qemu/include/exec/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "exec/cpu-common.h"
  23#include "exec/memory.h"
  24#include "qemu/thread.h"
  25#include "hw/core/cpu.h"
  26#include "qemu/rcu.h"
  27
  28#define EXCP_INTERRUPT  0x10000 /* async interruption */
  29#define EXCP_HLT        0x10001 /* hlt instruction reached */
  30#define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
  31#define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
  32#define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
  33#define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
  34
  35/* some important defines:
  36 *
  37 * HOST_BIG_ENDIAN : whether the host cpu is big endian and
  38 * otherwise little endian.
  39 *
  40 * TARGET_BIG_ENDIAN : same for the target cpu
  41 */
  42
  43#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
  44#define BSWAP_NEEDED
  45#endif
  46
  47#ifdef BSWAP_NEEDED
  48
  49static inline uint16_t tswap16(uint16_t s)
  50{
  51    return bswap16(s);
  52}
  53
  54static inline uint32_t tswap32(uint32_t s)
  55{
  56    return bswap32(s);
  57}
  58
  59static inline uint64_t tswap64(uint64_t s)
  60{
  61    return bswap64(s);
  62}
  63
  64static inline void tswap16s(uint16_t *s)
  65{
  66    *s = bswap16(*s);
  67}
  68
  69static inline void tswap32s(uint32_t *s)
  70{
  71    *s = bswap32(*s);
  72}
  73
  74static inline void tswap64s(uint64_t *s)
  75{
  76    *s = bswap64(*s);
  77}
  78
  79#else
  80
  81static inline uint16_t tswap16(uint16_t s)
  82{
  83    return s;
  84}
  85
  86static inline uint32_t tswap32(uint32_t s)
  87{
  88    return s;
  89}
  90
  91static inline uint64_t tswap64(uint64_t s)
  92{
  93    return s;
  94}
  95
  96static inline void tswap16s(uint16_t *s)
  97{
  98}
  99
 100static inline void tswap32s(uint32_t *s)
 101{
 102}
 103
 104static inline void tswap64s(uint64_t *s)
 105{
 106}
 107
 108#endif
 109
 110#if TARGET_LONG_SIZE == 4
 111#define tswapl(s) tswap32(s)
 112#define tswapls(s) tswap32s((uint32_t *)(s))
 113#define bswaptls(s) bswap32s(s)
 114#else
 115#define tswapl(s) tswap64(s)
 116#define tswapls(s) tswap64s((uint64_t *)(s))
 117#define bswaptls(s) bswap64s(s)
 118#endif
 119
 120/* Target-endianness CPU memory access functions. These fit into the
 121 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
 122 */
 123#if TARGET_BIG_ENDIAN
 124#define lduw_p(p) lduw_be_p(p)
 125#define ldsw_p(p) ldsw_be_p(p)
 126#define ldl_p(p) ldl_be_p(p)
 127#define ldq_p(p) ldq_be_p(p)
 128#define stw_p(p, v) stw_be_p(p, v)
 129#define stl_p(p, v) stl_be_p(p, v)
 130#define stq_p(p, v) stq_be_p(p, v)
 131#define ldn_p(p, sz) ldn_be_p(p, sz)
 132#define stn_p(p, sz, v) stn_be_p(p, sz, v)
 133#else
 134#define lduw_p(p) lduw_le_p(p)
 135#define ldsw_p(p) ldsw_le_p(p)
 136#define ldl_p(p) ldl_le_p(p)
 137#define ldq_p(p) ldq_le_p(p)
 138#define stw_p(p, v) stw_le_p(p, v)
 139#define stl_p(p, v) stl_le_p(p, v)
 140#define stq_p(p, v) stq_le_p(p, v)
 141#define ldn_p(p, sz) ldn_le_p(p, sz)
 142#define stn_p(p, sz, v) stn_le_p(p, sz, v)
 143#endif
 144
 145/* MMU memory access macros */
 146
 147#if defined(CONFIG_USER_ONLY)
 148#include "exec/user/abitypes.h"
 149
 150/* On some host systems the guest address space is reserved on the host.
 151 * This allows the guest address space to be offset to a convenient location.
 152 */
 153extern uintptr_t guest_base;
 154extern bool have_guest_base;
 155
 156/*
 157 * If non-zero, the guest virtual address space is a contiguous subset
 158 * of the host virtual address space, i.e. '-R reserved_va' is in effect
 159 * either from the command-line or by default.  The value is the last
 160 * byte of the guest address space e.g. UINT32_MAX.
 161 *
 162 * If zero, the host and guest virtual address spaces are intermingled.
 163 */
 164extern unsigned long reserved_va;
 165
 166/*
 167 * Limit the guest addresses as best we can.
 168 *
 169 * When not using -R reserved_va, we cannot really limit the guest
 170 * to less address space than the host.  For 32-bit guests, this
 171 * acts as a sanity check that we're not giving the guest an address
 172 * that it cannot even represent.  For 64-bit guests... the address
 173 * might not be what the real kernel would give, but it is at least
 174 * representable in the guest.
 175 *
 176 * TODO: Improve address allocation to avoid this problem, and to
 177 * avoid setting bits at the top of guest addresses that might need
 178 * to be used for tags.
 179 */
 180#define GUEST_ADDR_MAX_                                                 \
 181    ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ?  \
 182     UINT32_MAX : ~0ul)
 183#define GUEST_ADDR_MAX    (reserved_va ? : GUEST_ADDR_MAX_)
 184
 185#else
 186
 187#include "exec/hwaddr.h"
 188
 189#define SUFFIX
 190#define ARG1         as
 191#define ARG1_DECL    AddressSpace *as
 192#define TARGET_ENDIANNESS
 193#include "exec/memory_ldst.h.inc"
 194
 195#define SUFFIX       _cached_slow
 196#define ARG1         cache
 197#define ARG1_DECL    MemoryRegionCache *cache
 198#define TARGET_ENDIANNESS
 199#include "exec/memory_ldst.h.inc"
 200
 201static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
 202{
 203    address_space_stl_notdirty(as, addr, val,
 204                               MEMTXATTRS_UNSPECIFIED, NULL);
 205}
 206
 207#define SUFFIX
 208#define ARG1         as
 209#define ARG1_DECL    AddressSpace *as
 210#define TARGET_ENDIANNESS
 211#include "exec/memory_ldst_phys.h.inc"
 212
 213/* Inline fast path for direct RAM access.  */
 214#define ENDIANNESS
 215#include "exec/memory_ldst_cached.h.inc"
 216
 217#define SUFFIX       _cached
 218#define ARG1         cache
 219#define ARG1_DECL    MemoryRegionCache *cache
 220#define TARGET_ENDIANNESS
 221#include "exec/memory_ldst_phys.h.inc"
 222#endif
 223
 224/* page related stuff */
 225
 226#ifdef TARGET_PAGE_BITS_VARY
 227# include "exec/page-vary.h"
 228extern const TargetPageBits target_page;
 229#ifdef CONFIG_DEBUG_TCG
 230#define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
 231#define TARGET_PAGE_MASK   ({ assert(target_page.decided); \
 232                              (target_long)target_page.mask; })
 233#else
 234#define TARGET_PAGE_BITS   target_page.bits
 235#define TARGET_PAGE_MASK   ((target_long)target_page.mask)
 236#endif
 237#define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
 238#else
 239#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
 240#define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
 241#define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
 242#endif
 243
 244#define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
 245
 246/* same as PROT_xxx */
 247#define PAGE_READ      0x0001
 248#define PAGE_WRITE     0x0002
 249#define PAGE_EXEC      0x0004
 250#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 251#define PAGE_VALID     0x0008
 252/*
 253 * Original state of the write flag (used when tracking self-modifying code)
 254 */
 255#define PAGE_WRITE_ORG 0x0010
 256/*
 257 * Invalidate the TLB entry immediately, helpful for s390x
 258 * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs()
 259 */
 260#define PAGE_WRITE_INV 0x0020
 261/* For use with page_set_flags: page is being replaced; target_data cleared. */
 262#define PAGE_RESET     0x0040
 263/* For linux-user, indicates that the page is MAP_ANON. */
 264#define PAGE_ANON      0x0080
 265
 266#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 267/* FIXME: Code that sets/uses this is broken and needs to go away.  */
 268#define PAGE_RESERVED  0x0100
 269#endif
 270/* Target-specific bits that will be used via page_get_flags().  */
 271#define PAGE_TARGET_1  0x0200
 272#define PAGE_TARGET_2  0x0400
 273
 274/*
 275 * For linux-user, indicates that the page is mapped with the same semantics
 276 * in both guest and host.
 277 */
 278#define PAGE_PASSTHROUGH 0x0800
 279
 280#if defined(CONFIG_USER_ONLY)
 281void page_dump(FILE *f);
 282
 283typedef int (*walk_memory_regions_fn)(void *, target_ulong,
 284                                      target_ulong, unsigned long);
 285int walk_memory_regions(void *, walk_memory_regions_fn);
 286
 287int page_get_flags(target_ulong address);
 288void page_set_flags(target_ulong start, target_ulong last, int flags);
 289void page_reset_target_data(target_ulong start, target_ulong last);
 290int page_check_range(target_ulong start, target_ulong len, int flags);
 291
 292/**
 293 * page_get_target_data(address)
 294 * @address: guest virtual address
 295 *
 296 * Return TARGET_PAGE_DATA_SIZE bytes of out-of-band data to associate
 297 * with the guest page at @address, allocating it if necessary.  The
 298 * caller should already have verified that the address is valid.
 299 *
 300 * The memory will be freed when the guest page is deallocated,
 301 * e.g. with the munmap system call.
 302 */
 303void *page_get_target_data(target_ulong address)
 304    __attribute__((returns_nonnull));
 305#endif
 306
 307CPUArchState *cpu_copy(CPUArchState *env);
 308
 309/* Flags for use in ENV->INTERRUPT_PENDING.
 310
 311   The numbers assigned here are non-sequential in order to preserve
 312   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
 313   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
 314   the vmstate dump.  */
 315
 316/* External hardware interrupt pending.  This is typically used for
 317   interrupts from devices.  */
 318#define CPU_INTERRUPT_HARD        0x0002
 319
 320/* Exit the current TB.  This is typically used when some system-level device
 321   makes some change to the memory mapping.  E.g. the a20 line change.  */
 322#define CPU_INTERRUPT_EXITTB      0x0004
 323
 324/* Halt the CPU.  */
 325#define CPU_INTERRUPT_HALT        0x0020
 326
 327/* Debug event pending.  */
 328#define CPU_INTERRUPT_DEBUG       0x0080
 329
 330/* Reset signal.  */
 331#define CPU_INTERRUPT_RESET       0x0400
 332
 333/* Several target-specific external hardware interrupts.  Each target/cpu.h
 334   should define proper names based on these defines.  */
 335#define CPU_INTERRUPT_TGT_EXT_0   0x0008
 336#define CPU_INTERRUPT_TGT_EXT_1   0x0010
 337#define CPU_INTERRUPT_TGT_EXT_2   0x0040
 338#define CPU_INTERRUPT_TGT_EXT_3   0x0200
 339#define CPU_INTERRUPT_TGT_EXT_4   0x1000
 340
 341/* Several target-specific internal interrupts.  These differ from the
 342   preceding target-specific interrupts in that they are intended to
 343   originate from within the cpu itself, typically in response to some
 344   instruction being executed.  These, therefore, are not masked while
 345   single-stepping within the debugger.  */
 346#define CPU_INTERRUPT_TGT_INT_0   0x0100
 347#define CPU_INTERRUPT_TGT_INT_1   0x0800
 348#define CPU_INTERRUPT_TGT_INT_2   0x2000
 349
 350/* First unused bit: 0x4000.  */
 351
 352/* The set of all bits that should be masked when single-stepping.  */
 353#define CPU_INTERRUPT_SSTEP_MASK \
 354    (CPU_INTERRUPT_HARD          \
 355     | CPU_INTERRUPT_TGT_EXT_0   \
 356     | CPU_INTERRUPT_TGT_EXT_1   \
 357     | CPU_INTERRUPT_TGT_EXT_2   \
 358     | CPU_INTERRUPT_TGT_EXT_3   \
 359     | CPU_INTERRUPT_TGT_EXT_4)
 360
 361#ifdef CONFIG_USER_ONLY
 362
 363/*
 364 * Allow some level of source compatibility with softmmu.  We do not
 365 * support any of the more exotic features, so only invalid pages may
 366 * be signaled by probe_access_flags().
 367 */
 368#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
 369#define TLB_MMIO            0
 370#define TLB_WATCHPOINT      0
 371
 372#else
 373
 374/*
 375 * Flags stored in the low bits of the TLB virtual address.
 376 * These are defined so that fast path ram access is all zeros.
 377 * The flags all must be between TARGET_PAGE_BITS and
 378 * maximum address alignment bit.
 379 *
 380 * Use TARGET_PAGE_BITS_MIN so that these bits are constant
 381 * when TARGET_PAGE_BITS_VARY is in effect.
 382 */
 383/* Zero if TLB entry is valid.  */
 384#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
 385/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 386   contain the page physical address.  */
 387#define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
 388/* Set if TLB entry is an IO callback.  */
 389#define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
 390/* Set if TLB entry contains a watchpoint.  */
 391#define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
 392/* Set if TLB entry requires byte swap.  */
 393#define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
 394/* Set if TLB entry writes ignored.  */
 395#define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
 396
 397/* Use this mask to check interception with an alignment mask
 398 * in a TCG backend.
 399 */
 400#define TLB_FLAGS_MASK \
 401    (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
 402    | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
 403
 404/**
 405 * tlb_hit_page: return true if page aligned @addr is a hit against the
 406 * TLB entry @tlb_addr
 407 *
 408 * @addr: virtual address to test (must be page aligned)
 409 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
 410 */
 411static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
 412{
 413    return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
 414}
 415
 416/**
 417 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
 418 *
 419 * @addr: virtual address to test (need not be page aligned)
 420 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
 421 */
 422static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
 423{
 424    return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
 425}
 426
 427#ifdef CONFIG_TCG
 428/* accel/tcg/translate-all.c */
 429void dump_exec_info(GString *buf);
 430#endif /* CONFIG_TCG */
 431
 432#endif /* !CONFIG_USER_ONLY */
 433
 434/* accel/tcg/cpu-exec.c */
 435int cpu_exec(CPUState *cpu);
 436void tcg_exec_realizefn(CPUState *cpu, Error **errp);
 437void tcg_exec_unrealizefn(CPUState *cpu);
 438
 439/**
 440 * cpu_set_cpustate_pointers(cpu)
 441 * @cpu: The cpu object
 442 *
 443 * Set the generic pointers in CPUState into the outer object.
 444 */
 445static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
 446{
 447    cpu->parent_obj.env_ptr = &cpu->env;
 448    cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
 449}
 450
 451/**
 452 * env_archcpu(env)
 453 * @env: The architecture environment
 454 *
 455 * Return the ArchCPU associated with the environment.
 456 */
 457static inline ArchCPU *env_archcpu(CPUArchState *env)
 458{
 459    return container_of(env, ArchCPU, env);
 460}
 461
 462/**
 463 * env_cpu(env)
 464 * @env: The architecture environment
 465 *
 466 * Return the CPUState associated with the environment.
 467 */
 468static inline CPUState *env_cpu(CPUArchState *env)
 469{
 470    return &env_archcpu(env)->parent_obj;
 471}
 472
 473/**
 474 * env_neg(env)
 475 * @env: The architecture environment
 476 *
 477 * Return the CPUNegativeOffsetState associated with the environment.
 478 */
 479static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
 480{
 481    ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
 482    return &arch_cpu->neg;
 483}
 484
 485/**
 486 * cpu_neg(cpu)
 487 * @cpu: The generic CPUState
 488 *
 489 * Return the CPUNegativeOffsetState associated with the cpu.
 490 */
 491static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
 492{
 493    ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
 494    return &arch_cpu->neg;
 495}
 496
 497/**
 498 * env_tlb(env)
 499 * @env: The architecture environment
 500 *
 501 * Return the CPUTLB state associated with the environment.
 502 */
 503static inline CPUTLB *env_tlb(CPUArchState *env)
 504{
 505    return &env_neg(env)->tlb;
 506}
 507
 508#endif /* CPU_ALL_H */
 509