qemu/target/hexagon/translate.c
<<
>>
Prefs
   1/*
   2 *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
   3 *
   4 *  This program is free software; you can redistribute it and/or modify
   5 *  it under the terms of the GNU General Public License as published by
   6 *  the Free Software Foundation; either version 2 of the License, or
   7 *  (at your option) any later version.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#define QEMU_GENERATE
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "tcg/tcg-op.h"
  22#include "tcg/tcg-op-gvec.h"
  23#include "exec/cpu_ldst.h"
  24#include "exec/log.h"
  25#include "internal.h"
  26#include "attribs.h"
  27#include "insn.h"
  28#include "decode.h"
  29#include "translate.h"
  30#include "printinsn.h"
  31
  32#include "analyze_funcs_generated.c.inc"
  33
  34typedef void (*AnalyzeInsn)(DisasContext *ctx);
  35static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
  36#define OPCODE(X)    [X] = analyze_##X
  37#include "opcodes_def_generated.h.inc"
  38#undef OPCODE
  39};
  40
  41TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
  42TCGv hex_pred[NUM_PREGS];
  43TCGv hex_this_PC;
  44TCGv hex_slot_cancelled;
  45TCGv hex_branch_taken;
  46TCGv hex_new_value[TOTAL_PER_THREAD_REGS];
  47TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
  48TCGv hex_new_pred_value[NUM_PREGS];
  49TCGv hex_pred_written;
  50TCGv hex_store_addr[STORES_MAX];
  51TCGv hex_store_width[STORES_MAX];
  52TCGv hex_store_val32[STORES_MAX];
  53TCGv_i64 hex_store_val64[STORES_MAX];
  54TCGv hex_pkt_has_store_s1;
  55TCGv hex_dczero_addr;
  56TCGv hex_llsc_addr;
  57TCGv hex_llsc_val;
  58TCGv_i64 hex_llsc_val_i64;
  59TCGv hex_vstore_addr[VSTORES_MAX];
  60TCGv hex_vstore_size[VSTORES_MAX];
  61TCGv hex_vstore_pending[VSTORES_MAX];
  62
  63static const char * const hexagon_prednames[] = {
  64  "p0", "p1", "p2", "p3"
  65};
  66
  67intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
  68                          int num, bool alloc_ok)
  69{
  70    intptr_t offset;
  71
  72    /* See if it is already allocated */
  73    for (int i = 0; i < ctx->future_vregs_idx; i++) {
  74        if (ctx->future_vregs_num[i] == regnum) {
  75            return offsetof(CPUHexagonState, future_VRegs[i]);
  76        }
  77    }
  78
  79    g_assert(alloc_ok);
  80    offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
  81    for (int i = 0; i < num; i++) {
  82        ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
  83    }
  84    ctx->future_vregs_idx += num;
  85    g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
  86    return offset;
  87}
  88
  89intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
  90                          int num, bool alloc_ok)
  91{
  92    intptr_t offset;
  93
  94    /* See if it is already allocated */
  95    for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
  96        if (ctx->tmp_vregs_num[i] == regnum) {
  97            return offsetof(CPUHexagonState, tmp_VRegs[i]);
  98        }
  99    }
 100
 101    g_assert(alloc_ok);
 102    offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
 103    for (int i = 0; i < num; i++) {
 104        ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
 105    }
 106    ctx->tmp_vregs_idx += num;
 107    g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
 108    return offset;
 109}
 110
 111static void gen_exception_raw(int excp)
 112{
 113    gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
 114}
 115
 116static void gen_exec_counters(DisasContext *ctx)
 117{
 118    tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
 119                    hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
 120    tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
 121                    hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
 122    tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
 123                    hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
 124}
 125
 126static bool use_goto_tb(DisasContext *ctx, target_ulong dest)
 127{
 128    return translator_use_goto_tb(&ctx->base, dest);
 129}
 130
 131static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest)
 132{
 133    if (use_goto_tb(ctx, dest)) {
 134        tcg_gen_goto_tb(idx);
 135        tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
 136        tcg_gen_exit_tb(ctx->base.tb, idx);
 137    } else {
 138        tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
 139        tcg_gen_lookup_and_goto_ptr();
 140    }
 141}
 142
 143static void gen_end_tb(DisasContext *ctx)
 144{
 145    Packet *pkt = ctx->pkt;
 146
 147    gen_exec_counters(ctx);
 148
 149    if (ctx->branch_cond != TCG_COND_NEVER) {
 150        if (ctx->branch_cond != TCG_COND_ALWAYS) {
 151            TCGLabel *skip = gen_new_label();
 152            tcg_gen_brcondi_tl(ctx->branch_cond, hex_branch_taken, 0, skip);
 153            gen_goto_tb(ctx, 0, ctx->branch_dest);
 154            gen_set_label(skip);
 155            gen_goto_tb(ctx, 1, ctx->next_PC);
 156        } else {
 157            gen_goto_tb(ctx, 0, ctx->branch_dest);
 158        }
 159    } else if (ctx->is_tight_loop &&
 160               pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) {
 161        /*
 162         * When we're in a tight loop, we defer the endloop0 processing
 163         * to take advantage of direct block chaining
 164         */
 165        TCGLabel *skip = gen_new_label();
 166        tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip);
 167        tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1);
 168        gen_goto_tb(ctx, 0, ctx->base.tb->pc);
 169        gen_set_label(skip);
 170        gen_goto_tb(ctx, 1, ctx->next_PC);
 171    } else {
 172        tcg_gen_lookup_and_goto_ptr();
 173    }
 174
 175    ctx->base.is_jmp = DISAS_NORETURN;
 176}
 177
 178static void gen_exception_end_tb(DisasContext *ctx, int excp)
 179{
 180    gen_exec_counters(ctx);
 181    tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC);
 182    gen_exception_raw(excp);
 183    ctx->base.is_jmp = DISAS_NORETURN;
 184
 185}
 186
 187#define PACKET_BUFFER_LEN              1028
 188static void print_pkt(Packet *pkt)
 189{
 190    GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
 191    snprint_a_pkt_debug(buf, pkt);
 192    HEX_DEBUG_LOG("%s", buf->str);
 193    g_string_free(buf, true);
 194}
 195#define HEX_DEBUG_PRINT_PKT(pkt) \
 196    do { \
 197        if (HEX_DEBUG) { \
 198            print_pkt(pkt); \
 199        } \
 200    } while (0)
 201
 202static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
 203                             uint32_t words[])
 204{
 205    bool found_end = false;
 206    int nwords, max_words;
 207
 208    memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
 209    for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
 210        words[nwords] =
 211            translator_ldl(env, &ctx->base,
 212                           ctx->base.pc_next + nwords * sizeof(uint32_t));
 213        found_end = is_packet_end(words[nwords]);
 214    }
 215    if (!found_end) {
 216        /* Read too many words without finding the end */
 217        return 0;
 218    }
 219
 220    /* Check for page boundary crossing */
 221    max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
 222    if (nwords > max_words) {
 223        /* We can only cross a page boundary at the beginning of a TB */
 224        g_assert(ctx->base.num_insns == 1);
 225    }
 226
 227    HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
 228    HEX_DEBUG_LOG("    words = { ");
 229    for (int i = 0; i < nwords; i++) {
 230        HEX_DEBUG_LOG("0x%x, ", words[i]);
 231    }
 232    HEX_DEBUG_LOG("}\n");
 233
 234    return nwords;
 235}
 236
 237static bool check_for_attrib(Packet *pkt, int attrib)
 238{
 239    for (int i = 0; i < pkt->num_insns; i++) {
 240        if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
 241            return true;
 242        }
 243    }
 244    return false;
 245}
 246
 247static bool need_slot_cancelled(Packet *pkt)
 248{
 249    /* We only need slot_cancelled for conditional store instructions */
 250    for (int i = 0; i < pkt->num_insns; i++) {
 251        uint16_t opcode = pkt->insn[i].opcode;
 252        if (GET_ATTRIB(opcode, A_CONDEXEC) &&
 253            GET_ATTRIB(opcode, A_SCALAR_STORE)) {
 254            return true;
 255        }
 256    }
 257    return false;
 258}
 259
 260static bool need_pred_written(Packet *pkt)
 261{
 262    return check_for_attrib(pkt, A_WRITES_PRED_REG);
 263}
 264
 265static bool need_next_PC(DisasContext *ctx)
 266{
 267    Packet *pkt = ctx->pkt;
 268
 269    /* Check for conditional control flow or HW loop end */
 270    for (int i = 0; i < pkt->num_insns; i++) {
 271        uint16_t opcode = pkt->insn[i].opcode;
 272        if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) {
 273            return true;
 274        }
 275        if (GET_ATTRIB(opcode, A_HWLOOP0_END) ||
 276            GET_ATTRIB(opcode, A_HWLOOP1_END)) {
 277            return true;
 278        }
 279    }
 280    return false;
 281}
 282
 283/*
 284 * The opcode_analyze functions mark most of the writes in a packet
 285 * However, there are some implicit writes marked as attributes
 286 * of the applicable instructions.
 287 */
 288static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
 289{
 290    uint16_t opcode = ctx->insn->opcode;
 291    if (GET_ATTRIB(opcode, attrib)) {
 292        /*
 293         * USR is used to set overflow and FP exceptions,
 294         * so treat it as conditional
 295         */
 296        bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
 297                             rnum == HEX_REG_USR;
 298
 299        /* LC0/LC1 is conditionally written by endloop instructions */
 300        if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
 301            (opcode == J2_endloop0 ||
 302             opcode == J2_endloop1 ||
 303             opcode == J2_endloop01)) {
 304            is_predicated = true;
 305        }
 306
 307        ctx_log_reg_write(ctx, rnum, is_predicated);
 308    }
 309}
 310
 311static void mark_implicit_reg_writes(DisasContext *ctx)
 312{
 313    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP,  HEX_REG_FP);
 314    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP,  HEX_REG_SP);
 315    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR,  HEX_REG_LR);
 316    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
 317    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
 318    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
 319    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
 320    mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
 321    mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
 322}
 323
 324static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
 325{
 326    if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
 327        ctx_log_pred_write(ctx, pnum);
 328    }
 329}
 330
 331static void mark_implicit_pred_writes(DisasContext *ctx)
 332{
 333    mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
 334    mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
 335    mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
 336    mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
 337}
 338
 339static void analyze_packet(DisasContext *ctx)
 340{
 341    Packet *pkt = ctx->pkt;
 342    ctx->need_pkt_has_store_s1 = false;
 343    for (int i = 0; i < pkt->num_insns; i++) {
 344        Insn *insn = &pkt->insn[i];
 345        ctx->insn = insn;
 346        if (opcode_analyze[insn->opcode]) {
 347            opcode_analyze[insn->opcode](ctx);
 348        }
 349        mark_implicit_reg_writes(ctx);
 350        mark_implicit_pred_writes(ctx);
 351    }
 352}
 353
 354static void gen_start_packet(DisasContext *ctx)
 355{
 356    Packet *pkt = ctx->pkt;
 357    target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
 358    int i;
 359
 360    /* Clear out the disassembly context */
 361    ctx->next_PC = next_PC;
 362    ctx->reg_log_idx = 0;
 363    bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
 364    bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
 365    ctx->preg_log_idx = 0;
 366    bitmap_zero(ctx->pregs_written, NUM_PREGS);
 367    ctx->future_vregs_idx = 0;
 368    ctx->tmp_vregs_idx = 0;
 369    ctx->vreg_log_idx = 0;
 370    bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
 371    bitmap_zero(ctx->vregs_updated, NUM_VREGS);
 372    bitmap_zero(ctx->vregs_select, NUM_VREGS);
 373    bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS);
 374    bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS);
 375    ctx->qreg_log_idx = 0;
 376    for (i = 0; i < STORES_MAX; i++) {
 377        ctx->store_width[i] = 0;
 378    }
 379    ctx->s1_store_processed = false;
 380    ctx->pre_commit = true;
 381
 382    analyze_packet(ctx);
 383
 384    if (ctx->need_pkt_has_store_s1) {
 385        tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1);
 386    }
 387
 388    /*
 389     * pregs_written is used both in the analyze phase as well as the code
 390     * gen phase, so clear it again.
 391     */
 392    bitmap_zero(ctx->pregs_written, NUM_PREGS);
 393
 394    if (HEX_DEBUG) {
 395        /* Handy place to set a breakpoint before the packet executes */
 396        gen_helper_debug_start_packet(cpu_env);
 397        tcg_gen_movi_tl(hex_this_PC, ctx->base.pc_next);
 398    }
 399
 400    /* Initialize the runtime state for packet semantics */
 401    if (need_slot_cancelled(pkt)) {
 402        tcg_gen_movi_tl(hex_slot_cancelled, 0);
 403    }
 404    if (pkt->pkt_has_cof) {
 405        if (pkt->pkt_has_multi_cof) {
 406            tcg_gen_movi_tl(hex_branch_taken, 0);
 407        }
 408        if (need_next_PC(ctx)) {
 409            tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC);
 410        }
 411    }
 412    if (need_pred_written(pkt)) {
 413        tcg_gen_movi_tl(hex_pred_written, 0);
 414    }
 415
 416    /* Preload the predicated registers into hex_new_value[i] */
 417    if (!bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
 418        int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
 419        while (i < TOTAL_PER_THREAD_REGS) {
 420            tcg_gen_mov_tl(hex_new_value[i], hex_gpr[i]);
 421            i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
 422                              i + 1);
 423        }
 424    }
 425
 426    /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */
 427    if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) {
 428        int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS);
 429        while (i < NUM_VREGS) {
 430            const intptr_t VdV_off =
 431                ctx_future_vreg_off(ctx, i, 1, true);
 432            intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
 433            tcg_gen_gvec_mov(MO_64, VdV_off,
 434                             src_off,
 435                             sizeof(MMVector),
 436                             sizeof(MMVector));
 437            i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1);
 438        }
 439    }
 440    if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) {
 441        int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS);
 442        while (i < NUM_VREGS) {
 443            const intptr_t VdV_off =
 444                ctx_tmp_vreg_off(ctx, i, 1, true);
 445            intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
 446            tcg_gen_gvec_mov(MO_64, VdV_off,
 447                             src_off,
 448                             sizeof(MMVector),
 449                             sizeof(MMVector));
 450            i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1);
 451        }
 452    }
 453}
 454
 455bool is_gather_store_insn(DisasContext *ctx)
 456{
 457    Packet *pkt = ctx->pkt;
 458    Insn *insn = ctx->insn;
 459    if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
 460        insn->new_value_producer_slot == 1) {
 461        /* Look for gather instruction */
 462        for (int i = 0; i < pkt->num_insns; i++) {
 463            Insn *in = &pkt->insn[i];
 464            if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
 465                return true;
 466            }
 467        }
 468    }
 469    return false;
 470}
 471
 472static void mark_store_width(DisasContext *ctx)
 473{
 474    uint16_t opcode = ctx->insn->opcode;
 475    uint32_t slot = ctx->insn->slot;
 476    uint8_t width = 0;
 477
 478    if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
 479        if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
 480            width |= 1;
 481        }
 482        if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
 483            width |= 2;
 484        }
 485        if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
 486            width |= 4;
 487        }
 488        if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
 489            width |= 8;
 490        }
 491        tcg_debug_assert(is_power_of_2(width));
 492        ctx->store_width[slot] = width;
 493    }
 494}
 495
 496static void gen_insn(DisasContext *ctx)
 497{
 498    if (ctx->insn->generate) {
 499        ctx->insn->generate(ctx);
 500        mark_store_width(ctx);
 501    } else {
 502        gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
 503    }
 504}
 505
 506/*
 507 * Helpers for generating the packet commit
 508 */
 509static void gen_reg_writes(DisasContext *ctx)
 510{
 511    int i;
 512
 513    for (i = 0; i < ctx->reg_log_idx; i++) {
 514        int reg_num = ctx->reg_log[i];
 515
 516        tcg_gen_mov_tl(hex_gpr[reg_num], hex_new_value[reg_num]);
 517
 518        /*
 519         * ctx->is_tight_loop is set when SA0 points to the beginning of the TB.
 520         * If we write to SA0, we have to turn off tight loop handling.
 521         */
 522        if (reg_num == HEX_REG_SA0) {
 523            ctx->is_tight_loop = false;
 524        }
 525    }
 526}
 527
 528static void gen_pred_writes(DisasContext *ctx)
 529{
 530    int i;
 531
 532    /* Early exit if the log is empty */
 533    if (!ctx->preg_log_idx) {
 534        return;
 535    }
 536
 537    /*
 538     * Only endloop instructions will conditionally
 539     * write a predicate.  If there are no endloop
 540     * instructions, we can use the non-conditional
 541     * write of the predicates.
 542     */
 543    if (ctx->pkt->pkt_has_endloop) {
 544        TCGv zero = tcg_constant_tl(0);
 545        TCGv pred_written = tcg_temp_new();
 546        for (i = 0; i < ctx->preg_log_idx; i++) {
 547            int pred_num = ctx->preg_log[i];
 548
 549            tcg_gen_andi_tl(pred_written, hex_pred_written, 1 << pred_num);
 550            tcg_gen_movcond_tl(TCG_COND_NE, hex_pred[pred_num],
 551                               pred_written, zero,
 552                               hex_new_pred_value[pred_num],
 553                               hex_pred[pred_num]);
 554        }
 555    } else {
 556        for (i = 0; i < ctx->preg_log_idx; i++) {
 557            int pred_num = ctx->preg_log[i];
 558            tcg_gen_mov_tl(hex_pred[pred_num], hex_new_pred_value[pred_num]);
 559            if (HEX_DEBUG) {
 560                /* Do this so HELPER(debug_commit_end) will know */
 561                tcg_gen_ori_tl(hex_pred_written, hex_pred_written,
 562                               1 << pred_num);
 563            }
 564        }
 565    }
 566}
 567
 568static void gen_check_store_width(DisasContext *ctx, int slot_num)
 569{
 570    if (HEX_DEBUG) {
 571        TCGv slot = tcg_constant_tl(slot_num);
 572        TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
 573        gen_helper_debug_check_store_width(cpu_env, slot, check);
 574    }
 575}
 576
 577static bool slot_is_predicated(Packet *pkt, int slot_num)
 578{
 579    for (int i = 0; i < pkt->num_insns; i++) {
 580        if (pkt->insn[i].slot == slot_num) {
 581            return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
 582        }
 583    }
 584    /* If we get to here, we didn't find an instruction in the requested slot */
 585    g_assert_not_reached();
 586}
 587
 588void process_store(DisasContext *ctx, int slot_num)
 589{
 590    bool is_predicated = slot_is_predicated(ctx->pkt, slot_num);
 591    TCGLabel *label_end = NULL;
 592
 593    /*
 594     * We may have already processed this store
 595     * See CHECK_NOSHUF in macros.h
 596     */
 597    if (slot_num == 1 && ctx->s1_store_processed) {
 598        return;
 599    }
 600    ctx->s1_store_processed = true;
 601
 602    if (is_predicated) {
 603        TCGv cancelled = tcg_temp_new();
 604        label_end = gen_new_label();
 605
 606        /* Don't do anything if the slot was cancelled */
 607        tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
 608        tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
 609    }
 610    {
 611        TCGv address = tcg_temp_new();
 612        tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
 613
 614        /*
 615         * If we know the width from the DisasContext, we can
 616         * generate much cleaner code.
 617         * Unfortunately, not all instructions execute the fSTORE
 618         * macro during code generation.  Anything that uses the
 619         * generic helper will have this problem.  Instructions
 620         * that use fWRAP to generate proper TCG code will be OK.
 621         */
 622        switch (ctx->store_width[slot_num]) {
 623        case 1:
 624            gen_check_store_width(ctx, slot_num);
 625            tcg_gen_qemu_st8(hex_store_val32[slot_num],
 626                             hex_store_addr[slot_num],
 627                             ctx->mem_idx);
 628            break;
 629        case 2:
 630            gen_check_store_width(ctx, slot_num);
 631            tcg_gen_qemu_st16(hex_store_val32[slot_num],
 632                              hex_store_addr[slot_num],
 633                              ctx->mem_idx);
 634            break;
 635        case 4:
 636            gen_check_store_width(ctx, slot_num);
 637            tcg_gen_qemu_st32(hex_store_val32[slot_num],
 638                              hex_store_addr[slot_num],
 639                              ctx->mem_idx);
 640            break;
 641        case 8:
 642            gen_check_store_width(ctx, slot_num);
 643            tcg_gen_qemu_st64(hex_store_val64[slot_num],
 644                              hex_store_addr[slot_num],
 645                              ctx->mem_idx);
 646            break;
 647        default:
 648            {
 649                /*
 650                 * If we get to here, we don't know the width at
 651                 * TCG generation time, we'll use a helper to
 652                 * avoid branching based on the width at runtime.
 653                 */
 654                TCGv slot = tcg_constant_tl(slot_num);
 655                gen_helper_commit_store(cpu_env, slot);
 656            }
 657        }
 658    }
 659    if (is_predicated) {
 660        gen_set_label(label_end);
 661    }
 662}
 663
 664static void process_store_log(DisasContext *ctx)
 665{
 666    /*
 667     *  When a packet has two stores, the hardware processes
 668     *  slot 1 and then slot 0.  This will be important when
 669     *  the memory accesses overlap.
 670     */
 671    Packet *pkt = ctx->pkt;
 672    if (pkt->pkt_has_store_s1) {
 673        g_assert(!pkt->pkt_has_dczeroa);
 674        process_store(ctx, 1);
 675    }
 676    if (pkt->pkt_has_store_s0) {
 677        g_assert(!pkt->pkt_has_dczeroa);
 678        process_store(ctx, 0);
 679    }
 680}
 681
 682/* Zero out a 32-bit cache line */
 683static void process_dczeroa(DisasContext *ctx)
 684{
 685    if (ctx->pkt->pkt_has_dczeroa) {
 686        /* Store 32 bytes of zero starting at (addr & ~0x1f) */
 687        TCGv addr = tcg_temp_new();
 688        TCGv_i64 zero = tcg_constant_i64(0);
 689
 690        tcg_gen_andi_tl(addr, hex_dczero_addr, ~0x1f);
 691        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
 692        tcg_gen_addi_tl(addr, addr, 8);
 693        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
 694        tcg_gen_addi_tl(addr, addr, 8);
 695        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
 696        tcg_gen_addi_tl(addr, addr, 8);
 697        tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
 698    }
 699}
 700
 701static bool pkt_has_hvx_store(Packet *pkt)
 702{
 703    int i;
 704    for (i = 0; i < pkt->num_insns; i++) {
 705        int opcode = pkt->insn[i].opcode;
 706        if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
 707            return true;
 708        }
 709    }
 710    return false;
 711}
 712
 713static void gen_commit_hvx(DisasContext *ctx)
 714{
 715    int i;
 716
 717    /*
 718     *    for (i = 0; i < ctx->vreg_log_idx; i++) {
 719     *        int rnum = ctx->vreg_log[i];
 720     *        env->VRegs[rnum] = env->future_VRegs[rnum];
 721     *    }
 722     */
 723    for (i = 0; i < ctx->vreg_log_idx; i++) {
 724        int rnum = ctx->vreg_log[i];
 725        intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
 726        intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
 727        size_t size = sizeof(MMVector);
 728
 729        tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
 730    }
 731
 732    /*
 733     *    for (i = 0; i < ctx->qreg_log_idx; i++) {
 734     *        int rnum = ctx->qreg_log[i];
 735     *        env->QRegs[rnum] = env->future_QRegs[rnum];
 736     *    }
 737     */
 738    for (i = 0; i < ctx->qreg_log_idx; i++) {
 739        int rnum = ctx->qreg_log[i];
 740        intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
 741        intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
 742        size_t size = sizeof(MMQReg);
 743
 744        tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
 745    }
 746
 747    if (pkt_has_hvx_store(ctx->pkt)) {
 748        gen_helper_commit_hvx_stores(cpu_env);
 749    }
 750}
 751
 752static void update_exec_counters(DisasContext *ctx)
 753{
 754    Packet *pkt = ctx->pkt;
 755    int num_insns = pkt->num_insns;
 756    int num_real_insns = 0;
 757    int num_hvx_insns = 0;
 758
 759    for (int i = 0; i < num_insns; i++) {
 760        if (!pkt->insn[i].is_endloop &&
 761            !pkt->insn[i].part1 &&
 762            !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
 763            num_real_insns++;
 764        }
 765        if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
 766            num_hvx_insns++;
 767        }
 768    }
 769
 770    ctx->num_packets++;
 771    ctx->num_insns += num_real_insns;
 772    ctx->num_hvx_insns += num_hvx_insns;
 773}
 774
 775static void gen_commit_packet(DisasContext *ctx)
 776{
 777    /*
 778     * If there is more than one store in a packet, make sure they are all OK
 779     * before proceeding with the rest of the packet commit.
 780     *
 781     * dczeroa has to be the only store operation in the packet, so we go
 782     * ahead and process that first.
 783     *
 784     * When there is an HVX store, there can also be a scalar store in either
 785     * slot 0 or slot1, so we create a mask for the helper to indicate what
 786     * work to do.
 787     *
 788     * When there are two scalar stores, we probe the one in slot 0.
 789     *
 790     * Note that we don't call the probe helper for packets with only one
 791     * store.  Therefore, we call process_store_log before anything else
 792     * involved in committing the packet.
 793     */
 794    Packet *pkt = ctx->pkt;
 795    bool has_store_s0 = pkt->pkt_has_store_s0;
 796    bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
 797    bool has_hvx_store = pkt_has_hvx_store(pkt);
 798    if (pkt->pkt_has_dczeroa) {
 799        /*
 800         * The dczeroa will be the store in slot 0, check that we don't have
 801         * a store in slot 1 or an HVX store.
 802         */
 803        g_assert(!has_store_s1 && !has_hvx_store);
 804        process_dczeroa(ctx);
 805    } else if (has_hvx_store) {
 806        TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
 807
 808        if (!has_store_s0 && !has_store_s1) {
 809            gen_helper_probe_hvx_stores(cpu_env, mem_idx);
 810        } else {
 811            int mask = 0;
 812            TCGv mask_tcgv;
 813
 814            if (has_store_s0) {
 815                mask =
 816                    FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1);
 817            }
 818            if (has_store_s1) {
 819                mask =
 820                    FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1);
 821            }
 822            if (has_hvx_store) {
 823                mask =
 824                    FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
 825                               HAS_HVX_STORES, 1);
 826            }
 827            if (has_store_s0 && slot_is_predicated(pkt, 0)) {
 828                mask =
 829                    FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
 830                               S0_IS_PRED, 1);
 831            }
 832            if (has_store_s1 && slot_is_predicated(pkt, 1)) {
 833                mask =
 834                    FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
 835                               S1_IS_PRED, 1);
 836            }
 837            mask_tcgv = tcg_constant_tl(mask);
 838            gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, mask_tcgv, mem_idx);
 839        }
 840    } else if (has_store_s0 && has_store_s1) {
 841        /*
 842         * process_store_log will execute the slot 1 store first,
 843         * so we only have to probe the store in slot 0
 844         */
 845        int args = 0;
 846        args =
 847            FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx);
 848        if (slot_is_predicated(pkt, 0)) {
 849            args =
 850                FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1);
 851        }
 852        TCGv args_tcgv = tcg_constant_tl(args);
 853        gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv);
 854    }
 855
 856    process_store_log(ctx);
 857
 858    gen_reg_writes(ctx);
 859    gen_pred_writes(ctx);
 860    if (pkt->pkt_has_hvx) {
 861        gen_commit_hvx(ctx);
 862    }
 863    update_exec_counters(ctx);
 864    if (HEX_DEBUG) {
 865        TCGv has_st0 =
 866            tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
 867        TCGv has_st1 =
 868            tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
 869
 870        /* Handy place to set a breakpoint at the end of execution */
 871        gen_helper_debug_commit_end(cpu_env, has_st0, has_st1);
 872    }
 873
 874    if (pkt->vhist_insn != NULL) {
 875        ctx->pre_commit = false;
 876        ctx->insn = pkt->vhist_insn;
 877        pkt->vhist_insn->generate(ctx);
 878    }
 879
 880    if (pkt->pkt_has_cof) {
 881        gen_end_tb(ctx);
 882    }
 883}
 884
 885static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
 886{
 887    uint32_t words[PACKET_WORDS_MAX];
 888    int nwords;
 889    Packet pkt;
 890    int i;
 891
 892    nwords = read_packet_words(env, ctx, words);
 893    if (!nwords) {
 894        gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
 895        return;
 896    }
 897
 898    if (decode_packet(nwords, words, &pkt, false) > 0) {
 899        pkt.pc = ctx->base.pc_next;
 900        HEX_DEBUG_PRINT_PKT(&pkt);
 901        ctx->pkt = &pkt;
 902        gen_start_packet(ctx);
 903        for (i = 0; i < pkt.num_insns; i++) {
 904            ctx->insn = &pkt.insn[i];
 905            gen_insn(ctx);
 906        }
 907        gen_commit_packet(ctx);
 908        ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
 909    } else {
 910        gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
 911    }
 912}
 913
 914static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
 915                                          CPUState *cs)
 916{
 917    DisasContext *ctx = container_of(dcbase, DisasContext, base);
 918    uint32_t hex_flags = dcbase->tb->flags;
 919
 920    ctx->mem_idx = MMU_USER_IDX;
 921    ctx->num_packets = 0;
 922    ctx->num_insns = 0;
 923    ctx->num_hvx_insns = 0;
 924    ctx->branch_cond = TCG_COND_NEVER;
 925    ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP);
 926}
 927
 928static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
 929{
 930}
 931
 932static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
 933{
 934    DisasContext *ctx = container_of(dcbase, DisasContext, base);
 935
 936    tcg_gen_insn_start(ctx->base.pc_next);
 937}
 938
 939static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
 940{
 941    target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
 942    bool found_end = false;
 943    int nwords;
 944
 945    for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
 946        uint32_t word = cpu_ldl_code(env,
 947                            ctx->base.pc_next + nwords * sizeof(uint32_t));
 948        found_end = is_packet_end(word);
 949    }
 950    uint32_t next_ptr =  ctx->base.pc_next + nwords * sizeof(uint32_t);
 951    return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
 952}
 953
 954static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
 955{
 956    DisasContext *ctx = container_of(dcbase, DisasContext, base);
 957    CPUHexagonState *env = cpu->env_ptr;
 958
 959    decode_and_translate_packet(env, ctx);
 960
 961    if (ctx->base.is_jmp == DISAS_NEXT) {
 962        target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
 963        target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
 964
 965        if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
 966            (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
 967             pkt_crosses_page(env, ctx))) {
 968            ctx->base.is_jmp = DISAS_TOO_MANY;
 969        }
 970
 971        /*
 972         * The CPU log is used to compare against LLDB single stepping,
 973         * so end the TLB after every packet.
 974         */
 975        HexagonCPU *hex_cpu = env_archcpu(env);
 976        if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
 977            ctx->base.is_jmp = DISAS_TOO_MANY;
 978        }
 979    }
 980}
 981
 982static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
 983{
 984    DisasContext *ctx = container_of(dcbase, DisasContext, base);
 985
 986    switch (ctx->base.is_jmp) {
 987    case DISAS_TOO_MANY:
 988        gen_exec_counters(ctx);
 989        tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
 990        tcg_gen_exit_tb(NULL, 0);
 991        break;
 992    case DISAS_NORETURN:
 993        break;
 994    default:
 995        g_assert_not_reached();
 996    }
 997}
 998
 999static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
1000                                 CPUState *cpu, FILE *logfile)
1001{
1002    fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
1003    target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
1004}
1005
1006
1007static const TranslatorOps hexagon_tr_ops = {
1008    .init_disas_context = hexagon_tr_init_disas_context,
1009    .tb_start           = hexagon_tr_tb_start,
1010    .insn_start         = hexagon_tr_insn_start,
1011    .translate_insn     = hexagon_tr_translate_packet,
1012    .tb_stop            = hexagon_tr_tb_stop,
1013    .disas_log          = hexagon_tr_disas_log,
1014};
1015
1016void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1017                           target_ulong pc, void *host_pc)
1018{
1019    DisasContext ctx;
1020
1021    translator_loop(cs, tb, max_insns, pc, host_pc,
1022                    &hexagon_tr_ops, &ctx.base);
1023}
1024
1025#define NAME_LEN               64
1026static char new_value_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
1027static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
1028static char new_pred_value_names[NUM_PREGS][NAME_LEN];
1029static char store_addr_names[STORES_MAX][NAME_LEN];
1030static char store_width_names[STORES_MAX][NAME_LEN];
1031static char store_val32_names[STORES_MAX][NAME_LEN];
1032static char store_val64_names[STORES_MAX][NAME_LEN];
1033static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
1034static char vstore_size_names[VSTORES_MAX][NAME_LEN];
1035static char vstore_pending_names[VSTORES_MAX][NAME_LEN];
1036
1037void hexagon_translate_init(void)
1038{
1039    int i;
1040
1041    opcode_init();
1042
1043    for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
1044        hex_gpr[i] = tcg_global_mem_new(cpu_env,
1045            offsetof(CPUHexagonState, gpr[i]),
1046            hexagon_regnames[i]);
1047
1048        snprintf(new_value_names[i], NAME_LEN, "new_%s", hexagon_regnames[i]);
1049        hex_new_value[i] = tcg_global_mem_new(cpu_env,
1050            offsetof(CPUHexagonState, new_value[i]),
1051            new_value_names[i]);
1052
1053        if (HEX_DEBUG) {
1054            snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
1055                     hexagon_regnames[i]);
1056            hex_reg_written[i] = tcg_global_mem_new(cpu_env,
1057                offsetof(CPUHexagonState, reg_written[i]),
1058                reg_written_names[i]);
1059        }
1060    }
1061    for (i = 0; i < NUM_PREGS; i++) {
1062        hex_pred[i] = tcg_global_mem_new(cpu_env,
1063            offsetof(CPUHexagonState, pred[i]),
1064            hexagon_prednames[i]);
1065
1066        snprintf(new_pred_value_names[i], NAME_LEN, "new_pred_%s",
1067                 hexagon_prednames[i]);
1068        hex_new_pred_value[i] = tcg_global_mem_new(cpu_env,
1069            offsetof(CPUHexagonState, new_pred_value[i]),
1070            new_pred_value_names[i]);
1071    }
1072    hex_pred_written = tcg_global_mem_new(cpu_env,
1073        offsetof(CPUHexagonState, pred_written), "pred_written");
1074    hex_this_PC = tcg_global_mem_new(cpu_env,
1075        offsetof(CPUHexagonState, this_PC), "this_PC");
1076    hex_slot_cancelled = tcg_global_mem_new(cpu_env,
1077        offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
1078    hex_branch_taken = tcg_global_mem_new(cpu_env,
1079        offsetof(CPUHexagonState, branch_taken), "branch_taken");
1080    hex_pkt_has_store_s1 = tcg_global_mem_new(cpu_env,
1081        offsetof(CPUHexagonState, pkt_has_store_s1), "pkt_has_store_s1");
1082    hex_dczero_addr = tcg_global_mem_new(cpu_env,
1083        offsetof(CPUHexagonState, dczero_addr), "dczero_addr");
1084    hex_llsc_addr = tcg_global_mem_new(cpu_env,
1085        offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
1086    hex_llsc_val = tcg_global_mem_new(cpu_env,
1087        offsetof(CPUHexagonState, llsc_val), "llsc_val");
1088    hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
1089        offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
1090    for (i = 0; i < STORES_MAX; i++) {
1091        snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
1092        hex_store_addr[i] = tcg_global_mem_new(cpu_env,
1093            offsetof(CPUHexagonState, mem_log_stores[i].va),
1094            store_addr_names[i]);
1095
1096        snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
1097        hex_store_width[i] = tcg_global_mem_new(cpu_env,
1098            offsetof(CPUHexagonState, mem_log_stores[i].width),
1099            store_width_names[i]);
1100
1101        snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
1102        hex_store_val32[i] = tcg_global_mem_new(cpu_env,
1103            offsetof(CPUHexagonState, mem_log_stores[i].data32),
1104            store_val32_names[i]);
1105
1106        snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
1107        hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
1108            offsetof(CPUHexagonState, mem_log_stores[i].data64),
1109            store_val64_names[i]);
1110    }
1111    for (int i = 0; i < VSTORES_MAX; i++) {
1112        snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
1113        hex_vstore_addr[i] = tcg_global_mem_new(cpu_env,
1114            offsetof(CPUHexagonState, vstore[i].va),
1115            vstore_addr_names[i]);
1116
1117        snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
1118        hex_vstore_size[i] = tcg_global_mem_new(cpu_env,
1119            offsetof(CPUHexagonState, vstore[i].size),
1120            vstore_size_names[i]);
1121
1122        snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
1123        hex_vstore_pending[i] = tcg_global_mem_new(cpu_env,
1124            offsetof(CPUHexagonState, vstore_pending[i]),
1125            vstore_pending_names[i]);
1126    }
1127}
1128