qemu/tests/qtest/npcm7xx_rng-test.c
<<
>>
Prefs
   1/*
   2 * QTest testcase for the Nuvoton NPCM7xx Random Number Generator
   3 *
   4 * Copyright 2020 Google LLC
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  14 * for more details.
  15 */
  16
  17#include "qemu/osdep.h"
  18
  19#include <math.h>
  20
  21#include "libqtest-single.h"
  22#include "qemu/bitops.h"
  23#include "qemu/cutils.h"
  24
  25#define RNG_BASE_ADDR   0xf000b000
  26
  27/* Control and Status Register */
  28#define RNGCS   0x00
  29# define DVALID     BIT(1)  /* Data Valid */
  30# define RNGE       BIT(0)  /* RNG Enable */
  31/* Data Register */
  32#define RNGD    0x04
  33/* Mode Register */
  34#define RNGMODE 0x08
  35# define ROSEL_NORMAL   (2) /* RNG only works in this mode */
  36
  37/* Number of bits to collect for randomness tests. */
  38#define TEST_INPUT_BITS  (128)
  39
  40static void dump_buf_if_failed(const uint8_t *buf, size_t size)
  41{
  42    if (g_test_failed()) {
  43        qemu_hexdump(stderr, "", buf, size);
  44    }
  45}
  46
  47static void rng_writeb(unsigned int offset, uint8_t value)
  48{
  49    writeb(RNG_BASE_ADDR + offset, value);
  50}
  51
  52static uint8_t rng_readb(unsigned int offset)
  53{
  54    return readb(RNG_BASE_ADDR + offset);
  55}
  56
  57/* Disable RNG and set normal ring oscillator mode. */
  58static void rng_reset(void)
  59{
  60    rng_writeb(RNGCS, 0);
  61    rng_writeb(RNGMODE, ROSEL_NORMAL);
  62}
  63
  64/* Reset RNG and then enable it. */
  65static void rng_reset_enable(void)
  66{
  67    rng_reset();
  68    rng_writeb(RNGCS, RNGE);
  69}
  70
  71/* Wait until Data Valid bit is set. */
  72static bool rng_wait_ready(void)
  73{
  74    /* qemu_guest_getrandom may fail. Assume it won't fail 10 times in a row. */
  75    int retries = 10;
  76
  77    while (retries-- > 0) {
  78        if (rng_readb(RNGCS) & DVALID) {
  79            return true;
  80        }
  81    }
  82
  83    return false;
  84}
  85
  86/*
  87 * Perform a frequency (monobit) test, as defined by NIST SP 800-22, on the
  88 * sequence in buf and return the P-value. This represents the probability of a
  89 * truly random sequence having the same proportion of zeros and ones as the
  90 * sequence in buf.
  91 *
  92 * An RNG which always returns 0x00 or 0xff, or has some bits stuck at 0 or 1,
  93 * will fail this test. However, an RNG which always returns 0x55, 0xf0 or some
  94 * other value with an equal number of zeroes and ones will pass.
  95 */
  96static double calc_monobit_p(const uint8_t *buf, unsigned int len)
  97{
  98    unsigned int i;
  99    double s_obs;
 100    int sn = 0;
 101
 102    for (i = 0; i < len; i++) {
 103        /*
 104         * Each 1 counts as 1, each 0 counts as -1.
 105         * s = cp - (8 - cp) = 2 * cp - 8
 106         */
 107        sn += 2 * ctpop8(buf[i]) - 8;
 108    }
 109
 110    s_obs = abs(sn) / sqrt(len * BITS_PER_BYTE);
 111
 112    return erfc(s_obs / sqrt(2));
 113}
 114
 115/*
 116 * Perform a runs test, as defined by NIST SP 800-22, and return the P-value.
 117 * This represents the probability of a truly random sequence having the same
 118 * number of runs (i.e. uninterrupted sequences of identical bits) as the
 119 * sequence in buf.
 120 */
 121static double calc_runs_p(const unsigned long *buf, unsigned int nr_bits)
 122{
 123    unsigned int j;
 124    unsigned int k;
 125    int nr_ones = 0;
 126    int vn_obs = 0;
 127    double pi;
 128
 129    g_assert(nr_bits % BITS_PER_LONG == 0);
 130
 131    for (j = 0; j < nr_bits / BITS_PER_LONG; j++) {
 132        nr_ones += __builtin_popcountl(buf[j]);
 133    }
 134    pi = (double)nr_ones / nr_bits;
 135
 136    for (k = 0; k < nr_bits - 1; k++) {
 137        vn_obs += (test_bit(k, buf) ^ test_bit(k + 1, buf));
 138    }
 139    vn_obs += 1;
 140
 141    return erfc(fabs(vn_obs - 2 * nr_bits * pi * (1.0 - pi))
 142                / (2 * sqrt(2 * nr_bits) * pi * (1.0 - pi)));
 143}
 144
 145/*
 146 * Verifies that DVALID is clear, and RNGD reads zero, when RNGE is cleared,
 147 * and DVALID eventually becomes set when RNGE is set.
 148 */
 149static void test_enable_disable(void)
 150{
 151    /* Disable: DVALID should not be set, and RNGD should read zero */
 152    rng_reset();
 153    g_assert_cmphex(rng_readb(RNGCS), ==, 0);
 154    g_assert_cmphex(rng_readb(RNGD), ==, 0);
 155
 156    /* Enable: DVALID should be set, but we can't make assumptions about RNGD */
 157    rng_writeb(RNGCS, RNGE);
 158    g_assert_true(rng_wait_ready());
 159    g_assert_cmphex(rng_readb(RNGCS), ==, DVALID | RNGE);
 160
 161    /* Disable: DVALID should not be set, and RNGD should read zero */
 162    rng_writeb(RNGCS, 0);
 163    g_assert_cmphex(rng_readb(RNGCS), ==, 0);
 164    g_assert_cmphex(rng_readb(RNGD), ==, 0);
 165}
 166
 167/*
 168 * Verifies that the RNG only produces data when RNGMODE is set to 'normal'
 169 * ring oscillator mode.
 170 */
 171static void test_rosel(void)
 172{
 173    rng_reset_enable();
 174    g_assert_true(rng_wait_ready());
 175    rng_writeb(RNGMODE, 0);
 176    g_assert_false(rng_wait_ready());
 177    rng_writeb(RNGMODE, ROSEL_NORMAL);
 178    g_assert_true(rng_wait_ready());
 179    rng_writeb(RNGMODE, 0);
 180    g_assert_false(rng_wait_ready());
 181}
 182
 183/*
 184 * Verifies that a continuous sequence of bits collected after enabling the RNG
 185 * satisfies a monobit test.
 186 */
 187static void test_continuous_monobit(void)
 188{
 189    uint8_t buf[TEST_INPUT_BITS / BITS_PER_BYTE];
 190    unsigned int i;
 191
 192    rng_reset_enable();
 193    for (i = 0; i < sizeof(buf); i++) {
 194        g_assert_true(rng_wait_ready());
 195        buf[i] = rng_readb(RNGD);
 196    }
 197
 198    g_assert_cmpfloat(calc_monobit_p(buf, sizeof(buf)), >, 0.01);
 199    dump_buf_if_failed(buf, sizeof(buf));
 200}
 201
 202/*
 203 * Verifies that a continuous sequence of bits collected after enabling the RNG
 204 * satisfies a runs test.
 205 */
 206static void test_continuous_runs(void)
 207{
 208    union {
 209        unsigned long l[TEST_INPUT_BITS / BITS_PER_LONG];
 210        uint8_t c[TEST_INPUT_BITS / BITS_PER_BYTE];
 211    } buf;
 212    unsigned int i;
 213
 214    rng_reset_enable();
 215    for (i = 0; i < sizeof(buf); i++) {
 216        g_assert_true(rng_wait_ready());
 217        buf.c[i] = rng_readb(RNGD);
 218    }
 219
 220    g_assert_cmpfloat(calc_runs_p(buf.l, sizeof(buf) * BITS_PER_BYTE), >, 0.01);
 221    dump_buf_if_failed(buf.c, sizeof(buf));
 222}
 223
 224/*
 225 * Verifies that the first data byte collected after enabling the RNG satisfies
 226 * a monobit test.
 227 */
 228static void test_first_byte_monobit(void)
 229{
 230    /* Enable, collect one byte, disable. Repeat until we have 100 bits. */
 231    uint8_t buf[TEST_INPUT_BITS / BITS_PER_BYTE];
 232    unsigned int i;
 233
 234    rng_reset();
 235    for (i = 0; i < sizeof(buf); i++) {
 236        rng_writeb(RNGCS, RNGE);
 237        g_assert_true(rng_wait_ready());
 238        buf[i] = rng_readb(RNGD);
 239        rng_writeb(RNGCS, 0);
 240    }
 241
 242    g_assert_cmpfloat(calc_monobit_p(buf, sizeof(buf)), >, 0.01);
 243    dump_buf_if_failed(buf, sizeof(buf));
 244}
 245
 246/*
 247 * Verifies that the first data byte collected after enabling the RNG satisfies
 248 * a runs test.
 249 */
 250static void test_first_byte_runs(void)
 251{
 252    /* Enable, collect one byte, disable. Repeat until we have 100 bits. */
 253    union {
 254        unsigned long l[TEST_INPUT_BITS / BITS_PER_LONG];
 255        uint8_t c[TEST_INPUT_BITS / BITS_PER_BYTE];
 256    } buf;
 257    unsigned int i;
 258
 259    rng_reset();
 260    for (i = 0; i < sizeof(buf); i++) {
 261        rng_writeb(RNGCS, RNGE);
 262        g_assert_true(rng_wait_ready());
 263        buf.c[i] = rng_readb(RNGD);
 264        rng_writeb(RNGCS, 0);
 265    }
 266
 267    g_assert_cmpfloat(calc_runs_p(buf.l, sizeof(buf) * BITS_PER_BYTE), >, 0.01);
 268    dump_buf_if_failed(buf.c, sizeof(buf));
 269}
 270
 271int main(int argc, char **argv)
 272{
 273    int ret;
 274
 275    g_test_init(&argc, &argv, NULL);
 276    g_test_set_nonfatal_assertions();
 277
 278    qtest_add_func("npcm7xx_rng/enable_disable", test_enable_disable);
 279    qtest_add_func("npcm7xx_rng/rosel", test_rosel);
 280    /*
 281     * These tests fail intermittently; only run them on explicit
 282     * request until we figure out why.
 283     */
 284    if (getenv("QEMU_TEST_FLAKY_RNG_TESTS")) {
 285        qtest_add_func("npcm7xx_rng/continuous/monobit", test_continuous_monobit);
 286        qtest_add_func("npcm7xx_rng/continuous/runs", test_continuous_runs);
 287        qtest_add_func("npcm7xx_rng/first_byte/monobit", test_first_byte_monobit);
 288        qtest_add_func("npcm7xx_rng/first_byte/runs", test_first_byte_runs);
 289    }
 290
 291    qtest_start("-machine npcm750-evb");
 292    ret = g_test_run();
 293    qtest_end();
 294
 295    return ret;
 296}
 297