa.h"
  38#include "sysemu/qtest.h"
  39#include "sysemu/reset.h"
  40#include "sysemu/runstate.h"
  41#include "qemu/log.h"
  42#include "hw/fw-path-provider.h"
  43#include "elf.h"
  44#include "net/net.h"
  45#include "sysemu/device_tree.h"
  46#include "sysemu/cpus.h"
  47#include "sysemu/hw_accel.h"
  48#include "kvm_ppc.h"
  49#include "migration/misc.h"
  50#include "migration/qemu-file-types.h"
  51#include "migration/global_state.h"
  52#include "migration/register.h"
  53#include "migration/blocker.h"
  54#include "mmu-hash64.h"
  55#include "mmu-book3s-v3.h"
  56#include "cpu-models.h"
  57#include "hw/core/cpu.h"
  58
  59#include "hw/ppc/ppc.h"
  60#include "hw/loader.h"
  61
  62#include "hw/ppc/fdt.h"
  63#include "hw/ppc/spapr.h"
  64#include "hw/ppc/spapr_vio.h"
  65#include "hw/ppc/vof.h"
  66#include "hw/qdev-properties.h"
  67#include "hw/pci-host/spapr.h"
  68#include "hw/pci/msi.h"
  69
  70#include "hw/pci/pci.h"
  71#include "hw/scsi/scsi.h"
  72#include "hw/virtio/virtio-scsi.h"
  73#include "hw/virtio/vhost-scsi-common.h"
  74
  75#include "exec/ram_addr.h"
  76#include "hw/usb.h"
  77#include "qemu/config-file.h"
  78#include "qemu/error-report.h"
  79#include "trace.h"
  80#include "hw/nmi.h"
  81#include "hw/intc/intc.h"
  82
  83#include "hw/ppc/spapr_cpu_core.h"
  84#include "hw/mem/memory-device.h"
  85#include "hw/ppc/spapr_tpm_proxy.h"
  86#include "hw/ppc/spapr_nvdimm.h"
  87#include "hw/ppc/spapr_numa.h"
  88#include "hw/ppc/pef.h"
  89
  90#include "monitor/monitor.h"
  91
  92#include <libfdt.h>
  93
  94/* SLOF memory layout:
  95 *
  96 * SLOF raw image loaded at 0, copies its romfs right below the flat
  97 * device-tree, then position SLOF itself 31M below that
  98 *
  99 * So we set FW_OVERHEAD to 40MB which should account for all of that
 100 * and more
 101 *
 102 * We load our kernel at 4M, leaving space for SLOF initial image
 103 */
 104#define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
 105#define FW_MAX_SIZE             0x400000
 106#define FW_FILE_NAME            "slof.bin"
 107#define FW_FILE_NAME_VOF        "vof.bin"
 108#define FW_OVERHEAD             0x2800000
 109#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 110
 111#define MIN_RMA_SLOF            (128 * MiB)
 112
 113#define PHANDLE_INTC            0x00001111
 114
 115/* These two functions implement the VCPU id numbering: one to compute them
 116 * all and one to identify thread 0 of a VCORE. Any change to the first one
 117 * is likely to have an impact on the second one, so let's keep them close.
 118 */
 119static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 120{
 121    MachineState *ms = MACHINE(spapr);
 122    unsigned int smp_threads = ms->smp.threads;
 123
 124    assert(spapr->vsmt);
 125    return
 126        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 127}
 128static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 129                                      PowerPCCPU *cpu)
 130{
 131    assert(spapr->vsmt);
 132    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 133}
 134
 135static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 136{
 137    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 138     * and newer QEMUs don't even have them. In both cases, we don't want
 139     * to send anything on the wire.
 140     */
 141    return false;
 142}
 143
 144static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 145    .name = "icp/server",
 146    .version_id = 1,
 147    .minimum_version_id = 1,
 148    .needed = pre_2_10_vmstate_dummy_icp_needed,
 149    .fields = (VMStateField[]) {
 150        VMSTATE_UNUSED(4), /* uint32_t xirr */
 151        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 152        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 153        VMSTATE_END_OF_LIST()
 154    },
 155};
 156
 157static void pre_2_10_vmstate_register_dummy_icp(int i)
 158{
 159    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 160                     (void *)(uintptr_t) i);
 161}
 162
 163static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 164{
 165    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 166                       (void *)(uintptr_t) i);
 167}
 168
 169int spapr_max_server_number(SpaprMachineState *spapr)
 170{
 171    MachineState *ms = MACHINE(spapr);
 172
 173    assert(spapr->vsmt);
 174    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 175}
 176
 177static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 178                                  int smt_threads)
 179{
 180    int i, ret = 0;
 181    g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
 182    g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
 183    int index = spapr_get_vcpu_id(cpu);
 184
 185    if (cpu->compat_pvr) {
 186        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 187        if (ret < 0) {
 188            return ret;
 189        }
 190    }
 191
 192    /* Build interrupt servers and gservers properties */
 193    for (i = 0; i < smt_threads; i++) {
 194        servers_prop[i] = cpu_to_be32(index + i);
 195        /* Hack, direct the group queues back to cpu 0 */
 196        gservers_prop[i*2] = cpu_to_be32(index + i);
 197        gservers_prop[i*2 + 1] = 0;
 198    }
 199    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 200                      servers_prop, sizeof(*servers_prop) * smt_threads);
 201    if (ret < 0) {
 202        return ret;
 203    }
 204    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 205                      gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
 206
 207    return ret;
 208}
 209
 210static void spapr_dt_pa_features(SpaprMachineState *spapr,
 211                                 PowerPCCPU *cpu,
 212                                 void *fdt, int offset)
 213{
 214    uint8_t pa_features_206[] = { 6, 0,
 215        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 216    uint8_t pa_features_207[] = { 24, 0,
 217        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 218        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 219        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 220        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 221    uint8_t pa_features_300[] = { 66, 0,
 222        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 223        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 224        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 225        /* 6: DS207 */
 226        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 227        /* 16: Vector */
 228        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 229        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 230        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 231        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 232        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 233        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 234        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 235        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 236        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 237        /* 42: PM, 44: PC RA, 46: SC vec'd */
 238        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 239        /* 48: SIMD, 50: QP BFP, 52: String */
 240        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 241        /* 54: DecFP, 56: DecI, 58: SHA */
 242        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 243        /* 60: NM atomic, 62: RNG */
 244        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 245    };
 246    uint8_t *pa_features = NULL;
 247    size_t pa_size;
 248
 249    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 250        pa_features = pa_features_206;
 251        pa_size = sizeof(pa_features_206);
 252    }
 253    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 254        pa_features = pa_features_207;
 255        pa_size = sizeof(pa_features_207);
 256    }
 257    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 258        pa_features = pa_features_300;
 259        pa_size = sizeof(pa_features_300);
 260    }
 261    if (!pa_features) {
 262        return;
 263    }
 264
 265    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 266        /*
 267         * Note: we keep CI large pages off by default because a 64K capable
 268         * guest provisioned with large pages might otherwise try to map a qemu
 269         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 270         * even if that qemu runs on a 4k host.
 271         * We dd this bit back here if we are confident this is not an issue
 272         */
 273        pa_features[3] |= 0x20;
 274    }
 275    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 276        pa_features[24] |= 0x80;    /* Transactional memory support */
 277    }
 278    if (spapr->cas_pre_isa3_guest && pa_size > 40) {
 279        /* Workaround for broken kernels that attempt (guest) radix
 280         * mode when they can't handle it, if they see the radix bit set
 281         * in pa-features. So hide it from them. */
 282        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 283    }
 284
 285    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 286}
 287
 288static hwaddr spapr_node0_size(MachineState *machine)
 289{
 290    if (machine->numa_state->num_nodes) {
 291        int i;
 292        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 293            if (machine->numa_state->nodes[i].node_mem) {
 294                return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
 295                           machine->ram_size);
 296            }
 297        }
 298    }
 299    return machine->ram_size;
 300}
 301
 302static void add_str(GString *s, const gchar *s1)
 303{
 304    g_string_append_len(s, s1, strlen(s1) + 1);
 305}
 306
 307static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
 308                                hwaddr start, hwaddr size)
 309{
 310    char mem_name[32];
 311    uint64_t mem_reg_property[2];
 312    int off;
 313
 314    mem_reg_property[0] = cpu_to_be64(start);
 315    mem_reg_property[1] = cpu_to_be64(size);
 316
 317    sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
 318    off = fdt_add_subnode(fdt, 0, mem_name);
 319    _FDT(off);
 320    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 321    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 322                      sizeof(mem_reg_property))));
 323    spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
 324    return off;
 325}
 326
 327static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 328{
 329    MemoryDeviceInfoList *info;
 330
 331    for (info = list; info; info = info->next) {
 332        MemoryDeviceInfo *value = info->value;
 333
 334        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 335            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 336
 337            if (addr >= pcdimm_info->addr &&
 338                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 339                return pcdimm_info->node;
 340            }
 341        }
 342    }
 343
 344    return -1;
 345}
 346
 347struct sPAPRDrconfCellV2 {
 348     uint32_t seq_lmbs;
 349     uint64_t base_addr;
 350     uint32_t drc_index;
 351     uint32_t aa_index;
 352     uint32_t flags;
 353} QEMU_PACKED;
 354
 355typedef struct DrconfCellQueue {
 356    struct sPAPRDrconfCellV2 cell;
 357    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 358} DrconfCellQueue;
 359
 360static DrconfCellQueue *
 361spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 362                      uint32_t drc_index, uint32_t aa_index,
 363                      uint32_t flags)
 364{
 365    DrconfCellQueue *elem;
 366
 367    elem = g_malloc0(sizeof(*elem));
 368    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 369    elem->cell.base_addr = cpu_to_be64(base_addr);
 370    elem->cell.drc_index = cpu_to_be32(drc_index);
 371    elem->cell.aa_index = cpu_to_be32(aa_index);
 372    elem->cell.flags = cpu_to_be32(flags);
 373
 374    return elem;
 375}
 376
 377static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
 378                                      int offset, MemoryDeviceInfoList *dimms)
 379{
 380    MachineState *machine = MACHINE(spapr);
 381    uint8_t *int_buf, *cur_index;
 382    int ret;
 383    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 384    uint64_t addr, cur_addr, size;
 385    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 386    uint64_t mem_end = machine->device_memory->base +
 387                       memory_region_size(&machine->device_memory->mr);
 388    uint32_t node, buf_len, nr_entries = 0;
 389    SpaprDrc *drc;
 390    DrconfCellQueue *elem, *next;
 391    MemoryDeviceInfoList *info;
 392    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 393        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 394
 395    /* Entry to cover RAM and the gap area */
 396    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 397                                 SPAPR_LMB_FLAGS_RESERVED |
 398                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 399    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 400    nr_entries++;
 401
 402    cur_addr = machine->device_memory->base;
 403    for (info = dimms; info; info = info->next) {
 404        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 405
 406        addr = di->addr;
 407        size = di->size;
 408        node = di->node;
 409
 410        /*
 411         * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
 412         * area is marked hotpluggable in the next iteration for the bigger
 413         * chunk including the NVDIMM occupied area.
 414         */
 415        if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
 416            continue;
 417
 418        /* Entry for hot-pluggable area */
 419        if (cur_addr < addr) {
 420            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 421            g_assert(drc);
 422            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 423                                         cur_addr, spapr_drc_index(drc), -1, 0);
 424            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 425            nr_entries++;
 426        }
 427
 428        /* Entry for DIMM */
 429        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 430        g_assert(drc);
 431        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 432                                     spapr_drc_index(drc), node,
 433                                     (SPAPR_LMB_FLAGS_ASSIGNED |
 434                                      SPAPR_LMB_FLAGS_HOTREMOVABLE));
 435        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 436        nr_entries++;
 437        cur_addr = addr + size;
 438    }
 439
 440    /* Entry for remaining hotpluggable area */
 441    if (cur_addr < mem_end) {
 442        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 443        g_assert(drc);
 444        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 445                                     cur_addr, spapr_drc_index(drc), -1, 0);
 446        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 447        nr_entries++;
 448    }
 449
 450    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 451    int_buf = cur_index = g_malloc0(buf_len);
 452    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 453    cur_index += sizeof(nr_entries);
 454
 455    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 456        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 457        cur_index += sizeof(elem->cell);
 458        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 459        g_free(elem);
 460    }
 461
 462    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 463    g_free(int_buf);
 464    if (ret < 0) {
 465        return -1;
 466    }
 467    return 0;
 468}
 469
 470static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
 471                                   int offset, MemoryDeviceInfoList *dimms)
 472{
 473    MachineState *machine = MACHINE(spapr);
 474    int i, ret;
 475    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 476    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 477    uint32_t nr_lmbs = (machine->device_memory->base +
 478                       memory_region_size(&machine->device_memory->mr)) /
 479                       lmb_size;
 480    uint32_t *int_buf, *cur_index, buf_len;
 481
 482    /*
 483     * Allocate enough buffer size to fit in ibm,dynamic-memory
 484     */
 485    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 486    cur_index = int_buf = g_malloc0(buf_len);
 487    int_buf[0] = cpu_to_be32(nr_lmbs);
 488    cur_index++;
 489    for (i = 0; i < nr_lmbs; i++) {
 490        uint64_t addr = i * lmb_size;
 491        uint32_t *dynamic_memory = cur_index;
 492
 493        if (i >= device_lmb_start) {
 494            SpaprDrc *drc;
 495
 496            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 497            g_assert(drc);
 498
 499            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 500            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 501            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 502            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 503            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 504            if (memory_region_present(get_system_memory(), addr)) {
 505                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 506            } else {
 507                dynamic_memory[5] = cpu_to_be32(0);
 508            }
 509        } else {
 510            /*
 511             * LMB information for RMA, boot time RAM and gap b/n RAM and
 512             * device memory region -- all these are marked as reserved
 513             * and as having no valid DRC.
 514             */
 515            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 516            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 517            dynamic_memory[2] = cpu_to_be32(0);
 518            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 519            dynamic_memory[4] = cpu_to_be32(-1);
 520            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 521                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 522        }
 523
 524        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 525    }
 526    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 527    g_free(int_buf);
 528    if (ret < 0) {
 529        return -1;
 530    }
 531    return 0;
 532}
 533
 534/*
 535 * Adds ibm,dynamic-reconfiguration-memory node.
 536 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 537 * of this device tree node.
 538 */
 539static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
 540                                                   void *fdt)
 541{
 542    MachineState *machine = MACHINE(spapr);
 543    int ret, offset;
 544    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 545    uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
 546                                cpu_to_be32(lmb_size & 0xffffffff)};
 547    MemoryDeviceInfoList *dimms = NULL;
 548
 549    /*
 550     * Don't create the node if there is no device memory
 551     */
 552    if (machine->ram_size == machine->maxram_size) {
 553        return 0;
 554    }
 555
 556    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 557
 558    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 559                    sizeof(prop_lmb_size));
 560    if (ret < 0) {
 561        return ret;
 562    }
 563
 564    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 565    if (ret < 0) {
 566        return ret;
 567    }
 568
 569    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 570    if (ret < 0) {
 571        return ret;
 572    }
 573
 574    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 575    dimms = qmp_memory_device_list();
 576    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 577        ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
 578    } else {
 579        ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
 580    }
 581    qapi_free_MemoryDeviceInfoList(dimms);
 582
 583    if (ret < 0) {
 584        return ret;
 585    }
 586
 587    ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
 588
 589    return ret;
 590}
 591
 592static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
 593{
 594    MachineState *machine = MACHINE(spapr);
 595    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 596    hwaddr mem_start, node_size;
 597    int i, nb_nodes = machine->numa_state->num_nodes;
 598    NodeInfo *nodes = machine->numa_state->nodes;
 599
 600    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 601        if (!nodes[i].node_mem) {
 602            continue;
 603        }
 604        if (mem_start >= machine->ram_size) {
 605            node_size = 0;
 606        } else {
 607            node_size = nodes[i].node_mem;
 608            if (node_size > machine->ram_size - mem_start) {
 609                node_size = machine->ram_size - mem_start;
 610            }
 611        }
 612        if (!mem_start) {
 613            /* spapr_machine_init() checks for rma_size <= node0_size
 614             * already */
 615            spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
 616            mem_start += spapr->rma_size;
 617            node_size -= spapr->rma_size;
 618        }
 619        for ( ; node_size; ) {
 620            hwaddr sizetmp = pow2floor(node_size);
 621
 622            /* mem_start != 0 here */
 623            if (ctzl(mem_start) < ctzl(sizetmp)) {
 624                sizetmp = 1ULL << ctzl(mem_start);
 625            }
 626
 627            spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
 628            node_size -= sizetmp;
 629            mem_start += sizetmp;
 630        }
 631    }
 632
 633    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 634    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
 635        int ret;
 636
 637        g_assert(smc->dr_lmb_enabled);
 638        ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
 639        if (ret) {
 640            return ret;
 641        }
 642    }
 643
 644    return 0;
 645}
 646
 647static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
 648                         SpaprMachineState *spapr)
 649{
 650    MachineState *ms = MACHINE(spapr);
 651    PowerPCCPU *cpu = POWERPC_CPU(cs);
 652    CPUPPCState *env = &cpu->env;
 653    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 654    int index = spapr_get_vcpu_id(cpu);
 655    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 656                       0xffffffff, 0xffffffff};
 657    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 658        : SPAPR_TIMEBASE_FREQ;
 659    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 660    uint32_t page_sizes_prop[64];
 661    size_t page_sizes_prop_size;
 662    unsigned int smp_threads = ms->smp.threads;
 663    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 664    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 665    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 666    SpaprDrc *drc;
 667    int drc_index;
 668    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 669    int i;
 670
 671    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 672    if (drc) {
 673        drc_index = spapr_drc_index(drc);
 674        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 675    }
 676
 677    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 678    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 679
 680    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 681    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 682                           env->dcache_line_size)));
 683    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 684                           env->dcache_line_size)));
 685    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 686                           env->icache_line_size)));
 687    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 688                           env->icache_line_size)));
 689
 690    if (pcc->l1_dcache_size) {
 691        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 692                               pcc->l1_dcache_size)));
 693    } else {
 694        warn_report("Unknown L1 dcache size for cpu");
 695    }
 696    if (pcc->l1_icache_size) {
 697        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 698                               pcc->l1_icache_size)));
 699    } else {
 700        warn_report("Unknown L1 icache size for cpu");
 701    }
 702
 703    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 704    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 705    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 706    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 707    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 708    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 709
 710    if (ppc_has_spr(cpu, SPR_PURR)) {
 711        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 712    }
 713    if (ppc_has_spr(cpu, SPR_PURR)) {
 714        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 715    }
 716
 717    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 718        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 719                          segs, sizeof(segs))));
 720    }
 721
 722    /* Advertise VSX (vector extensions) if available
 723     *   1               == VMX / Altivec available
 724     *   2               == VSX available
 725     *
 726     * Only CPUs for which we create core types in spapr_cpu_core.c
 727     * are possible, and all of those have VMX */
 728    if (env->insns_flags & PPC_ALTIVEC) {
 729        if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 730            _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 731        } else {
 732            _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 733        }
 734    }
 735
 736    /* Advertise DFP (Decimal Floating Point) if available
 737     *   0 / no property == no DFP
 738     *   1               == DFP available */
 739    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 740        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 741    }
 742
 743    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 744                                                      sizeof(page_sizes_prop));
 745    if (page_sizes_prop_size) {
 746        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 747                          page_sizes_prop, page_sizes_prop_size)));
 748    }
 749
 750    spapr_dt_pa_features(spapr, cpu, fdt, offset);
 751
 752    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 753                           cs->cpu_index / vcpus_per_socket)));
 754
 755    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 756                      pft_size_prop, sizeof(pft_size_prop))));
 757
 758    if (ms->numa_state->num_nodes > 1) {
 759        _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
 760    }
 761
 762    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 763
 764    if (pcc->radix_page_info) {
 765        for (i = 0; i < pcc->radix_page_info->count; i++) {
 766            radix_AP_encodings[i] =
 767                cpu_to_be32(pcc->radix_page_info->entries[i]);
 768        }
 769        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 770                          radix_AP_encodings,
 771                          pcc->radix_page_info->count *
 772                          sizeof(radix_AP_encodings[0]))));
 773    }
 774
 775    /*
 776     * We set this property to let the guest know that it can use the large
 777     * decrementer and its width in bits.
 778     */
 779    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 780        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 781                              pcc->lrg_decr_bits)));
 782}
 783
 784static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
 785{
 786    CPUState **rev;
 787    CPUState *cs;
 788    int n_cpus;
 789    int cpus_offset;
 790    int i;
 791
 792    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 793    _FDT(cpus_offset);
 794    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 795    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 796
 797    /*
 798     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 799     * created by fdt_add_subnode() end up in the right order in FDT
 800     * for the guest kernel the enumerate the CPUs correctly.
 801     *
 802     * The CPU list cannot be traversed in reverse order, so we need
 803     * to do extra work.
 804     */
 805    n_cpus = 0;
 806    rev = NULL;
 807    CPU_FOREACH(cs) {
 808        rev = g_renew(CPUState *, rev, n_cpus + 1);
 809        rev[n_cpus++] = cs;
 810    }
 811
 812    for (i = n_cpus - 1; i >= 0; i--) {
 813        CPUState *cs = rev[i];
 814        PowerPCCPU *cpu = POWERPC_CPU(cs);
 815        int index = spapr_get_vcpu_id(cpu);
 816        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 817        g_autofree char *nodename = NULL;
 818        int offset;
 819
 820        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 821            continue;
 822        }
 823
 824        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 825        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 826        _FDT(offset);
 827        spapr_dt_cpu(cs, fdt, offset, spapr);
 828    }
 829
 830    g_free(rev);
 831}
 832
 833static int spapr_dt_rng(void *fdt)
 834{
 835    int node;
 836    int ret;
 837
 838    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 839    if (node <= 0) {
 840        return -1;
 841    }
 842    ret = fdt_setprop_string(fdt, node, "device_type",
 843                             "ibm,platform-facilities");
 844    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 845    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 846
 847    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 848    if (node <= 0) {
 849        return -1;
 850    }
 851    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 852
 853    return ret ? -1 : 0;
 854}
 855
 856static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
 857{
 858    MachineState *ms = MACHINE(spapr);
 859    int rtas;
 860    GString *hypertas = g_string_sized_new(256);
 861    GString *qemu_hypertas = g_string_sized_new(256);
 862    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
 863        memory_region_size(&MACHINE(spapr)->device_memory->mr);
 864    uint32_t lrdr_capacity[] = {
 865        cpu_to_be32(max_device_addr >> 32),
 866        cpu_to_be32(max_device_addr & 0xffffffff),
 867        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
 868        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
 869        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
 870    };
 871
 872    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 873
 874    /* hypertas */
 875    add_str(hypertas, "hcall-pft");
 876    add_str(hypertas, "hcall-term");
 877    add_str(hypertas, "hcall-dabr");
 878    add_str(hypertas, "hcall-interrupt");
 879    add_str(hypertas, "hcall-tce");
 880    add_str(hypertas, "hcall-vio");
 881    add_str(hypertas, "hcall-splpar");
 882    add_str(hypertas, "hcall-join");
 883    add_str(hypertas, "hcall-bulk");
 884    add_str(hypertas, "hcall-set-mode");
 885    add_str(hypertas, "hcall-sprg0");
 886    add_str(hypertas, "hcall-copy");
 887    add_str(hypertas, "hcall-debug");
 888    add_str(hypertas, "hcall-vphn");
 889    if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
 890        add_str(hypertas, "hcall-rpt-invalidate");
 891    }
 892
 893    add_str(qemu_hypertas, "hcall-memop1");
 894
 895    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 896        add_str(hypertas, "hcall-multi-tce");
 897    }
 898
 899    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 900        add_str(hypertas, "hcall-hpt-resize");
 901    }
 902
 903    add_str(hypertas, "hcall-watchdog");
 904
 905    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 906                     hypertas->str, hypertas->len));
 907    g_string_free(hypertas, TRUE);
 908    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 909                     qemu_hypertas->str, qemu_hypertas->len));
 910    g_string_free(qemu_hypertas, TRUE);
 911
 912    spapr_numa_write_rtas_dt(spapr, fdt, rtas);
 913
 914    /*
 915     * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
 916     * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
 917     *
 918     * The system reset requirements are driven by existing Linux and PowerVM
 919     * implementation which (contrary to PAPR) saves r3 in the error log
 920     * structure like machine check, so Linux expects to find the saved r3
 921     * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
 922     * does not look at the error value).
 923     *
 924     * System reset interrupts are not subject to interlock like machine
 925     * check, so this memory area could be corrupted if the sreset is
 926     * interrupted by a machine check (or vice versa) if it was shared. To
 927     * prevent this, system reset uses per-CPU areas for the sreset save
 928     * area. A system reset that interrupts a system reset handler could
 929     * still overwrite this area, but Linux doesn't try to recover in that
 930     * case anyway.
 931     *
 932     * The extra 8 bytes is required because Linux's FWNMI error log check
 933     * is off-by-one.
 934     *
 935     * RTAS_MIN_SIZE is required for the RTAS blob itself.
 936     */
 937    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
 938                          RTAS_ERROR_LOG_MAX +
 939                          ms->smp.max_cpus * sizeof(uint64_t) * 2 +
 940                          sizeof(uint64_t)));
 941    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 942                          RTAS_ERROR_LOG_MAX));
 943    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 944                          RTAS_EVENT_SCAN_RATE));
 945
 946    g_assert(msi_nonbroken);
 947    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 948
 949    /*
 950     * According to PAPR, rtas ibm,os-term does not guarantee a return
 951     * back to the guest cpu.
 952     *
 953     * While an additional ibm,extended-os-term property indicates
 954     * that rtas call return will always occur. Set this property.
 955     */
 956    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 957
 958    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 959                     lrdr_capacity, sizeof(lrdr_capacity)));
 960
 961    spapr_dt_rtas_tokens(fdt, rtas);
 962}
 963
 964/*
 965 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
 966 * and the XIVE features that the guest may request and thus the valid
 967 * values for bytes 23..26 of option vector 5:
 968 */
 969static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
 970                                          int chosen)
 971{
 972    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 973
 974    char val[2 * 4] = {
 975        23, 0x00, /* XICS / XIVE mode */
 976        24, 0x00, /* Hash/Radix, filled in below. */
 977        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 978        26, 0x40, /* Radix options: GTSE == yes. */
 979    };
 980
 981    if (spapr->irq->xics && spapr->irq->xive) {
 982        val[1] = SPAPR_OV5_XIVE_BOTH;
 983    } else if (spapr->irq->xive) {
 984        val[1] = SPAPR_OV5_XIVE_EXPLOIT;
 985    } else {
 986        assert(spapr->irq->xics);
 987        val[1] = SPAPR_OV5_XIVE_LEGACY;
 988    }
 989
 990    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 991                          first_ppc_cpu->compat_pvr)) {
 992        /*
 993         * If we're in a pre POWER9 compat mode then the guest should
 994         * do hash and use the legacy interrupt mode
 995         */
 996        val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
 997        val[3] = 0x00; /* Hash */
 998        spapr_check_mmu_mode(false);
 999    } else if (kvm_enabled()) {
1000        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1001            val[3] = 0x80; /* OV5_MMU_BOTH */
1002        } else if (kvmppc_has_cap_mmu_radix()) {
1003            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1004        } else {
1005            val[3] = 0x00; /* Hash */
1006        }
1007    } else {
1008        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1009        val[3] = 0xC0;
1010    }
1011    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1012                     val, sizeof(val)));
1013}
1014
1015static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1016{
1017    MachineState *machine = MACHINE(spapr);
1018    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1019    uint8_t rng_seed[32];
1020    int chosen;
1021
1022    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1023
1024    if (reset) {
1025        const char *boot_device = spapr->boot_device;
1026        g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1027        size_t cb = 0;
1028        g_autofree char *bootlist = get_boot_devices_list(&cb);
1029
1030        if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1031            _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1032                                    machine->kernel_cmdline));
1033        }
1034
1035        if (spapr->initrd_size) {
1036            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1037                                  spapr->initrd_base));
1038            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1039                                  spapr->initrd_base + spapr->initrd_size));
1040        }
1041
1042        if (spapr->kernel_size) {
1043            uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1044                                  cpu_to_be64(spapr->kernel_size) };
1045
1046            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1047                         &kprop, sizeof(kprop)));
1048            if (spapr->kernel_le) {
1049                _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1050            }
1051        }
1052        if (machine->boot_config.has_menu && machine->boot_config.menu) {
1053            _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1054        }
1055        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1056        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1057        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1058
1059        if (cb && bootlist) {
1060            int i;
1061
1062            for (i = 0; i < cb; i++) {
1063                if (bootlist[i] == '\n') {
1064                    bootlist[i] = ' ';
1065                }
1066            }
1067            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1068        }
1069
1070        if (boot_device && strlen(boot_device)) {
1071            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1072        }
1073
1074        if (spapr->want_stdout_path && stdout_path) {
1075            /*
1076             * "linux,stdout-path" and "stdout" properties are
1077             * deprecated by linux kernel. New platforms should only
1078             * use the "stdout-path" property. Set the new property
1079             * and continue using older property to remain compatible
1080             * with the existing firmware.
1081             */
1082            _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1083            _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1084        }
1085
1086        /*
1087         * We can deal with BAR reallocation just fine, advertise it
1088         * to the guest
1089         */
1090        if (smc->linux_pci_probe) {
1091            _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1092        }
1093
1094        spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1095    }
1096
1097    qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1098    _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1099
1100    _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1101}
1102
1103static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1104{
1105    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1106     * KVM to work under pHyp with some guest co-operation */
1107    int hypervisor;
1108    uint8_t hypercall[16];
1109
1110    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1111    /* indicate KVM hypercall interface */
1112    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1113    if (kvmppc_has_cap_fixup_hcalls()) {
1114        /*
1115         * Older KVM versions with older guest kernels were broken
1116         * with the magic page, don't allow the guest to map it.
1117         */
1118        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1119                                  sizeof(hypercall))) {
1120            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1121                             hypercall, sizeof(hypercall)));
1122        }
1123    }
1124}
1125
1126void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1127{
1128    MachineState *machine = MACHINE(spapr);
1129    MachineClass *mc = MACHINE_GET_CLASS(machine);
1130    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1131    uint32_t root_drc_type_mask = 0;
1132    int ret;
1133    void *fdt;
1134    SpaprPhbState *phb;
1135    char *buf;
1136
1137    fdt = g_malloc0(space);
1138    _FDT((fdt_create_empty_tree(fdt, space)));
1139
1140    /* Root node */
1141    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1142    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1143    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1144
1145    /* Guest UUID & Name*/
1146    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1147    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1148    if (qemu_uuid_set) {
1149        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1150    }
1151    g_free(buf);
1152
1153    if (qemu_get_vm_name()) {
1154        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1155                                qemu_get_vm_name()));
1156    }
1157
1158    /* Host Model & Serial Number */
1159    if (spapr->host_model) {
1160        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1161    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1162        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1163        g_free(buf);
1164    }
1165
1166    if (spapr->host_serial) {
1167        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1168    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1169        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1170        g_free(buf);
1171    }
1172
1173    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1174    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1175
1176    /* /interrupt controller */
1177    spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1178
1179    ret = spapr_dt_memory(spapr, fdt);
1180    if (ret < 0) {
1181        error_report("couldn't setup memory nodes in fdt");
1182        exit(1);
1183    }
1184
1185    /* /vdevice */
1186    spapr_dt_vdevice(spapr->vio_bus, fdt);
1187
1188    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1189        ret = spapr_dt_rng(fdt);
1190        if (ret < 0) {
1191            error_report("could not set up rng device in the fdt");
1192            exit(1);
1193        }
1194    }
1195
1196    QLIST_FOREACH(phb, &spapr->phbs, list) {
1197        ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1198        if (ret < 0) {
1199            error_report("couldn't setup PCI devices in fdt");
1200            exit(1);
1201        }
1202    }
1203
1204    spapr_dt_cpus(fdt, spapr);
1205
1206    /* ibm,drc-indexes and friends */
1207    if (smc->dr_lmb_enabled) {
1208        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1209    }
1210    if (smc->dr_phb_enabled) {
1211        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1212    }
1213    if (mc->nvdimm_supported) {
1214        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1215    }
1216    if (root_drc_type_mask) {
1217        _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1218    }
1219
1220    if (mc->has_hotpluggable_cpus) {
1221        int offset = fdt_path_offset(fdt, "/cpus");
1222        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1223        if (ret < 0) {
1224            error_report("Couldn't set up CPU DR device tree properties");
1225            exit(1);
1226        }
1227    }
1228
1229    /* /event-sources */
1230    spapr_dt_events(spapr, fdt);
1231
1232    /* /rtas */
1233    spapr_dt_rtas(spapr, fdt);
1234
1235    /* /chosen */
1236    spapr_dt_chosen(spapr, fdt, reset);
1237
1238    /* /hypervisor */
1239    if (kvm_enabled()) {
1240        spapr_dt_hypervisor(spapr, fdt);
1241    }
1242
1243    /* Build memory reserve map */
1244    if (reset) {
1245        if (spapr->kernel_size) {
1246            _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1247                                  spapr->kernel_size)));
1248        }
1249        if (spapr->initrd_size) {
1250            _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1251                                  spapr->initrd_size)));
1252        }
1253    }
1254
1255    /* NVDIMM devices */
1256    if (mc->nvdimm_supported) {
1257        spapr_dt_persistent_memory(spapr, fdt);
1258    }
1259
1260    return fdt;
1261}
1262
1263static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1264{
1265    SpaprMachineState *spapr = opaque;
1266
1267    return (addr & 0x0fffffff) + spapr->kernel_addr;
1268}
1269
1270static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1271                                    PowerPCCPU *cpu)
1272{
1273    CPUPPCState *env = &cpu->env;
1274
1275    /* The TCG path should also be holding the BQL at this point */
1276    g_assert(qemu_mutex_iothread_locked());
1277
1278    g_assert(!vhyp_cpu_in_nested(cpu));
1279
1280    if (FIELD_EX64(env->msr, MSR, PR)) {
1281        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1282        env->gpr[3] = H_PRIVILEGE;
1283    } else {
1284        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1285    }
1286}
1287
1288struct LPCRSyncState {
1289    target_ulong value;
1290    target_ulong mask;
1291};
1292
1293static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1294{
1295    struct LPCRSyncState *s = arg.host_ptr;
1296    PowerPCCPU *cpu = POWERPC_CPU(cs);
1297    CPUPPCState *env = &cpu->env;
1298    target_ulong lpcr;
1299
1300    cpu_synchronize_state(cs);
1301    lpcr = env->spr[SPR_LPCR];
1302    lpcr &= ~s->mask;
1303    lpcr |= s->value;
1304    ppc_store_lpcr(cpu, lpcr);
1305}
1306
1307void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1308{
1309    CPUState *cs;
1310    struct LPCRSyncState s = {
1311        .value = value,
1312        .mask = mask
1313    };
1314    CPU_FOREACH(cs) {
1315        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1316    }
1317}
1318
1319static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1320                           target_ulong lpid, ppc_v3_pate_t *entry)
1321{
1322    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1323    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1324
1325    if (!spapr_cpu->in_nested) {
1326        assert(lpid == 0);
1327
1328        /* Copy PATE1:GR into PATE0:HR */
1329        entry->dw0 = spapr->patb_entry & PATE0_HR;
1330        entry->dw1 = spapr->patb_entry;
1331
1332    } else {
1333        uint64_t patb, pats;
1334
1335        assert(lpid != 0);
1336
1337        patb = spapr->nested_ptcr & PTCR_PATB;
1338        pats = spapr->nested_ptcr & PTCR_PATS;
1339
1340        /* Check if partition table is properly aligned */
1341        if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1342            return false;
1343        }
1344
1345        /* Calculate number of entries */
1346        pats = 1ull << (pats + 12 - 4);
1347        if (pats <= lpid) {
1348            return false;
1349        }
1350
1351        /* Grab entry */
1352        patb += 16 * lpid;
1353        entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1354        entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1355    }
1356
1357    return true;
1358}
1359
1360#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1361#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1362#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1363#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1364#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1365
1366/*
1367 * Get the fd to access the kernel htab, re-opening it if necessary
1368 */
1369static int get_htab_fd(SpaprMachineState *spapr)
1370{
1371    Error *local_err = NULL;
1372
1373    if (spapr->htab_fd >= 0) {
1374        return spapr->htab_fd;
1375    }
1376
1377    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1378    if (spapr->htab_fd < 0) {
1379        error_report_err(local_err);
1380    }
1381
1382    return spapr->htab_fd;
1383}
1384
1385void close_htab_fd(SpaprMachineState *spapr)
1386{
1387    if (spapr->htab_fd >= 0) {
1388        close(spapr->htab_fd);
1389    }
1390    spapr->htab_fd = -1;
1391}
1392
1393static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1394{
1395    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1396
1397    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1398}
1399
1400static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1401{
1402    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1403
1404    assert(kvm_enabled());
1405
1406    if (!spapr->htab) {
1407        return 0;
1408    }
1409
1410    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1411}
1412
1413static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1414                                                hwaddr ptex, int n)
1415{
1416    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1417    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1418
1419    if (!spapr->htab) {
1420        /*
1421         * HTAB is controlled by KVM. Fetch into temporary buffer
1422         */
1423        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1424        kvmppc_read_hptes(hptes, ptex, n);
1425        return hptes;
1426    }
1427
1428    /*
1429     * HTAB is controlled by QEMU. Just point to the internally
1430     * accessible PTEG.
1431     */
1432    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1433}
1434
1435static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1436                              const ppc_hash_pte64_t *hptes,
1437                              hwaddr ptex, int n)
1438{
1439    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440
1441    if (!spapr->htab) {
1442        g_free((void *)hptes);
1443    }
1444
1445    /* Nothing to do for qemu managed HPT */
1446}
1447
1448void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1449                      uint64_t pte0, uint64_t pte1)
1450{
1451    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1452    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1453
1454    if (!spapr->htab) {
1455        kvmppc_write_hpte(ptex, pte0, pte1);
1456    } else {
1457        if (pte0 & HPTE64_V_VALID) {
1458            stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1459            /*
1460             * When setting valid, we write PTE1 first. This ensures
1461             * proper synchronization with the reading code in
1462             * ppc_hash64_pteg_search()
1463             */
1464            smp_wmb();
1465            stq_p(spapr->htab + offset, pte0);
1466        } else {
1467            stq_p(spapr->htab + offset, pte0);
1468            /*
1469             * When clearing it we set PTE0 first. This ensures proper
1470             * synchronization with the reading code in
1471             * ppc_hash64_pteg_search()
1472             */
1473            smp_wmb();
1474            stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1475        }
1476    }
1477}
1478
1479static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1480                             uint64_t pte1)
1481{
1482    hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1483    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1484
1485    if (!spapr->htab) {
1486        /* There should always be a hash table when this is called */
1487        error_report("spapr_hpte_set_c called with no hash table !");
1488        return;
1489    }
1490
1491    /* The HW performs a non-atomic byte update */
1492    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1493}
1494
1495static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1496                             uint64_t pte1)
1497{
1498    hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1499    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1500
1501    if (!spapr->htab) {
1502        /* There should always be a hash table when this is called */
1503        error_report("spapr_hpte_set_r called with no hash table !");
1504        return;
1505    }
1506
1507    /* The HW performs a non-atomic byte update */
1508    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1509}
1510
1511int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1512{
1513    int shift;
1514
1515    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1516     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1517     * that's much more than is needed for Linux guests */
1518    shift = ctz64(pow2ceil(ramsize)) - 7;
1519    shift = MAX(shift, 18); /* Minimum architected size */
1520    shift = MIN(shift, 46); /* Maximum architected size */
1521    return shift;
1522}
1523
1524void spapr_free_hpt(SpaprMachineState *spapr)
1525{
1526    qemu_vfree(spapr->htab);
1527    spapr->htab = NULL;
1528    spapr->htab_shift = 0;
1529    close_htab_fd(spapr);
1530}
1531
1532int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1533{
1534    ERRP_GUARD();
1535    long rc;
1536
1537    /* Clean up any HPT info from a previous boot */
1538    spapr_free_hpt(spapr);
1539
1540    rc = kvmppc_reset_htab(shift);
1541
1542    if (rc == -EOPNOTSUPP) {
1543        error_setg(errp, "HPT not supported in nested guests");
1544        return -EOPNOTSUPP;
1545    }
1546
1547    if (rc < 0) {
1548        /* kernel-side HPT needed, but couldn't allocate one */
1549        error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1550                         shift);
1551        error_append_hint(errp, "Try smaller maxmem?\n");
1552        return -errno;
1553    } else if (rc > 0) {
1554        /* kernel-side HPT allocated */
1555        if (rc != shift) {
1556            error_setg(errp,
1557                       "Requested order %d HPT, but kernel allocated order %ld",
1558                       shift, rc);
1559            error_append_hint(errp, "Try smaller maxmem?\n");
1560            return -ENOSPC;
1561        }
1562
1563        spapr->htab_shift = shift;
1564        spapr->htab = NULL;
1565    } else {
1566        /* kernel-side HPT not needed, allocate in userspace instead */
1567        size_t size = 1ULL << shift;
1568        int i;
1569
1570        spapr->htab = qemu_memalign(size, size);
1571        memset(spapr->htab, 0, size);
1572        spapr->htab_shift = shift;
1573
1574        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1575            DIRTY_HPTE(HPTE(spapr->htab, i));
1576        }
1577    }
1578    /* We're setting up a hash table, so that means we're not radix */
1579    spapr->patb_entry = 0;
1580    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1581    return 0;
1582}
1583
1584void spapr_setup_hpt(SpaprMachineState *spapr)
1585{
1586    int hpt_shift;
1587
1588    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1589        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1590    } else {
1591        uint64_t current_ram_size;
1592
1593        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1594        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1595    }
1596    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1597
1598    if (kvm_enabled()) {
1599        hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1600
1601        /* Check our RMA fits in the possible VRMA */
1602        if (vrma_limit < spapr->rma_size) {
1603            error_report("Unable to create %" HWADDR_PRIu
1604                         "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1605                         spapr->rma_size / MiB, vrma_limit / MiB);
1606            exit(EXIT_FAILURE);
1607        }
1608    }
1609}
1610
1611void spapr_check_mmu_mode(bool guest_radix)
1612{
1613    if (guest_radix) {
1614        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1615            error_report("Guest requested unavailable MMU mode (radix).");
1616            exit(EXIT_FAILURE);
1617        }
1618    } else {
1619        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1620            && !kvmppc_has_cap_mmu_hash_v3()) {
1621            error_report("Guest requested unavailable MMU mode (hash).");
1622            exit(EXIT_FAILURE);
1623        }
1624    }
1625}
1626
1627static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1628{
1629    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1630    PowerPCCPU *first_ppc_cpu;
1631    hwaddr fdt_addr;
1632    void *fdt;
1633    int rc;
1634
1635    pef_kvm_reset(machine->cgs, &error_fatal);
1636    spapr_caps_apply(spapr);
1637
1638    first_ppc_cpu = POWERPC_CPU(first_cpu);
1639    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1640        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1641                              spapr->max_compat_pvr)) {
1642        /*
1643         * If using KVM with radix mode available, VCPUs can be started
1644         * without a HPT because KVM will start them in radix mode.
1645         * Set the GR bit in PATE so that we know there is no HPT.
1646         */
1647        spapr->patb_entry = PATE1_GR;
1648        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1649    } else {
1650        spapr_setup_hpt(spapr);
1651    }
1652
1653    qemu_devices_reset(reason);
1654
1655    spapr_ovec_cleanup(spapr->ov5_cas);
1656    spapr->ov5_cas = spapr_ovec_new();
1657
1658    ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1659
1660    /*
1661     * This is fixing some of the default configuration of the XIVE
1662     * devices. To be called after the reset of the machine devices.
1663     */
1664    spapr_irq_reset(spapr, &error_fatal);
1665
1666    /*
1667     * There is no CAS under qtest. Simulate one to please the code that
1668     * depends on spapr->ov5_cas. This is especially needed to test device
1669     * unplug, so we do that before resetting the DRCs.
1670     */
1671    if (qtest_enabled()) {
1672        spapr_ovec_cleanup(spapr->ov5_cas);
1673        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1674    }
1675
1676    spapr_nvdimm_finish_flushes();
1677
1678    /* DRC reset may cause a device to be unplugged. This will cause troubles
1679     * if this device is used by another device (eg, a running vhost backend
1680     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1681     * situations, we reset DRCs after all devices have been reset.
1682     */
1683    spapr_drc_reset_all(spapr);
1684
1685    spapr_clear_pending_events(spapr);
1686
1687    /*
1688     * We place the device tree just below either the top of the RMA,
1689     * or just below 2GB, whichever is lower, so that it can be
1690     * processed with 32-bit real mode code if necessary
1691     */
1692    fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1693
1694    fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1695    if (spapr->vof) {
1696        spapr_vof_reset(spapr, fdt, &error_fatal);
1697        /*
1698         * Do not pack the FDT as the client may change properties.
1699         * VOF client does not expect the FDT so we do not load it to the VM.
1700         */
1701    } else {
1702        rc = fdt_pack(fdt);
1703        /* Should only fail if we've built a corrupted tree */
1704        assert(rc == 0);
1705
1706        spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1707                                  0, fdt_addr, 0);
1708        cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1709    }
1710    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1711
1712    g_free(spapr->fdt_blob);
1713    spapr->fdt_size = fdt_totalsize(fdt);
1714    spapr->fdt_initial_size = spapr->fdt_size;
1715    spapr->fdt_blob = fdt;
1716
1717    /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1718    machine->fdt = fdt;
1719
1720    /* Set up the entry state */
1721    first_ppc_cpu->env.gpr[5] = 0;
1722
1723    spapr->fwnmi_system_reset_addr = -1;
1724    spapr->fwnmi_machine_check_addr = -1;
1725    spapr->fwnmi_machine_check_interlock = -1;
1726
1727    /* Signal all vCPUs waiting on this condition */
1728    qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1729
1730    migrate_del_blocker(spapr->fwnmi_migration_blocker);
1731}
1732
1733static void spapr_create_nvram(SpaprMachineState *spapr)
1734{
1735    DeviceState *dev = qdev_new("spapr-nvram");
1736    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1737
1738    if (dinfo) {
1739        qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1740                                &error_fatal);
1741    }
1742
1743    qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1744
1745    spapr->nvram = (struct SpaprNvram *)dev;
1746}
1747
1748static void spapr_rtc_create(SpaprMachineState *spapr)
1749{
1750    object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1751                                       sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1752                                       &error_fatal, NULL);
1753    qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1754    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1755                              "date");
1756}
1757
1758/* Returns whether we want to use VGA or not */
1759static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1760{
1761    vga_interface_created = true;
1762    switch (vga_interface_type) {
1763    case VGA_NONE:
1764        return false;
1765    case VGA_DEVICE:
1766        return true;
1767    case VGA_STD:
1768    case VGA_VIRTIO:
1769    case VGA_CIRRUS:
1770        return pci_vga_init(pci_bus) != NULL;
1771    default:
1772        error_setg(errp,
1773                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1774        return false;
1775    }
1776}
1777
1778static int spapr_pre_load(void *opaque)
1779{
1780    int rc;
1781
1782    rc = spapr_caps_pre_load(opaque);
1783    if (rc) {
1784        return rc;
1785    }
1786
1787    return 0;
1788}
1789
1790static int spapr_post_load(void *opaque, int version_id)
1791{
1792    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1793    int err = 0;
1794
1795    err = spapr_caps_post_migration(spapr);
1796    if (err) {
1797        return err;
1798    }
1799
1800    /*
1801     * In earlier versions, there was no separate qdev for the PAPR
1802     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1803     * So when migrating from those versions, poke the incoming offset
1804     * value into the RTC device
1805     */
1806    if (version_id < 3) {
1807        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1808        if (err) {
1809            return err;
1810        }
1811    }
1812
1813    if (kvm_enabled() && spapr->patb_entry) {
1814        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1815        bool radix = !!(spapr->patb_entry & PATE1_GR);
1816        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1817
1818        /*
1819         * Update LPCR:HR and UPRT as they may not be set properly in
1820         * the stream
1821         */
1822        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1823                            LPCR_HR | LPCR_UPRT);
1824
1825        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1826        if (err) {
1827            error_report("Process table config unsupported by the host");
1828            return -EINVAL;
1829        }
1830    }
1831
1832    err = spapr_irq_post_load(spapr, version_id);
1833    if (err) {
1834        return err;
1835    }
1836
1837    return err;
1838}
1839
1840static int spapr_pre_save(void *opaque)
1841{
1842    int rc;
1843
1844    rc = spapr_caps_pre_save(opaque);
1845    if (rc) {
1846        return rc;
1847    }
1848
1849    return 0;
1850}
1851
1852static bool version_before_3(void *opaque, int version_id)
1853{
1854    return version_id < 3;
1855}
1856
1857static bool spapr_pending_events_needed(void *opaque)
1858{
1859    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1860    return !QTAILQ_EMPTY(&spapr->pending_events);
1861}
1862
1863static const VMStateDescription vmstate_spapr_event_entry = {
1864    .name = "spapr_event_log_entry",
1865    .version_id = 1,
1866    .minimum_version_id = 1,
1867    .fields = (VMStateField[]) {
1868        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1869        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1870        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1871                                     NULL, extended_length),
1872        VMSTATE_END_OF_LIST()
1873    },
1874};
1875
1876static const VMStateDescription vmstate_spapr_pending_events = {
1877    .name = "spapr_pending_events",
1878    .version_id = 1,
1879    .minimum_version_id = 1,
1880    .needed = spapr_pending_events_needed,
1881    .fields = (VMStateField[]) {
1882        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1883                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1884        VMSTATE_END_OF_LIST()
1885    },
1886};
1887
1888static bool spapr_ov5_cas_needed(void *opaque)
1889{
1890    SpaprMachineState *spapr = opaque;
1891    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1892    bool cas_needed;
1893
1894    /* Prior to the introduction of SpaprOptionVector, we had two option
1895     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1896     * Both of these options encode machine topology into the device-tree
1897     * in such a way that the now-booted OS should still be able to interact
1898     * appropriately with QEMU regardless of what options were actually
1899     * negotiatied on the source side.
1900     *
1901     * As such, we can avoid migrating the CAS-negotiated options if these
1902     * are the only options available on the current machine/platform.
1903     * Since these are the only options available for pseries-2.7 and
1904     * earlier, this allows us to maintain old->new/new->old migration
1905     * compatibility.
1906     *
1907     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1908     * via default pseries-2.8 machines and explicit command-line parameters.
1909     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1910     * of the actual CAS-negotiated values to continue working properly. For
1911     * example, availability of memory unplug depends on knowing whether
1912     * OV5_HP_EVT was negotiated via CAS.
1913     *
1914     * Thus, for any cases where the set of available CAS-negotiatable
1915     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1916     * include the CAS-negotiated options in the migration stream, unless
1917     * if they affect boot time behaviour only.
1918     */
1919    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1920    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1921    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1922
1923    /* We need extra information if we have any bits outside the mask
1924     * defined above */
1925    cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1926
1927    spapr_ovec_cleanup(ov5_mask);
1928
1929    return cas_needed;
1930}
1931
1932static const VMStateDescription vmstate_spapr_ov5_cas = {
1933    .name = "spapr_option_vector_ov5_cas",
1934    .version_id = 1,
1935    .minimum_version_id = 1,
1936    .needed = spapr_ov5_cas_needed,
1937    .fields = (VMStateField[]) {
1938        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1939                                 vmstate_spapr_ovec, SpaprOptionVector),
1940        VMSTATE_END_OF_LIST()
1941    },
1942};
1943
1944static bool spapr_patb_entry_needed(void *opaque)
1945{
1946    SpaprMachineState *spapr = opaque;
1947
1948    return !!spapr->patb_entry;
1949}
1950
1951static const VMStateDescription vmstate_spapr_patb_entry = {
1952    .name = "spapr_patb_entry",
1953    .version_id = 1,
1954    .minimum_version_id = 1,
1955    .needed = spapr_patb_entry_needed,
1956    .fields = (VMStateField[]) {
1957        VMSTATE_UINT64(patb_entry, SpaprMachineState),
1958        VMSTATE_END_OF_LIST()
1959    },
1960};
1961
1962static bool spapr_irq_map_needed(void *opaque)
1963{
1964    SpaprMachineState *spapr = opaque;
1965
1966    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1967}
1968
1969static const VMStateDescription vmstate_spapr_irq_map = {
1970    .name = "spapr_irq_map",
1971    .version_id = 1,
1972    .minimum_version_id = 1,
1973    .needed = spapr_irq_map_needed,
1974    .fields = (VMStateField[]) {
1975        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1976        VMSTATE_END_OF_LIST()
1977    },
1978};
1979
1980static bool spapr_dtb_needed(void *opaque)
1981{
1982    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1983
1984    return smc->update_dt_enabled;
1985}
1986
1987static int spapr_dtb_pre_load(void *opaque)
1988{
1989    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1990
1991    g_free(spapr->fdt_blob);
1992    spapr->fdt_blob = NULL;
1993    spapr->fdt_size = 0;
1994
1995    return 0;
1996}
1997
1998static const VMStateDescription vmstate_spapr_dtb = {
1999    .name = "spapr_dtb",
2000    .version_id = 1,
2001    .minimum_version_id = 1,
2002    .needed = spapr_dtb_needed,
2003    .pre_load = spapr_dtb_pre_load,
2004    .fields = (VMStateField[]) {
2005        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2006        VMSTATE_UINT32(fdt_size, SpaprMachineState),
2007        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2008                                     fdt_size),
2009        VMSTATE_END_OF_LIST()
2010    },
2011};
2012
2013static bool spapr_fwnmi_needed(void *opaque)
2014{
2015    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2016
2017    return spapr->fwnmi_machine_check_addr != -1;
2018}
2019
2020static int spapr_fwnmi_pre_save(void *opaque)
2021{
2022    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2023
2024    /*
2025     * Check if machine check handling is in progress and print a
2026     * warning message.
2027     */
2028    if (spapr->fwnmi_machine_check_interlock != -1) {
2029        warn_report("A machine check is being handled during migration. The"
2030                "handler may run and log hardware error on the destination");
2031    }
2032
2033    return 0;
2034}
2035
2036static const VMStateDescription vmstate_spapr_fwnmi = {
2037    .name = "spapr_fwnmi",
2038    .version_id = 1,
2039    .minimum_version_id = 1,
2040    .needed = spapr_fwnmi_needed,
2041    .pre_save = spapr_fwnmi_pre_save,
2042    .fields = (VMStateField[]) {
2043        VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2044        VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2045        VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2046        VMSTATE_END_OF_LIST()
2047    },
2048};
2049
2050static const VMStateDescription vmstate_spapr = {
2051    .name = "spapr",
2052    .version_id = 3,
2053    .minimum_version_id = 1,
2054    .pre_load = spapr_pre_load,
2055    .post_load = spapr_post_load,
2056    .pre_save = spapr_pre_save,
2057    .fields = (VMStateField[]) {
2058        /* used to be @next_irq */
2059        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2060
2061        /* RTC offset */
2062        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2063
2064        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2065        VMSTATE_END_OF_LIST()
2066    },
2067    .subsections = (const VMStateDescription*[]) {
2068        &vmstate_spapr_ov5_cas,
2069        &vmstate_spapr_patb_entry,
2070        &vmstate_spapr_pending_events,
2071        &vmstate_spapr_cap_htm,
2072        &vmstate_spapr_cap_vsx,
2073        &vmstate_spapr_cap_dfp,
2074        &vmstate_spapr_cap_cfpc,
2075        &vmstate_spapr_cap_sbbc,
2076        &vmstate_spapr_cap_ibs,
2077        &vmstate_spapr_cap_hpt_maxpagesize,
2078        &vmstate_spapr_irq_map,
2079        &vmstate_spapr_cap_nested_kvm_hv,
2080        &vmstate_spapr_dtb,
2081        &vmstate_spapr_cap_large_decr,
2082        &vmstate_spapr_cap_ccf_assist,
2083        &vmstate_spapr_cap_fwnmi,
2084        &vmstate_spapr_fwnmi,
2085        &vmstate_spapr_cap_rpt_invalidate,
2086        NULL
2087    }
2088};
2089
2090static int htab_save_setup(QEMUFile *f, void *opaque)
2091{
2092    SpaprMachineState *spapr = opaque;
2093
2094    /* "Iteration" header */
2095    if (!spapr->htab_shift) {
2096        qemu_put_be32(f, -1);
2097    } else {
2098        qemu_put_be32(f, spapr->htab_shift);
2099    }
2100
2101    if (spapr->htab) {
2102        spapr->htab_save_index = 0;
2103        spapr->htab_first_pass = true;
2104    } else {
2105        if (spapr->htab_shift) {
2106            assert(kvm_enabled());
2107        }
2108    }
2109
2110
2111    return 0;
2112}
2113
2114static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2115                            int chunkstart, int n_valid, int n_invalid)
2116{
2117    qemu_put_be32(f, chunkstart);
2118    qemu_put_be16(f, n_valid);
2119    qemu_put_be16(f, n_invalid);
2120    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2121                    HASH_PTE_SIZE_64 * n_valid);
2122}
2123
2124static void htab_save_end_marker(QEMUFile *f)
2125{
2126    qemu_put_be32(f, 0);
2127    qemu_put_be16(f, 0);
2128    qemu_put_be16(f, 0);
2129}
2130
2131static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2132                                 int64_t max_ns)
2133{
2134    bool has_timeout = max_ns != -1;
2135    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2136    int index = spapr->htab_save_index;
2137    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2138
2139    assert(spapr->htab_first_pass);
2140
2141    do {
2142        int chunkstart;
2143
2144        /* Consume invalid HPTEs */
2145        while ((index < htabslots)
2146               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2147            CLEAN_HPTE(HPTE(spapr->htab, index));
2148            index++;
2149        }
2150
2151        /* Consume valid HPTEs */
2152        chunkstart = index;
2153        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2154               && HPTE_VALID(HPTE(spapr->htab, index))) {
2155            CLEAN_HPTE(HPTE(spapr->htab, index));
2156            index++;
2157        }
2158
2159        if (index > chunkstart) {
2160            int n_valid = index - chunkstart;
2161
2162            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2163
2164            if (has_timeout &&
2165                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2166                break;
2167            }
2168        }
2169    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2170
2171    if (index >= htabslots) {
2172        assert(index == htabslots);
2173        index = 0;
2174        spapr->htab_first_pass = false;
2175    }
2176    spapr->htab_save_index = index;
2177}
2178
2179static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2180                                int64_t max_ns)
2181{
2182    bool final = max_ns < 0;
2183    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2184    int examined = 0, sent = 0;
2185    int index = spapr->htab_save_index;
2186    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2187
2188    assert(!spapr->htab_first_pass);
2189
2190    do {
2191        int chunkstart, invalidstart;
2192
2193        /* Consume non-dirty HPTEs */
2194        while ((index < htabslots)
2195               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2196            index++;
2197            examined++;
2198        }
2199
2200        chunkstart = index;
2201        /* Consume valid dirty HPTEs */
2202        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2203               && HPTE_DIRTY(HPTE(spapr->htab, index))
2204               && HPTE_VALID(HPTE(spapr->htab, index))) {
2205            CLEAN_HPTE(HPTE(spapr->htab, index));
2206            index++;
2207            examined++;
2208        }
2209
2210        invalidstart = index;
2211        /* Consume invalid dirty HPTEs */
2212        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2213               && HPTE_DIRTY(HPTE(spapr->htab, index))
2214               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2215            CLEAN_HPTE(HPTE(spapr->htab, index));
2216            index++;
2217            examined++;
2218        }
2219
2220        if (index > chunkstart) {
2221            int n_valid = invalidstart - chunkstart;
2222            int n_invalid = index - invalidstart;
2223
2224            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2225            sent += index - chunkstart;
2226
2227            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2228                break;
2229            }
2230        }
2231
2232        if (examined >= htabslots) {
2233            break;
2234        }
2235
2236        if (index >= htabslots) {
2237            assert(index == htabslots);
2238            index = 0;
2239        }
2240    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2241
2242    if (index >= htabslots) {
2243        assert(index == htabslots);
2244        index = 0;
2245    }
2246
2247    spapr->htab_save_index = index;
2248
2249    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2250}
2251
2252#define MAX_ITERATION_NS    5000000 /* 5 ms */
2253#define MAX_KVM_BUF_SIZE    2048
2254
2255static int htab_save_iterate(QEMUFile *f, void *opaque)
2256{
2257    SpaprMachineState *spapr = opaque;
2258    int fd;
2259    int rc = 0;
2260
2261    /* Iteration header */
2262    if (!spapr->htab_shift) {
2263        qemu_put_be32(f, -1);
2264        return 1;
2265    } else {
2266        qemu_put_be32(f, 0);
2267    }
2268
2269    if (!spapr->htab) {
2270        assert(kvm_enabled());
2271
2272        fd = get_htab_fd(spapr);
2273        if (fd < 0) {
2274            return fd;
2275        }
2276
2277        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2278        if (rc < 0) {
2279            return rc;
2280        }
2281    } else  if (spapr->htab_first_pass) {
2282        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2283    } else {
2284        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2285    }
2286
2287    htab_save_end_marker(f);
2288
2289    return rc;
2290}
2291
2292static int htab_save_complete(QEMUFile *f, void *opaque)
2293{
2294    SpaprMachineState *spapr = opaque;
2295    int fd;
2296
2297    /* Iteration header */
2298    if (!spapr->htab_shift) {
2299        qemu_put_be32(f, -1);
2300        return 0;
2301    } else {
2302        qemu_put_be32(f, 0);
2303    }
2304
2305    if (!spapr->htab) {
2306        int rc;
2307
2308        assert(kvm_enabled());
2309
2310        fd = get_htab_fd(spapr);
2311        if (fd < 0) {
2312            return fd;
2313        }
2314
2315        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2316        if (rc < 0) {
2317            return rc;
2318        }
2319    } else {
2320        if (spapr->htab_first_pass) {
2321            htab_save_first_pass(f, spapr, -1);
2322        }
2323        htab_save_later_pass(f, spapr, -1);
2324    }
2325
2326    /* End marker */
2327    htab_save_end_marker(f);
2328
2329    return 0;
2330}
2331
2332static int htab_load(QEMUFile *f, void *opaque, int version_id)
2333{
2334    SpaprMachineState *spapr = opaque;
2335    uint32_t section_hdr;
2336    int fd = -1;
2337    Error *local_err = NULL;
2338
2339    if (version_id < 1 || version_id > 1) {
2340        error_report("htab_load() bad version");
2341        return -EINVAL;
2342    }
2343
2344    section_hdr = qemu_get_be32(f);
2345
2346    if (section_hdr == -1) {
2347        spapr_free_hpt(spapr);
2348        return 0;
2349    }
2350
2351    if (section_hdr) {
2352        int ret;
2353
2354        /* First section gives the htab size */
2355        ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2356        if (ret < 0) {
2357            error_report_err(local_err);
2358            return ret;
2359        }
2360        return 0;
2361    }
2362
2363    if (!spapr->htab) {
2364        assert(kvm_enabled());
2365
2366        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2367        if (fd < 0) {
2368            error_report_err(local_err);
2369            return fd;
2370        }
2371    }
2372
2373    while (true) {
2374        uint32_t index;
2375        uint16_t n_valid, n_invalid;
2376
2377        index = qemu_get_be32(f);
2378        n_valid = qemu_get_be16(f);
2379        n_invalid = qemu_get_be16(f);
2380
2381        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2382            /* End of Stream */
2383            break;
2384        }
2385
2386        if ((index + n_valid + n_invalid) >
2387            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2388            /* Bad index in stream */
2389            error_report(
2390                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2391                index, n_valid, n_invalid, spapr->htab_shift);
2392            return -EINVAL;
2393        }
2394
2395        if (spapr->htab) {
2396            if (n_valid) {
2397                qemu_get_buffer(f, HPTE(spapr->htab, index),
2398                                HASH_PTE_SIZE_64 * n_valid);
2399            }
2400            if (n_invalid) {
2401                memset(HPTE(spapr->htab, index + n_valid), 0,
2402                       HASH_PTE_SIZE_64 * n_invalid);
2403            }
2404        } else {
2405            int rc;
2406
2407            assert(fd >= 0);
2408
2409            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2410                                        &local_err);
2411            if (rc < 0) {
2412                error_report_err(local_err);
2413                return rc;
2414            }
2415        }
2416    }
2417
2418    if (!spapr->htab) {
2419        assert(fd >= 0);
2420        close(fd);
2421    }
2422
2423    return 0;
2424}
2425
2426static void htab_save_cleanup(void *opaque)
2427{
2428    SpaprMachineState *spapr = opaque;
2429
2430    close_htab_fd(spapr);
2431}
2432
2433static SaveVMHandlers savevm_htab_handlers = {
2434    .save_setup = htab_save_setup,
2435    .save_live_iterate = htab_save_iterate,
2436    .save_live_complete_precopy = htab_save_complete,
2437    .save_cleanup = htab_save_cleanup,
2438    .load_state = htab_load,
2439};
2440
2441static void spapr_boot_set(void *opaque, const char *boot_device,
2442                           Error **errp)
2443{
2444    SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2445
2446    g_free(spapr->boot_device);
2447    spapr->boot_device = g_strdup(boot_device);
2448}
2449
2450static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2451{
2452    MachineState *machine = MACHINE(spapr);
2453    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2454    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2455    int i;
2456
2457    for (i = 0; i < nr_lmbs; i++) {
2458        uint64_t addr;
2459
2460        addr = i * lmb_size + machine->device_memory->base;
2461        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2462                               addr / lmb_size);
2463    }
2464}
2465
2466/*
2467 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2468 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2469 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2470 */
2471static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2472{
2473    int i;
2474
2475    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2476        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2477                   " is not aligned to %" PRIu64 " MiB",
2478                   machine->ram_size,
2479                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2480        return;
2481    }
2482
2483    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2484        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2485                   " is not aligned to %" PRIu64 " MiB",
2486                   machine->ram_size,
2487                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2488        return;
2489    }
2490
2491    for (i = 0; i < machine->numa_state->num_nodes; i++) {
2492        if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2493            error_setg(errp,
2494                       "Node %d memory size 0x%" PRIx64
2495                       " is not aligned to %" PRIu64 " MiB",
2496                       i, machine->numa_state->nodes[i].node_mem,
2497                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2498            return;
2499        }
2500    }
2501}
2502
2503/* find cpu slot in machine->possible_cpus by core_id */
2504static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2505{
2506    int index = id / ms->smp.threads;
2507
2508    if (index >= ms->possible_cpus->len) {
2509        return NULL;
2510    }
2511    if (idx) {
2512        *idx = index;
2513    }
2514    return &ms->possible_cpus->cpus[index];
2515}
2516
2517static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2518{
2519    MachineState *ms = MACHINE(spapr);
2520    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2521    Error *local_err = NULL;
2522    bool vsmt_user = !!spapr->vsmt;
2523    int kvm_smt = kvmppc_smt_threads();
2524    int ret;
2525    unsigned int smp_threads = ms->smp.threads;
2526
2527    if (!kvm_enabled() && (smp_threads > 1)) {
2528        error_setg(errp, "TCG cannot support more than 1 thread/core "
2529                   "on a pseries machine");
2530        return;
2531    }
2532    if (!is_power_of_2(smp_threads)) {
2533        error_setg(errp, "Cannot support %d threads/core on a pseries "
2534                   "machine because it must be a power of 2", smp_threads);
2535        return;
2536    }
2537
2538    /* Detemine the VSMT mode to use: */
2539    if (vsmt_user) {
2540        if (spapr->vsmt < smp_threads) {
2541            error_setg(errp, "Cannot support VSMT mode %d"
2542                       " because it must be >= threads/core (%d)",
2543                       spapr->vsmt, smp_threads);
2544            return;
2545        }
2546        /* In this case, spapr->vsmt has been set by the command line */
2547    } else if (!smc->smp_threads_vsmt) {
2548        /*
2549         * Default VSMT value is tricky, because we need it to be as
2550         * consistent as possible (for migration), but this requires
2551         * changing it for at least some existing cases.  We pick 8 as
2552         * the value that we'd get with KVM on POWER8, the
2553         * overwhelmingly common case in production systems.
2554         */
2555        spapr->vsmt = MAX(8, smp_threads);
2556    } else {
2557        spapr->vsmt = smp_threads;
2558    }
2559
2560    /* KVM: If necessary, set the SMT mode: */
2561    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2562        ret = kvmppc_set_smt_threads(spapr->vsmt);
2563        if (ret) {
2564            /* Looks like KVM isn't able to change VSMT mode */
2565            error_setg(&local_err,
2566                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2567                       spapr->vsmt, ret);
2568            /* We can live with that if the default one is big enough
2569             * for the number of threads, and a submultiple of the one
2570             * we want.  In this case we'll waste some vcpu ids, but
2571             * behaviour will be correct */
2572            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2573                warn_report_err(local_err);
2574            } else {
2575                if (!vsmt_user) {
2576                    error_append_hint(&local_err,
2577                                      "On PPC, a VM with %d threads/core"
2578                                      " on a host with %d threads/core"
2579                                      " requires the use of VSMT mode %d.\n",
2580                                      smp_threads, kvm_smt, spapr->vsmt);
2581                }
2582                kvmppc_error_append_smt_possible_hint(&local_err);
2583                error_propagate(errp, local_err);
2584            }
2585        }
2586    }
2587    /* else TCG: nothing to do currently */
2588}
2589
2590static void spapr_init_cpus(SpaprMachineState *spapr)
2591{
2592    MachineState *machine = MACHINE(spapr);
2593    MachineClass *mc = MACHINE_GET_CLASS(machine);
2594    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2595    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2596    const CPUArchIdList *possible_cpus;
2597    unsigned int smp_cpus = machine->smp.cpus;
2598    unsigned int smp_threads = machine->smp.threads;
2599    unsigned int max_cpus = machine->smp.max_cpus;
2600    int boot_cores_nr = smp_cpus / smp_threads;
2601    int i;
2602
2603    possible_cpus = mc->possible_cpu_arch_ids(machine);
2604    if (mc->has_hotpluggable_cpus) {
2605        if (smp_cpus % smp_threads) {
2606            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2607                         smp_cpus, smp_threads);
2608            exit(1);
2609        }
2610        if (max_cpus % smp_threads) {
2611            error_report("max_cpus (%u) must be multiple of threads (%u)",
2612                         max_cpus, smp_threads);
2613            exit(1);
2614        }
2615    } else {
2616        if (max_cpus != smp_cpus) {
2617            error_report("This machine version does not support CPU hotplug");
2618            exit(1);
2619        }
2620        boot_cores_nr = possible_cpus->len;
2621    }
2622
2623    if (smc->pre_2_10_has_unused_icps) {
2624        int i;
2625
2626        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2627            /* Dummy entries get deregistered when real ICPState objects
2628             * are registered during CPU core hotplug.
2629             */
2630            pre_2_10_vmstate_register_dummy_icp(i);
2631        }
2632    }
2633
2634    for (i = 0; i < possible_cpus->len; i++) {
2635        int core_id = i * smp_threads;
2636
2637        if (mc->has_hotpluggable_cpus) {
2638            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2639                                   spapr_vcpu_id(spapr, core_id));
2640        }
2641
2642        if (i < boot_cores_nr) {
2643            Object *core  = object_new(type);
2644            int nr_threads = smp_threads;
2645
2646            /* Handle the partially filled core for older machine types */
2647            if ((i + 1) * smp_threads >= smp_cpus) {
2648                nr_threads = smp_cpus - i * smp_threads;
2649            }
2650
2651            object_property_set_int(core, "nr-threads", nr_threads,
2652                                    &error_fatal);
2653            object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2654                                    &error_fatal);
2655            qdev_realize(DEVICE(core), NULL, &error_fatal);
2656
2657            object_unref(core);
2658        }
2659    }
2660}
2661
2662static PCIHostState *spapr_create_default_phb(void)
2663{
2664    DeviceState *dev;
2665
2666    dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2667    qdev_prop_set_uint32(dev, "index", 0);
2668    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2669
2670    return PCI_HOST_BRIDGE(dev);
2671}
2672
2673static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2674{
2675    MachineState *machine = MACHINE(spapr);
2676    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2677    hwaddr rma_size = machine->ram_size;
2678    hwaddr node0_size = spapr_node0_size(machine);
2679
2680    /* RMA has to fit in the first NUMA node */
2681    rma_size = MIN(rma_size, node0_size);
2682
2683    /*
2684     * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2685     * never exceed that
2686     */
2687    rma_size = MIN(rma_size, 1 * TiB);
2688
2689    /*
2690     * Clamp the RMA size based on machine type.  This is for
2691     * migration compatibility with older qemu versions, which limited
2692     * the RMA size for complicated and mostly bad reasons.
2693     */
2694    if (smc->rma_limit) {
2695        rma_size = MIN(rma_size, smc->rma_limit);
2696    }
2697
2698    if (rma_size < MIN_RMA_SLOF) {
2699        error_setg(errp,
2700                   "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2701                   "ldMiB guest RMA (Real Mode Area memory)",
2702                   MIN_RMA_SLOF / MiB);
2703        return 0;
2704    }
2705
2706    return rma_size;
2707}
2708
2709static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2710{
2711    MachineState *machine = MACHINE(spapr);
2712    int i;
2713
2714    for (i = 0; i < machine->ram_slots; i++) {
2715        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2716    }
2717}
2718
2719/* pSeries LPAR / sPAPR hardware init */
2720static void spapr_machine_init(MachineState *machine)
2721{
2722    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2723    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2724    MachineClass *mc = MACHINE_GET_CLASS(machine);
2725    const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2726    const char *bios_name = machine->firmware ?: bios_default;
2727    g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2728    const char *kernel_filename = machine->kernel_filename;
2729    const char *initrd_filename = machine->initrd_filename;
2730    PCIHostState *phb;
2731    bool has_vga;
2732    int i;
2733    MemoryRegion *sysmem = get_system_memory();
2734    long load_limit, fw_size;
2735    Error *resize_hpt_err = NULL;
2736
2737    if (!filename) {
2738        error_report("Could not find LPAR firmware '%s'", bios_name);
2739        exit(1);
2740    }
2741    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2742    if (fw_size <= 0) {
2743        error_report("Could not load LPAR firmware '%s'", filename);
2744        exit(1);
2745    }
2746
2747    /*
2748     * if Secure VM (PEF) support is configured, then initialize it
2749     */
2750    pef_kvm_init(machine->cgs, &error_fatal);
2751
2752    msi_nonbroken = true;
2753
2754    QLIST_INIT(&spapr->phbs);
2755    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2756
2757    /* Determine capabilities to run with */
2758    spapr_caps_init(spapr);
2759
2760    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2761    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2762        /*
2763         * If the user explicitly requested a mode we should either
2764         * supply it, or fail completely (which we do below).  But if
2765         * it's not set explicitly, we reset our mode to something
2766         * that works
2767         */
2768        if (resize_hpt_err) {
2769            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2770            error_free(resize_hpt_err);
2771            resize_hpt_err = NULL;
2772        } else {
2773            spapr->resize_hpt = smc->resize_hpt_default;
2774        }
2775    }
2776
2777    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2778
2779    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2780        /*
2781         * User requested HPT resize, but this host can't supply it.  Bail out
2782         */
2783        error_report_err(resize_hpt_err);
2784        exit(1);
2785    }
2786    error_free(resize_hpt_err);
2787
2788    spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2789
2790    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2791    load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2792
2793    /*
2794     * VSMT must be set in order to be able to compute VCPU ids, ie to
2795     * call spapr_max_server_number() or spapr_vcpu_id().
2796     */
2797    spapr_set_vsmt_mode(spapr, &error_fatal);
2798
2799    /* Set up Interrupt Controller before we create the VCPUs */
2800    spapr_irq_init(spapr, &error_fatal);
2801
2802    /* Set up containers for ibm,client-architecture-support negotiated options
2803     */
2804    spapr->ov5 = spapr_ovec_new();
2805    spapr->ov5_cas = spapr_ovec_new();
2806
2807    if (smc->dr_lmb_enabled) {
2808        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2809        spapr_validate_node_memory(machine, &error_fatal);
2810    }
2811
2812    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2813
2814    /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2815    if (!smc->pre_6_2_numa_affinity) {
2816        spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2817    }
2818
2819    /* advertise support for dedicated HP event source to guests */
2820    if (spapr->use_hotplug_event_source) {
2821        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2822    }
2823
2824    /* advertise support for HPT resizing */
2825    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2826        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2827    }
2828
2829    /* advertise support for ibm,dyamic-memory-v2 */
2830    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2831
2832    /* advertise XIVE on POWER9 machines */
2833    if (spapr->irq->xive) {
2834        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2835    }
2836
2837    /* init CPUs */
2838    spapr_init_cpus(spapr);
2839
2840    spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2841
2842    /* Init numa_assoc_array */
2843    spapr_numa_associativity_init(spapr, machine);
2844
2845    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2846        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2847                              spapr->max_compat_pvr)) {
2848        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2849        /* KVM and TCG always allow GTSE with radix... */
2850        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2851    }
2852    /* ... but not with hash (currently). */
2853
2854    if (kvm_enabled()) {
2855        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2856        kvmppc_enable_logical_ci_hcalls();
2857        kvmppc_enable_set_mode_hcall();
2858
2859        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2860        kvmppc_enable_clear_ref_mod_hcalls();
2861
2862        /* Enable H_PAGE_INIT */
2863        kvmppc_enable_h_page_init();
2864    }
2865
2866    /* map RAM */
2867    memory_region_add_subregion(sysmem, 0, machine->ram);
2868
2869    /* always allocate the device memory information */
2870    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2871
2872    /* initialize hotplug memory address space */
2873    if (machine->ram_size < machine->maxram_size) {
2874        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2875        /*
2876         * Limit the number of hotpluggable memory slots to half the number
2877         * slots that KVM supports, leaving the other half for PCI and other
2878         * devices. However ensure that number of slots doesn't drop below 32.
2879         */
2880        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2881                           SPAPR_MAX_RAM_SLOTS;
2882
2883        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2884            max_memslots = SPAPR_MAX_RAM_SLOTS;
2885        }
2886        if (machine->ram_slots > max_memslots) {
2887            error_report("Specified number of memory slots %"
2888                         PRIu64" exceeds max supported %d",
2889                         machine->ram_slots, max_memslots);
2890            exit(1);
2891        }
2892
2893        machine->device_memory->base = ROUND_UP(machine->ram_size,
2894                                                SPAPR_DEVICE_MEM_ALIGN);
2895        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2896                           "device-memory", device_mem_size);
2897        memory_region_add_subregion(sysmem, machine->device_memory->base,
2898                                    &machine->device_memory->mr);
2899    }
2900
2901    if (smc->dr_lmb_enabled) {
2902        spapr_create_lmb_dr_connectors(spapr);
2903    }
2904
2905    if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2906        /* Create the error string for live migration blocker */
2907        error_setg(&spapr->fwnmi_migration_blocker,
2908            "A machine check is being handled during migration. The handler"
2909            "may run and log hardware error on the destination");
2910    }
2911
2912    if (mc->nvdimm_supported) {
2913        spapr_create_nvdimm_dr_connectors(spapr);
2914    }
2915
2916    /* Set up RTAS event infrastructure */
2917    spapr_events_init(spapr);
2918
2919    /* Set up the RTC RTAS interfaces */
2920    spapr_rtc_create(spapr);
2921
2922    /* Set up VIO bus */
2923    spapr->vio_bus = spapr_vio_bus_init();
2924
2925    for (i = 0; serial_hd(i); i++) {
2926        spapr_vty_create(spapr->vio_bus, serial_hd(i));
2927    }
2928
2929    /* We always have at least the nvram device on VIO */
2930    spapr_create_nvram(spapr);
2931
2932    /*
2933     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2934     * connectors (described in root DT node's "ibm,drc-types" property)
2935     * are pre-initialized here. additional child connectors (such as
2936     * connectors for a PHBs PCI slots) are added as needed during their
2937     * parent's realization.
2938     */
2939    if (smc->dr_phb_enabled) {
2940        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2941            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2942        }
2943    }
2944
2945    /* Set up PCI */
2946    spapr_pci_rtas_init();
2947
2948    phb = spapr_create_default_phb();
2949
2950    for (i = 0; i < nb_nics; i++) {
2951        NICInfo *nd = &nd_table[i];
2952
2953        if (!nd->model) {
2954            nd->model = g_strdup("spapr-vlan");
2955        }
2956
2957        if (g_str_equal(nd->model, "spapr-vlan") ||
2958            g_str_equal(nd->model, "ibmveth")) {
2959            spapr_vlan_create(spapr->vio_bus, nd);
2960        } else {
2961            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2962        }
2963    }
2964
2965    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2966        spapr_vscsi_create(spapr->vio_bus);
2967    }
2968
2969    /* Graphics */
2970    has_vga = spapr_vga_init(phb->bus, &error_fatal);
2971    if (has_vga) {
2972        spapr->want_stdout_path = !machine->enable_graphics;
2973        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2974    } else {
2975        spapr->want_stdout_path = true;
2976    }
2977
2978    if (machine->usb) {
2979        if (smc->use_ohci_by_default) {
2980            pci_create_simple(phb->bus, -1, "pci-ohci");
2981        } else {
2982            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2983        }
2984
2985        if (has_vga) {
2986            USBBus *usb_bus = usb_bus_find(-1);
2987
2988            usb_create_simple(usb_bus, "usb-kbd");
2989            usb_create_simple(usb_bus, "usb-mouse");
2990        }
2991    }
2992
2993    if (kernel_filename) {
2994        uint64_t loaded_addr = 0;
2995
2996        spapr->kernel_size = load_elf(kernel_filename, NULL,
2997                                      translate_kernel_address, spapr,
2998                                      NULL, &loaded_addr, NULL, NULL, 1,
2999                                      PPC_ELF_MACHINE, 0, 0);
3000        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3001            spapr->kernel_size = load_elf(kernel_filename, NULL,
3002                                          translate_kernel_address, spapr,
3003                                          NULL, &loaded_addr, NULL, NULL, 0,
3004                                          PPC_ELF_MACHINE, 0, 0);
3005            spapr->kernel_le = spapr->kernel_size > 0;
3006        }
3007        if (spapr->kernel_size < 0) {
3008            error_report("error loading %s: %s", kernel_filename,
3009                         load_elf_strerror(spapr->kernel_size));
3010            exit(1);
3011        }
3012
3013        if (spapr->kernel_addr != loaded_addr) {
3014            warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3015                        " to 0x%"PRIx64,
3016                        spapr->kernel_addr, loaded_addr);
3017            spapr->kernel_addr = loaded_addr;
3018        }
3019
3020        /* load initrd */
3021        if (initrd_filename) {
3022            /* Try to locate the initrd in the gap between the kernel
3023             * and the firmware. Add a bit of space just in case
3024             */
3025            spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3026                                  + 0x1ffff) & ~0xffff;
3027            spapr->initrd_size = load_image_targphys(initrd_filename,
3028                                                     spapr->initrd_base,
3029                                                     load_limit
3030                                                     - spapr->initrd_base);
3031            if (spapr->initrd_size < 0) {
3032                error_report("could not load initial ram disk '%s'",
3033                             initrd_filename);
3034                exit(1);
3035            }
3036        }
3037    }
3038
3039    /* FIXME: Should register things through the MachineState's qdev
3040     * interface, this is a legacy from the sPAPREnvironment structure
3041     * which predated MachineState but had a similar function */
3042    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3043    register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3044                         &savevm_htab_handlers, spapr);
3045
3046    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3047
3048    qemu_register_boot_set(spapr_boot_set, spapr);
3049
3050    /*
3051     * Nothing needs to be done to resume a suspended guest because
3052     * suspending does not change the machine state, so no need for
3053     * a ->wakeup method.
3054     */
3055    qemu_register_wakeup_support();
3056
3057    if (kvm_enabled()) {
3058        /* to stop and start vmclock */
3059        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3060                                         &spapr->tb);
3061
3062        kvmppc_spapr_enable_inkernel_multitce();
3063    }
3064
3065    qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3066    if (spapr->vof) {
3067        spapr->vof->fw_size = fw_size; /* for claim() on itself */
3068        spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3069    }
3070
3071    spapr_watchdog_init(spapr);
3072}
3073
3074#define DEFAULT_KVM_TYPE "auto"
3075static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3076{
3077    /*
3078     * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3079     * accomodate the 'HV' and 'PV' formats that exists in the
3080     * wild. The 'auto' mode is being introduced already as
3081     * lower-case, thus we don't need to bother checking for
3082     * "AUTO".
3083     */
3084    if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3085        return 0;
3086    }
3087
3088    if (!g_ascii_strcasecmp(vm_type, "hv")) {
3089        return 1;
3090    }
3091
3092    if (!g_ascii_strcasecmp(vm_type, "pr")) {
3093        return 2;
3094    }
3095
3096    error_report("Unknown kvm-type specified '%s'", vm_type);
3097    exit(1);
3098}
3099
3100/*
3101 * Implementation of an interface to adjust firmware path
3102 * for the bootindex property handling.
3103 */
3104static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3105                                   DeviceState *dev)
3106{
3107#define CAST(type, obj, name) \
3108    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3109    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3110    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3111    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3112    PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3113
3114    if (d && bus) {
3115        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3116        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3117        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3118
3119        if (spapr) {
3120            /*
3121             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3122             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3123             * 0x8000 | (target << 8) | (bus << 5) | lun
3124             * (see the "Logical unit addressing format" table in SAM5)
3125             */
3126            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3127            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3128                                   (uint64_t)id << 48);
3129        } else if (virtio) {
3130            /*
3131             * We use SRP luns of the form 01000000 | (target << 8) | lun
3132             * in the top 32 bits of the 64-bit LUN
3133             * Note: the quote above is from SLOF and it is wrong,
3134             * the actual binding is:
3135             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3136             */
3137            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3138            if (d->lun >= 256) {
3139                /* Use the LUN "flat space addressing method" */
3140                id |= 0x4000;
3141            }
3142            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3143                                   (uint64_t)id << 32);
3144        } else if (usb) {
3145            /*
3146             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3147             * in the top 32 bits of the 64-bit LUN
3148             */
3149            unsigned usb_port = atoi(usb->port->path);
3150            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3151            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3152                                   (uint64_t)id << 32);
3153        }
3154    }
3155
3156    /*
3157     * SLOF probes the USB devices, and if it recognizes that the device is a
3158     * storage device, it changes its name to "storage" instead of "usb-host",
3159     * and additionally adds a child node for the SCSI LUN, so the correct
3160     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3161     */
3162    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3163        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3164        if (usb_device_is_scsi_storage(usbdev)) {
3165            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3166        }
3167    }
3168
3169    if (phb) {
3170        /* Replace "pci" with "pci@800000020000000" */
3171        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3172    }
3173
3174    if (vsc) {
3175        /* Same logic as virtio above */
3176        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3177        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3178    }
3179
3180    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3181        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3182        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3183        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3184    }
3185
3186    if (pcidev) {
3187        return spapr_pci_fw_dev_name(pcidev);
3188    }
3189
3190    return NULL;
3191}
3192
3193static char *spapr_get_kvm_type(Object *obj, Error **errp)
3194{
3195    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3196
3197    return g_strdup(spapr->kvm_type);
3198}
3199
3200static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3201{
3202    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3203
3204    g_free(spapr->kvm_type);
3205    spapr->kvm_type = g_strdup(value);
3206}
3207
3208static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3209{
3210    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211
3212    return spapr->use_hotplug_event_source;
3213}
3214
3215static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3216                                            Error **errp)
3217{
3218    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219
3220    spapr->use_hotplug_event_source = value;
3221}
3222
3223static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3224{
3225    return true;
3226}
3227
3228static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3229{
3230    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231
3232    switch (spapr->resize_hpt) {
3233    case SPAPR_RESIZE_HPT_DEFAULT:
3234        return g_strdup("default");
3235    case SPAPR_RESIZE_HPT_DISABLED:
3236        return g_strdup("disabled");
3237    case SPAPR_RESIZE_HPT_ENABLED:
3238        return g_strdup("enabled");
3239    case SPAPR_RESIZE_HPT_REQUIRED:
3240        return g_strdup("required");
3241    }
3242    g_assert_not_reached();
3243}
3244
3245static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3246{
3247    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248
3249    if (strcmp(value, "default") == 0) {
3250        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3251    } else if (strcmp(value, "disabled") == 0) {
3252        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3253    } else if (strcmp(value, "enabled") == 0) {
3254        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3255    } else if (strcmp(value, "required") == 0) {
3256        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3257    } else {
3258        error_setg(errp, "Bad value for \"resize-hpt\" property");
3259    }
3260}
3261
3262static bool spapr_get_vof(Object *obj, Error **errp)
3263{
3264    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265
3266    return spapr->vof != NULL;
3267}
3268
3269static void spapr_set_vof(Object *obj, bool value, Error **errp)
3270{
3271    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272
3273    if (spapr->vof) {
3274        vof_cleanup(spapr->vof);
3275        g_free(spapr->vof);
3276        spapr->vof = NULL;
3277    }
3278    if (!value) {
3279        return;
3280    }
3281    spapr->vof = g_malloc0(sizeof(*spapr->vof));
3282}
3283
3284static char *spapr_get_ic_mode(Object *obj, Error **errp)
3285{
3286    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3287
3288    if (spapr->irq == &spapr_irq_xics_legacy) {
3289        return g_strdup("legacy");
3290    } else if (spapr->irq == &spapr_irq_xics) {
3291        return g_strdup("xics");
3292    } else if (spapr->irq == &spapr_irq_xive) {
3293        return g_strdup("xive");
3294    } else if (spapr->irq == &spapr_irq_dual) {
3295        return g_strdup("dual");
3296    }
3297    g_assert_not_reached();
3298}
3299
3300static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3301{
3302    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3303
3304    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3305        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3306        return;
3307    }
3308
3309    /* The legacy IRQ backend can not be set */
3310    if (strcmp(value, "xics") == 0) {
3311        spapr->irq = &spapr_irq_xics;
3312    } else if (strcmp(value, "xive") == 0) {
3313        spapr->irq = &spapr_irq_xive;
3314    } else if (strcmp(value, "dual") == 0) {
3315        spapr->irq = &spapr_irq_dual;
3316    } else {
3317        error_setg(errp, "Bad value for \"ic-mode\" property");
3318    }
3319}
3320
3321static char *spapr_get_host_model(Object *obj, Error **errp)
3322{
3323    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3324
3325    return g_strdup(spapr->host_model);
3326}
3327
3328static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3329{
3330    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331
3332    g_free(spapr->host_model);
3333    spapr->host_model = g_strdup(value);
3334}
3335
3336static char *spapr_get_host_serial(Object *obj, Error **errp)
3337{
3338    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3339
3340    return g_strdup(spapr->host_serial);
3341}
3342
3343static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3344{
3345    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346
3347    g_free(spapr->host_serial);
3348    spapr->host_serial = g_strdup(value);
3349}
3350
3351static void spapr_instance_init(Object *obj)
3352{
3353    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3354    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3355    MachineState *ms = MACHINE(spapr);
3356    MachineClass *mc = MACHINE_GET_CLASS(ms);
3357
3358    /*
3359     * NVDIMM support went live in 5.1 without considering that, in
3360     * other archs, the user needs to enable NVDIMM support with the
3361     * 'nvdimm' machine option and the default behavior is NVDIMM
3362     * support disabled. It is too late to roll back to the standard
3363     * behavior without breaking 5.1 guests.
3364     */
3365    if (mc->nvdimm_supported) {
3366        ms->nvdimms_state->is_enabled = true;
3367    }
3368
3369    spapr->htab_fd = -1;
3370    spapr->use_hotplug_event_source = true;
3371    spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3372    object_property_add_str(obj, "kvm-type",
3373                            spapr_get_kvm_type, spapr_set_kvm_type);
3374    object_property_set_description(obj, "kvm-type",
3375                                    "Specifies the KVM virtualization mode (auto,"
3376                                    " hv, pr). Defaults to 'auto'. This mode will use"
3377                                    " any available KVM module loaded in the host,"
3378                                    " where kvm_hv takes precedence if both kvm_hv and"
3379                                    " kvm_pr are loaded.");
3380    object_property_add_bool(obj, "modern-hotplug-events",
3381                            spapr_get_modern_hotplug_events,
3382                            spapr_set_modern_hotplug_events);
3383    object_property_set_description(obj, "modern-hotplug-events",
3384                                    "Use dedicated hotplug event mechanism in"
3385                                    " place of standard EPOW events when possible"
3386                                    " (required for memory hot-unplug support)");
3387    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3388                            "Maximum permitted CPU compatibility mode");
3389
3390    object_property_add_str(obj, "resize-hpt",
3391                            spapr_get_resize_hpt, spapr_set_resize_hpt);
3392    object_property_set_description(obj, "resize-hpt",
3393                                    "Resizing of the Hash Page Table (enabled, disabled, required)");
3394    object_property_add_uint32_ptr(obj, "vsmt",
3395                                   &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3396    object_property_set_description(obj, "vsmt",
3397                                    "Virtual SMT: KVM behaves as if this were"
3398                                    " the host's SMT mode");
3399
3400    object_property_add_bool(obj, "vfio-no-msix-emulation",
3401                             spapr_get_msix_emulation, NULL);
3402
3403    object_property_add_uint64_ptr(obj, "kernel-addr",
3404                                   &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3405    object_property_set_description(obj, "kernel-addr",
3406                                    stringify(KERNEL_LOAD_ADDR)
3407                                    " for -kernel is the default");
3408    spapr->kernel_addr = KERNEL_LOAD_ADDR;
3409
3410    object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3411    object_property_set_description(obj, "x-vof",
3412                                    "Enable Virtual Open Firmware (experimental)");
3413
3414    /* The machine class defines the default interrupt controller mode */
3415    spapr->irq = smc->irq;
3416    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3417                            spapr_set_ic_mode);
3418    object_property_set_description(obj, "ic-mode",
3419                 "Specifies the interrupt controller mode (xics, xive, dual)");
3420
3421    object_property_add_str(obj, "host-model",
3422        spapr_get_host_model, spapr_set_host_model);
3423    object_property_set_description(obj, "host-model",
3424        "Host model to advertise in guest device tree");
3425    object_property_add_str(obj, "host-serial",
3426        spapr_get_host_serial, spapr_set_host_serial);
3427    object_property_set_description(obj, "host-serial",
3428        "Host serial number to advertise in guest device tree");
3429}
3430
3431static void spapr_machine_finalizefn(Object *obj)
3432{
3433    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3434
3435    g_free(spapr->kvm_type);
3436}
3437
3438void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3439{
3440    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3441    PowerPCCPU *cpu = POWERPC_CPU(cs);
3442    CPUPPCState *env = &cpu->env;
3443
3444    cpu_synchronize_state(cs);
3445    /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3446    if (spapr->fwnmi_system_reset_addr != -1) {
3447        uint64_t rtas_addr, addr;
3448
3449        /* get rtas addr from fdt */
3450        rtas_addr = spapr_get_rtas_addr();
3451        if (!rtas_addr) {
3452            qemu_system_guest_panicked(NULL);
3453            return;
3454        }
3455
3456        addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3457        stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3458        stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3459        env->gpr[3] = addr;
3460    }
3461    ppc_cpu_do_system_reset(cs);
3462    if (spapr->fwnmi_system_reset_addr != -1) {
3463        env->nip = spapr->fwnmi_system_reset_addr;
3464    }
3465}
3466
3467static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3468{
3469    CPUState *cs;
3470
3471    CPU_FOREACH(cs) {
3472        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3473    }
3474}
3475
3476int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3477                          void *fdt, int *fdt_start_offset, Error **errp)
3478{
3479    uint64_t addr;
3480    uint32_t node;
3481
3482    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3483    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3484                                    &error_abort);
3485    *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3486                                             SPAPR_MEMORY_BLOCK_SIZE);
3487    return 0;
3488}
3489
3490static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3491                           bool dedicated_hp_event_source)
3492{
3493    SpaprDrc *drc;
3494    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3495    int i;
3496    uint64_t addr = addr_start;
3497    bool hotplugged = spapr_drc_hotplugged(dev);
3498
3499    for (i = 0; i < nr_lmbs; i++) {
3500        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3501                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3502        g_assert(drc);
3503
3504        /*
3505         * memory_device_get_free_addr() provided a range of free addresses
3506         * that doesn't overlap with any existing mapping at pre-plug. The
3507         * corresponding LMB DRCs are thus assumed to be all attachable.
3508         */
3509        spapr_drc_attach(drc, dev);
3510        if (!hotplugged) {
3511            spapr_drc_reset(drc);
3512        }
3513        addr += SPAPR_MEMORY_BLOCK_SIZE;
3514    }
3515    /* send hotplug notification to the
3516     * guest only in case of hotplugged memory
3517     */
3518    if (hotplugged) {
3519        if (dedicated_hp_event_source) {
3520            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3521                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3522            g_assert(drc);
3523            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3524                                                   nr_lmbs,
3525                                                   spapr_drc_index(drc));
3526        } else {
3527            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3528                                           nr_lmbs);
3529        }
3530    }
3531}
3532
3533static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3534{
3535    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3536    PCDIMMDevice *dimm = PC_DIMM(dev);
3537    uint64_t size, addr;
3538    int64_t slot;
3539    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3540
3541    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3542
3543    pc_dimm_plug(dimm, MACHINE(ms));
3544
3545    if (!is_nvdimm) {
3546        addr = object_property_get_uint(OBJECT(dimm),
3547                                        PC_DIMM_ADDR_PROP, &error_abort);
3548        spapr_add_lmbs(dev, addr, size,
3549                       spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3550    } else {
3551        slot = object_property_get_int(OBJECT(dimm),
3552                                       PC_DIMM_SLOT_PROP, &error_abort);
3553        /* We should have valid slot number at this point */
3554        g_assert(slot >= 0);
3555        spapr_add_nvdimm(dev, slot);
3556    }
3557}
3558
3559static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3560                                  Error **errp)
3561{
3562    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3563    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3564    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3565    PCDIMMDevice *dimm = PC_DIMM(dev);
3566    Error *local_err = NULL;
3567    uint64_t size;
3568    Object *memdev;
3569    hwaddr pagesize;
3570
3571    if (!smc->dr_lmb_enabled) {
3572        error_setg(errp, "Memory hotplug not supported for this machine");
3573        return;
3574    }
3575
3576    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3577    if (local_err) {
3578        error_propagate(errp, local_err);
3579        return;
3580    }
3581
3582    if (is_nvdimm) {
3583        if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3584            return;
3585        }
3586    } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3587        error_setg(errp, "Hotplugged memory size must be a multiple of "
3588                   "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3589        return;
3590    }
3591
3592    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3593                                      &error_abort);
3594    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3595    if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3596        return;
3597    }
3598
3599    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3600}
3601
3602struct SpaprDimmState {
3603    PCDIMMDevice *dimm;
3604    uint32_t nr_lmbs;
3605    QTAILQ_ENTRY(SpaprDimmState) next;
3606};
3607
3608static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3609                                                       PCDIMMDevice *dimm)
3610{
3611    SpaprDimmState *dimm_state = NULL;
3612
3613    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3614        if (dimm_state->dimm == dimm) {
3615            break;
3616        }
3617    }
3618    return dimm_state;
3619}
3620
3621static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3622                                                      uint32_t nr_lmbs,
3623                                                      PCDIMMDevice *dimm)
3624{
3625    SpaprDimmState *ds = NULL;
3626
3627    /*
3628     * If this request is for a DIMM whose removal had failed earlier
3629     * (due to guest's refusal to remove the LMBs), we would have this
3630     * dimm already in the pending_dimm_unplugs list. In that
3631     * case don't add again.
3632     */
3633    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3634    if (!ds) {
3635        ds = g_new0(SpaprDimmState, 1);
3636        ds->nr_lmbs = nr_lmbs;
3637        ds->dimm = dimm;
3638        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3639    }
3640    return ds;
3641}
3642
3643static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3644                                              SpaprDimmState *dimm_state)
3645{
3646    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3647    g_free(dimm_state);
3648}
3649
3650static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3651                                                        PCDIMMDevice *dimm)
3652{
3653    SpaprDrc *drc;
3654    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3655                                                  &error_abort);
3656    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3657    uint32_t avail_lmbs = 0;
3658    uint64_t addr_start, addr;
3659    int i;
3660
3661    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3662                                          &error_abort);
3663
3664    addr = addr_start;
3665    for (i = 0; i < nr_lmbs; i++) {
3666        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3667                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3668        g_assert(drc);
3669        if (drc->dev) {
3670            avail_lmbs++;
3671        }
3672        addr += SPAPR_MEMORY_BLOCK_SIZE;
3673    }
3674
3675    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3676}
3677
3678void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3679{
3680    SpaprDimmState *ds;
3681    PCDIMMDevice *dimm;
3682    SpaprDrc *drc;
3683    uint32_t nr_lmbs;
3684    uint64_t size, addr_start, addr;
3685    g_autofree char *qapi_error = NULL;
3686    int i;
3687
3688    if (!dev) {
3689        return;
3690    }
3691
3692    dimm = PC_DIMM(dev);
3693    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3694
3695    /*
3696     * 'ds == NULL' would mean that the DIMM doesn't have a pending
3697     * unplug state, but one of its DRC is marked as unplug_requested.
3698     * This is bad and weird enough to g_assert() out.
3699     */
3700    g_assert(ds);
3701
3702    spapr_pending_dimm_unplugs_remove(spapr, ds);
3703
3704    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3705    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3706
3707    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3708                                          &error_abort);
3709
3710    addr = addr_start;
3711    for (i = 0; i < nr_lmbs; i++) {
3712        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3713                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3714        g_assert(drc);
3715
3716        drc->unplug_requested = false;
3717        addr += SPAPR_MEMORY_BLOCK_SIZE;
3718    }
3719
3720    /*
3721     * Tell QAPI that something happened and the memory
3722     * hotunplug wasn't successful. Keep sending
3723     * MEM_UNPLUG_ERROR even while sending
3724     * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3725     * MEM_UNPLUG_ERROR is due.
3726     */
3727    qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3728                                 "for device %s", dev->id);
3729
3730    qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3731
3732    qapi_event_send_device_unplug_guest_error(dev->id,
3733                                              dev->canonical_path);
3734}
3735
3736/* Callback to be called during DRC release. */
3737void spapr_lmb_release(DeviceState *dev)
3738{
3739    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3740    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3741    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3742
3743    /* This information will get lost if a migration occurs
3744     * during the unplug process. In this case recover it. */
3745    if (ds == NULL) {
3746        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3747        g_assert(ds);
3748        /* The DRC being examined by the caller at least must be counted */
3749        g_assert(ds->nr_lmbs);
3750    }
3751
3752    if (--ds->nr_lmbs) {
3753        return;
3754    }
3755
3756    /*
3757     * Now that all the LMBs have been removed by the guest, call the
3758     * unplug handler chain. This can never fail.
3759     */
3760    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3761    object_unparent(OBJECT(dev));
3762}
3763
3764static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3765{
3766    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3767    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3768
3769    /* We really shouldn't get this far without anything to unplug */
3770    g_assert(ds);
3771
3772    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3773    qdev_unrealize(dev);
3774    spapr_pending_dimm_unplugs_remove(spapr, ds);
3775}
3776
3777static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3778                                        DeviceState *dev, Error **errp)
3779{
3780    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3781    PCDIMMDevice *dimm = PC_DIMM(dev);
3782    uint32_t nr_lmbs;
3783    uint64_t size, addr_start, addr;
3784    int i;
3785    SpaprDrc *drc;
3786
3787    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3788        error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3789        return;
3790    }
3791
3792    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3793    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3794
3795    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3796                                          &error_abort);
3797
3798    /*
3799     * An existing pending dimm state for this DIMM means that there is an
3800     * unplug operation in progress, waiting for the spapr_lmb_release
3801     * callback to complete the job (BQL can't cover that far). In this case,
3802     * bail out to avoid detaching DRCs that were already released.
3803     */
3804    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3805        error_setg(errp, "Memory unplug already in progress for device %s",
3806                   dev->id);
3807        return;
3808    }
3809
3810    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3811
3812    addr = addr_start;
3813    for (i = 0; i < nr_lmbs; i++) {
3814        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3815                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3816        g_assert(drc);
3817
3818        spapr_drc_unplug_request(drc);
3819        addr += SPAPR_MEMORY_BLOCK_SIZE;
3820    }
3821
3822    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3823                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3824    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3825                                              nr_lmbs, spapr_drc_index(drc));
3826}
3827
3828/* Callback to be called during DRC release. */
3829void spapr_core_release(DeviceState *dev)
3830{
3831    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3832
3833    /* Call the unplug handler chain. This can never fail. */
3834    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3835    object_unparent(OBJECT(dev));
3836}
3837
3838static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3839{
3840    MachineState *ms = MACHINE(hotplug_dev);
3841    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3842    CPUCore *cc = CPU_CORE(dev);
3843    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3844
3845    if (smc->pre_2_10_has_unused_icps) {
3846        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3847        int i;
3848
3849        for (i = 0; i < cc->nr_threads; i++) {
3850            CPUState *cs = CPU(sc->threads[i]);
3851
3852            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3853        }
3854    }
3855
3856    assert(core_slot);
3857    core_slot->cpu = NULL;
3858    qdev_unrealize(dev);
3859}
3860
3861static
3862void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3863                               Error **errp)
3864{
3865    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3866    int index;
3867    SpaprDrc *drc;
3868    CPUCore *cc = CPU_CORE(dev);
3869
3870    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3871        error_setg(errp, "Unable to find CPU core with core-id: %d",
3872                   cc->core_id);
3873        return;
3874    }
3875    if (index == 0) {
3876        error_setg(errp, "Boot CPU core may not be unplugged");
3877        return;
3878    }
3879
3880    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3881                          spapr_vcpu_id(spapr, cc->core_id));
3882    g_assert(drc);
3883
3884    if (!spapr_drc_unplug_requested(drc)) {
3885        spapr_drc_unplug_request(drc);
3886    }
3887
3888    /*
3889     * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3890     * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3891     * pulses removing the same CPU. Otherwise, in an failed hotunplug
3892     * attempt (e.g. the kernel will refuse to remove the last online
3893     * CPU), we will never attempt it again because unplug_requested
3894     * will still be 'true' in that case.
3895     */
3896    spapr_hotplug_req_remove_by_index(drc);
3897}
3898
3899int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3900                           void *fdt, int *fdt_start_offset, Error **errp)
3901{
3902    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3903    CPUState *cs = CPU(core->threads[0]);
3904    PowerPCCPU *cpu = POWERPC_CPU(cs);
3905    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3906    int id = spapr_get_vcpu_id(cpu);
3907    g_autofree char *nodename = NULL;
3908    int offset;
3909
3910    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3911    offset = fdt_add_subnode(fdt, 0, nodename);
3912
3913    spapr_dt_cpu(cs, fdt, offset, spapr);
3914
3915    /*
3916     * spapr_dt_cpu() does not fill the 'name' property in the
3917     * CPU node. The function is called during boot process, before
3918     * and after CAS, and overwriting the 'name' property written
3919     * by SLOF is not allowed.
3920     *
3921     * Write it manually after spapr_dt_cpu(). This makes the hotplug
3922     * CPUs more compatible with the coldplugged ones, which have
3923     * the 'name' property. Linux Kernel also relies on this
3924     * property to identify CPU nodes.
3925     */
3926    _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3927
3928    *fdt_start_offset = offset;
3929    return 0;
3930}
3931
3932static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3933{
3934    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3935    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3936    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3937    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3938    CPUCore *cc = CPU_CORE(dev);
3939    CPUState *cs;
3940    SpaprDrc *drc;
3941    CPUArchId *core_slot;
3942    int index;
3943    bool hotplugged = spapr_drc_hotplugged(dev);
3944    int i;
3945
3946    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3947    g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3948
3949    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3950                          spapr_vcpu_id(spapr, cc->core_id));
3951
3952    g_assert(drc || !mc->has_hotpluggable_cpus);
3953
3954    if (drc) {
3955        /*
3956         * spapr_core_pre_plug() already buys us this is a brand new
3957         * core being plugged into a free slot. Nothing should already
3958         * be attached to the corresponding DRC.
3959         */
3960        spapr_drc_attach(drc, dev);
3961
3962        if (hotplugged) {
3963            /*
3964             * Send hotplug notification interrupt to the guest only
3965             * in case of hotplugged CPUs.
3966             */
3967            spapr_hotplug_req_add_by_index(drc);
3968        } else {
3969            spapr_drc_reset(drc);
3970        }
3971    }
3972
3973    core_slot->cpu = OBJECT(dev);
3974
3975    /*
3976     * Set compatibility mode to match the boot CPU, which was either set
3977     * by the machine reset code or by CAS. This really shouldn't fail at
3978     * this point.
3979     */
3980    if (hotplugged) {
3981        for (i = 0; i < cc->nr_threads; i++) {
3982            ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3983                           &error_abort);
3984        }
3985    }
3986
3987    if (smc->pre_2_10_has_unused_icps) {
3988        for (i = 0; i < cc->nr_threads; i++) {
3989            cs = CPU(core->threads[i]);
3990            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3991        }
3992    }
3993}
3994
3995static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3996                                Error **errp)
3997{
3998    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3999    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4000    CPUCore *cc = CPU_CORE(dev);
4001    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4002    const char *type = object_get_typename(OBJECT(dev));
4003    CPUArchId *core_slot;
4004    int index;
4005    unsigned int smp_threads = machine->smp.threads;
4006
4007    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4008        error_setg(errp, "CPU hotplug not supported for this machine");
4009        return;
4010    }
4011
4012    if (strcmp(base_core_type, type)) {
4013        error_setg(errp, "CPU core type should be %s", base_core_type);
4014        return;
4015    }
4016
4017    if (cc->core_id % smp_threads) {
4018        error_setg(errp, "invalid core id %d", cc->core_id);
4019        return;
4020    }
4021
4022    /*
4023     * In general we should have homogeneous threads-per-core, but old
4024     * (pre hotplug support) machine types allow the last core to have
4025     * reduced threads as a compatibility hack for when we allowed
4026     * total vcpus not a multiple of threads-per-core.
4027     */
4028    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4029        error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4030                   smp_threads);
4031        return;
4032    }
4033
4034    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4035    if (!core_slot) {
4036        error_setg(errp, "core id %d out of range", cc->core_id);
4037        return;
4038    }
4039
4040    if (core_slot->cpu) {
4041        error_setg(errp, "core %d already populated", cc->core_id);
4042        return;
4043    }
4044
4045    numa_cpu_pre_plug(core_slot, dev, errp);
4046}
4047
4048int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4049                          void *fdt, int *fdt_start_offset, Error **errp)
4050{
4051    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4052    int intc_phandle;
4053
4054    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4055    if (intc_phandle <= 0) {
4056        return -1;
4057    }
4058
4059    if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4060        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4061        return -1;
4062    }
4063
4064    /* generally SLOF creates these, for hotplug it's up to QEMU */
4065    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4066
4067    return 0;
4068}
4069
4070static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4071                               Error **errp)
4072{
4073    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4074    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4075    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4076    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4077    SpaprDrc *drc;
4078
4079    if (dev->hotplugged && !smc->dr_phb_enabled) {
4080        error_setg(errp, "PHB hotplug not supported for this machine");
4081        return false;
4082    }
4083
4084    if (sphb->index == (uint32_t)-1) {
4085        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4086        return false;
4087    }
4088
4089    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4090    if (drc && drc->dev) {
4091        error_setg(errp, "PHB %d already attached", sphb->index);
4092        return false;
4093    }
4094
4095    /*
4096     * This will check that sphb->index doesn't exceed the maximum number of
4097     * PHBs for the current machine type.
4098     */
4099    return
4100        smc->phb_placement(spapr, sphb->index,
4101                           &sphb->buid, &sphb->io_win_addr,
4102                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
4103                           windows_supported, sphb->dma_liobn,
4104                           &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4105                           errp);
4106}
4107
4108static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4109{
4110    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4111    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4112    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4113    SpaprDrc *drc;
4114    bool hotplugged = spapr_drc_hotplugged(dev);
4115
4116    if (!smc->dr_phb_enabled) {
4117        return;
4118    }
4119
4120    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4121    /* hotplug hooks should check it's enabled before getting this far */
4122    assert(drc);
4123
4124    /* spapr_phb_pre_plug() already checked the DRC is attachable */
4125    spapr_drc_attach(drc, dev);
4126
4127    if (hotplugged) {
4128        spapr_hotplug_req_add_by_index(drc);
4129    } else {
4130        spapr_drc_reset(drc);
4131    }
4132}
4133
4134void spapr_phb_release(DeviceState *dev)
4135{
4136    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4137
4138    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4139    object_unparent(OBJECT(dev));
4140}
4141
4142static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4143{
4144    qdev_unrealize(dev);
4145}
4146
4147static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4148                                     DeviceState *dev, Error **errp)
4149{
4150    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4151    SpaprDrc *drc;
4152
4153    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4154    assert(drc);
4155
4156    if (!spapr_drc_unplug_requested(drc)) {
4157        spapr_drc_unplug_request(drc);
4158        spapr_hotplug_req_remove_by_index(drc);
4159    } else {
4160        error_setg(errp,
4161                   "PCI Host Bridge unplug already in progress for device %s",
4162                   dev->id);
4163    }
4164}
4165
4166static
4167bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4168                              Error **errp)
4169{
4170    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4171
4172    if (spapr->tpm_proxy != NULL) {
4173        error_setg(errp, "Only one TPM proxy can be specified for this machine");
4174        return false;
4175    }
4176
4177    return true;
4178}
4179
4180static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4181{
4182    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4183    SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4184
4185    /* Already checked in spapr_tpm_proxy_pre_plug() */
4186    g_assert(spapr->tpm_proxy == NULL);
4187
4188    spapr->tpm_proxy = tpm_proxy;
4189}
4190
4191static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4192{
4193    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4194
4195    qdev_unrealize(dev);
4196    object_unparent(OBJECT(dev));
4197    spapr->tpm_proxy = NULL;
4198}
4199
4200static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4201                                      DeviceState *dev, Error **errp)
4202{
4203    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4204        spapr_memory_plug(hotplug_dev, dev);
4205    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4206        spapr_core_plug(hotplug_dev, dev);
4207    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4208        spapr_phb_plug(hotplug_dev, dev);
4209    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4210        spapr_tpm_proxy_plug(hotplug_dev, dev);
4211    }
4212}
4213
4214static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4215                                        DeviceState *dev, Error **errp)
4216{
4217    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4218        spapr_memory_unplug(hotplug_dev, dev);
4219    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4220        spapr_core_unplug(hotplug_dev, dev);
4221    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4222        spapr_phb_unplug(hotplug_dev, dev);
4223    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4224        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4225    }
4226}
4227
4228bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4229{
4230    return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4231        /*
4232         * CAS will process all pending unplug requests.
4233         *
4234         * HACK: a guest could theoretically have cleared all bits in OV5,
4235         * but none of the guests we care for do.
4236         */
4237        spapr_ovec_empty(spapr->ov5_cas);
4238}
4239
4240static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4241                                                DeviceState *dev, Error **errp)
4242{
4243    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4244    MachineClass *mc = MACHINE_GET_CLASS(sms);
4245    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4246
4247    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4248        if (spapr_memory_hot_unplug_supported(sms)) {
4249            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4250        } else {
4251            error_setg(errp, "Memory hot unplug not supported for this guest");
4252        }
4253    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4254        if (!mc->has_hotpluggable_cpus) {
4255            error_setg(errp, "CPU hot unplug not supported on this machine");
4256            return;
4257        }
4258        spapr_core_unplug_request(hotplug_dev, dev, errp);
4259    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4260        if (!smc->dr_phb_enabled) {
4261            error_setg(errp, "PHB hot unplug not supported on this machine");
4262            return;
4263        }
4264        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4265    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4266        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4267    }
4268}
4269
4270static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4271                                          DeviceState *dev, Error **errp)
4272{
4273    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4274        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4275    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4276        spapr_core_pre_plug(hotplug_dev, dev, errp);
4277    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4278        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4279    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4280        spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4281    }
4282}
4283
4284static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4285                                                 DeviceState *dev)
4286{
4287    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4288        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4289        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4290        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4291        return HOTPLUG_HANDLER(machine);
4292    }
4293    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4294        PCIDevice *pcidev = PCI_DEVICE(dev);
4295        PCIBus *root = pci_device_root_bus(pcidev);
4296        SpaprPhbState *phb =
4297            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4298                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
4299
4300        if (phb) {
4301            return HOTPLUG_HANDLER(phb);
4302        }
4303    }
4304    return NULL;
4305}
4306
4307static CpuInstanceProperties
4308spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4309{
4310    CPUArchId *core_slot;
4311    MachineClass *mc = MACHINE_GET_CLASS(machine);
4312
4313    /* make sure possible_cpu are intialized */
4314    mc->possible_cpu_arch_ids(machine);
4315    /* get CPU core slot containing thread that matches cpu_index */
4316    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4317    assert(core_slot);
4318    return core_slot->props;
4319}
4320
4321static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4322{
4323    return idx / ms->smp.cores % ms->numa_state->num_nodes;
4324}
4325
4326static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4327{
4328    int i;
4329    unsigned int smp_threads = machine->smp.threads;
4330    unsigned int smp_cpus = machine->smp.cpus;
4331    const char *core_type;
4332    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4333    MachineClass *mc = MACHINE_GET_CLASS(machine);
4334
4335    if (!mc->has_hotpluggable_cpus) {
4336        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4337    }
4338    if (machine->possible_cpus) {
4339        assert(machine->possible_cpus->len == spapr_max_cores);
4340        return machine->possible_cpus;
4341    }
4342
4343    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4344    if (!core_type) {
4345        error_report("Unable to find sPAPR CPU Core definition");
4346        exit(1);
4347    }
4348
4349    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4350                             sizeof(CPUArchId) * spapr_max_cores);
4351    machine->possible_cpus->len = spapr_max_cores;
4352    for (i = 0; i < machine->possible_cpus->len; i++) {
4353        int core_id = i * smp_threads;
4354
4355        machine->possible_cpus->cpus[i].type = core_type;
4356        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4357        machine->possible_cpus->cpus[i].arch_id = core_id;
4358        machine->possible_cpus->cpus[i].props.has_core_id = true;
4359        machine->possible_cpus->cpus[i].props.core_id = core_id;
4360    }
4361    return machine->possible_cpus;
4362}
4363
4364static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4365                                uint64_t *buid, hwaddr *pio,
4366                                hwaddr *mmio32, hwaddr *mmio64,
4367                                unsigned n_dma, uint32_t *liobns,
4368                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4369{
4370    /*
4371     * New-style PHB window placement.
4372     *
4373     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4374     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4375     * windows.
4376     *
4377     * Some guest kernels can't work with MMIO windows above 1<<46
4378     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4379     *
4380     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4381     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4382     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4383     * 1TiB 64-bit MMIO windows for each PHB.
4384     */
4385    const uint64_t base_buid = 0x800000020000000ULL;
4386    int i;
4387
4388    /* Sanity check natural alignments */
4389    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4390    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4391    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4392    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4393    /* Sanity check bounds */
4394    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4395                      SPAPR_PCI_MEM32_WIN_SIZE);
4396    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4397                      SPAPR_PCI_MEM64_WIN_SIZE);
4398
4399    if (index >= SPAPR_MAX_PHBS) {
4400        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4401                   SPAPR_MAX_PHBS - 1);
4402        return false;
4403    }
4404
4405    *buid = base_buid + index;
4406    for (i = 0; i < n_dma; ++i) {
4407        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4408    }
4409
4410    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4411    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4412    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4413
4414    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4415    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4416    return true;
4417}
4418
4419static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4420{
4421    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4422
4423    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4424}
4425
4426static void spapr_ics_resend(XICSFabric *dev)
4427{
4428    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4429
4430    ics_resend(spapr->ics);
4431}
4432
4433static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4434{
4435    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4436
4437    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4438}
4439
4440static void spapr_pic_print_info(InterruptStatsProvider *obj,
4441                                 Monitor *mon)
4442{
4443    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4444
4445    spapr_irq_print_info(spapr, mon);
4446    monitor_printf(mon, "irqchip: %s\n",
4447                   kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4448}
4449
4450/*
4451 * This is a XIVE only operation
4452 */
4453static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4454                           uint8_t nvt_blk, uint32_t nvt_idx,
4455                           bool cam_ignore, uint8_t priority,
4456                           uint32_t logic_serv, XiveTCTXMatch *match)
4457{
4458    SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4459    XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4460    XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4461    int count;
4462
4463    count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4464                           priority, logic_serv, match);
4465    if (count < 0) {
4466        return count;
4467    }
4468
4469    /*
4470     * When we implement the save and restore of the thread interrupt
4471     * contexts in the enter/exit CPU handlers of the machine and the
4472     * escalations in QEMU, we should be able to handle non dispatched
4473     * vCPUs.
4474     *
4475     * Until this is done, the sPAPR machine should find at least one
4476     * matching context always.
4477     */
4478    if (count == 0) {
4479        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4480                      nvt_blk, nvt_idx);
4481    }
4482
4483    return count;
4484}
4485
4486int spapr_get_vcpu_id(PowerPCCPU *cpu)
4487{
4488    return cpu->vcpu_id;
4489}
4490
4491bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4492{
4493    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4494    MachineState *ms = MACHINE(spapr);
4495    int vcpu_id;
4496
4497    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4498
4499    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4500        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4501        error_append_hint(errp, "Adjust the number of cpus to %d "
4502                          "or try to raise the number of threads per core\n",
4503                          vcpu_id * ms->smp.threads / spapr->vsmt);
4504        return false;
4505    }
4506
4507    cpu->vcpu_id = vcpu_id;
4508    return true;
4509}
4510
4511PowerPCCPU *spapr_find_cpu(int vcpu_id)
4512{
4513    CPUState *cs;
4514
4515    CPU_FOREACH(cs) {
4516        PowerPCCPU *cpu = POWERPC_CPU(cs);
4517
4518        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4519            return cpu;
4520        }
4521    }
4522
4523    return NULL;
4524}
4525
4526static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4527{
4528    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4529
4530    return spapr_cpu->in_nested;
4531}
4532
4533static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4534{
4535    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4536
4537    /* These are only called by TCG, KVM maintains dispatch state */
4538
4539    spapr_cpu->prod = false;
4540    if (spapr_cpu->vpa_addr) {
4541        CPUState *cs = CPU(cpu);
4542        uint32_t dispatch;
4543
4544        dispatch = ldl_be_phys(cs->as,
4545                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4546        dispatch++;
4547        if ((dispatch & 1) != 0) {
4548            qemu_log_mask(LOG_GUEST_ERROR,
4549                          "VPA: incorrect dispatch counter value for "
4550                          "dispatched partition %u, correcting.\n", dispatch);
4551            dispatch++;
4552        }
4553        stl_be_phys(cs->as,
4554                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4555    }
4556}
4557
4558static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4559{
4560    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4561
4562    if (spapr_cpu->vpa_addr) {
4563        CPUState *cs = CPU(cpu);
4564        uint32_t dispatch;
4565
4566        dispatch = ldl_be_phys(cs->as,
4567                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4568        dispatch++;
4569        if ((dispatch & 1) != 1) {
4570            qemu_log_mask(LOG_GUEST_ERROR,
4571                          "VPA: incorrect dispatch counter value for "
4572                          "preempted partition %u, correcting.\n", dispatch);
4573            dispatch++;
4574        }
4575        stl_be_phys(cs->as,
4576                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4577    }
4578}
4579
4580static void spapr_machine_class_init(ObjectClass *oc, void *data)
4581{
4582    MachineClass *mc = MACHINE_CLASS(oc);
4583    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4584    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4585    NMIClass *nc = NMI_CLASS(oc);
4586    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4587    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4588    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4589    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4590    XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4591    VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4592
4593    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4594    mc->ignore_boot_device_suffixes = true;
4595
4596    /*
4597     * We set up the default / latest behaviour here.  The class_init
4598     * functions for the specific versioned machine types can override
4599     * these details for backwards compatibility
4600     */
4601    mc->init = spapr_machine_init;
4602    mc->reset = spapr_machine_reset;
4603    mc->block_default_type = IF_SCSI;
4604
4605    /*
4606     * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4607     * should be limited by the host capability instead of hardcoded.
4608     * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4609     * guests are welcome to have as many CPUs as the host are capable
4610     * of emulate.
4611     */
4612    mc->max_cpus = INT32_MAX;
4613
4614    mc->no_parallel = 1;
4615    mc->default_boot_order = "";
4616    mc->default_ram_size = 512 * MiB;
4617    mc->default_ram_id = "ppc_spapr.ram";
4618    mc->default_display = "std";
4619    mc->kvm_type = spapr_kvm_type;
4620    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4621    mc->pci_allow_0_address = true;
4622    assert(!mc->get_hotplug_handler);
4623    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4624    hc->pre_plug = spapr_machine_device_pre_plug;
4625    hc->plug = spapr_machine_device_plug;
4626    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4627    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4628    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4629    hc->unplug_request = spapr_machine_device_unplug_request;
4630    hc->unplug = spapr_machine_device_unplug;
4631
4632    smc->dr_lmb_enabled = true;
4633    smc->update_dt_enabled = true;
4634    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4635    mc->has_hotpluggable_cpus = true;
4636    mc->nvdimm_supported = true;
4637    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4638    fwc->get_dev_path = spapr_get_fw_dev_path;
4639    nc->nmi_monitor_handler = spapr_nmi;
4640    smc->phb_placement = spapr_phb_placement;
4641    vhc->cpu_in_nested = spapr_cpu_in_nested;
4642    vhc->deliver_hv_excp = spapr_exit_nested;
4643    vhc->hypercall = emulate_spapr_hypercall;
4644    vhc->hpt_mask = spapr_hpt_mask;
4645    vhc->map_hptes = spapr_map_hptes;
4646    vhc->unmap_hptes = spapr_unmap_hptes;
4647    vhc->hpte_set_c = spapr_hpte_set_c;
4648    vhc->hpte_set_r = spapr_hpte_set_r;
4649    vhc->get_pate = spapr_get_pate;
4650    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4651    vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4652    vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4653    xic->ics_get = spapr_ics_get;
4654    xic->ics_resend = spapr_ics_resend;
4655    xic->icp_get = spapr_icp_get;
4656    ispc->print_info = spapr_pic_print_info;
4657    /* Force NUMA node memory size to be a multiple of
4658     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4659     * in which LMBs are represented and hot-added
4660     */
4661    mc->numa_mem_align_shift = 28;
4662    mc->auto_enable_numa = true;
4663
4664    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4665    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4666    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4667    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4668    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4669    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4670    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4671    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4672    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4673    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4674    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4675    smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4676    spapr_caps_add_properties(smc);
4677    smc->irq = &spapr_irq_dual;
4678    smc->dr_phb_enabled = true;
4679    smc->linux_pci_probe = true;
4680    smc->smp_threads_vsmt = true;
4681    smc->nr_xirqs = SPAPR_NR_XIRQS;
4682    xfc->match_nvt = spapr_match_nvt;
4683    vmc->client_architecture_support = spapr_vof_client_architecture_support;
4684    vmc->quiesce = spapr_vof_quiesce;
4685    vmc->setprop = spapr_vof_setprop;
4686}
4687
4688static const TypeInfo spapr_machine_info = {
4689    .name          = TYPE_SPAPR_MACHINE,
4690    .parent        = TYPE_MACHINE,
4691    .abstract      = true,
4692    .instance_size = sizeof(SpaprMachineState),
4693    .instance_init = spapr_instance_init,
4694    .instance_finalize = spapr_machine_finalizefn,
4695    .class_size    = sizeof(SpaprMachineClass),
4696    .class_init    = spapr_machine_class_init,
4697    .interfaces = (InterfaceInfo[]) {
4698        { TYPE_FW_PATH_PROVIDER },
4699        { TYPE_NMI },
4700        { TYPE_HOTPLUG_HANDLER },
4701        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4702        { TYPE_XICS_FABRIC },
4703        { TYPE_INTERRUPT_STATS_PROVIDER },
4704        { TYPE_XIVE_FABRIC },
4705        { TYPE_VOF_MACHINE_IF },
4706        { }
4707    },
4708};
4709
4710static void spapr_machine_latest_class_options(MachineClass *mc)
4711{
4712    mc->alias = "pseries";
4713    mc->is_default = true;
4714}
4715
4716#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4717    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4718                                                    void *data)      \
4719    {                                                                \
4720        MachineClass *mc = MACHINE_CLASS(oc);                        \
4721        spapr_machine_##suffix##_class_options(mc);                  \
4722        if (latest) {                                                \
4723            spapr_machine_latest_class_options(mc);                  \
4724        }                                                            \
4725    }                                                                \
4726    static const TypeInfo spapr_machine_##suffix##_info = {          \
4727        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4728        .parent = TYPE_SPAPR_MACHINE,                                \
4729        .class_init = spapr_machine_##suffix##_class_init,           \
4730    };                                                               \
4731    static void spapr_machine_register_##suffix(void)                \
4732    {                                                                \
4733        type_register(&spapr_machine_##suffix##_info);               \
4734    }                                                                \
4735    type_init(spapr_machine_register_##suffix)
4736
4737/*
4738 * pseries-8.0
4739 */
4740static void spapr_machine_8_0_class_options(MachineClass *mc)
4741{
4742    /* Defaults for the latest behaviour inherited from the base class */
4743}
4744
4745DEFINE_SPAPR_MACHINE(8_0, "8.0", true);
4746
4747/*
4748 * pseries-7.2
4749 */
4750static void spapr_machine_7_2_class_options(MachineClass *mc)
4751{
4752    spapr_machine_8_0_class_options(mc);
4753    compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4754}
4755
4756DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4757
4758/*
4759 * pseries-7.1
4760 */
4761static void spapr_machine_7_1_class_options(MachineClass *mc)
4762{
4763    spapr_machine_7_2_class_options(mc);
4764    compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4765}
4766
4767DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4768
4769/*
4770 * pseries-7.0
4771 */
4772static void spapr_machine_7_0_class_options(MachineClass *mc)
4773{
4774    spapr_machine_7_1_class_options(mc);
4775    compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4776}
4777
4778DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4779
4780/*
4781 * pseries-6.2
4782 */
4783static void spapr_machine_6_2_class_options(MachineClass *mc)
4784{
4785    spapr_machine_7_0_class_options(mc);
4786    compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4787}
4788
4789DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4790
4791/*
4792 * pseries-6.1
4793 */
4794static void spapr_machine_6_1_class_options(MachineClass *mc)
4795{
4796    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4797
4798    spapr_machine_6_2_class_options(mc);
4799    compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4800    smc->pre_6_2_numa_affinity = true;
4801    mc->smp_props.prefer_sockets = true;
4802}
4803
4804DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4805
4806/*
4807 * pseries-6.0
4808 */
4809static void spapr_machine_6_0_class_options(MachineClass *mc)
4810{
4811    spapr_machine_6_1_class_options(mc);
4812    compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4813}
4814
4815DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4816
4817/*
4818 * pseries-5.2
4819 */
4820static void spapr_machine_5_2_class_options(MachineClass *mc)
4821{
4822    spapr_machine_6_0_class_options(mc);
4823    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4824}
4825
4826DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4827
4828/*
4829 * pseries-5.1
4830 */
4831static void spapr_machine_5_1_class_options(MachineClass *mc)
4832{
4833    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4834
4835    spapr_machine_5_2_class_options(mc);
4836    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4837    smc->pre_5_2_numa_associativity = true;
4838}
4839
4840DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4841
4842/*
4843 * pseries-5.0
4844 */
4845static void spapr_machine_5_0_class_options(MachineClass *mc)
4846{
4847    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4848    static GlobalProperty compat[] = {
4849        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4850    };
4851
4852    spapr_machine_5_1_class_options(mc);
4853    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4854    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4855    mc->numa_mem_supported = true;
4856    smc->pre_5_1_assoc_refpoints = true;
4857}
4858
4859DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4860
4861/*
4862 * pseries-4.2
4863 */
4864static void spapr_machine_4_2_class_options(MachineClass *mc)
4865{
4866    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4867
4868    spapr_machine_5_0_class_options(mc);
4869    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4870    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4871    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4872    smc->rma_limit = 16 * GiB;
4873    mc->nvdimm_supported = false;
4874}
4875
4876DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4877
4878/*
4879 * pseries-4.1
4880 */
4881static void spapr_machine_4_1_class_options(MachineClass *mc)
4882{
4883    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4884    static GlobalProperty compat[] = {
4885        /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4886        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4887    };
4888
4889    spapr_machine_4_2_class_options(mc);
4890    smc->linux_pci_probe = false;
4891    smc->smp_threads_vsmt = false;
4892    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4893    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4894}
4895
4896DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4897
4898/*
4899 * pseries-4.0
4900 */
4901static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4902                              uint64_t *buid, hwaddr *pio,
4903                              hwaddr *mmio32, hwaddr *mmio64,
4904                              unsigned n_dma, uint32_t *liobns,
4905                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4906{
4907    if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4908                             liobns, nv2gpa, nv2atsd, errp)) {
4909        return false;
4910    }
4911
4912    *nv2gpa = 0;
4913    *nv2atsd = 0;
4914    return true;
4915}
4916static void spapr_machine_4_0_class_options(MachineClass *mc)
4917{
4918    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4919
4920    spapr_machine_4_1_class_options(mc);
4921    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4922    smc->phb_placement = phb_placement_4_0;
4923    smc->irq = &spapr_irq_xics;
4924    smc->pre_4_1_migration = true;
4925}
4926
4927DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4928
4929/*
4930 * pseries-3.1
4931 */
4932static void spapr_machine_3_1_class_options(MachineClass *mc)
4933{
4934    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4935
4936    spapr_machine_4_0_class_options(mc);
4937    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4938
4939    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4940    smc->update_dt_enabled = false;
4941    smc->dr_phb_enabled = false;
4942    smc->broken_host_serial_model = true;
4943    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4944    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4945    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4946    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4947}
4948
4949DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4950
4951/*
4952 * pseries-3.0
4953 */
4954
4955static void spapr_machine_3_0_class_options(MachineClass *mc)
4956{
4957    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4958
4959    spapr_machine_3_1_class_options(mc);
4960    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4961
4962    smc->legacy_irq_allocation = true;
4963    smc->nr_xirqs = 0x400;
4964    smc->irq = &spapr_irq_xics_legacy;
4965}
4966
4967DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4968
4969/*
4970 * pseries-2.12
4971 */
4972static void spapr_machine_2_12_class_options(MachineClass *mc)
4973{
4974    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4975    static GlobalProperty compat[] = {
4976        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4977        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4978    };
4979
4980    spapr_machine_3_0_class_options(mc);
4981    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4982    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4983
4984    /* We depend on kvm_enabled() to choose a default value for the
4985     * hpt-max-page-size capability. Of course we can't do it here
4986     * because this is too early and the HW accelerator isn't initialzed
4987     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4988     */
4989    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4990}
4991
4992DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4993
4994static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4995{
4996    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4997
4998    spapr_machine_2_12_class_options(mc);
4999    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5000    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5001    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5002}
5003
5004DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5005
5006/*
5007 * pseries-2.11
5008 */
5009
5010static void spapr_machine_2_11_class_options(MachineClass *mc)
5011{
5012    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5013
5014    spapr_machine_2_12_class_options(mc);
5015    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5016    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5017}
5018
5019DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5020
5021/*
5022 * pseries-2.10
5023 */
5024
5025static void spapr_machine_2_10_class_options(MachineClass *mc)
5026{
5027    spapr_machine_2_11_class_options(mc);
5028    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5029}
5030
5031DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5032
5033/*
5034 * pseries-2.9
5035 */
5036
5037static void spapr_machine_2_9_class_options(MachineClass *mc)
5038{
5039    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5040    static GlobalProperty compat[] = {
5041        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5042    };
5043
5044    spapr_machine_2_10_class_options(mc);
5045    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5046    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5047    smc->pre_2_10_has_unused_icps = true;
5048    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5049}
5050
5051DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5052
5053/*
5054 * pseries-2.8
5055 */
5056
5057static void spapr_machine_2_8_class_options(MachineClass *mc)
5058{
5059    static GlobalProperty compat[] = {
5060        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5061    };
5062
5063    spapr_machine_2_9_class_options(mc);
5064    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5065    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5066    mc->numa_mem_align_shift = 23;
5067}
5068
5069DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5070
5071/*
5072 * pseries-2.7
5073 */
5074
5075static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5076                              uint64_t *buid, hwaddr *pio,
5077                              hwaddr *mmio32, hwaddr *mmio64,
5078                              unsigned n_dma, uint32_t *liobns,
5079                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5080{
5081    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5082    const uint64_t base_buid = 0x800000020000000ULL;
5083    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5084    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5085    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5086    const uint32_t max_index = 255;
5087    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5088
5089    uint64_t ram_top = MACHINE(spapr)->ram_size;
5090    hwaddr phb0_base, phb_base;
5091    int i;
5092
5093    /* Do we have device memory? */
5094    if (MACHINE(spapr)->maxram_size > ram_top) {
5095        /* Can't just use maxram_size, because there may be an
5096         * alignment gap between normal and device memory regions
5097         */
5098        ram_top = MACHINE(spapr)->device_memory->base +
5099            memory_region_size(&MACHINE(spapr)->device_memory->mr);
5100    }
5101
5102    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5103
5104    if (index > max_index) {
5105        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5106                   max_index);
5107        return false;
5108    }
5109
5110    *buid = base_buid + index;
5111    for (i = 0; i < n_dma; ++i) {
5112        liobns[i] = SPAPR_PCI_LIOBN(index, i);
5113    }
5114
5115    phb_base = phb0_base + index * phb_spacing;
5116    *pio = phb_base + pio_offset;
5117    *mmio32 = phb_base + mmio_offset;
5118    /*
5119     * We don't set the 64-bit MMIO window, relying on the PHB's
5120     * fallback behaviour of automatically splitting a large "32-bit"
5121     * window into contiguous 32-bit and 64-bit windows
5122     */
5123
5124    *nv2gpa = 0;
5125    *nv2atsd = 0;
5126    return true;
5127}
5128
5129static void spapr_machine_2_7_class_options(MachineClass *mc)
5130{
5131    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5132    static GlobalProperty compat[] = {
5133        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5134        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5135        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5136        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5137    };
5138
5139    spapr_machine_2_8_class_options(mc);
5140    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5141    mc->default_machine_opts = "modern-hotplug-events=off";
5142    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5143    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5144    smc->phb_placement = phb_placement_2_7;
5145}
5146
5147DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5148
5149/*
5150 * pseries-2.6
5151 */
5152
5153static void spapr_machine_2_6_class_options(MachineClass *mc)
5154{
5155    static GlobalProperty compat[] = {
5156        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5157    };
5158
5159    spapr_machine_2_7_class_options(mc);
5160    mc->has_hotpluggable_cpus = false;
5161    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5162    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5163}
5164
5165DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5166
5167/*
5168 * pseries-2.5
5169 */
5170
5171static void spapr_machine_2_5_class_options(MachineClass *mc)
5172{
5173    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5174    static GlobalProperty compat[] = {
5175        { "spapr-vlan", "use-rx-buffer-pools", "off" },
5176    };
5177
5178    spapr_machine_2_6_class_options(mc);
5179    smc->use_ohci_by_default = true;
5180    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5181    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5182}
5183
5184DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5185
5186/*
5187 * pseries-2.4
5188 */
5189
5190static void spapr_machine_2_4_class_options(MachineClass *mc)
5191{
5192    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5193
5194    spapr_machine_2_5_class_options(mc);
5195    smc->dr_lmb_enabled = false;
5196    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5197}
5198
5199DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5200
5201/*
5202 * pseries-2.3
5203 */
5204
5205static void spapr_machine_2_3_class_options(MachineClass *mc)
5206{
5207    static GlobalProperty compat[] = {
5208        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5209    };
5210    spapr_machine_2_4_class_options(mc);
5211    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5212    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5213}
5214DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5215
5216/*
5217 * pseries-2.2
5218 */
5219
5220static void spapr_machine_2_2_class_options(MachineClass *mc)
5221{
5222    static GlobalProperty compat[] = {
5223        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5224    };
5225
5226    spapr_machine_2_3_class_options(mc);
5227    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5228    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5229    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5230}
5231DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5232
5233/*
5234 * pseries-2.1
5235 */
5236
5237static void spapr_machine_2_1_class_options(MachineClass *mc)
5238{
5239    spapr_machine_2_2_class_options(mc);
5240    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5241}
5242DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5243
5244static void spapr_machine_register_types(void)
5245{
5246    type_register_static(&spapr_machine_info);
5247}
5248
5249type_init(spapr_machine_register_types)
5250