qemu/migration/qemu-file.c
<<
>>
Prefs
   1/*
   2 * QEMU System Emulator
   3 *
   4 * Copyright (c) 2003-2008 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include <zlib.h>
  26#include "qemu/madvise.h"
  27#include "qemu/error-report.h"
  28#include "qemu/iov.h"
  29#include "migration.h"
  30#include "qemu-file.h"
  31#include "trace.h"
  32#include "qapi/error.h"
  33
  34#define IO_BUF_SIZE 32768
  35#define MAX_IOV_SIZE MIN_CONST(IOV_MAX, 64)
  36
  37struct QEMUFile {
  38    const QEMUFileHooks *hooks;
  39    QIOChannel *ioc;
  40    bool is_writable;
  41
  42    /*
  43     * Maximum amount of data in bytes to transfer during one
  44     * rate limiting time window
  45     */
  46    int64_t rate_limit_max;
  47    /*
  48     * Total amount of data in bytes queued for transfer
  49     * during this rate limiting time window
  50     */
  51    int64_t rate_limit_used;
  52
  53    /* The sum of bytes transferred on the wire */
  54    int64_t total_transferred;
  55
  56    int buf_index;
  57    int buf_size; /* 0 when writing */
  58    uint8_t buf[IO_BUF_SIZE];
  59
  60    DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
  61    struct iovec iov[MAX_IOV_SIZE];
  62    unsigned int iovcnt;
  63
  64    int last_error;
  65    Error *last_error_obj;
  66    /* has the file has been shutdown */
  67    bool shutdown;
  68};
  69
  70/*
  71 * Stop a file from being read/written - not all backing files can do this
  72 * typically only sockets can.
  73 *
  74 * TODO: convert to propagate Error objects instead of squashing
  75 * to a fixed errno value
  76 */
  77int qemu_file_shutdown(QEMUFile *f)
  78{
  79    int ret = 0;
  80
  81    f->shutdown = true;
  82
  83    /*
  84     * We must set qemufile error before the real shutdown(), otherwise
  85     * there can be a race window where we thought IO all went though
  86     * (because last_error==NULL) but actually IO has already stopped.
  87     *
  88     * If without correct ordering, the race can happen like this:
  89     *
  90     *      page receiver                     other thread
  91     *      -------------                     ------------
  92     *      qemu_get_buffer()
  93     *                                        do shutdown()
  94     *        returns 0 (buffer all zero)
  95     *        (we didn't check this retcode)
  96     *      try to detect IO error
  97     *        last_error==NULL, IO okay
  98     *      install ALL-ZERO page
  99     *                                        set last_error
 100     *      --> guest crash!
 101     */
 102    if (!f->last_error) {
 103        qemu_file_set_error(f, -EIO);
 104    }
 105
 106    if (!qio_channel_has_feature(f->ioc,
 107                                 QIO_CHANNEL_FEATURE_SHUTDOWN)) {
 108        return -ENOSYS;
 109    }
 110
 111    if (qio_channel_shutdown(f->ioc, QIO_CHANNEL_SHUTDOWN_BOTH, NULL) < 0) {
 112        ret = -EIO;
 113    }
 114
 115    return ret;
 116}
 117
 118bool qemu_file_mode_is_not_valid(const char *mode)
 119{
 120    if (mode == NULL ||
 121        (mode[0] != 'r' && mode[0] != 'w') ||
 122        mode[1] != 'b' || mode[2] != 0) {
 123        fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
 124        return true;
 125    }
 126
 127    return false;
 128}
 129
 130static QEMUFile *qemu_file_new_impl(QIOChannel *ioc, bool is_writable)
 131{
 132    QEMUFile *f;
 133
 134    f = g_new0(QEMUFile, 1);
 135
 136    object_ref(ioc);
 137    f->ioc = ioc;
 138    f->is_writable = is_writable;
 139
 140    return f;
 141}
 142
 143/*
 144 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
 145 *         NULL if not available
 146 */
 147QEMUFile *qemu_file_get_return_path(QEMUFile *f)
 148{
 149    return qemu_file_new_impl(f->ioc, !f->is_writable);
 150}
 151
 152QEMUFile *qemu_file_new_output(QIOChannel *ioc)
 153{
 154    return qemu_file_new_impl(ioc, true);
 155}
 156
 157QEMUFile *qemu_file_new_input(QIOChannel *ioc)
 158{
 159    return qemu_file_new_impl(ioc, false);
 160}
 161
 162void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
 163{
 164    f->hooks = hooks;
 165}
 166
 167/*
 168 * Get last error for stream f with optional Error*
 169 *
 170 * Return negative error value if there has been an error on previous
 171 * operations, return 0 if no error happened.
 172 * Optional, it returns Error* in errp, but it may be NULL even if return value
 173 * is not 0.
 174 *
 175 */
 176int qemu_file_get_error_obj(QEMUFile *f, Error **errp)
 177{
 178    if (errp) {
 179        *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL;
 180    }
 181    return f->last_error;
 182}
 183
 184/*
 185 * Get last error for either stream f1 or f2 with optional Error*.
 186 * The error returned (non-zero) can be either from f1 or f2.
 187 *
 188 * If any of the qemufile* is NULL, then skip the check on that file.
 189 *
 190 * When there is no error on both qemufile, zero is returned.
 191 */
 192int qemu_file_get_error_obj_any(QEMUFile *f1, QEMUFile *f2, Error **errp)
 193{
 194    int ret = 0;
 195
 196    if (f1) {
 197        ret = qemu_file_get_error_obj(f1, errp);
 198        /* If there's already error detected, return */
 199        if (ret) {
 200            return ret;
 201        }
 202    }
 203
 204    if (f2) {
 205        ret = qemu_file_get_error_obj(f2, errp);
 206    }
 207
 208    return ret;
 209}
 210
 211/*
 212 * Set the last error for stream f with optional Error*
 213 */
 214void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err)
 215{
 216    if (f->last_error == 0 && ret) {
 217        f->last_error = ret;
 218        error_propagate(&f->last_error_obj, err);
 219    } else if (err) {
 220        error_report_err(err);
 221    }
 222}
 223
 224/*
 225 * Get last error for stream f
 226 *
 227 * Return negative error value if there has been an error on previous
 228 * operations, return 0 if no error happened.
 229 *
 230 */
 231int qemu_file_get_error(QEMUFile *f)
 232{
 233    return qemu_file_get_error_obj(f, NULL);
 234}
 235
 236/*
 237 * Set the last error for stream f
 238 */
 239void qemu_file_set_error(QEMUFile *f, int ret)
 240{
 241    qemu_file_set_error_obj(f, ret, NULL);
 242}
 243
 244bool qemu_file_is_writable(QEMUFile *f)
 245{
 246    return f->is_writable;
 247}
 248
 249static void qemu_iovec_release_ram(QEMUFile *f)
 250{
 251    struct iovec iov;
 252    unsigned long idx;
 253
 254    /* Find and release all the contiguous memory ranges marked as may_free. */
 255    idx = find_next_bit(f->may_free, f->iovcnt, 0);
 256    if (idx >= f->iovcnt) {
 257        return;
 258    }
 259    iov = f->iov[idx];
 260
 261    /* The madvise() in the loop is called for iov within a continuous range and
 262     * then reinitialize the iov. And in the end, madvise() is called for the
 263     * last iov.
 264     */
 265    while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
 266        /* check for adjacent buffer and coalesce them */
 267        if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
 268            iov.iov_len += f->iov[idx].iov_len;
 269            continue;
 270        }
 271        if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 272            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 273                         iov.iov_base, iov.iov_len, strerror(errno));
 274        }
 275        iov = f->iov[idx];
 276    }
 277    if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 278            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 279                         iov.iov_base, iov.iov_len, strerror(errno));
 280    }
 281    memset(f->may_free, 0, sizeof(f->may_free));
 282}
 283
 284
 285/**
 286 * Flushes QEMUFile buffer
 287 *
 288 * This will flush all pending data. If data was only partially flushed, it
 289 * will set an error state.
 290 */
 291void qemu_fflush(QEMUFile *f)
 292{
 293    if (!qemu_file_is_writable(f)) {
 294        return;
 295    }
 296
 297    if (f->shutdown) {
 298        return;
 299    }
 300    if (f->iovcnt > 0) {
 301        Error *local_error = NULL;
 302        if (qio_channel_writev_all(f->ioc,
 303                                   f->iov, f->iovcnt,
 304                                   &local_error) < 0) {
 305            qemu_file_set_error_obj(f, -EIO, local_error);
 306        } else {
 307            f->total_transferred += iov_size(f->iov, f->iovcnt);
 308        }
 309
 310        qemu_iovec_release_ram(f);
 311    }
 312
 313    f->buf_index = 0;
 314    f->iovcnt = 0;
 315}
 316
 317void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
 318{
 319    int ret = 0;
 320
 321    if (f->hooks && f->hooks->before_ram_iterate) {
 322        ret = f->hooks->before_ram_iterate(f, flags, NULL);
 323        if (ret < 0) {
 324            qemu_file_set_error(f, ret);
 325        }
 326    }
 327}
 328
 329void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
 330{
 331    int ret = 0;
 332
 333    if (f->hooks && f->hooks->after_ram_iterate) {
 334        ret = f->hooks->after_ram_iterate(f, flags, NULL);
 335        if (ret < 0) {
 336            qemu_file_set_error(f, ret);
 337        }
 338    }
 339}
 340
 341void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
 342{
 343    int ret = -EINVAL;
 344
 345    if (f->hooks && f->hooks->hook_ram_load) {
 346        ret = f->hooks->hook_ram_load(f, flags, data);
 347        if (ret < 0) {
 348            qemu_file_set_error(f, ret);
 349        }
 350    } else {
 351        /*
 352         * Hook is a hook specifically requested by the source sending a flag
 353         * that expects there to be a hook on the destination.
 354         */
 355        if (flags == RAM_CONTROL_HOOK) {
 356            qemu_file_set_error(f, ret);
 357        }
 358    }
 359}
 360
 361size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
 362                             ram_addr_t offset, size_t size,
 363                             uint64_t *bytes_sent)
 364{
 365    if (f->hooks && f->hooks->save_page) {
 366        int ret = f->hooks->save_page(f, block_offset,
 367                                      offset, size, bytes_sent);
 368        if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 369            f->rate_limit_used += size;
 370        }
 371
 372        if (ret != RAM_SAVE_CONTROL_DELAYED &&
 373            ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 374            if (bytes_sent && *bytes_sent > 0) {
 375                qemu_file_credit_transfer(f, *bytes_sent);
 376            } else if (ret < 0) {
 377                qemu_file_set_error(f, ret);
 378            }
 379        }
 380
 381        return ret;
 382    }
 383
 384    return RAM_SAVE_CONTROL_NOT_SUPP;
 385}
 386
 387/*
 388 * Attempt to fill the buffer from the underlying file
 389 * Returns the number of bytes read, or negative value for an error.
 390 *
 391 * Note that it can return a partially full buffer even in a not error/not EOF
 392 * case if the underlying file descriptor gives a short read, and that can
 393 * happen even on a blocking fd.
 394 */
 395static ssize_t qemu_fill_buffer(QEMUFile *f)
 396{
 397    int len;
 398    int pending;
 399    Error *local_error = NULL;
 400
 401    assert(!qemu_file_is_writable(f));
 402
 403    pending = f->buf_size - f->buf_index;
 404    if (pending > 0) {
 405        memmove(f->buf, f->buf + f->buf_index, pending);
 406    }
 407    f->buf_index = 0;
 408    f->buf_size = pending;
 409
 410    if (f->shutdown) {
 411        return 0;
 412    }
 413
 414    do {
 415        len = qio_channel_read(f->ioc,
 416                               (char *)f->buf + pending,
 417                               IO_BUF_SIZE - pending,
 418                               &local_error);
 419        if (len == QIO_CHANNEL_ERR_BLOCK) {
 420            if (qemu_in_coroutine()) {
 421                qio_channel_yield(f->ioc, G_IO_IN);
 422            } else {
 423                qio_channel_wait(f->ioc, G_IO_IN);
 424            }
 425        } else if (len < 0) {
 426            len = -EIO;
 427        }
 428    } while (len == QIO_CHANNEL_ERR_BLOCK);
 429
 430    if (len > 0) {
 431        f->buf_size += len;
 432        f->total_transferred += len;
 433    } else if (len == 0) {
 434        qemu_file_set_error_obj(f, -EIO, local_error);
 435    } else {
 436        qemu_file_set_error_obj(f, len, local_error);
 437    }
 438
 439    return len;
 440}
 441
 442void qemu_file_credit_transfer(QEMUFile *f, size_t size)
 443{
 444    f->total_transferred += size;
 445}
 446
 447/** Closes the file
 448 *
 449 * Returns negative error value if any error happened on previous operations or
 450 * while closing the file. Returns 0 or positive number on success.
 451 *
 452 * The meaning of return value on success depends on the specific backend
 453 * being used.
 454 */
 455int qemu_fclose(QEMUFile *f)
 456{
 457    int ret, ret2;
 458    qemu_fflush(f);
 459    ret = qemu_file_get_error(f);
 460
 461    ret2 = qio_channel_close(f->ioc, NULL);
 462    if (ret >= 0) {
 463        ret = ret2;
 464    }
 465    g_clear_pointer(&f->ioc, object_unref);
 466
 467    /* If any error was spotted before closing, we should report it
 468     * instead of the close() return value.
 469     */
 470    if (f->last_error) {
 471        ret = f->last_error;
 472    }
 473    error_free(f->last_error_obj);
 474    g_free(f);
 475    trace_qemu_file_fclose();
 476    return ret;
 477}
 478
 479/*
 480 * Add buf to iovec. Do flush if iovec is full.
 481 *
 482 * Return values:
 483 * 1 iovec is full and flushed
 484 * 0 iovec is not flushed
 485 *
 486 */
 487static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
 488                        bool may_free)
 489{
 490    /* check for adjacent buffer and coalesce them */
 491    if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
 492        f->iov[f->iovcnt - 1].iov_len &&
 493        may_free == test_bit(f->iovcnt - 1, f->may_free))
 494    {
 495        f->iov[f->iovcnt - 1].iov_len += size;
 496    } else {
 497        if (f->iovcnt >= MAX_IOV_SIZE) {
 498            /* Should only happen if a previous fflush failed */
 499            assert(f->shutdown || !qemu_file_is_writable(f));
 500            return 1;
 501        }
 502        if (may_free) {
 503            set_bit(f->iovcnt, f->may_free);
 504        }
 505        f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
 506        f->iov[f->iovcnt++].iov_len = size;
 507    }
 508
 509    if (f->iovcnt >= MAX_IOV_SIZE) {
 510        qemu_fflush(f);
 511        return 1;
 512    }
 513
 514    return 0;
 515}
 516
 517static void add_buf_to_iovec(QEMUFile *f, size_t len)
 518{
 519    if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) {
 520        f->buf_index += len;
 521        if (f->buf_index == IO_BUF_SIZE) {
 522            qemu_fflush(f);
 523        }
 524    }
 525}
 526
 527void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
 528                           bool may_free)
 529{
 530    if (f->last_error) {
 531        return;
 532    }
 533
 534    f->rate_limit_used += size;
 535    add_to_iovec(f, buf, size, may_free);
 536}
 537
 538void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
 539{
 540    size_t l;
 541
 542    if (f->last_error) {
 543        return;
 544    }
 545
 546    while (size > 0) {
 547        l = IO_BUF_SIZE - f->buf_index;
 548        if (l > size) {
 549            l = size;
 550        }
 551        memcpy(f->buf + f->buf_index, buf, l);
 552        f->rate_limit_used += l;
 553        add_buf_to_iovec(f, l);
 554        if (qemu_file_get_error(f)) {
 555            break;
 556        }
 557        buf += l;
 558        size -= l;
 559    }
 560}
 561
 562void qemu_put_byte(QEMUFile *f, int v)
 563{
 564    if (f->last_error) {
 565        return;
 566    }
 567
 568    f->buf[f->buf_index] = v;
 569    f->rate_limit_used++;
 570    add_buf_to_iovec(f, 1);
 571}
 572
 573void qemu_file_skip(QEMUFile *f, int size)
 574{
 575    if (f->buf_index + size <= f->buf_size) {
 576        f->buf_index += size;
 577    }
 578}
 579
 580/*
 581 * Read 'size' bytes from file (at 'offset') without moving the
 582 * pointer and set 'buf' to point to that data.
 583 *
 584 * It will return size bytes unless there was an error, in which case it will
 585 * return as many as it managed to read (assuming blocking fd's which
 586 * all current QEMUFile are)
 587 */
 588size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
 589{
 590    ssize_t pending;
 591    size_t index;
 592
 593    assert(!qemu_file_is_writable(f));
 594    assert(offset < IO_BUF_SIZE);
 595    assert(size <= IO_BUF_SIZE - offset);
 596
 597    /* The 1st byte to read from */
 598    index = f->buf_index + offset;
 599    /* The number of available bytes starting at index */
 600    pending = f->buf_size - index;
 601
 602    /*
 603     * qemu_fill_buffer might return just a few bytes, even when there isn't
 604     * an error, so loop collecting them until we get enough.
 605     */
 606    while (pending < size) {
 607        int received = qemu_fill_buffer(f);
 608
 609        if (received <= 0) {
 610            break;
 611        }
 612
 613        index = f->buf_index + offset;
 614        pending = f->buf_size - index;
 615    }
 616
 617    if (pending <= 0) {
 618        return 0;
 619    }
 620    if (size > pending) {
 621        size = pending;
 622    }
 623
 624    *buf = f->buf + index;
 625    return size;
 626}
 627
 628/*
 629 * Read 'size' bytes of data from the file into buf.
 630 * 'size' can be larger than the internal buffer.
 631 *
 632 * It will return size bytes unless there was an error, in which case it will
 633 * return as many as it managed to read (assuming blocking fd's which
 634 * all current QEMUFile are)
 635 */
 636size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
 637{
 638    size_t pending = size;
 639    size_t done = 0;
 640
 641    while (pending > 0) {
 642        size_t res;
 643        uint8_t *src;
 644
 645        res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
 646        if (res == 0) {
 647            return done;
 648        }
 649        memcpy(buf, src, res);
 650        qemu_file_skip(f, res);
 651        buf += res;
 652        pending -= res;
 653        done += res;
 654    }
 655    return done;
 656}
 657
 658/*
 659 * Read 'size' bytes of data from the file.
 660 * 'size' can be larger than the internal buffer.
 661 *
 662 * The data:
 663 *   may be held on an internal buffer (in which case *buf is updated
 664 *     to point to it) that is valid until the next qemu_file operation.
 665 * OR
 666 *   will be copied to the *buf that was passed in.
 667 *
 668 * The code tries to avoid the copy if possible.
 669 *
 670 * It will return size bytes unless there was an error, in which case it will
 671 * return as many as it managed to read (assuming blocking fd's which
 672 * all current QEMUFile are)
 673 *
 674 * Note: Since **buf may get changed, the caller should take care to
 675 *       keep a pointer to the original buffer if it needs to deallocate it.
 676 */
 677size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
 678{
 679    if (size < IO_BUF_SIZE) {
 680        size_t res;
 681        uint8_t *src = NULL;
 682
 683        res = qemu_peek_buffer(f, &src, size, 0);
 684
 685        if (res == size) {
 686            qemu_file_skip(f, res);
 687            *buf = src;
 688            return res;
 689        }
 690    }
 691
 692    return qemu_get_buffer(f, *buf, size);
 693}
 694
 695/*
 696 * Peeks a single byte from the buffer; this isn't guaranteed to work if
 697 * offset leaves a gap after the previous read/peeked data.
 698 */
 699int qemu_peek_byte(QEMUFile *f, int offset)
 700{
 701    int index = f->buf_index + offset;
 702
 703    assert(!qemu_file_is_writable(f));
 704    assert(offset < IO_BUF_SIZE);
 705
 706    if (index >= f->buf_size) {
 707        qemu_fill_buffer(f);
 708        index = f->buf_index + offset;
 709        if (index >= f->buf_size) {
 710            return 0;
 711        }
 712    }
 713    return f->buf[index];
 714}
 715
 716int qemu_get_byte(QEMUFile *f)
 717{
 718    int result;
 719
 720    result = qemu_peek_byte(f, 0);
 721    qemu_file_skip(f, 1);
 722    return result;
 723}
 724
 725int64_t qemu_file_total_transferred_fast(QEMUFile *f)
 726{
 727    int64_t ret = f->total_transferred;
 728    int i;
 729
 730    for (i = 0; i < f->iovcnt; i++) {
 731        ret += f->iov[i].iov_len;
 732    }
 733
 734    return ret;
 735}
 736
 737int64_t qemu_file_total_transferred(QEMUFile *f)
 738{
 739    qemu_fflush(f);
 740    return f->total_transferred;
 741}
 742
 743int qemu_file_rate_limit(QEMUFile *f)
 744{
 745    if (f->shutdown) {
 746        return 1;
 747    }
 748    if (qemu_file_get_error(f)) {
 749        return 1;
 750    }
 751    if (f->rate_limit_max > 0 && f->rate_limit_used > f->rate_limit_max) {
 752        return 1;
 753    }
 754    return 0;
 755}
 756
 757int64_t qemu_file_get_rate_limit(QEMUFile *f)
 758{
 759    return f->rate_limit_max;
 760}
 761
 762void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
 763{
 764    f->rate_limit_max = limit;
 765}
 766
 767void qemu_file_reset_rate_limit(QEMUFile *f)
 768{
 769    f->rate_limit_used = 0;
 770}
 771
 772void qemu_file_acct_rate_limit(QEMUFile *f, int64_t len)
 773{
 774    f->rate_limit_used += len;
 775}
 776
 777void qemu_put_be16(QEMUFile *f, unsigned int v)
 778{
 779    qemu_put_byte(f, v >> 8);
 780    qemu_put_byte(f, v);
 781}
 782
 783void qemu_put_be32(QEMUFile *f, unsigned int v)
 784{
 785    qemu_put_byte(f, v >> 24);
 786    qemu_put_byte(f, v >> 16);
 787    qemu_put_byte(f, v >> 8);
 788    qemu_put_byte(f, v);
 789}
 790
 791void qemu_put_be64(QEMUFile *f, uint64_t v)
 792{
 793    qemu_put_be32(f, v >> 32);
 794    qemu_put_be32(f, v);
 795}
 796
 797unsigned int qemu_get_be16(QEMUFile *f)
 798{
 799    unsigned int v;
 800    v = qemu_get_byte(f) << 8;
 801    v |= qemu_get_byte(f);
 802    return v;
 803}
 804
 805unsigned int qemu_get_be32(QEMUFile *f)
 806{
 807    unsigned int v;
 808    v = (unsigned int)qemu_get_byte(f) << 24;
 809    v |= qemu_get_byte(f) << 16;
 810    v |= qemu_get_byte(f) << 8;
 811    v |= qemu_get_byte(f);
 812    return v;
 813}
 814
 815uint64_t qemu_get_be64(QEMUFile *f)
 816{
 817    uint64_t v;
 818    v = (uint64_t)qemu_get_be32(f) << 32;
 819    v |= qemu_get_be32(f);
 820    return v;
 821}
 822
 823/* return the size after compression, or negative value on error */
 824static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
 825                              const uint8_t *source, size_t source_len)
 826{
 827    int err;
 828
 829    err = deflateReset(stream);
 830    if (err != Z_OK) {
 831        return -1;
 832    }
 833
 834    stream->avail_in = source_len;
 835    stream->next_in = (uint8_t *)source;
 836    stream->avail_out = dest_len;
 837    stream->next_out = dest;
 838
 839    err = deflate(stream, Z_FINISH);
 840    if (err != Z_STREAM_END) {
 841        return -1;
 842    }
 843
 844    return stream->next_out - dest;
 845}
 846
 847/* Compress size bytes of data start at p and store the compressed
 848 * data to the buffer of f.
 849 *
 850 * Since the file is dummy file with empty_ops, return -1 if f has no space to
 851 * save the compressed data.
 852 */
 853ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
 854                                  const uint8_t *p, size_t size)
 855{
 856    ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
 857
 858    if (blen < compressBound(size)) {
 859        return -1;
 860    }
 861
 862    blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
 863                              blen, p, size);
 864    if (blen < 0) {
 865        return -1;
 866    }
 867
 868    qemu_put_be32(f, blen);
 869    add_buf_to_iovec(f, blen);
 870    return blen + sizeof(int32_t);
 871}
 872
 873/* Put the data in the buffer of f_src to the buffer of f_des, and
 874 * then reset the buf_index of f_src to 0.
 875 */
 876
 877int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
 878{
 879    int len = 0;
 880
 881    if (f_src->buf_index > 0) {
 882        len = f_src->buf_index;
 883        qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
 884        f_src->buf_index = 0;
 885        f_src->iovcnt = 0;
 886    }
 887    return len;
 888}
 889
 890/*
 891 * Get a string whose length is determined by a single preceding byte
 892 * A preallocated 256 byte buffer must be passed in.
 893 * Returns: len on success and a 0 terminated string in the buffer
 894 *          else 0
 895 *          (Note a 0 length string will return 0 either way)
 896 */
 897size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
 898{
 899    size_t len = qemu_get_byte(f);
 900    size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
 901
 902    buf[res] = 0;
 903
 904    return res == len ? res : 0;
 905}
 906
 907/*
 908 * Put a string with one preceding byte containing its length. The length of
 909 * the string should be less than 256.
 910 */
 911void qemu_put_counted_string(QEMUFile *f, const char *str)
 912{
 913    size_t len = strlen(str);
 914
 915    assert(len < 256);
 916    qemu_put_byte(f, len);
 917    qemu_put_buffer(f, (const uint8_t *)str, len);
 918}
 919
 920/*
 921 * Set the blocking state of the QEMUFile.
 922 * Note: On some transports the OS only keeps a single blocking state for
 923 *       both directions, and thus changing the blocking on the main
 924 *       QEMUFile can also affect the return path.
 925 */
 926void qemu_file_set_blocking(QEMUFile *f, bool block)
 927{
 928    qio_channel_set_blocking(f->ioc, block, NULL);
 929}
 930
 931/*
 932 * qemu_file_get_ioc:
 933 *
 934 * Get the ioc object for the file, without incrementing
 935 * the reference count.
 936 *
 937 * Returns: the ioc object
 938 */
 939QIOChannel *qemu_file_get_ioc(QEMUFile *file)
 940{
 941    return file->ioc;
 942}
 943
 944/*
 945 * Read size bytes from QEMUFile f and write them to fd.
 946 */
 947int qemu_file_get_to_fd(QEMUFile *f, int fd, size_t size)
 948{
 949    while (size) {
 950        size_t pending = f->buf_size - f->buf_index;
 951        ssize_t rc;
 952
 953        if (!pending) {
 954            rc = qemu_fill_buffer(f);
 955            if (rc < 0) {
 956                return rc;
 957            }
 958            if (rc == 0) {
 959                return -EIO;
 960            }
 961            continue;
 962        }
 963
 964        rc = write(fd, f->buf + f->buf_index, MIN(pending, size));
 965        if (rc < 0) {
 966            return -errno;
 967        }
 968        if (rc == 0) {
 969            return -EIO;
 970        }
 971        f->buf_index += rc;
 972        size -= rc;
 973    }
 974
 975    return 0;
 976}
 977