qemu/hw/arm/omap1.c
<<
>>
Prefs
   1/*
   2 * TI OMAP processors emulation.
   3 *
   4 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 or
   9 * (at your option) version 3 of the License.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "qemu/error-report.h"
  23#include "qemu/main-loop.h"
  24#include "qapi/error.h"
  25#include "cpu.h"
  26#include "exec/address-spaces.h"
  27#include "hw/hw.h"
  28#include "hw/irq.h"
  29#include "hw/qdev-properties.h"
  30#include "hw/arm/boot.h"
  31#include "hw/arm/omap.h"
  32#include "sysemu/blockdev.h"
  33#include "sysemu/sysemu.h"
  34#include "hw/arm/soc_dma.h"
  35#include "sysemu/qtest.h"
  36#include "sysemu/reset.h"
  37#include "sysemu/runstate.h"
  38#include "sysemu/rtc.h"
  39#include "qemu/range.h"
  40#include "hw/sysbus.h"
  41#include "qemu/cutils.h"
  42#include "qemu/bcd.h"
  43
  44static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
  45{
  46    qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
  47                  funcname, 8 * sz, addr);
  48}
  49
  50/* Should signal the TCMI/GPMC */
  51uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  52{
  53    uint8_t ret;
  54
  55    omap_log_badwidth(__func__, addr, 1);
  56    cpu_physical_memory_read(addr, &ret, 1);
  57    return ret;
  58}
  59
  60void omap_badwidth_write8(void *opaque, hwaddr addr,
  61                uint32_t value)
  62{
  63    uint8_t val8 = value;
  64
  65    omap_log_badwidth(__func__, addr, 1);
  66    cpu_physical_memory_write(addr, &val8, 1);
  67}
  68
  69uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  70{
  71    uint16_t ret;
  72
  73    omap_log_badwidth(__func__, addr, 2);
  74    cpu_physical_memory_read(addr, &ret, 2);
  75    return ret;
  76}
  77
  78void omap_badwidth_write16(void *opaque, hwaddr addr,
  79                uint32_t value)
  80{
  81    uint16_t val16 = value;
  82
  83    omap_log_badwidth(__func__, addr, 2);
  84    cpu_physical_memory_write(addr, &val16, 2);
  85}
  86
  87uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  88{
  89    uint32_t ret;
  90
  91    omap_log_badwidth(__func__, addr, 4);
  92    cpu_physical_memory_read(addr, &ret, 4);
  93    return ret;
  94}
  95
  96void omap_badwidth_write32(void *opaque, hwaddr addr,
  97                uint32_t value)
  98{
  99    omap_log_badwidth(__func__, addr, 4);
 100    cpu_physical_memory_write(addr, &value, 4);
 101}
 102
 103/* MPU OS timers */
 104struct omap_mpu_timer_s {
 105    MemoryRegion iomem;
 106    qemu_irq irq;
 107    omap_clk clk;
 108    uint32_t val;
 109    int64_t time;
 110    QEMUTimer *timer;
 111    QEMUBH *tick;
 112    int64_t rate;
 113    int it_ena;
 114
 115    int enable;
 116    int ptv;
 117    int ar;
 118    int st;
 119    uint32_t reset_val;
 120};
 121
 122static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
 123{
 124    uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
 125
 126    if (timer->st && timer->enable && timer->rate)
 127        return timer->val - muldiv64(distance >> (timer->ptv + 1),
 128                                     timer->rate, NANOSECONDS_PER_SECOND);
 129    else
 130        return timer->val;
 131}
 132
 133static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
 134{
 135    timer->val = omap_timer_read(timer);
 136    timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 137}
 138
 139static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
 140{
 141    int64_t expires;
 142
 143    if (timer->enable && timer->st && timer->rate) {
 144        timer->val = timer->reset_val;  /* Should skip this on clk enable */
 145        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
 146                           NANOSECONDS_PER_SECOND, timer->rate);
 147
 148        /* If timer expiry would be sooner than in about 1 ms and
 149         * auto-reload isn't set, then fire immediately.  This is a hack
 150         * to make systems like PalmOS run in acceptable time.  PalmOS
 151         * sets the interval to a very low value and polls the status bit
 152         * in a busy loop when it wants to sleep just a couple of CPU
 153         * ticks.  */
 154        if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
 155            timer_mod(timer->timer, timer->time + expires);
 156        } else {
 157            qemu_bh_schedule(timer->tick);
 158        }
 159    } else
 160        timer_del(timer->timer);
 161}
 162
 163static void omap_timer_fire(void *opaque)
 164{
 165    struct omap_mpu_timer_s *timer = opaque;
 166
 167    if (!timer->ar) {
 168        timer->val = 0;
 169        timer->st = 0;
 170    }
 171
 172    if (timer->it_ena)
 173        /* Edge-triggered irq */
 174        qemu_irq_pulse(timer->irq);
 175}
 176
 177static void omap_timer_tick(void *opaque)
 178{
 179    struct omap_mpu_timer_s *timer = opaque;
 180
 181    omap_timer_sync(timer);
 182    omap_timer_fire(timer);
 183    omap_timer_update(timer);
 184}
 185
 186static void omap_timer_clk_update(void *opaque, int line, int on)
 187{
 188    struct omap_mpu_timer_s *timer = opaque;
 189
 190    omap_timer_sync(timer);
 191    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
 192    omap_timer_update(timer);
 193}
 194
 195static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
 196{
 197    omap_clk_adduser(timer->clk,
 198                    qemu_allocate_irq(omap_timer_clk_update, timer, 0));
 199    timer->rate = omap_clk_getrate(timer->clk);
 200}
 201
 202static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
 203                                    unsigned size)
 204{
 205    struct omap_mpu_timer_s *s = opaque;
 206
 207    if (size != 4) {
 208        return omap_badwidth_read32(opaque, addr);
 209    }
 210
 211    switch (addr) {
 212    case 0x00:  /* CNTL_TIMER */
 213        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
 214
 215    case 0x04:  /* LOAD_TIM */
 216        break;
 217
 218    case 0x08:  /* READ_TIM */
 219        return omap_timer_read(s);
 220    }
 221
 222    OMAP_BAD_REG(addr);
 223    return 0;
 224}
 225
 226static void omap_mpu_timer_write(void *opaque, hwaddr addr,
 227                                 uint64_t value, unsigned size)
 228{
 229    struct omap_mpu_timer_s *s = opaque;
 230
 231    if (size != 4) {
 232        omap_badwidth_write32(opaque, addr, value);
 233        return;
 234    }
 235
 236    switch (addr) {
 237    case 0x00:  /* CNTL_TIMER */
 238        omap_timer_sync(s);
 239        s->enable = (value >> 5) & 1;
 240        s->ptv = (value >> 2) & 7;
 241        s->ar = (value >> 1) & 1;
 242        s->st = value & 1;
 243        omap_timer_update(s);
 244        return;
 245
 246    case 0x04:  /* LOAD_TIM */
 247        s->reset_val = value;
 248        return;
 249
 250    case 0x08:  /* READ_TIM */
 251        OMAP_RO_REG(addr);
 252        break;
 253
 254    default:
 255        OMAP_BAD_REG(addr);
 256    }
 257}
 258
 259static const MemoryRegionOps omap_mpu_timer_ops = {
 260    .read = omap_mpu_timer_read,
 261    .write = omap_mpu_timer_write,
 262    .endianness = DEVICE_LITTLE_ENDIAN,
 263};
 264
 265static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
 266{
 267    timer_del(s->timer);
 268    s->enable = 0;
 269    s->reset_val = 31337;
 270    s->val = 0;
 271    s->ptv = 0;
 272    s->ar = 0;
 273    s->st = 0;
 274    s->it_ena = 1;
 275}
 276
 277static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
 278                hwaddr base,
 279                qemu_irq irq, omap_clk clk)
 280{
 281    struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
 282
 283    s->irq = irq;
 284    s->clk = clk;
 285    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
 286    s->tick = qemu_bh_new(omap_timer_fire, s);
 287    omap_mpu_timer_reset(s);
 288    omap_timer_clk_setup(s);
 289
 290    memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
 291                          "omap-mpu-timer", 0x100);
 292
 293    memory_region_add_subregion(system_memory, base, &s->iomem);
 294
 295    return s;
 296}
 297
 298/* Watchdog timer */
 299struct omap_watchdog_timer_s {
 300    struct omap_mpu_timer_s timer;
 301    MemoryRegion iomem;
 302    uint8_t last_wr;
 303    int mode;
 304    int free;
 305    int reset;
 306};
 307
 308static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
 309                                   unsigned size)
 310{
 311    struct omap_watchdog_timer_s *s = opaque;
 312
 313    if (size != 2) {
 314        return omap_badwidth_read16(opaque, addr);
 315    }
 316
 317    switch (addr) {
 318    case 0x00:  /* CNTL_TIMER */
 319        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
 320                (s->timer.st << 7) | (s->free << 1);
 321
 322    case 0x04:  /* READ_TIMER */
 323        return omap_timer_read(&s->timer);
 324
 325    case 0x08:  /* TIMER_MODE */
 326        return s->mode << 15;
 327    }
 328
 329    OMAP_BAD_REG(addr);
 330    return 0;
 331}
 332
 333static void omap_wd_timer_write(void *opaque, hwaddr addr,
 334                                uint64_t value, unsigned size)
 335{
 336    struct omap_watchdog_timer_s *s = opaque;
 337
 338    if (size != 2) {
 339        omap_badwidth_write16(opaque, addr, value);
 340        return;
 341    }
 342
 343    switch (addr) {
 344    case 0x00:  /* CNTL_TIMER */
 345        omap_timer_sync(&s->timer);
 346        s->timer.ptv = (value >> 9) & 7;
 347        s->timer.ar = (value >> 8) & 1;
 348        s->timer.st = (value >> 7) & 1;
 349        s->free = (value >> 1) & 1;
 350        omap_timer_update(&s->timer);
 351        break;
 352
 353    case 0x04:  /* LOAD_TIMER */
 354        s->timer.reset_val = value & 0xffff;
 355        break;
 356
 357    case 0x08:  /* TIMER_MODE */
 358        if (!s->mode && ((value >> 15) & 1))
 359            omap_clk_get(s->timer.clk);
 360        s->mode |= (value >> 15) & 1;
 361        if (s->last_wr == 0xf5) {
 362            if ((value & 0xff) == 0xa0) {
 363                if (s->mode) {
 364                    s->mode = 0;
 365                    omap_clk_put(s->timer.clk);
 366                }
 367            } else {
 368                /* XXX: on T|E hardware somehow this has no effect,
 369                 * on Zire 71 it works as specified.  */
 370                s->reset = 1;
 371                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 372            }
 373        }
 374        s->last_wr = value & 0xff;
 375        break;
 376
 377    default:
 378        OMAP_BAD_REG(addr);
 379    }
 380}
 381
 382static const MemoryRegionOps omap_wd_timer_ops = {
 383    .read = omap_wd_timer_read,
 384    .write = omap_wd_timer_write,
 385    .endianness = DEVICE_NATIVE_ENDIAN,
 386};
 387
 388static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
 389{
 390    timer_del(s->timer.timer);
 391    if (!s->mode)
 392        omap_clk_get(s->timer.clk);
 393    s->mode = 1;
 394    s->free = 1;
 395    s->reset = 0;
 396    s->timer.enable = 1;
 397    s->timer.it_ena = 1;
 398    s->timer.reset_val = 0xffff;
 399    s->timer.val = 0;
 400    s->timer.st = 0;
 401    s->timer.ptv = 0;
 402    s->timer.ar = 0;
 403    omap_timer_update(&s->timer);
 404}
 405
 406static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
 407                hwaddr base,
 408                qemu_irq irq, omap_clk clk)
 409{
 410    struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
 411
 412    s->timer.irq = irq;
 413    s->timer.clk = clk;
 414    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 415    omap_wd_timer_reset(s);
 416    omap_timer_clk_setup(&s->timer);
 417
 418    memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
 419                          "omap-wd-timer", 0x100);
 420    memory_region_add_subregion(memory, base, &s->iomem);
 421
 422    return s;
 423}
 424
 425/* 32-kHz timer */
 426struct omap_32khz_timer_s {
 427    struct omap_mpu_timer_s timer;
 428    MemoryRegion iomem;
 429};
 430
 431static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
 432                                   unsigned size)
 433{
 434    struct omap_32khz_timer_s *s = opaque;
 435    int offset = addr & OMAP_MPUI_REG_MASK;
 436
 437    if (size != 4) {
 438        return omap_badwidth_read32(opaque, addr);
 439    }
 440
 441    switch (offset) {
 442    case 0x00:  /* TVR */
 443        return s->timer.reset_val;
 444
 445    case 0x04:  /* TCR */
 446        return omap_timer_read(&s->timer);
 447
 448    case 0x08:  /* CR */
 449        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
 450
 451    default:
 452        break;
 453    }
 454    OMAP_BAD_REG(addr);
 455    return 0;
 456}
 457
 458static void omap_os_timer_write(void *opaque, hwaddr addr,
 459                                uint64_t value, unsigned size)
 460{
 461    struct omap_32khz_timer_s *s = opaque;
 462    int offset = addr & OMAP_MPUI_REG_MASK;
 463
 464    if (size != 4) {
 465        omap_badwidth_write32(opaque, addr, value);
 466        return;
 467    }
 468
 469    switch (offset) {
 470    case 0x00:  /* TVR */
 471        s->timer.reset_val = value & 0x00ffffff;
 472        break;
 473
 474    case 0x04:  /* TCR */
 475        OMAP_RO_REG(addr);
 476        break;
 477
 478    case 0x08:  /* CR */
 479        s->timer.ar = (value >> 3) & 1;
 480        s->timer.it_ena = (value >> 2) & 1;
 481        if (s->timer.st != (value & 1) || (value & 2)) {
 482            omap_timer_sync(&s->timer);
 483            s->timer.enable = value & 1;
 484            s->timer.st = value & 1;
 485            omap_timer_update(&s->timer);
 486        }
 487        break;
 488
 489    default:
 490        OMAP_BAD_REG(addr);
 491    }
 492}
 493
 494static const MemoryRegionOps omap_os_timer_ops = {
 495    .read = omap_os_timer_read,
 496    .write = omap_os_timer_write,
 497    .endianness = DEVICE_NATIVE_ENDIAN,
 498};
 499
 500static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
 501{
 502    timer_del(s->timer.timer);
 503    s->timer.enable = 0;
 504    s->timer.it_ena = 0;
 505    s->timer.reset_val = 0x00ffffff;
 506    s->timer.val = 0;
 507    s->timer.st = 0;
 508    s->timer.ptv = 0;
 509    s->timer.ar = 1;
 510}
 511
 512static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
 513                hwaddr base,
 514                qemu_irq irq, omap_clk clk)
 515{
 516    struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
 517
 518    s->timer.irq = irq;
 519    s->timer.clk = clk;
 520    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 521    omap_os_timer_reset(s);
 522    omap_timer_clk_setup(&s->timer);
 523
 524    memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
 525                          "omap-os-timer", 0x800);
 526    memory_region_add_subregion(memory, base, &s->iomem);
 527
 528    return s;
 529}
 530
 531/* Ultra Low-Power Device Module */
 532static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
 533                                  unsigned size)
 534{
 535    struct omap_mpu_state_s *s = opaque;
 536    uint16_t ret;
 537
 538    if (size != 2) {
 539        return omap_badwidth_read16(opaque, addr);
 540    }
 541
 542    switch (addr) {
 543    case 0x14:  /* IT_STATUS */
 544        ret = s->ulpd_pm_regs[addr >> 2];
 545        s->ulpd_pm_regs[addr >> 2] = 0;
 546        qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 547        return ret;
 548
 549    case 0x18:  /* Reserved */
 550    case 0x1c:  /* Reserved */
 551    case 0x20:  /* Reserved */
 552    case 0x28:  /* Reserved */
 553    case 0x2c:  /* Reserved */
 554        OMAP_BAD_REG(addr);
 555        /* fall through */
 556    case 0x00:  /* COUNTER_32_LSB */
 557    case 0x04:  /* COUNTER_32_MSB */
 558    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 559    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 560    case 0x10:  /* GAUGING_CTRL */
 561    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 562    case 0x30:  /* CLOCK_CTRL */
 563    case 0x34:  /* SOFT_REQ */
 564    case 0x38:  /* COUNTER_32_FIQ */
 565    case 0x3c:  /* DPLL_CTRL */
 566    case 0x40:  /* STATUS_REQ */
 567        /* XXX: check clk::usecount state for every clock */
 568    case 0x48:  /* LOCL_TIME */
 569    case 0x4c:  /* APLL_CTRL */
 570    case 0x50:  /* POWER_CTRL */
 571        return s->ulpd_pm_regs[addr >> 2];
 572    }
 573
 574    OMAP_BAD_REG(addr);
 575    return 0;
 576}
 577
 578static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
 579                uint16_t diff, uint16_t value)
 580{
 581    if (diff & (1 << 4))                                /* USB_MCLK_EN */
 582        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
 583    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
 584        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
 585}
 586
 587static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
 588                uint16_t diff, uint16_t value)
 589{
 590    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
 591        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
 592    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
 593        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
 594    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
 595        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
 596    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
 597        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
 598}
 599
 600static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
 601                               uint64_t value, unsigned size)
 602{
 603    struct omap_mpu_state_s *s = opaque;
 604    int64_t now, ticks;
 605    int div, mult;
 606    static const int bypass_div[4] = { 1, 2, 4, 4 };
 607    uint16_t diff;
 608
 609    if (size != 2) {
 610        omap_badwidth_write16(opaque, addr, value);
 611        return;
 612    }
 613
 614    switch (addr) {
 615    case 0x00:  /* COUNTER_32_LSB */
 616    case 0x04:  /* COUNTER_32_MSB */
 617    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 618    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 619    case 0x14:  /* IT_STATUS */
 620    case 0x40:  /* STATUS_REQ */
 621        OMAP_RO_REG(addr);
 622        break;
 623
 624    case 0x10:  /* GAUGING_CTRL */
 625        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
 626        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
 627            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 628
 629            if (value & 1)
 630                s->ulpd_gauge_start = now;
 631            else {
 632                now -= s->ulpd_gauge_start;
 633
 634                /* 32-kHz ticks */
 635                ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
 636                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
 637                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
 638                if (ticks >> 32)        /* OVERFLOW_32K */
 639                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
 640
 641                /* High frequency ticks */
 642                ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
 643                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
 644                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
 645                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
 646                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
 647
 648                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
 649                qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 650            }
 651        }
 652        s->ulpd_pm_regs[addr >> 2] = value;
 653        break;
 654
 655    case 0x18:  /* Reserved */
 656    case 0x1c:  /* Reserved */
 657    case 0x20:  /* Reserved */
 658    case 0x28:  /* Reserved */
 659    case 0x2c:  /* Reserved */
 660        OMAP_BAD_REG(addr);
 661        /* fall through */
 662    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 663    case 0x38:  /* COUNTER_32_FIQ */
 664    case 0x48:  /* LOCL_TIME */
 665    case 0x50:  /* POWER_CTRL */
 666        s->ulpd_pm_regs[addr >> 2] = value;
 667        break;
 668
 669    case 0x30:  /* CLOCK_CTRL */
 670        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 671        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
 672        omap_ulpd_clk_update(s, diff, value);
 673        break;
 674
 675    case 0x34:  /* SOFT_REQ */
 676        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 677        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
 678        omap_ulpd_req_update(s, diff, value);
 679        break;
 680
 681    case 0x3c:  /* DPLL_CTRL */
 682        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
 683         * omitted altogether, probably a typo.  */
 684        /* This register has identical semantics with DPLL(1:3) control
 685         * registers, see omap_dpll_write() */
 686        diff = s->ulpd_pm_regs[addr >> 2] & value;
 687        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
 688        if (diff & (0x3ff << 2)) {
 689            if (value & (1 << 4)) {                     /* PLL_ENABLE */
 690                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
 691                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
 692            } else {
 693                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
 694                mult = 1;
 695            }
 696            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
 697        }
 698
 699        /* Enter the desired mode.  */
 700        s->ulpd_pm_regs[addr >> 2] =
 701                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
 702                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
 703
 704        /* Act as if the lock is restored.  */
 705        s->ulpd_pm_regs[addr >> 2] |= 2;
 706        break;
 707
 708    case 0x4c:  /* APLL_CTRL */
 709        diff = s->ulpd_pm_regs[addr >> 2] & value;
 710        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
 711        if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
 712            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
 713                                    (value & (1 << 0)) ? "apll" : "dpll4"));
 714        break;
 715
 716    default:
 717        OMAP_BAD_REG(addr);
 718    }
 719}
 720
 721static const MemoryRegionOps omap_ulpd_pm_ops = {
 722    .read = omap_ulpd_pm_read,
 723    .write = omap_ulpd_pm_write,
 724    .endianness = DEVICE_NATIVE_ENDIAN,
 725};
 726
 727static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
 728{
 729    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
 730    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
 731    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
 732    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
 733    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
 734    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
 735    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
 736    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
 737    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
 738    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
 739    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
 740    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
 741    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
 742    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
 743    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
 744    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
 745    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
 746    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
 747    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
 748    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
 749    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
 750    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
 751    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
 752}
 753
 754static void omap_ulpd_pm_init(MemoryRegion *system_memory,
 755                hwaddr base,
 756                struct omap_mpu_state_s *mpu)
 757{
 758    memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
 759                          "omap-ulpd-pm", 0x800);
 760    memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
 761    omap_ulpd_pm_reset(mpu);
 762}
 763
 764/* OMAP Pin Configuration */
 765static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
 766                                  unsigned size)
 767{
 768    struct omap_mpu_state_s *s = opaque;
 769
 770    if (size != 4) {
 771        return omap_badwidth_read32(opaque, addr);
 772    }
 773
 774    switch (addr) {
 775    case 0x00:  /* FUNC_MUX_CTRL_0 */
 776    case 0x04:  /* FUNC_MUX_CTRL_1 */
 777    case 0x08:  /* FUNC_MUX_CTRL_2 */
 778        return s->func_mux_ctrl[addr >> 2];
 779
 780    case 0x0c:  /* COMP_MODE_CTRL_0 */
 781        return s->comp_mode_ctrl[0];
 782
 783    case 0x10:  /* FUNC_MUX_CTRL_3 */
 784    case 0x14:  /* FUNC_MUX_CTRL_4 */
 785    case 0x18:  /* FUNC_MUX_CTRL_5 */
 786    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 787    case 0x20:  /* FUNC_MUX_CTRL_7 */
 788    case 0x24:  /* FUNC_MUX_CTRL_8 */
 789    case 0x28:  /* FUNC_MUX_CTRL_9 */
 790    case 0x2c:  /* FUNC_MUX_CTRL_A */
 791    case 0x30:  /* FUNC_MUX_CTRL_B */
 792    case 0x34:  /* FUNC_MUX_CTRL_C */
 793    case 0x38:  /* FUNC_MUX_CTRL_D */
 794        return s->func_mux_ctrl[(addr >> 2) - 1];
 795
 796    case 0x40:  /* PULL_DWN_CTRL_0 */
 797    case 0x44:  /* PULL_DWN_CTRL_1 */
 798    case 0x48:  /* PULL_DWN_CTRL_2 */
 799    case 0x4c:  /* PULL_DWN_CTRL_3 */
 800        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
 801
 802    case 0x50:  /* GATE_INH_CTRL_0 */
 803        return s->gate_inh_ctrl[0];
 804
 805    case 0x60:  /* VOLTAGE_CTRL_0 */
 806        return s->voltage_ctrl[0];
 807
 808    case 0x70:  /* TEST_DBG_CTRL_0 */
 809        return s->test_dbg_ctrl[0];
 810
 811    case 0x80:  /* MOD_CONF_CTRL_0 */
 812        return s->mod_conf_ctrl[0];
 813    }
 814
 815    OMAP_BAD_REG(addr);
 816    return 0;
 817}
 818
 819static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
 820                uint32_t diff, uint32_t value)
 821{
 822    if (s->compat1509) {
 823        if (diff & (1 << 9))                    /* BLUETOOTH */
 824            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
 825                            (~value >> 9) & 1);
 826        if (diff & (1 << 7))                    /* USB.CLKO */
 827            omap_clk_onoff(omap_findclk(s, "usb.clko"),
 828                            (value >> 7) & 1);
 829    }
 830}
 831
 832static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
 833                uint32_t diff, uint32_t value)
 834{
 835    if (s->compat1509) {
 836        if (diff & (1U << 31)) {
 837            /* MCBSP3_CLK_HIZ_DI */
 838            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
 839        }
 840        if (diff & (1 << 1)) {
 841            /* CLK32K */
 842            omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
 843        }
 844    }
 845}
 846
 847static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
 848                uint32_t diff, uint32_t value)
 849{
 850    if (diff & (1U << 31)) {
 851        /* CONF_MOD_UART3_CLK_MODE_R */
 852        omap_clk_reparent(omap_findclk(s, "uart3_ck"),
 853                          omap_findclk(s, ((value >> 31) & 1) ?
 854                                       "ck_48m" : "armper_ck"));
 855    }
 856    if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
 857         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
 858                         omap_findclk(s, ((value >> 30) & 1) ?
 859                                 "ck_48m" : "armper_ck"));
 860    if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
 861         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
 862                         omap_findclk(s, ((value >> 29) & 1) ?
 863                                 "ck_48m" : "armper_ck"));
 864    if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
 865         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
 866                         omap_findclk(s, ((value >> 23) & 1) ?
 867                                 "ck_48m" : "armper_ck"));
 868    if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
 869         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
 870                         omap_findclk(s, ((value >> 12) & 1) ?
 871                                 "ck_48m" : "armper_ck"));
 872    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
 873         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
 874}
 875
 876static void omap_pin_cfg_write(void *opaque, hwaddr addr,
 877                               uint64_t value, unsigned size)
 878{
 879    struct omap_mpu_state_s *s = opaque;
 880    uint32_t diff;
 881
 882    if (size != 4) {
 883        omap_badwidth_write32(opaque, addr, value);
 884        return;
 885    }
 886
 887    switch (addr) {
 888    case 0x00:  /* FUNC_MUX_CTRL_0 */
 889        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 890        s->func_mux_ctrl[addr >> 2] = value;
 891        omap_pin_funcmux0_update(s, diff, value);
 892        return;
 893
 894    case 0x04:  /* FUNC_MUX_CTRL_1 */
 895        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 896        s->func_mux_ctrl[addr >> 2] = value;
 897        omap_pin_funcmux1_update(s, diff, value);
 898        return;
 899
 900    case 0x08:  /* FUNC_MUX_CTRL_2 */
 901        s->func_mux_ctrl[addr >> 2] = value;
 902        return;
 903
 904    case 0x0c:  /* COMP_MODE_CTRL_0 */
 905        s->comp_mode_ctrl[0] = value;
 906        s->compat1509 = (value != 0x0000eaef);
 907        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
 908        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
 909        return;
 910
 911    case 0x10:  /* FUNC_MUX_CTRL_3 */
 912    case 0x14:  /* FUNC_MUX_CTRL_4 */
 913    case 0x18:  /* FUNC_MUX_CTRL_5 */
 914    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 915    case 0x20:  /* FUNC_MUX_CTRL_7 */
 916    case 0x24:  /* FUNC_MUX_CTRL_8 */
 917    case 0x28:  /* FUNC_MUX_CTRL_9 */
 918    case 0x2c:  /* FUNC_MUX_CTRL_A */
 919    case 0x30:  /* FUNC_MUX_CTRL_B */
 920    case 0x34:  /* FUNC_MUX_CTRL_C */
 921    case 0x38:  /* FUNC_MUX_CTRL_D */
 922        s->func_mux_ctrl[(addr >> 2) - 1] = value;
 923        return;
 924
 925    case 0x40:  /* PULL_DWN_CTRL_0 */
 926    case 0x44:  /* PULL_DWN_CTRL_1 */
 927    case 0x48:  /* PULL_DWN_CTRL_2 */
 928    case 0x4c:  /* PULL_DWN_CTRL_3 */
 929        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
 930        return;
 931
 932    case 0x50:  /* GATE_INH_CTRL_0 */
 933        s->gate_inh_ctrl[0] = value;
 934        return;
 935
 936    case 0x60:  /* VOLTAGE_CTRL_0 */
 937        s->voltage_ctrl[0] = value;
 938        return;
 939
 940    case 0x70:  /* TEST_DBG_CTRL_0 */
 941        s->test_dbg_ctrl[0] = value;
 942        return;
 943
 944    case 0x80:  /* MOD_CONF_CTRL_0 */
 945        diff = s->mod_conf_ctrl[0] ^ value;
 946        s->mod_conf_ctrl[0] = value;
 947        omap_pin_modconf1_update(s, diff, value);
 948        return;
 949
 950    default:
 951        OMAP_BAD_REG(addr);
 952    }
 953}
 954
 955static const MemoryRegionOps omap_pin_cfg_ops = {
 956    .read = omap_pin_cfg_read,
 957    .write = omap_pin_cfg_write,
 958    .endianness = DEVICE_NATIVE_ENDIAN,
 959};
 960
 961static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
 962{
 963    /* Start in Compatibility Mode.  */
 964    mpu->compat1509 = 1;
 965    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
 966    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
 967    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
 968    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
 969    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
 970    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
 971    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
 972    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
 973    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
 974    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
 975}
 976
 977static void omap_pin_cfg_init(MemoryRegion *system_memory,
 978                hwaddr base,
 979                struct omap_mpu_state_s *mpu)
 980{
 981    memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
 982                          "omap-pin-cfg", 0x800);
 983    memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
 984    omap_pin_cfg_reset(mpu);
 985}
 986
 987/* Device Identification, Die Identification */
 988static uint64_t omap_id_read(void *opaque, hwaddr addr,
 989                             unsigned size)
 990{
 991    struct omap_mpu_state_s *s = opaque;
 992
 993    if (size != 4) {
 994        return omap_badwidth_read32(opaque, addr);
 995    }
 996
 997    switch (addr) {
 998    case 0xfffe1800:    /* DIE_ID_LSB */
 999        return 0xc9581f0e;
1000    case 0xfffe1804:    /* DIE_ID_MSB */
1001        return 0xa8858bfa;
1002
1003    case 0xfffe2000:    /* PRODUCT_ID_LSB */
1004        return 0x00aaaafc;
1005    case 0xfffe2004:    /* PRODUCT_ID_MSB */
1006        return 0xcafeb574;
1007
1008    case 0xfffed400:    /* JTAG_ID_LSB */
1009        switch (s->mpu_model) {
1010        case omap310:
1011            return 0x03310315;
1012        case omap1510:
1013            return 0x03310115;
1014        default:
1015            hw_error("%s: bad mpu model\n", __func__);
1016        }
1017        break;
1018
1019    case 0xfffed404:    /* JTAG_ID_MSB */
1020        switch (s->mpu_model) {
1021        case omap310:
1022            return 0xfb57402f;
1023        case omap1510:
1024            return 0xfb47002f;
1025        default:
1026            hw_error("%s: bad mpu model\n", __func__);
1027        }
1028        break;
1029    }
1030
1031    OMAP_BAD_REG(addr);
1032    return 0;
1033}
1034
1035static void omap_id_write(void *opaque, hwaddr addr,
1036                          uint64_t value, unsigned size)
1037{
1038    if (size != 4) {
1039        omap_badwidth_write32(opaque, addr, value);
1040        return;
1041    }
1042
1043    OMAP_BAD_REG(addr);
1044}
1045
1046static const MemoryRegionOps omap_id_ops = {
1047    .read = omap_id_read,
1048    .write = omap_id_write,
1049    .endianness = DEVICE_NATIVE_ENDIAN,
1050};
1051
1052static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1053{
1054    memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1055                          "omap-id", 0x100000000ULL);
1056    memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1057                             0xfffe1800, 0x800);
1058    memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1059    memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1060                             0xfffed400, 0x100);
1061    memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1062    if (!cpu_is_omap15xx(mpu)) {
1063        memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1064                                 &mpu->id_iomem, 0xfffe2000, 0x800);
1065        memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1066    }
1067}
1068
1069/* MPUI Control (Dummy) */
1070static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1071                               unsigned size)
1072{
1073    struct omap_mpu_state_s *s = opaque;
1074
1075    if (size != 4) {
1076        return omap_badwidth_read32(opaque, addr);
1077    }
1078
1079    switch (addr) {
1080    case 0x00:  /* CTRL */
1081        return s->mpui_ctrl;
1082    case 0x04:  /* DEBUG_ADDR */
1083        return 0x01ffffff;
1084    case 0x08:  /* DEBUG_DATA */
1085        return 0xffffffff;
1086    case 0x0c:  /* DEBUG_FLAG */
1087        return 0x00000800;
1088    case 0x10:  /* STATUS */
1089        return 0x00000000;
1090
1091    /* Not in OMAP310 */
1092    case 0x14:  /* DSP_STATUS */
1093    case 0x18:  /* DSP_BOOT_CONFIG */
1094        return 0x00000000;
1095    case 0x1c:  /* DSP_MPUI_CONFIG */
1096        return 0x0000ffff;
1097    }
1098
1099    OMAP_BAD_REG(addr);
1100    return 0;
1101}
1102
1103static void omap_mpui_write(void *opaque, hwaddr addr,
1104                            uint64_t value, unsigned size)
1105{
1106    struct omap_mpu_state_s *s = opaque;
1107
1108    if (size != 4) {
1109        omap_badwidth_write32(opaque, addr, value);
1110        return;
1111    }
1112
1113    switch (addr) {
1114    case 0x00:  /* CTRL */
1115        s->mpui_ctrl = value & 0x007fffff;
1116        break;
1117
1118    case 0x04:  /* DEBUG_ADDR */
1119    case 0x08:  /* DEBUG_DATA */
1120    case 0x0c:  /* DEBUG_FLAG */
1121    case 0x10:  /* STATUS */
1122    /* Not in OMAP310 */
1123    case 0x14:  /* DSP_STATUS */
1124        OMAP_RO_REG(addr);
1125        break;
1126    case 0x18:  /* DSP_BOOT_CONFIG */
1127    case 0x1c:  /* DSP_MPUI_CONFIG */
1128        break;
1129
1130    default:
1131        OMAP_BAD_REG(addr);
1132    }
1133}
1134
1135static const MemoryRegionOps omap_mpui_ops = {
1136    .read = omap_mpui_read,
1137    .write = omap_mpui_write,
1138    .endianness = DEVICE_NATIVE_ENDIAN,
1139};
1140
1141static void omap_mpui_reset(struct omap_mpu_state_s *s)
1142{
1143    s->mpui_ctrl = 0x0003ff1b;
1144}
1145
1146static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1147                struct omap_mpu_state_s *mpu)
1148{
1149    memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1150                          "omap-mpui", 0x100);
1151    memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1152
1153    omap_mpui_reset(mpu);
1154}
1155
1156/* TIPB Bridges */
1157struct omap_tipb_bridge_s {
1158    qemu_irq abort;
1159    MemoryRegion iomem;
1160
1161    int width_intr;
1162    uint16_t control;
1163    uint16_t alloc;
1164    uint16_t buffer;
1165    uint16_t enh_control;
1166};
1167
1168static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1169                                      unsigned size)
1170{
1171    struct omap_tipb_bridge_s *s = opaque;
1172
1173    if (size < 2) {
1174        return omap_badwidth_read16(opaque, addr);
1175    }
1176
1177    switch (addr) {
1178    case 0x00:  /* TIPB_CNTL */
1179        return s->control;
1180    case 0x04:  /* TIPB_BUS_ALLOC */
1181        return s->alloc;
1182    case 0x08:  /* MPU_TIPB_CNTL */
1183        return s->buffer;
1184    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1185        return s->enh_control;
1186    case 0x10:  /* ADDRESS_DBG */
1187    case 0x14:  /* DATA_DEBUG_LOW */
1188    case 0x18:  /* DATA_DEBUG_HIGH */
1189        return 0xffff;
1190    case 0x1c:  /* DEBUG_CNTR_SIG */
1191        return 0x00f8;
1192    }
1193
1194    OMAP_BAD_REG(addr);
1195    return 0;
1196}
1197
1198static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1199                                   uint64_t value, unsigned size)
1200{
1201    struct omap_tipb_bridge_s *s = opaque;
1202
1203    if (size < 2) {
1204        omap_badwidth_write16(opaque, addr, value);
1205        return;
1206    }
1207
1208    switch (addr) {
1209    case 0x00:  /* TIPB_CNTL */
1210        s->control = value & 0xffff;
1211        break;
1212
1213    case 0x04:  /* TIPB_BUS_ALLOC */
1214        s->alloc = value & 0x003f;
1215        break;
1216
1217    case 0x08:  /* MPU_TIPB_CNTL */
1218        s->buffer = value & 0x0003;
1219        break;
1220
1221    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1222        s->width_intr = !(value & 2);
1223        s->enh_control = value & 0x000f;
1224        break;
1225
1226    case 0x10:  /* ADDRESS_DBG */
1227    case 0x14:  /* DATA_DEBUG_LOW */
1228    case 0x18:  /* DATA_DEBUG_HIGH */
1229    case 0x1c:  /* DEBUG_CNTR_SIG */
1230        OMAP_RO_REG(addr);
1231        break;
1232
1233    default:
1234        OMAP_BAD_REG(addr);
1235    }
1236}
1237
1238static const MemoryRegionOps omap_tipb_bridge_ops = {
1239    .read = omap_tipb_bridge_read,
1240    .write = omap_tipb_bridge_write,
1241    .endianness = DEVICE_NATIVE_ENDIAN,
1242};
1243
1244static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1245{
1246    s->control = 0xffff;
1247    s->alloc = 0x0009;
1248    s->buffer = 0x0000;
1249    s->enh_control = 0x000f;
1250}
1251
1252static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1253    MemoryRegion *memory, hwaddr base,
1254    qemu_irq abort_irq, omap_clk clk)
1255{
1256    struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1257
1258    s->abort = abort_irq;
1259    omap_tipb_bridge_reset(s);
1260
1261    memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1262                          "omap-tipb-bridge", 0x100);
1263    memory_region_add_subregion(memory, base, &s->iomem);
1264
1265    return s;
1266}
1267
1268/* Dummy Traffic Controller's Memory Interface */
1269static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1270                               unsigned size)
1271{
1272    struct omap_mpu_state_s *s = opaque;
1273    uint32_t ret;
1274
1275    if (size != 4) {
1276        return omap_badwidth_read32(opaque, addr);
1277    }
1278
1279    switch (addr) {
1280    case 0x00:  /* IMIF_PRIO */
1281    case 0x04:  /* EMIFS_PRIO */
1282    case 0x08:  /* EMIFF_PRIO */
1283    case 0x0c:  /* EMIFS_CONFIG */
1284    case 0x10:  /* EMIFS_CS0_CONFIG */
1285    case 0x14:  /* EMIFS_CS1_CONFIG */
1286    case 0x18:  /* EMIFS_CS2_CONFIG */
1287    case 0x1c:  /* EMIFS_CS3_CONFIG */
1288    case 0x24:  /* EMIFF_MRS */
1289    case 0x28:  /* TIMEOUT1 */
1290    case 0x2c:  /* TIMEOUT2 */
1291    case 0x30:  /* TIMEOUT3 */
1292    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1293    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1294        return s->tcmi_regs[addr >> 2];
1295
1296    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1297        ret = s->tcmi_regs[addr >> 2];
1298        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1299        /* XXX: We can try using the VGA_DIRTY flag for this */
1300        return ret;
1301    }
1302
1303    OMAP_BAD_REG(addr);
1304    return 0;
1305}
1306
1307static void omap_tcmi_write(void *opaque, hwaddr addr,
1308                            uint64_t value, unsigned size)
1309{
1310    struct omap_mpu_state_s *s = opaque;
1311
1312    if (size != 4) {
1313        omap_badwidth_write32(opaque, addr, value);
1314        return;
1315    }
1316
1317    switch (addr) {
1318    case 0x00:  /* IMIF_PRIO */
1319    case 0x04:  /* EMIFS_PRIO */
1320    case 0x08:  /* EMIFF_PRIO */
1321    case 0x10:  /* EMIFS_CS0_CONFIG */
1322    case 0x14:  /* EMIFS_CS1_CONFIG */
1323    case 0x18:  /* EMIFS_CS2_CONFIG */
1324    case 0x1c:  /* EMIFS_CS3_CONFIG */
1325    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1326    case 0x24:  /* EMIFF_MRS */
1327    case 0x28:  /* TIMEOUT1 */
1328    case 0x2c:  /* TIMEOUT2 */
1329    case 0x30:  /* TIMEOUT3 */
1330    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1331    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1332        s->tcmi_regs[addr >> 2] = value;
1333        break;
1334    case 0x0c:  /* EMIFS_CONFIG */
1335        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1336        break;
1337
1338    default:
1339        OMAP_BAD_REG(addr);
1340    }
1341}
1342
1343static const MemoryRegionOps omap_tcmi_ops = {
1344    .read = omap_tcmi_read,
1345    .write = omap_tcmi_write,
1346    .endianness = DEVICE_NATIVE_ENDIAN,
1347};
1348
1349static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1350{
1351    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1352    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1353    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1354    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1355    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1356    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1357    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1358    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1359    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1360    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1361    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1362    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1363    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1364    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1365    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1366}
1367
1368static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1369                struct omap_mpu_state_s *mpu)
1370{
1371    memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1372                          "omap-tcmi", 0x100);
1373    memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1374    omap_tcmi_reset(mpu);
1375}
1376
1377/* Digital phase-locked loops control */
1378struct dpll_ctl_s {
1379    MemoryRegion iomem;
1380    uint16_t mode;
1381    omap_clk dpll;
1382};
1383
1384static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1385                               unsigned size)
1386{
1387    struct dpll_ctl_s *s = opaque;
1388
1389    if (size != 2) {
1390        return omap_badwidth_read16(opaque, addr);
1391    }
1392
1393    if (addr == 0x00)   /* CTL_REG */
1394        return s->mode;
1395
1396    OMAP_BAD_REG(addr);
1397    return 0;
1398}
1399
1400static void omap_dpll_write(void *opaque, hwaddr addr,
1401                            uint64_t value, unsigned size)
1402{
1403    struct dpll_ctl_s *s = opaque;
1404    uint16_t diff;
1405    static const int bypass_div[4] = { 1, 2, 4, 4 };
1406    int div, mult;
1407
1408    if (size != 2) {
1409        omap_badwidth_write16(opaque, addr, value);
1410        return;
1411    }
1412
1413    if (addr == 0x00) { /* CTL_REG */
1414        /* See omap_ulpd_pm_write() too */
1415        diff = s->mode & value;
1416        s->mode = value & 0x2fff;
1417        if (diff & (0x3ff << 2)) {
1418            if (value & (1 << 4)) {                     /* PLL_ENABLE */
1419                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1420                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1421            } else {
1422                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1423                mult = 1;
1424            }
1425            omap_clk_setrate(s->dpll, div, mult);
1426        }
1427
1428        /* Enter the desired mode.  */
1429        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1430
1431        /* Act as if the lock is restored.  */
1432        s->mode |= 2;
1433    } else {
1434        OMAP_BAD_REG(addr);
1435    }
1436}
1437
1438static const MemoryRegionOps omap_dpll_ops = {
1439    .read = omap_dpll_read,
1440    .write = omap_dpll_write,
1441    .endianness = DEVICE_NATIVE_ENDIAN,
1442};
1443
1444static void omap_dpll_reset(struct dpll_ctl_s *s)
1445{
1446    s->mode = 0x2002;
1447    omap_clk_setrate(s->dpll, 1, 1);
1448}
1449
1450static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1451                           hwaddr base, omap_clk clk)
1452{
1453    struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1454    memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1455
1456    s->dpll = clk;
1457    omap_dpll_reset(s);
1458
1459    memory_region_add_subregion(memory, base, &s->iomem);
1460    return s;
1461}
1462
1463/* MPU Clock/Reset/Power Mode Control */
1464static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1465                               unsigned size)
1466{
1467    struct omap_mpu_state_s *s = opaque;
1468
1469    if (size != 2) {
1470        return omap_badwidth_read16(opaque, addr);
1471    }
1472
1473    switch (addr) {
1474    case 0x00:  /* ARM_CKCTL */
1475        return s->clkm.arm_ckctl;
1476
1477    case 0x04:  /* ARM_IDLECT1 */
1478        return s->clkm.arm_idlect1;
1479
1480    case 0x08:  /* ARM_IDLECT2 */
1481        return s->clkm.arm_idlect2;
1482
1483    case 0x0c:  /* ARM_EWUPCT */
1484        return s->clkm.arm_ewupct;
1485
1486    case 0x10:  /* ARM_RSTCT1 */
1487        return s->clkm.arm_rstct1;
1488
1489    case 0x14:  /* ARM_RSTCT2 */
1490        return s->clkm.arm_rstct2;
1491
1492    case 0x18:  /* ARM_SYSST */
1493        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1494
1495    case 0x1c:  /* ARM_CKOUT1 */
1496        return s->clkm.arm_ckout1;
1497
1498    case 0x20:  /* ARM_CKOUT2 */
1499        break;
1500    }
1501
1502    OMAP_BAD_REG(addr);
1503    return 0;
1504}
1505
1506static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1507                uint16_t diff, uint16_t value)
1508{
1509    omap_clk clk;
1510
1511    if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1512        if (value & (1 << 14))
1513            /* Reserved */;
1514        else {
1515            clk = omap_findclk(s, "arminth_ck");
1516            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1517        }
1518    }
1519    if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1520        clk = omap_findclk(s, "armtim_ck");
1521        if (value & (1 << 12))
1522            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1523        else
1524            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1525    }
1526    /* XXX: en_dspck */
1527    if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1528        clk = omap_findclk(s, "dspmmu_ck");
1529        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1530    }
1531    if (diff & (3 << 8)) {                              /* TCDIV */
1532        clk = omap_findclk(s, "tc_ck");
1533        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1534    }
1535    if (diff & (3 << 6)) {                              /* DSPDIV */
1536        clk = omap_findclk(s, "dsp_ck");
1537        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1538    }
1539    if (diff & (3 << 4)) {                              /* ARMDIV */
1540        clk = omap_findclk(s, "arm_ck");
1541        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1542    }
1543    if (diff & (3 << 2)) {                              /* LCDDIV */
1544        clk = omap_findclk(s, "lcd_ck");
1545        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1546    }
1547    if (diff & (3 << 0)) {                              /* PERDIV */
1548        clk = omap_findclk(s, "armper_ck");
1549        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1550    }
1551}
1552
1553static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1554                uint16_t diff, uint16_t value)
1555{
1556    omap_clk clk;
1557
1558    if (value & (1 << 11)) {                            /* SETARM_IDLE */
1559        cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1560    }
1561    if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1562        /* XXX: disable wakeup from IRQ */
1563        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1564    }
1565
1566#define SET_CANIDLE(clock, bit)                         \
1567    if (diff & (1 << bit)) {                            \
1568        clk = omap_findclk(s, clock);                   \
1569        omap_clk_canidle(clk, (value >> bit) & 1);      \
1570    }
1571    SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1572    SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1573    SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1574    SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1575    SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1576    SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1577    SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1578    SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1579    SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1580    SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1581    SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1582    SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1583    SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1584    SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1585}
1586
1587static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1588                uint16_t diff, uint16_t value)
1589{
1590    omap_clk clk;
1591
1592#define SET_ONOFF(clock, bit)                           \
1593    if (diff & (1 << bit)) {                            \
1594        clk = omap_findclk(s, clock);                   \
1595        omap_clk_onoff(clk, (value >> bit) & 1);        \
1596    }
1597    SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1598    SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1599    SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1600    SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1601    SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1602    SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1603    SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1604    SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1605    SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1606    SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1607    SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1608}
1609
1610static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1611                uint16_t diff, uint16_t value)
1612{
1613    omap_clk clk;
1614
1615    if (diff & (3 << 4)) {                              /* TCLKOUT */
1616        clk = omap_findclk(s, "tclk_out");
1617        switch ((value >> 4) & 3) {
1618        case 1:
1619            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1620            omap_clk_onoff(clk, 1);
1621            break;
1622        case 2:
1623            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1624            omap_clk_onoff(clk, 1);
1625            break;
1626        default:
1627            omap_clk_onoff(clk, 0);
1628        }
1629    }
1630    if (diff & (3 << 2)) {                              /* DCLKOUT */
1631        clk = omap_findclk(s, "dclk_out");
1632        switch ((value >> 2) & 3) {
1633        case 0:
1634            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1635            break;
1636        case 1:
1637            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1638            break;
1639        case 2:
1640            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1641            break;
1642        case 3:
1643            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1644            break;
1645        }
1646    }
1647    if (diff & (3 << 0)) {                              /* ACLKOUT */
1648        clk = omap_findclk(s, "aclk_out");
1649        switch ((value >> 0) & 3) {
1650        case 1:
1651            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1652            omap_clk_onoff(clk, 1);
1653            break;
1654        case 2:
1655            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1656            omap_clk_onoff(clk, 1);
1657            break;
1658        case 3:
1659            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1660            omap_clk_onoff(clk, 1);
1661            break;
1662        default:
1663            omap_clk_onoff(clk, 0);
1664        }
1665    }
1666}
1667
1668static void omap_clkm_write(void *opaque, hwaddr addr,
1669                            uint64_t value, unsigned size)
1670{
1671    struct omap_mpu_state_s *s = opaque;
1672    uint16_t diff;
1673    omap_clk clk;
1674    static const char *clkschemename[8] = {
1675        "fully synchronous", "fully asynchronous", "synchronous scalable",
1676        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1677    };
1678
1679    if (size != 2) {
1680        omap_badwidth_write16(opaque, addr, value);
1681        return;
1682    }
1683
1684    switch (addr) {
1685    case 0x00:  /* ARM_CKCTL */
1686        diff = s->clkm.arm_ckctl ^ value;
1687        s->clkm.arm_ckctl = value & 0x7fff;
1688        omap_clkm_ckctl_update(s, diff, value);
1689        return;
1690
1691    case 0x04:  /* ARM_IDLECT1 */
1692        diff = s->clkm.arm_idlect1 ^ value;
1693        s->clkm.arm_idlect1 = value & 0x0fff;
1694        omap_clkm_idlect1_update(s, diff, value);
1695        return;
1696
1697    case 0x08:  /* ARM_IDLECT2 */
1698        diff = s->clkm.arm_idlect2 ^ value;
1699        s->clkm.arm_idlect2 = value & 0x07ff;
1700        omap_clkm_idlect2_update(s, diff, value);
1701        return;
1702
1703    case 0x0c:  /* ARM_EWUPCT */
1704        s->clkm.arm_ewupct = value & 0x003f;
1705        return;
1706
1707    case 0x10:  /* ARM_RSTCT1 */
1708        diff = s->clkm.arm_rstct1 ^ value;
1709        s->clkm.arm_rstct1 = value & 0x0007;
1710        if (value & 9) {
1711            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1712            s->clkm.cold_start = 0xa;
1713        }
1714        if (diff & ~value & 4) {                                /* DSP_RST */
1715            omap_mpui_reset(s);
1716            omap_tipb_bridge_reset(s->private_tipb);
1717            omap_tipb_bridge_reset(s->public_tipb);
1718        }
1719        if (diff & 2) {                                         /* DSP_EN */
1720            clk = omap_findclk(s, "dsp_ck");
1721            omap_clk_canidle(clk, (~value >> 1) & 1);
1722        }
1723        return;
1724
1725    case 0x14:  /* ARM_RSTCT2 */
1726        s->clkm.arm_rstct2 = value & 0x0001;
1727        return;
1728
1729    case 0x18:  /* ARM_SYSST */
1730        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1731            s->clkm.clocking_scheme = (value >> 11) & 7;
1732            printf("%s: clocking scheme set to %s\n", __func__,
1733                   clkschemename[s->clkm.clocking_scheme]);
1734        }
1735        s->clkm.cold_start &= value & 0x3f;
1736        return;
1737
1738    case 0x1c:  /* ARM_CKOUT1 */
1739        diff = s->clkm.arm_ckout1 ^ value;
1740        s->clkm.arm_ckout1 = value & 0x003f;
1741        omap_clkm_ckout1_update(s, diff, value);
1742        return;
1743
1744    case 0x20:  /* ARM_CKOUT2 */
1745    default:
1746        OMAP_BAD_REG(addr);
1747    }
1748}
1749
1750static const MemoryRegionOps omap_clkm_ops = {
1751    .read = omap_clkm_read,
1752    .write = omap_clkm_write,
1753    .endianness = DEVICE_NATIVE_ENDIAN,
1754};
1755
1756static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1757                                 unsigned size)
1758{
1759    struct omap_mpu_state_s *s = opaque;
1760    CPUState *cpu = CPU(s->cpu);
1761
1762    if (size != 2) {
1763        return omap_badwidth_read16(opaque, addr);
1764    }
1765
1766    switch (addr) {
1767    case 0x04:  /* DSP_IDLECT1 */
1768        return s->clkm.dsp_idlect1;
1769
1770    case 0x08:  /* DSP_IDLECT2 */
1771        return s->clkm.dsp_idlect2;
1772
1773    case 0x14:  /* DSP_RSTCT2 */
1774        return s->clkm.dsp_rstct2;
1775
1776    case 0x18:  /* DSP_SYSST */
1777        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1778                (cpu->halted << 6);      /* Quite useless... */
1779    }
1780
1781    OMAP_BAD_REG(addr);
1782    return 0;
1783}
1784
1785static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1786                uint16_t diff, uint16_t value)
1787{
1788    omap_clk clk;
1789
1790    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1791}
1792
1793static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1794                uint16_t diff, uint16_t value)
1795{
1796    omap_clk clk;
1797
1798    SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1799}
1800
1801static void omap_clkdsp_write(void *opaque, hwaddr addr,
1802                              uint64_t value, unsigned size)
1803{
1804    struct omap_mpu_state_s *s = opaque;
1805    uint16_t diff;
1806
1807    if (size != 2) {
1808        omap_badwidth_write16(opaque, addr, value);
1809        return;
1810    }
1811
1812    switch (addr) {
1813    case 0x04:  /* DSP_IDLECT1 */
1814        diff = s->clkm.dsp_idlect1 ^ value;
1815        s->clkm.dsp_idlect1 = value & 0x01f7;
1816        omap_clkdsp_idlect1_update(s, diff, value);
1817        break;
1818
1819    case 0x08:  /* DSP_IDLECT2 */
1820        s->clkm.dsp_idlect2 = value & 0x0037;
1821        diff = s->clkm.dsp_idlect1 ^ value;
1822        omap_clkdsp_idlect2_update(s, diff, value);
1823        break;
1824
1825    case 0x14:  /* DSP_RSTCT2 */
1826        s->clkm.dsp_rstct2 = value & 0x0001;
1827        break;
1828
1829    case 0x18:  /* DSP_SYSST */
1830        s->clkm.cold_start &= value & 0x3f;
1831        break;
1832
1833    default:
1834        OMAP_BAD_REG(addr);
1835    }
1836}
1837
1838static const MemoryRegionOps omap_clkdsp_ops = {
1839    .read = omap_clkdsp_read,
1840    .write = omap_clkdsp_write,
1841    .endianness = DEVICE_NATIVE_ENDIAN,
1842};
1843
1844static void omap_clkm_reset(struct omap_mpu_state_s *s)
1845{
1846    if (s->wdt && s->wdt->reset)
1847        s->clkm.cold_start = 0x6;
1848    s->clkm.clocking_scheme = 0;
1849    omap_clkm_ckctl_update(s, ~0, 0x3000);
1850    s->clkm.arm_ckctl = 0x3000;
1851    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1852    s->clkm.arm_idlect1 = 0x0400;
1853    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1854    s->clkm.arm_idlect2 = 0x0100;
1855    s->clkm.arm_ewupct = 0x003f;
1856    s->clkm.arm_rstct1 = 0x0000;
1857    s->clkm.arm_rstct2 = 0x0000;
1858    s->clkm.arm_ckout1 = 0x0015;
1859    s->clkm.dpll1_mode = 0x2002;
1860    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1861    s->clkm.dsp_idlect1 = 0x0040;
1862    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1863    s->clkm.dsp_idlect2 = 0x0000;
1864    s->clkm.dsp_rstct2 = 0x0000;
1865}
1866
1867static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1868                hwaddr dsp_base, struct omap_mpu_state_s *s)
1869{
1870    memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1871                          "omap-clkm", 0x100);
1872    memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1873                          "omap-clkdsp", 0x1000);
1874
1875    s->clkm.arm_idlect1 = 0x03ff;
1876    s->clkm.arm_idlect2 = 0x0100;
1877    s->clkm.dsp_idlect1 = 0x0002;
1878    omap_clkm_reset(s);
1879    s->clkm.cold_start = 0x3a;
1880
1881    memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1882    memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1883}
1884
1885/* MPU I/O */
1886struct omap_mpuio_s {
1887    qemu_irq irq;
1888    qemu_irq kbd_irq;
1889    qemu_irq *in;
1890    qemu_irq handler[16];
1891    qemu_irq wakeup;
1892    MemoryRegion iomem;
1893
1894    uint16_t inputs;
1895    uint16_t outputs;
1896    uint16_t dir;
1897    uint16_t edge;
1898    uint16_t mask;
1899    uint16_t ints;
1900
1901    uint16_t debounce;
1902    uint16_t latch;
1903    uint8_t event;
1904
1905    uint8_t buttons[5];
1906    uint8_t row_latch;
1907    uint8_t cols;
1908    int kbd_mask;
1909    int clk;
1910};
1911
1912static void omap_mpuio_set(void *opaque, int line, int level)
1913{
1914    struct omap_mpuio_s *s = opaque;
1915    uint16_t prev = s->inputs;
1916
1917    if (level)
1918        s->inputs |= 1 << line;
1919    else
1920        s->inputs &= ~(1 << line);
1921
1922    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1923        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1924            s->ints |= 1 << line;
1925            qemu_irq_raise(s->irq);
1926            /* TODO: wakeup */
1927        }
1928        if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1929                (s->event >> 1) == line)        /* PIN_SELECT */
1930            s->latch = s->inputs;
1931    }
1932}
1933
1934static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1935{
1936    int i;
1937    uint8_t *row, rows = 0, cols = ~s->cols;
1938
1939    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1940        if (*row & cols)
1941            rows |= i;
1942
1943    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1944    s->row_latch = ~rows;
1945}
1946
1947static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1948                                unsigned size)
1949{
1950    struct omap_mpuio_s *s = opaque;
1951    int offset = addr & OMAP_MPUI_REG_MASK;
1952    uint16_t ret;
1953
1954    if (size != 2) {
1955        return omap_badwidth_read16(opaque, addr);
1956    }
1957
1958    switch (offset) {
1959    case 0x00:  /* INPUT_LATCH */
1960        return s->inputs;
1961
1962    case 0x04:  /* OUTPUT_REG */
1963        return s->outputs;
1964
1965    case 0x08:  /* IO_CNTL */
1966        return s->dir;
1967
1968    case 0x10:  /* KBR_LATCH */
1969        return s->row_latch;
1970
1971    case 0x14:  /* KBC_REG */
1972        return s->cols;
1973
1974    case 0x18:  /* GPIO_EVENT_MODE_REG */
1975        return s->event;
1976
1977    case 0x1c:  /* GPIO_INT_EDGE_REG */
1978        return s->edge;
1979
1980    case 0x20:  /* KBD_INT */
1981        return (~s->row_latch & 0x1f) && !s->kbd_mask;
1982
1983    case 0x24:  /* GPIO_INT */
1984        ret = s->ints;
1985        s->ints &= s->mask;
1986        if (ret)
1987            qemu_irq_lower(s->irq);
1988        return ret;
1989
1990    case 0x28:  /* KBD_MASKIT */
1991        return s->kbd_mask;
1992
1993    case 0x2c:  /* GPIO_MASKIT */
1994        return s->mask;
1995
1996    case 0x30:  /* GPIO_DEBOUNCING_REG */
1997        return s->debounce;
1998
1999    case 0x34:  /* GPIO_LATCH_REG */
2000        return s->latch;
2001    }
2002
2003    OMAP_BAD_REG(addr);
2004    return 0;
2005}
2006
2007static void omap_mpuio_write(void *opaque, hwaddr addr,
2008                             uint64_t value, unsigned size)
2009{
2010    struct omap_mpuio_s *s = opaque;
2011    int offset = addr & OMAP_MPUI_REG_MASK;
2012    uint16_t diff;
2013    int ln;
2014
2015    if (size != 2) {
2016        omap_badwidth_write16(opaque, addr, value);
2017        return;
2018    }
2019
2020    switch (offset) {
2021    case 0x04:  /* OUTPUT_REG */
2022        diff = (s->outputs ^ value) & ~s->dir;
2023        s->outputs = value;
2024        while ((ln = ctz32(diff)) != 32) {
2025            if (s->handler[ln])
2026                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027            diff &= ~(1 << ln);
2028        }
2029        break;
2030
2031    case 0x08:  /* IO_CNTL */
2032        diff = s->outputs & (s->dir ^ value);
2033        s->dir = value;
2034
2035        value = s->outputs & ~s->dir;
2036        while ((ln = ctz32(diff)) != 32) {
2037            if (s->handler[ln])
2038                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2039            diff &= ~(1 << ln);
2040        }
2041        break;
2042
2043    case 0x14:  /* KBC_REG */
2044        s->cols = value;
2045        omap_mpuio_kbd_update(s);
2046        break;
2047
2048    case 0x18:  /* GPIO_EVENT_MODE_REG */
2049        s->event = value & 0x1f;
2050        break;
2051
2052    case 0x1c:  /* GPIO_INT_EDGE_REG */
2053        s->edge = value;
2054        break;
2055
2056    case 0x28:  /* KBD_MASKIT */
2057        s->kbd_mask = value & 1;
2058        omap_mpuio_kbd_update(s);
2059        break;
2060
2061    case 0x2c:  /* GPIO_MASKIT */
2062        s->mask = value;
2063        break;
2064
2065    case 0x30:  /* GPIO_DEBOUNCING_REG */
2066        s->debounce = value & 0x1ff;
2067        break;
2068
2069    case 0x00:  /* INPUT_LATCH */
2070    case 0x10:  /* KBR_LATCH */
2071    case 0x20:  /* KBD_INT */
2072    case 0x24:  /* GPIO_INT */
2073    case 0x34:  /* GPIO_LATCH_REG */
2074        OMAP_RO_REG(addr);
2075        return;
2076
2077    default:
2078        OMAP_BAD_REG(addr);
2079        return;
2080    }
2081}
2082
2083static const MemoryRegionOps omap_mpuio_ops  = {
2084    .read = omap_mpuio_read,
2085    .write = omap_mpuio_write,
2086    .endianness = DEVICE_NATIVE_ENDIAN,
2087};
2088
2089static void omap_mpuio_reset(struct omap_mpuio_s *s)
2090{
2091    s->inputs = 0;
2092    s->outputs = 0;
2093    s->dir = ~0;
2094    s->event = 0;
2095    s->edge = 0;
2096    s->kbd_mask = 0;
2097    s->mask = 0;
2098    s->debounce = 0;
2099    s->latch = 0;
2100    s->ints = 0;
2101    s->row_latch = 0x1f;
2102    s->clk = 1;
2103}
2104
2105static void omap_mpuio_onoff(void *opaque, int line, int on)
2106{
2107    struct omap_mpuio_s *s = opaque;
2108
2109    s->clk = on;
2110    if (on)
2111        omap_mpuio_kbd_update(s);
2112}
2113
2114static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2115                hwaddr base,
2116                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2117                omap_clk clk)
2118{
2119    struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2120
2121    s->irq = gpio_int;
2122    s->kbd_irq = kbd_int;
2123    s->wakeup = wakeup;
2124    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2125    omap_mpuio_reset(s);
2126
2127    memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2128                          "omap-mpuio", 0x800);
2129    memory_region_add_subregion(memory, base, &s->iomem);
2130
2131    omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2132
2133    return s;
2134}
2135
2136qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2137{
2138    return s->in;
2139}
2140
2141void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2142{
2143    if (line >= 16 || line < 0)
2144        hw_error("%s: No GPIO line %i\n", __func__, line);
2145    s->handler[line] = handler;
2146}
2147
2148void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2149{
2150    if (row >= 5 || row < 0)
2151        hw_error("%s: No key %i-%i\n", __func__, col, row);
2152
2153    if (down)
2154        s->buttons[row] |= 1 << col;
2155    else
2156        s->buttons[row] &= ~(1 << col);
2157
2158    omap_mpuio_kbd_update(s);
2159}
2160
2161/* MicroWire Interface */
2162struct omap_uwire_s {
2163    MemoryRegion iomem;
2164    qemu_irq txirq;
2165    qemu_irq rxirq;
2166    qemu_irq txdrq;
2167
2168    uint16_t txbuf;
2169    uint16_t rxbuf;
2170    uint16_t control;
2171    uint16_t setup[5];
2172
2173    uWireSlave *chip[4];
2174};
2175
2176static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177{
2178    int chipselect = (s->control >> 10) & 3;            /* INDEX */
2179    uWireSlave *slave = s->chip[chipselect];
2180
2181    if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2182        if (s->control & (1 << 12))                     /* CS_CMD */
2183            if (slave && slave->send)
2184                slave->send(slave->opaque,
2185                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2186        s->control &= ~(1 << 14);                       /* CSRB */
2187        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2188         * a DRQ.  When is the level IRQ supposed to be reset?  */
2189    }
2190
2191    if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2192        if (s->control & (1 << 12))                     /* CS_CMD */
2193            if (slave && slave->receive)
2194                s->rxbuf = slave->receive(slave->opaque);
2195        s->control |= 1 << 15;                          /* RDRB */
2196        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2197         * a DRQ.  When is the level IRQ supposed to be reset?  */
2198    }
2199}
2200
2201static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
2202{
2203    struct omap_uwire_s *s = opaque;
2204    int offset = addr & OMAP_MPUI_REG_MASK;
2205
2206    if (size != 2) {
2207        return omap_badwidth_read16(opaque, addr);
2208    }
2209
2210    switch (offset) {
2211    case 0x00:  /* RDR */
2212        s->control &= ~(1 << 15);                       /* RDRB */
2213        return s->rxbuf;
2214
2215    case 0x04:  /* CSR */
2216        return s->control;
2217
2218    case 0x08:  /* SR1 */
2219        return s->setup[0];
2220    case 0x0c:  /* SR2 */
2221        return s->setup[1];
2222    case 0x10:  /* SR3 */
2223        return s->setup[2];
2224    case 0x14:  /* SR4 */
2225        return s->setup[3];
2226    case 0x18:  /* SR5 */
2227        return s->setup[4];
2228    }
2229
2230    OMAP_BAD_REG(addr);
2231    return 0;
2232}
2233
2234static void omap_uwire_write(void *opaque, hwaddr addr,
2235                             uint64_t value, unsigned size)
2236{
2237    struct omap_uwire_s *s = opaque;
2238    int offset = addr & OMAP_MPUI_REG_MASK;
2239
2240    if (size != 2) {
2241        omap_badwidth_write16(opaque, addr, value);
2242        return;
2243    }
2244
2245    switch (offset) {
2246    case 0x00:  /* TDR */
2247        s->txbuf = value;                               /* TD */
2248        if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2249                        ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2250                         (s->control & (1 << 12)))) {   /* CS_CMD */
2251            s->control |= 1 << 14;                      /* CSRB */
2252            omap_uwire_transfer_start(s);
2253        }
2254        break;
2255
2256    case 0x04:  /* CSR */
2257        s->control = value & 0x1fff;
2258        if (value & (1 << 13))                          /* START */
2259            omap_uwire_transfer_start(s);
2260        break;
2261
2262    case 0x08:  /* SR1 */
2263        s->setup[0] = value & 0x003f;
2264        break;
2265
2266    case 0x0c:  /* SR2 */
2267        s->setup[1] = value & 0x0fc0;
2268        break;
2269
2270    case 0x10:  /* SR3 */
2271        s->setup[2] = value & 0x0003;
2272        break;
2273
2274    case 0x14:  /* SR4 */
2275        s->setup[3] = value & 0x0001;
2276        break;
2277
2278    case 0x18:  /* SR5 */
2279        s->setup[4] = value & 0x000f;
2280        break;
2281
2282    default:
2283        OMAP_BAD_REG(addr);
2284        return;
2285    }
2286}
2287
2288static const MemoryRegionOps omap_uwire_ops = {
2289    .read = omap_uwire_read,
2290    .write = omap_uwire_write,
2291    .endianness = DEVICE_NATIVE_ENDIAN,
2292};
2293
2294static void omap_uwire_reset(struct omap_uwire_s *s)
2295{
2296    s->control = 0;
2297    s->setup[0] = 0;
2298    s->setup[1] = 0;
2299    s->setup[2] = 0;
2300    s->setup[3] = 0;
2301    s->setup[4] = 0;
2302}
2303
2304static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2305                                            hwaddr base,
2306                                            qemu_irq txirq, qemu_irq rxirq,
2307                                            qemu_irq dma,
2308                                            omap_clk clk)
2309{
2310    struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2311
2312    s->txirq = txirq;
2313    s->rxirq = rxirq;
2314    s->txdrq = dma;
2315    omap_uwire_reset(s);
2316
2317    memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2318    memory_region_add_subregion(system_memory, base, &s->iomem);
2319
2320    return s;
2321}
2322
2323void omap_uwire_attach(struct omap_uwire_s *s,
2324                uWireSlave *slave, int chipselect)
2325{
2326    if (chipselect < 0 || chipselect > 3) {
2327        error_report("%s: Bad chipselect %i", __func__, chipselect);
2328        exit(-1);
2329    }
2330
2331    s->chip[chipselect] = slave;
2332}
2333
2334/* Pseudonoise Pulse-Width Light Modulator */
2335struct omap_pwl_s {
2336    MemoryRegion iomem;
2337    uint8_t output;
2338    uint8_t level;
2339    uint8_t enable;
2340    int clk;
2341};
2342
2343static void omap_pwl_update(struct omap_pwl_s *s)
2344{
2345    int output = (s->clk && s->enable) ? s->level : 0;
2346
2347    if (output != s->output) {
2348        s->output = output;
2349        printf("%s: Backlight now at %i/256\n", __func__, output);
2350    }
2351}
2352
2353static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
2354{
2355    struct omap_pwl_s *s = opaque;
2356    int offset = addr & OMAP_MPUI_REG_MASK;
2357
2358    if (size != 1) {
2359        return omap_badwidth_read8(opaque, addr);
2360    }
2361
2362    switch (offset) {
2363    case 0x00:  /* PWL_LEVEL */
2364        return s->level;
2365    case 0x04:  /* PWL_CTRL */
2366        return s->enable;
2367    }
2368    OMAP_BAD_REG(addr);
2369    return 0;
2370}
2371
2372static void omap_pwl_write(void *opaque, hwaddr addr,
2373                           uint64_t value, unsigned size)
2374{
2375    struct omap_pwl_s *s = opaque;
2376    int offset = addr & OMAP_MPUI_REG_MASK;
2377
2378    if (size != 1) {
2379        omap_badwidth_write8(opaque, addr, value);
2380        return;
2381    }
2382
2383    switch (offset) {
2384    case 0x00:  /* PWL_LEVEL */
2385        s->level = value;
2386        omap_pwl_update(s);
2387        break;
2388    case 0x04:  /* PWL_CTRL */
2389        s->enable = value & 1;
2390        omap_pwl_update(s);
2391        break;
2392    default:
2393        OMAP_BAD_REG(addr);
2394        return;
2395    }
2396}
2397
2398static const MemoryRegionOps omap_pwl_ops = {
2399    .read = omap_pwl_read,
2400    .write = omap_pwl_write,
2401    .endianness = DEVICE_NATIVE_ENDIAN,
2402};
2403
2404static void omap_pwl_reset(struct omap_pwl_s *s)
2405{
2406    s->output = 0;
2407    s->level = 0;
2408    s->enable = 0;
2409    s->clk = 1;
2410    omap_pwl_update(s);
2411}
2412
2413static void omap_pwl_clk_update(void *opaque, int line, int on)
2414{
2415    struct omap_pwl_s *s = opaque;
2416
2417    s->clk = on;
2418    omap_pwl_update(s);
2419}
2420
2421static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2422                                        hwaddr base,
2423                                        omap_clk clk)
2424{
2425    struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2426
2427    omap_pwl_reset(s);
2428
2429    memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2430                          "omap-pwl", 0x800);
2431    memory_region_add_subregion(system_memory, base, &s->iomem);
2432
2433    omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2434    return s;
2435}
2436
2437/* Pulse-Width Tone module */
2438struct omap_pwt_s {
2439    MemoryRegion iomem;
2440    uint8_t frc;
2441    uint8_t vrc;
2442    uint8_t gcr;
2443    omap_clk clk;
2444};
2445
2446static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
2447{
2448    struct omap_pwt_s *s = opaque;
2449    int offset = addr & OMAP_MPUI_REG_MASK;
2450
2451    if (size != 1) {
2452        return omap_badwidth_read8(opaque, addr);
2453    }
2454
2455    switch (offset) {
2456    case 0x00:  /* FRC */
2457        return s->frc;
2458    case 0x04:  /* VCR */
2459        return s->vrc;
2460    case 0x08:  /* GCR */
2461        return s->gcr;
2462    }
2463    OMAP_BAD_REG(addr);
2464    return 0;
2465}
2466
2467static void omap_pwt_write(void *opaque, hwaddr addr,
2468                           uint64_t value, unsigned size)
2469{
2470    struct omap_pwt_s *s = opaque;
2471    int offset = addr & OMAP_MPUI_REG_MASK;
2472
2473    if (size != 1) {
2474        omap_badwidth_write8(opaque, addr, value);
2475        return;
2476    }
2477
2478    switch (offset) {
2479    case 0x00:  /* FRC */
2480        s->frc = value & 0x3f;
2481        break;
2482    case 0x04:  /* VRC */
2483        if ((value ^ s->vrc) & 1) {
2484            if (value & 1)
2485                printf("%s: %iHz buzz on\n", __func__, (int)
2486                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2487                                ((omap_clk_getrate(s->clk) >> 3) /
2488                                 /* Pre-multiplexer divider */
2489                                 ((s->gcr & 2) ? 1 : 154) /
2490                                 /* Octave multiplexer */
2491                                 (2 << (value & 3)) *
2492                                 /* 101/107 divider */
2493                                 ((value & (1 << 2)) ? 101 : 107) *
2494                                 /*  49/55 divider */
2495                                 ((value & (1 << 3)) ?  49 : 55) *
2496                                 /*  50/63 divider */
2497                                 ((value & (1 << 4)) ?  50 : 63) *
2498                                 /*  80/127 divider */
2499                                 ((value & (1 << 5)) ?  80 : 127) /
2500                                 (107 * 55 * 63 * 127)));
2501            else
2502                printf("%s: silence!\n", __func__);
2503        }
2504        s->vrc = value & 0x7f;
2505        break;
2506    case 0x08:  /* GCR */
2507        s->gcr = value & 3;
2508        break;
2509    default:
2510        OMAP_BAD_REG(addr);
2511        return;
2512    }
2513}
2514
2515static const MemoryRegionOps omap_pwt_ops = {
2516    .read =omap_pwt_read,
2517    .write = omap_pwt_write,
2518    .endianness = DEVICE_NATIVE_ENDIAN,
2519};
2520
2521static void omap_pwt_reset(struct omap_pwt_s *s)
2522{
2523    s->frc = 0;
2524    s->vrc = 0;
2525    s->gcr = 0;
2526}
2527
2528static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2529                                        hwaddr base,
2530                                        omap_clk clk)
2531{
2532    struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2533    s->clk = clk;
2534    omap_pwt_reset(s);
2535
2536    memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2537                          "omap-pwt", 0x800);
2538    memory_region_add_subregion(system_memory, base, &s->iomem);
2539    return s;
2540}
2541
2542/* Real-time Clock module */
2543struct omap_rtc_s {
2544    MemoryRegion iomem;
2545    qemu_irq irq;
2546    qemu_irq alarm;
2547    QEMUTimer *clk;
2548
2549    uint8_t interrupts;
2550    uint8_t status;
2551    int16_t comp_reg;
2552    int running;
2553    int pm_am;
2554    int auto_comp;
2555    int round;
2556    struct tm alarm_tm;
2557    time_t alarm_ti;
2558
2559    struct tm current_tm;
2560    time_t ti;
2561    uint64_t tick;
2562};
2563
2564static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2565{
2566    /* s->alarm is level-triggered */
2567    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2568}
2569
2570static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2571{
2572    s->alarm_ti = mktimegm(&s->alarm_tm);
2573    if (s->alarm_ti == -1)
2574        printf("%s: conversion failed\n", __func__);
2575}
2576
2577static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
2578{
2579    struct omap_rtc_s *s = opaque;
2580    int offset = addr & OMAP_MPUI_REG_MASK;
2581    uint8_t i;
2582
2583    if (size != 1) {
2584        return omap_badwidth_read8(opaque, addr);
2585    }
2586
2587    switch (offset) {
2588    case 0x00:  /* SECONDS_REG */
2589        return to_bcd(s->current_tm.tm_sec);
2590
2591    case 0x04:  /* MINUTES_REG */
2592        return to_bcd(s->current_tm.tm_min);
2593
2594    case 0x08:  /* HOURS_REG */
2595        if (s->pm_am)
2596            return ((s->current_tm.tm_hour > 11) << 7) |
2597                    to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2598        else
2599            return to_bcd(s->current_tm.tm_hour);
2600
2601    case 0x0c:  /* DAYS_REG */
2602        return to_bcd(s->current_tm.tm_mday);
2603
2604    case 0x10:  /* MONTHS_REG */
2605        return to_bcd(s->current_tm.tm_mon + 1);
2606
2607    case 0x14:  /* YEARS_REG */
2608        return to_bcd(s->current_tm.tm_year % 100);
2609
2610    case 0x18:  /* WEEK_REG */
2611        return s->current_tm.tm_wday;
2612
2613    case 0x20:  /* ALARM_SECONDS_REG */
2614        return to_bcd(s->alarm_tm.tm_sec);
2615
2616    case 0x24:  /* ALARM_MINUTES_REG */
2617        return to_bcd(s->alarm_tm.tm_min);
2618
2619    case 0x28:  /* ALARM_HOURS_REG */
2620        if (s->pm_am)
2621            return ((s->alarm_tm.tm_hour > 11) << 7) |
2622                    to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2623        else
2624            return to_bcd(s->alarm_tm.tm_hour);
2625
2626    case 0x2c:  /* ALARM_DAYS_REG */
2627        return to_bcd(s->alarm_tm.tm_mday);
2628
2629    case 0x30:  /* ALARM_MONTHS_REG */
2630        return to_bcd(s->alarm_tm.tm_mon + 1);
2631
2632    case 0x34:  /* ALARM_YEARS_REG */
2633        return to_bcd(s->alarm_tm.tm_year % 100);
2634
2635    case 0x40:  /* RTC_CTRL_REG */
2636        return (s->pm_am << 3) | (s->auto_comp << 2) |
2637                (s->round << 1) | s->running;
2638
2639    case 0x44:  /* RTC_STATUS_REG */
2640        i = s->status;
2641        s->status &= ~0x3d;
2642        return i;
2643
2644    case 0x48:  /* RTC_INTERRUPTS_REG */
2645        return s->interrupts;
2646
2647    case 0x4c:  /* RTC_COMP_LSB_REG */
2648        return ((uint16_t) s->comp_reg) & 0xff;
2649
2650    case 0x50:  /* RTC_COMP_MSB_REG */
2651        return ((uint16_t) s->comp_reg) >> 8;
2652    }
2653
2654    OMAP_BAD_REG(addr);
2655    return 0;
2656}
2657
2658static void omap_rtc_write(void *opaque, hwaddr addr,
2659                           uint64_t value, unsigned size)
2660{
2661    struct omap_rtc_s *s = opaque;
2662    int offset = addr & OMAP_MPUI_REG_MASK;
2663    struct tm new_tm;
2664    time_t ti[2];
2665
2666    if (size != 1) {
2667        omap_badwidth_write8(opaque, addr, value);
2668        return;
2669    }
2670
2671    switch (offset) {
2672    case 0x00:  /* SECONDS_REG */
2673#ifdef ALMDEBUG
2674        printf("RTC SEC_REG <-- %02x\n", value);
2675#endif
2676        s->ti -= s->current_tm.tm_sec;
2677        s->ti += from_bcd(value);
2678        return;
2679
2680    case 0x04:  /* MINUTES_REG */
2681#ifdef ALMDEBUG
2682        printf("RTC MIN_REG <-- %02x\n", value);
2683#endif
2684        s->ti -= s->current_tm.tm_min * 60;
2685        s->ti += from_bcd(value) * 60;
2686        return;
2687
2688    case 0x08:  /* HOURS_REG */
2689#ifdef ALMDEBUG
2690        printf("RTC HRS_REG <-- %02x\n", value);
2691#endif
2692        s->ti -= s->current_tm.tm_hour * 3600;
2693        if (s->pm_am) {
2694            s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2695            s->ti += ((value >> 7) & 1) * 43200;
2696        } else
2697            s->ti += from_bcd(value & 0x3f) * 3600;
2698        return;
2699
2700    case 0x0c:  /* DAYS_REG */
2701#ifdef ALMDEBUG
2702        printf("RTC DAY_REG <-- %02x\n", value);
2703#endif
2704        s->ti -= s->current_tm.tm_mday * 86400;
2705        s->ti += from_bcd(value) * 86400;
2706        return;
2707
2708    case 0x10:  /* MONTHS_REG */
2709#ifdef ALMDEBUG
2710        printf("RTC MTH_REG <-- %02x\n", value);
2711#endif
2712        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2713        new_tm.tm_mon = from_bcd(value);
2714        ti[0] = mktimegm(&s->current_tm);
2715        ti[1] = mktimegm(&new_tm);
2716
2717        if (ti[0] != -1 && ti[1] != -1) {
2718            s->ti -= ti[0];
2719            s->ti += ti[1];
2720        } else {
2721            /* A less accurate version */
2722            s->ti -= s->current_tm.tm_mon * 2592000;
2723            s->ti += from_bcd(value) * 2592000;
2724        }
2725        return;
2726
2727    case 0x14:  /* YEARS_REG */
2728#ifdef ALMDEBUG
2729        printf("RTC YRS_REG <-- %02x\n", value);
2730#endif
2731        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2732        new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2733        ti[0] = mktimegm(&s->current_tm);
2734        ti[1] = mktimegm(&new_tm);
2735
2736        if (ti[0] != -1 && ti[1] != -1) {
2737            s->ti -= ti[0];
2738            s->ti += ti[1];
2739        } else {
2740            /* A less accurate version */
2741            s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2742            s->ti += (time_t)from_bcd(value) * 31536000;
2743        }
2744        return;
2745
2746    case 0x18:  /* WEEK_REG */
2747        return; /* Ignored */
2748
2749    case 0x20:  /* ALARM_SECONDS_REG */
2750#ifdef ALMDEBUG
2751        printf("ALM SEC_REG <-- %02x\n", value);
2752#endif
2753        s->alarm_tm.tm_sec = from_bcd(value);
2754        omap_rtc_alarm_update(s);
2755        return;
2756
2757    case 0x24:  /* ALARM_MINUTES_REG */
2758#ifdef ALMDEBUG
2759        printf("ALM MIN_REG <-- %02x\n", value);
2760#endif
2761        s->alarm_tm.tm_min = from_bcd(value);
2762        omap_rtc_alarm_update(s);
2763        return;
2764
2765    case 0x28:  /* ALARM_HOURS_REG */
2766#ifdef ALMDEBUG
2767        printf("ALM HRS_REG <-- %02x\n", value);
2768#endif
2769        if (s->pm_am)
2770            s->alarm_tm.tm_hour =
2771                    ((from_bcd(value & 0x3f)) % 12) +
2772                    ((value >> 7) & 1) * 12;
2773        else
2774            s->alarm_tm.tm_hour = from_bcd(value);
2775        omap_rtc_alarm_update(s);
2776        return;
2777
2778    case 0x2c:  /* ALARM_DAYS_REG */
2779#ifdef ALMDEBUG
2780        printf("ALM DAY_REG <-- %02x\n", value);
2781#endif
2782        s->alarm_tm.tm_mday = from_bcd(value);
2783        omap_rtc_alarm_update(s);
2784        return;
2785
2786    case 0x30:  /* ALARM_MONTHS_REG */
2787#ifdef ALMDEBUG
2788        printf("ALM MON_REG <-- %02x\n", value);
2789#endif
2790        s->alarm_tm.tm_mon = from_bcd(value);
2791        omap_rtc_alarm_update(s);
2792        return;
2793
2794    case 0x34:  /* ALARM_YEARS_REG */
2795#ifdef ALMDEBUG
2796        printf("ALM YRS_REG <-- %02x\n", value);
2797#endif
2798        s->alarm_tm.tm_year = from_bcd(value);
2799        omap_rtc_alarm_update(s);
2800        return;
2801
2802    case 0x40:  /* RTC_CTRL_REG */
2803#ifdef ALMDEBUG
2804        printf("RTC CONTROL <-- %02x\n", value);
2805#endif
2806        s->pm_am = (value >> 3) & 1;
2807        s->auto_comp = (value >> 2) & 1;
2808        s->round = (value >> 1) & 1;
2809        s->running = value & 1;
2810        s->status &= 0xfd;
2811        s->status |= s->running << 1;
2812        return;
2813
2814    case 0x44:  /* RTC_STATUS_REG */
2815#ifdef ALMDEBUG
2816        printf("RTC STATUSL <-- %02x\n", value);
2817#endif
2818        s->status &= ~((value & 0xc0) ^ 0x80);
2819        omap_rtc_interrupts_update(s);
2820        return;
2821
2822    case 0x48:  /* RTC_INTERRUPTS_REG */
2823#ifdef ALMDEBUG
2824        printf("RTC INTRS <-- %02x\n", value);
2825#endif
2826        s->interrupts = value;
2827        return;
2828
2829    case 0x4c:  /* RTC_COMP_LSB_REG */
2830#ifdef ALMDEBUG
2831        printf("RTC COMPLSB <-- %02x\n", value);
2832#endif
2833        s->comp_reg &= 0xff00;
2834        s->comp_reg |= 0x00ff & value;
2835        return;
2836
2837    case 0x50:  /* RTC_COMP_MSB_REG */
2838#ifdef ALMDEBUG
2839        printf("RTC COMPMSB <-- %02x\n", value);
2840#endif
2841        s->comp_reg &= 0x00ff;
2842        s->comp_reg |= 0xff00 & (value << 8);
2843        return;
2844
2845    default:
2846        OMAP_BAD_REG(addr);
2847        return;
2848    }
2849}
2850
2851static const MemoryRegionOps omap_rtc_ops = {
2852    .read = omap_rtc_read,
2853    .write = omap_rtc_write,
2854    .endianness = DEVICE_NATIVE_ENDIAN,
2855};
2856
2857static void omap_rtc_tick(void *opaque)
2858{
2859    struct omap_rtc_s *s = opaque;
2860
2861    if (s->round) {
2862        /* Round to nearest full minute.  */
2863        if (s->current_tm.tm_sec < 30)
2864            s->ti -= s->current_tm.tm_sec;
2865        else
2866            s->ti += 60 - s->current_tm.tm_sec;
2867
2868        s->round = 0;
2869    }
2870
2871    localtime_r(&s->ti, &s->current_tm);
2872
2873    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2874        s->status |= 0x40;
2875        omap_rtc_interrupts_update(s);
2876    }
2877
2878    if (s->interrupts & 0x04)
2879        switch (s->interrupts & 3) {
2880        case 0:
2881            s->status |= 0x04;
2882            qemu_irq_pulse(s->irq);
2883            break;
2884        case 1:
2885            if (s->current_tm.tm_sec)
2886                break;
2887            s->status |= 0x08;
2888            qemu_irq_pulse(s->irq);
2889            break;
2890        case 2:
2891            if (s->current_tm.tm_sec || s->current_tm.tm_min)
2892                break;
2893            s->status |= 0x10;
2894            qemu_irq_pulse(s->irq);
2895            break;
2896        case 3:
2897            if (s->current_tm.tm_sec ||
2898                            s->current_tm.tm_min || s->current_tm.tm_hour)
2899                break;
2900            s->status |= 0x20;
2901            qemu_irq_pulse(s->irq);
2902            break;
2903        }
2904
2905    /* Move on */
2906    if (s->running)
2907        s->ti ++;
2908    s->tick += 1000;
2909
2910    /*
2911     * Every full hour add a rough approximation of the compensation
2912     * register to the 32kHz Timer (which drives the RTC) value. 
2913     */
2914    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2915        s->tick += s->comp_reg * 1000 / 32768;
2916
2917    timer_mod(s->clk, s->tick);
2918}
2919
2920static void omap_rtc_reset(struct omap_rtc_s *s)
2921{
2922    struct tm tm;
2923
2924    s->interrupts = 0;
2925    s->comp_reg = 0;
2926    s->running = 0;
2927    s->pm_am = 0;
2928    s->auto_comp = 0;
2929    s->round = 0;
2930    s->tick = qemu_clock_get_ms(rtc_clock);
2931    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2932    s->alarm_tm.tm_mday = 0x01;
2933    s->status = 1 << 7;
2934    qemu_get_timedate(&tm, 0);
2935    s->ti = mktimegm(&tm);
2936
2937    omap_rtc_alarm_update(s);
2938    omap_rtc_tick(s);
2939}
2940
2941static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2942                                        hwaddr base,
2943                                        qemu_irq timerirq, qemu_irq alarmirq,
2944                                        omap_clk clk)
2945{
2946    struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2947
2948    s->irq = timerirq;
2949    s->alarm = alarmirq;
2950    s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2951
2952    omap_rtc_reset(s);
2953
2954    memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2955                          "omap-rtc", 0x800);
2956    memory_region_add_subregion(system_memory, base, &s->iomem);
2957
2958    return s;
2959}
2960
2961/* Multi-channel Buffered Serial Port interfaces */
2962struct omap_mcbsp_s {
2963    MemoryRegion iomem;
2964    qemu_irq txirq;
2965    qemu_irq rxirq;
2966    qemu_irq txdrq;
2967    qemu_irq rxdrq;
2968
2969    uint16_t spcr[2];
2970    uint16_t rcr[2];
2971    uint16_t xcr[2];
2972    uint16_t srgr[2];
2973    uint16_t mcr[2];
2974    uint16_t pcr;
2975    uint16_t rcer[8];
2976    uint16_t xcer[8];
2977    int tx_rate;
2978    int rx_rate;
2979    int tx_req;
2980    int rx_req;
2981
2982    I2SCodec *codec;
2983    QEMUTimer *source_timer;
2984    QEMUTimer *sink_timer;
2985};
2986
2987static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2988{
2989    int irq;
2990
2991    switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2992    case 0:
2993        irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2994        break;
2995    case 3:
2996        irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2997        break;
2998    default:
2999        irq = 0;
3000        break;
3001    }
3002
3003    if (irq)
3004        qemu_irq_pulse(s->rxirq);
3005
3006    switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
3007    case 0:
3008        irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
3009        break;
3010    case 3:
3011        irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
3012        break;
3013    default:
3014        irq = 0;
3015        break;
3016    }
3017
3018    if (irq)
3019        qemu_irq_pulse(s->txirq);
3020}
3021
3022static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3023{
3024    if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
3025        s->spcr[0] |= 1 << 2;                           /* RFULL */
3026    s->spcr[0] |= 1 << 1;                               /* RRDY */
3027    qemu_irq_raise(s->rxdrq);
3028    omap_mcbsp_intr_update(s);
3029}
3030
3031static void omap_mcbsp_source_tick(void *opaque)
3032{
3033    struct omap_mcbsp_s *s = opaque;
3034    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3035
3036    if (!s->rx_rate)
3037        return;
3038    if (s->rx_req)
3039        printf("%s: Rx FIFO overrun\n", __func__);
3040
3041    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3042
3043    omap_mcbsp_rx_newdata(s);
3044    timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3045                   NANOSECONDS_PER_SECOND);
3046}
3047
3048static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3049{
3050    if (!s->codec || !s->codec->rts)
3051        omap_mcbsp_source_tick(s);
3052    else if (s->codec->in.len) {
3053        s->rx_req = s->codec->in.len;
3054        omap_mcbsp_rx_newdata(s);
3055    }
3056}
3057
3058static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3059{
3060    timer_del(s->source_timer);
3061}
3062
3063static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3064{
3065    s->spcr[0] &= ~(1 << 1);                            /* RRDY */
3066    qemu_irq_lower(s->rxdrq);
3067    omap_mcbsp_intr_update(s);
3068}
3069
3070static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3071{
3072    s->spcr[1] |= 1 << 1;                               /* XRDY */
3073    qemu_irq_raise(s->txdrq);
3074    omap_mcbsp_intr_update(s);
3075}
3076
3077static void omap_mcbsp_sink_tick(void *opaque)
3078{
3079    struct omap_mcbsp_s *s = opaque;
3080    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3081
3082    if (!s->tx_rate)
3083        return;
3084    if (s->tx_req)
3085        printf("%s: Tx FIFO underrun\n", __func__);
3086
3087    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3088
3089    omap_mcbsp_tx_newdata(s);
3090    timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3091                   NANOSECONDS_PER_SECOND);
3092}
3093
3094static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3095{
3096    if (!s->codec || !s->codec->cts)
3097        omap_mcbsp_sink_tick(s);
3098    else if (s->codec->out.size) {
3099        s->tx_req = s->codec->out.size;
3100        omap_mcbsp_tx_newdata(s);
3101    }
3102}
3103
3104static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3105{
3106    s->spcr[1] &= ~(1 << 1);                            /* XRDY */
3107    qemu_irq_lower(s->txdrq);
3108    omap_mcbsp_intr_update(s);
3109    if (s->codec && s->codec->cts)
3110        s->codec->tx_swallow(s->codec->opaque);
3111}
3112
3113static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3114{
3115    s->tx_req = 0;
3116    omap_mcbsp_tx_done(s);
3117    timer_del(s->sink_timer);
3118}
3119
3120static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3121{
3122    int prev_rx_rate, prev_tx_rate;
3123    int rx_rate = 0, tx_rate = 0;
3124    int cpu_rate = 1500000;     /* XXX */
3125
3126    /* TODO: check CLKSTP bit */
3127    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3128        if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3129            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3130                            (s->pcr & (1 << 8))) {      /* CLKRM */
3131                if (~s->pcr & (1 << 7))                 /* SCLKME */
3132                    rx_rate = cpu_rate /
3133                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3134            } else
3135                if (s->codec)
3136                    rx_rate = s->codec->rx_rate;
3137        }
3138
3139        if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3140            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3141                            (s->pcr & (1 << 9))) {      /* CLKXM */
3142                if (~s->pcr & (1 << 7))                 /* SCLKME */
3143                    tx_rate = cpu_rate /
3144                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3145            } else
3146                if (s->codec)
3147                    tx_rate = s->codec->tx_rate;
3148        }
3149    }
3150    prev_tx_rate = s->tx_rate;
3151    prev_rx_rate = s->rx_rate;
3152    s->tx_rate = tx_rate;
3153    s->rx_rate = rx_rate;
3154
3155    if (s->codec)
3156        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3157
3158    if (!prev_tx_rate && tx_rate)
3159        omap_mcbsp_tx_start(s);
3160    else if (s->tx_rate && !tx_rate)
3161        omap_mcbsp_tx_stop(s);
3162
3163    if (!prev_rx_rate && rx_rate)
3164        omap_mcbsp_rx_start(s);
3165    else if (prev_tx_rate && !tx_rate)
3166        omap_mcbsp_rx_stop(s);
3167}
3168
3169static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3170                                unsigned size)
3171{
3172    struct omap_mcbsp_s *s = opaque;
3173    int offset = addr & OMAP_MPUI_REG_MASK;
3174    uint16_t ret;
3175
3176    if (size != 2) {
3177        return omap_badwidth_read16(opaque, addr);
3178    }
3179
3180    switch (offset) {
3181    case 0x00:  /* DRR2 */
3182        if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3183            return 0x0000;
3184        /* Fall through.  */
3185    case 0x02:  /* DRR1 */
3186        if (s->rx_req < 2) {
3187            printf("%s: Rx FIFO underrun\n", __func__);
3188            omap_mcbsp_rx_done(s);
3189        } else {
3190            s->tx_req -= 2;
3191            if (s->codec && s->codec->in.len >= 2) {
3192                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3193                ret |= s->codec->in.fifo[s->codec->in.start ++];
3194                s->codec->in.len -= 2;
3195            } else
3196                ret = 0x0000;
3197            if (!s->tx_req)
3198                omap_mcbsp_rx_done(s);
3199            return ret;
3200        }
3201        return 0x0000;
3202
3203    case 0x04:  /* DXR2 */
3204    case 0x06:  /* DXR1 */
3205        return 0x0000;
3206
3207    case 0x08:  /* SPCR2 */
3208        return s->spcr[1];
3209    case 0x0a:  /* SPCR1 */
3210        return s->spcr[0];
3211    case 0x0c:  /* RCR2 */
3212        return s->rcr[1];
3213    case 0x0e:  /* RCR1 */
3214        return s->rcr[0];
3215    case 0x10:  /* XCR2 */
3216        return s->xcr[1];
3217    case 0x12:  /* XCR1 */
3218        return s->xcr[0];
3219    case 0x14:  /* SRGR2 */
3220        return s->srgr[1];
3221    case 0x16:  /* SRGR1 */
3222        return s->srgr[0];
3223    case 0x18:  /* MCR2 */
3224        return s->mcr[1];
3225    case 0x1a:  /* MCR1 */
3226        return s->mcr[0];
3227    case 0x1c:  /* RCERA */
3228        return s->rcer[0];
3229    case 0x1e:  /* RCERB */
3230        return s->rcer[1];
3231    case 0x20:  /* XCERA */
3232        return s->xcer[0];
3233    case 0x22:  /* XCERB */
3234        return s->xcer[1];
3235    case 0x24:  /* PCR0 */
3236        return s->pcr;
3237    case 0x26:  /* RCERC */
3238        return s->rcer[2];
3239    case 0x28:  /* RCERD */
3240        return s->rcer[3];
3241    case 0x2a:  /* XCERC */
3242        return s->xcer[2];
3243    case 0x2c:  /* XCERD */
3244        return s->xcer[3];
3245    case 0x2e:  /* RCERE */
3246        return s->rcer[4];
3247    case 0x30:  /* RCERF */
3248        return s->rcer[5];
3249    case 0x32:  /* XCERE */
3250        return s->xcer[4];
3251    case 0x34:  /* XCERF */
3252        return s->xcer[5];
3253    case 0x36:  /* RCERG */
3254        return s->rcer[6];
3255    case 0x38:  /* RCERH */
3256        return s->rcer[7];
3257    case 0x3a:  /* XCERG */
3258        return s->xcer[6];
3259    case 0x3c:  /* XCERH */
3260        return s->xcer[7];
3261    }
3262
3263    OMAP_BAD_REG(addr);
3264    return 0;
3265}
3266
3267static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3268                uint32_t value)
3269{
3270    struct omap_mcbsp_s *s = opaque;
3271    int offset = addr & OMAP_MPUI_REG_MASK;
3272
3273    switch (offset) {
3274    case 0x00:  /* DRR2 */
3275    case 0x02:  /* DRR1 */
3276        OMAP_RO_REG(addr);
3277        return;
3278
3279    case 0x04:  /* DXR2 */
3280        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3281            return;
3282        /* Fall through.  */
3283    case 0x06:  /* DXR1 */
3284        if (s->tx_req > 1) {
3285            s->tx_req -= 2;
3286            if (s->codec && s->codec->cts) {
3287                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3288                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3289            }
3290            if (s->tx_req < 2)
3291                omap_mcbsp_tx_done(s);
3292        } else
3293            printf("%s: Tx FIFO overrun\n", __func__);
3294        return;
3295
3296    case 0x08:  /* SPCR2 */
3297        s->spcr[1] &= 0x0002;
3298        s->spcr[1] |= 0x03f9 & value;
3299        s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3300        if (~value & 1)                                 /* XRST */
3301            s->spcr[1] &= ~6;
3302        omap_mcbsp_req_update(s);
3303        return;
3304    case 0x0a:  /* SPCR1 */
3305        s->spcr[0] &= 0x0006;
3306        s->spcr[0] |= 0xf8f9 & value;
3307        if (value & (1 << 15))                          /* DLB */
3308            printf("%s: Digital Loopback mode enable attempt\n", __func__);
3309        if (~value & 1) {                               /* RRST */
3310            s->spcr[0] &= ~6;
3311            s->rx_req = 0;
3312            omap_mcbsp_rx_done(s);
3313        }
3314        omap_mcbsp_req_update(s);
3315        return;
3316
3317    case 0x0c:  /* RCR2 */
3318        s->rcr[1] = value & 0xffff;
3319        return;
3320    case 0x0e:  /* RCR1 */
3321        s->rcr[0] = value & 0x7fe0;
3322        return;
3323    case 0x10:  /* XCR2 */
3324        s->xcr[1] = value & 0xffff;
3325        return;
3326    case 0x12:  /* XCR1 */
3327        s->xcr[0] = value & 0x7fe0;
3328        return;
3329    case 0x14:  /* SRGR2 */
3330        s->srgr[1] = value & 0xffff;
3331        omap_mcbsp_req_update(s);
3332        return;
3333    case 0x16:  /* SRGR1 */
3334        s->srgr[0] = value & 0xffff;
3335        omap_mcbsp_req_update(s);
3336        return;
3337    case 0x18:  /* MCR2 */
3338        s->mcr[1] = value & 0x03e3;
3339        if (value & 3)                                  /* XMCM */
3340            printf("%s: Tx channel selection mode enable attempt\n", __func__);
3341        return;
3342    case 0x1a:  /* MCR1 */
3343        s->mcr[0] = value & 0x03e1;
3344        if (value & 1)                                  /* RMCM */
3345            printf("%s: Rx channel selection mode enable attempt\n", __func__);
3346        return;
3347    case 0x1c:  /* RCERA */
3348        s->rcer[0] = value & 0xffff;
3349        return;
3350    case 0x1e:  /* RCERB */
3351        s->rcer[1] = value & 0xffff;
3352        return;
3353    case 0x20:  /* XCERA */
3354        s->xcer[0] = value & 0xffff;
3355        return;
3356    case 0x22:  /* XCERB */
3357        s->xcer[1] = value & 0xffff;
3358        return;
3359    case 0x24:  /* PCR0 */
3360        s->pcr = value & 0x7faf;
3361        return;
3362    case 0x26:  /* RCERC */
3363        s->rcer[2] = value & 0xffff;
3364        return;
3365    case 0x28:  /* RCERD */
3366        s->rcer[3] = value & 0xffff;
3367        return;
3368    case 0x2a:  /* XCERC */
3369        s->xcer[2] = value & 0xffff;
3370        return;
3371    case 0x2c:  /* XCERD */
3372        s->xcer[3] = value & 0xffff;
3373        return;
3374    case 0x2e:  /* RCERE */
3375        s->rcer[4] = value & 0xffff;
3376        return;
3377    case 0x30:  /* RCERF */
3378        s->rcer[5] = value & 0xffff;
3379        return;
3380    case 0x32:  /* XCERE */
3381        s->xcer[4] = value & 0xffff;
3382        return;
3383    case 0x34:  /* XCERF */
3384        s->xcer[5] = value & 0xffff;
3385        return;
3386    case 0x36:  /* RCERG */
3387        s->rcer[6] = value & 0xffff;
3388        return;
3389    case 0x38:  /* RCERH */
3390        s->rcer[7] = value & 0xffff;
3391        return;
3392    case 0x3a:  /* XCERG */
3393        s->xcer[6] = value & 0xffff;
3394        return;
3395    case 0x3c:  /* XCERH */
3396        s->xcer[7] = value & 0xffff;
3397        return;
3398    }
3399
3400    OMAP_BAD_REG(addr);
3401}
3402
3403static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3404                uint32_t value)
3405{
3406    struct omap_mcbsp_s *s = opaque;
3407    int offset = addr & OMAP_MPUI_REG_MASK;
3408
3409    if (offset == 0x04) {                               /* DXR */
3410        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3411            return;
3412        if (s->tx_req > 3) {
3413            s->tx_req -= 4;
3414            if (s->codec && s->codec->cts) {
3415                s->codec->out.fifo[s->codec->out.len ++] =
3416                        (value >> 24) & 0xff;
3417                s->codec->out.fifo[s->codec->out.len ++] =
3418                        (value >> 16) & 0xff;
3419                s->codec->out.fifo[s->codec->out.len ++] =
3420                        (value >> 8) & 0xff;
3421                s->codec->out.fifo[s->codec->out.len ++] =
3422                        (value >> 0) & 0xff;
3423            }
3424            if (s->tx_req < 4)
3425                omap_mcbsp_tx_done(s);
3426        } else
3427            printf("%s: Tx FIFO overrun\n", __func__);
3428        return;
3429    }
3430
3431    omap_badwidth_write16(opaque, addr, value);
3432}
3433
3434static void omap_mcbsp_write(void *opaque, hwaddr addr,
3435                             uint64_t value, unsigned size)
3436{
3437    switch (size) {
3438    case 2:
3439        omap_mcbsp_writeh(opaque, addr, value);
3440        break;
3441    case 4:
3442        omap_mcbsp_writew(opaque, addr, value);
3443        break;
3444    default:
3445        omap_badwidth_write16(opaque, addr, value);
3446    }
3447}
3448
3449static const MemoryRegionOps omap_mcbsp_ops = {
3450    .read = omap_mcbsp_read,
3451    .write = omap_mcbsp_write,
3452    .endianness = DEVICE_NATIVE_ENDIAN,
3453};
3454
3455static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3456{
3457    memset(&s->spcr, 0, sizeof(s->spcr));
3458    memset(&s->rcr, 0, sizeof(s->rcr));
3459    memset(&s->xcr, 0, sizeof(s->xcr));
3460    s->srgr[0] = 0x0001;
3461    s->srgr[1] = 0x2000;
3462    memset(&s->mcr, 0, sizeof(s->mcr));
3463    memset(&s->pcr, 0, sizeof(s->pcr));
3464    memset(&s->rcer, 0, sizeof(s->rcer));
3465    memset(&s->xcer, 0, sizeof(s->xcer));
3466    s->tx_req = 0;
3467    s->rx_req = 0;
3468    s->tx_rate = 0;
3469    s->rx_rate = 0;
3470    timer_del(s->source_timer);
3471    timer_del(s->sink_timer);
3472}
3473
3474static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3475                                            hwaddr base,
3476                                            qemu_irq txirq, qemu_irq rxirq,
3477                                            qemu_irq *dma, omap_clk clk)
3478{
3479    struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3480
3481    s->txirq = txirq;
3482    s->rxirq = rxirq;
3483    s->txdrq = dma[0];
3484    s->rxdrq = dma[1];
3485    s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3486    s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3487    omap_mcbsp_reset(s);
3488
3489    memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3490    memory_region_add_subregion(system_memory, base, &s->iomem);
3491
3492    return s;
3493}
3494
3495static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3496{
3497    struct omap_mcbsp_s *s = opaque;
3498
3499    if (s->rx_rate) {
3500        s->rx_req = s->codec->in.len;
3501        omap_mcbsp_rx_newdata(s);
3502    }
3503}
3504
3505static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3506{
3507    struct omap_mcbsp_s *s = opaque;
3508
3509    if (s->tx_rate) {
3510        s->tx_req = s->codec->out.size;
3511        omap_mcbsp_tx_newdata(s);
3512    }
3513}
3514
3515void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3516{
3517    s->codec = slave;
3518    slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3519    slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3520}
3521
3522/* LED Pulse Generators */
3523struct omap_lpg_s {
3524    MemoryRegion iomem;
3525    QEMUTimer *tm;
3526
3527    uint8_t control;
3528    uint8_t power;
3529    int64_t on;
3530    int64_t period;
3531    int clk;
3532    int cycle;
3533};
3534
3535static void omap_lpg_tick(void *opaque)
3536{
3537    struct omap_lpg_s *s = opaque;
3538
3539    if (s->cycle)
3540        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3541    else
3542        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3543
3544    s->cycle = !s->cycle;
3545    printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3546}
3547
3548static void omap_lpg_update(struct omap_lpg_s *s)
3549{
3550    int64_t on, period = 1, ticks = 1000;
3551    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3552
3553    if (~s->control & (1 << 6))                                 /* LPGRES */
3554        on = 0;
3555    else if (s->control & (1 << 7))                             /* PERM_ON */
3556        on = period;
3557    else {
3558        period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3559                        256 / 32);
3560        on = (s->clk && s->power) ? muldiv64(ticks,
3561                        per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3562    }
3563
3564    timer_del(s->tm);
3565    if (on == period && s->on < s->period)
3566        printf("%s: LED is on\n", __func__);
3567    else if (on == 0 && s->on)
3568        printf("%s: LED is off\n", __func__);
3569    else if (on && (on != s->on || period != s->period)) {
3570        s->cycle = 0;
3571        s->on = on;
3572        s->period = period;
3573        omap_lpg_tick(s);
3574        return;
3575    }
3576
3577    s->on = on;
3578    s->period = period;
3579}
3580
3581static void omap_lpg_reset(struct omap_lpg_s *s)
3582{
3583    s->control = 0x00;
3584    s->power = 0x00;
3585    s->clk = 1;
3586    omap_lpg_update(s);
3587}
3588
3589static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
3590{
3591    struct omap_lpg_s *s = opaque;
3592    int offset = addr & OMAP_MPUI_REG_MASK;
3593
3594    if (size != 1) {
3595        return omap_badwidth_read8(opaque, addr);
3596    }
3597
3598    switch (offset) {
3599    case 0x00:  /* LCR */
3600        return s->control;
3601
3602    case 0x04:  /* PMR */
3603        return s->power;
3604    }
3605
3606    OMAP_BAD_REG(addr);
3607    return 0;
3608}
3609
3610static void omap_lpg_write(void *opaque, hwaddr addr,
3611                           uint64_t value, unsigned size)
3612{
3613    struct omap_lpg_s *s = opaque;
3614    int offset = addr & OMAP_MPUI_REG_MASK;
3615
3616    if (size != 1) {
3617        omap_badwidth_write8(opaque, addr, value);
3618        return;
3619    }
3620
3621    switch (offset) {
3622    case 0x00:  /* LCR */
3623        if (~value & (1 << 6))                                  /* LPGRES */
3624            omap_lpg_reset(s);
3625        s->control = value & 0xff;
3626        omap_lpg_update(s);
3627        return;
3628
3629    case 0x04:  /* PMR */
3630        s->power = value & 0x01;
3631        omap_lpg_update(s);
3632        return;
3633
3634    default:
3635        OMAP_BAD_REG(addr);
3636        return;
3637    }
3638}
3639
3640static const MemoryRegionOps omap_lpg_ops = {
3641    .read = omap_lpg_read,
3642    .write = omap_lpg_write,
3643    .endianness = DEVICE_NATIVE_ENDIAN,
3644};
3645
3646static void omap_lpg_clk_update(void *opaque, int line, int on)
3647{
3648    struct omap_lpg_s *s = opaque;
3649
3650    s->clk = on;
3651    omap_lpg_update(s);
3652}
3653
3654static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3655                                        hwaddr base, omap_clk clk)
3656{
3657    struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3658
3659    s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3660
3661    omap_lpg_reset(s);
3662
3663    memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3664    memory_region_add_subregion(system_memory, base, &s->iomem);
3665
3666    omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3667
3668    return s;
3669}
3670
3671/* MPUI Peripheral Bridge configuration */
3672static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3673                                  unsigned size)
3674{
3675    if (size != 2) {
3676        return omap_badwidth_read16(opaque, addr);
3677    }
3678
3679    if (addr == OMAP_MPUI_BASE) /* CMR */
3680        return 0xfe4d;
3681
3682    OMAP_BAD_REG(addr);
3683    return 0;
3684}
3685
3686static void omap_mpui_io_write(void *opaque, hwaddr addr,
3687                               uint64_t value, unsigned size)
3688{
3689    /* FIXME: infinite loop */
3690    omap_badwidth_write16(opaque, addr, value);
3691}
3692
3693static const MemoryRegionOps omap_mpui_io_ops = {
3694    .read = omap_mpui_io_read,
3695    .write = omap_mpui_io_write,
3696    .endianness = DEVICE_NATIVE_ENDIAN,
3697};
3698
3699static void omap_setup_mpui_io(MemoryRegion *system_memory,
3700                               struct omap_mpu_state_s *mpu)
3701{
3702    memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3703                          "omap-mpui-io", 0x7fff);
3704    memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3705                                &mpu->mpui_io_iomem);
3706}
3707
3708/* General chip reset */
3709static void omap1_mpu_reset(void *opaque)
3710{
3711    struct omap_mpu_state_s *mpu = opaque;
3712
3713    omap_dma_reset(mpu->dma);
3714    omap_mpu_timer_reset(mpu->timer[0]);
3715    omap_mpu_timer_reset(mpu->timer[1]);
3716    omap_mpu_timer_reset(mpu->timer[2]);
3717    omap_wd_timer_reset(mpu->wdt);
3718    omap_os_timer_reset(mpu->os_timer);
3719    omap_lcdc_reset(mpu->lcd);
3720    omap_ulpd_pm_reset(mpu);
3721    omap_pin_cfg_reset(mpu);
3722    omap_mpui_reset(mpu);
3723    omap_tipb_bridge_reset(mpu->private_tipb);
3724    omap_tipb_bridge_reset(mpu->public_tipb);
3725    omap_dpll_reset(mpu->dpll[0]);
3726    omap_dpll_reset(mpu->dpll[1]);
3727    omap_dpll_reset(mpu->dpll[2]);
3728    omap_uart_reset(mpu->uart[0]);
3729    omap_uart_reset(mpu->uart[1]);
3730    omap_uart_reset(mpu->uart[2]);
3731    omap_mmc_reset(mpu->mmc);
3732    omap_mpuio_reset(mpu->mpuio);
3733    omap_uwire_reset(mpu->microwire);
3734    omap_pwl_reset(mpu->pwl);
3735    omap_pwt_reset(mpu->pwt);
3736    omap_rtc_reset(mpu->rtc);
3737    omap_mcbsp_reset(mpu->mcbsp1);
3738    omap_mcbsp_reset(mpu->mcbsp2);
3739    omap_mcbsp_reset(mpu->mcbsp3);
3740    omap_lpg_reset(mpu->led[0]);
3741    omap_lpg_reset(mpu->led[1]);
3742    omap_clkm_reset(mpu);
3743    cpu_reset(CPU(mpu->cpu));
3744}
3745
3746static const struct omap_map_s {
3747    hwaddr phys_dsp;
3748    hwaddr phys_mpu;
3749    uint32_t size;
3750    const char *name;
3751} omap15xx_dsp_mm[] = {
3752    /* Strobe 0 */
3753    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3754    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3755    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3756    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3757    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3758    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3759    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3760    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3761    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3762    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3763    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3764    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3765    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3766    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3767    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3768    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3769    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3770    /* Strobe 1 */
3771    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3772
3773    { 0 }
3774};
3775
3776static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3777                                   const struct omap_map_s *map)
3778{
3779    MemoryRegion *io;
3780
3781    for (; map->phys_dsp; map ++) {
3782        io = g_new(MemoryRegion, 1);
3783        memory_region_init_alias(io, NULL, map->name,
3784                                 system_memory, map->phys_mpu, map->size);
3785        memory_region_add_subregion(system_memory, map->phys_dsp, io);
3786    }
3787}
3788
3789void omap_mpu_wakeup(void *opaque, int irq, int req)
3790{
3791    struct omap_mpu_state_s *mpu = opaque;
3792    CPUState *cpu = CPU(mpu->cpu);
3793
3794    if (cpu->halted) {
3795        cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3796    }
3797}
3798
3799static const struct dma_irq_map omap1_dma_irq_map[] = {
3800    { 0, OMAP_INT_DMA_CH0_6 },
3801    { 0, OMAP_INT_DMA_CH1_7 },
3802    { 0, OMAP_INT_DMA_CH2_8 },
3803    { 0, OMAP_INT_DMA_CH3 },
3804    { 0, OMAP_INT_DMA_CH4 },
3805    { 0, OMAP_INT_DMA_CH5 },
3806    { 1, OMAP_INT_1610_DMA_CH6 },
3807    { 1, OMAP_INT_1610_DMA_CH7 },
3808    { 1, OMAP_INT_1610_DMA_CH8 },
3809    { 1, OMAP_INT_1610_DMA_CH9 },
3810    { 1, OMAP_INT_1610_DMA_CH10 },
3811    { 1, OMAP_INT_1610_DMA_CH11 },
3812    { 1, OMAP_INT_1610_DMA_CH12 },
3813    { 1, OMAP_INT_1610_DMA_CH13 },
3814    { 1, OMAP_INT_1610_DMA_CH14 },
3815    { 1, OMAP_INT_1610_DMA_CH15 }
3816};
3817
3818/* DMA ports for OMAP1 */
3819static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3820                hwaddr addr)
3821{
3822    return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3823}
3824
3825static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3826                hwaddr addr)
3827{
3828    return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3829                             addr);
3830}
3831
3832static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3833                hwaddr addr)
3834{
3835    return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3836}
3837
3838static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3839                hwaddr addr)
3840{
3841    return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3842}
3843
3844static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3845                hwaddr addr)
3846{
3847    return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3848}
3849
3850static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3851                hwaddr addr)
3852{
3853    return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3854}
3855
3856struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3857                const char *cpu_type)
3858{
3859    int i;
3860    struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3861    qemu_irq dma_irqs[6];
3862    DriveInfo *dinfo;
3863    SysBusDevice *busdev;
3864    MemoryRegion *system_memory = get_system_memory();
3865
3866    /* Core */
3867    s->mpu_model = omap310;
3868    s->cpu = ARM_CPU(cpu_create(cpu_type));
3869    s->sdram_size = memory_region_size(dram);
3870    s->sram_size = OMAP15XX_SRAM_SIZE;
3871
3872    s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3873
3874    /* Clocks */
3875    omap_clk_init(s);
3876
3877    /* Memory-mapped stuff */
3878    memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3879                           &error_fatal);
3880    memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3881
3882    omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3883
3884    s->ih[0] = qdev_new("omap-intc");
3885    qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3886    omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3887    busdev = SYS_BUS_DEVICE(s->ih[0]);
3888    sysbus_realize_and_unref(busdev, &error_fatal);
3889    sysbus_connect_irq(busdev, 0,
3890                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3891    sysbus_connect_irq(busdev, 1,
3892                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3893    sysbus_mmio_map(busdev, 0, 0xfffecb00);
3894    s->ih[1] = qdev_new("omap-intc");
3895    qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3896    omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3897    busdev = SYS_BUS_DEVICE(s->ih[1]);
3898    sysbus_realize_and_unref(busdev, &error_fatal);
3899    sysbus_connect_irq(busdev, 0,
3900                       qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3901    /* The second interrupt controller's FIQ output is not wired up */
3902    sysbus_mmio_map(busdev, 0, 0xfffe0000);
3903
3904    for (i = 0; i < 6; i++) {
3905        dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3906                                       omap1_dma_irq_map[i].intr);
3907    }
3908    s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3909                           qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3910                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3911
3912    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3913    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3914    s->port[imif     ].addr_valid = omap_validate_imif_addr;
3915    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3916    s->port[local    ].addr_valid = omap_validate_local_addr;
3917    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3918
3919    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3920    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3921                         OMAP_EMIFF_BASE, s->sdram_size);
3922    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3923                         OMAP_IMIF_BASE, s->sram_size);
3924
3925    s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3926                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3927                    omap_findclk(s, "mputim_ck"));
3928    s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3929                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3930                    omap_findclk(s, "mputim_ck"));
3931    s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3932                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3933                    omap_findclk(s, "mputim_ck"));
3934
3935    s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3936                    qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3937                    omap_findclk(s, "armwdt_ck"));
3938
3939    s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3940                    qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3941                    omap_findclk(s, "clk32-kHz"));
3942
3943    s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3944                            qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3945                            omap_dma_get_lcdch(s->dma),
3946                            omap_findclk(s, "lcd_ck"));
3947
3948    omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3949    omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3950    omap_id_init(system_memory, s);
3951
3952    omap_mpui_init(system_memory, 0xfffec900, s);
3953
3954    s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3955                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3956                    omap_findclk(s, "tipb_ck"));
3957    s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3958                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3959                    omap_findclk(s, "tipb_ck"));
3960
3961    omap_tcmi_init(system_memory, 0xfffecc00, s);
3962
3963    s->uart[0] = omap_uart_init(0xfffb0000,
3964                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3965                    omap_findclk(s, "uart1_ck"),
3966                    omap_findclk(s, "uart1_ck"),
3967                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3968                    "uart1",
3969                    serial_hd(0));
3970    s->uart[1] = omap_uart_init(0xfffb0800,
3971                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3972                    omap_findclk(s, "uart2_ck"),
3973                    omap_findclk(s, "uart2_ck"),
3974                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3975                    "uart2",
3976                    serial_hd(0) ? serial_hd(1) : NULL);
3977    s->uart[2] = omap_uart_init(0xfffb9800,
3978                                qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3979                    omap_findclk(s, "uart3_ck"),
3980                    omap_findclk(s, "uart3_ck"),
3981                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3982                    "uart3",
3983                    serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3984
3985    s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3986                                omap_findclk(s, "dpll1"));
3987    s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3988                                omap_findclk(s, "dpll2"));
3989    s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3990                                omap_findclk(s, "dpll3"));
3991
3992    dinfo = drive_get(IF_SD, 0, 0);
3993    if (!dinfo && !qtest_enabled()) {
3994        warn_report("missing SecureDigital device");
3995    }
3996    s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3997                           dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
3998                           qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3999                           &s->drq[OMAP_DMA_MMC_TX],
4000                    omap_findclk(s, "mmc_ck"));
4001
4002    s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4003                               qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4004                               qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4005                               s->wakeup, omap_findclk(s, "clk32-kHz"));
4006
4007    s->gpio = qdev_new("omap-gpio");
4008    qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4009    omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4010    sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
4011    sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4012                       qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4013    sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4014
4015    s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4016                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4017                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4018                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4019
4020    s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4021                           omap_findclk(s, "armxor_ck"));
4022    s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4023                           omap_findclk(s, "armxor_ck"));
4024
4025    s->i2c[0] = qdev_new("omap_i2c");
4026    qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4027    omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4028    busdev = SYS_BUS_DEVICE(s->i2c[0]);
4029    sysbus_realize_and_unref(busdev, &error_fatal);
4030    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4031    sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4032    sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4033    sysbus_mmio_map(busdev, 0, 0xfffb3800);
4034
4035    s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4036                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4037                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4038                    omap_findclk(s, "clk32-kHz"));
4039
4040    s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4041                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4042                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4043                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4044    s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4045                                qdev_get_gpio_in(s->ih[0],
4046                                                 OMAP_INT_310_McBSP2_TX),
4047                                qdev_get_gpio_in(s->ih[0],
4048                                                 OMAP_INT_310_McBSP2_RX),
4049                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4050    s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4051                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4052                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4053                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4054
4055    s->led[0] = omap_lpg_init(system_memory,
4056                              0xfffbd000, omap_findclk(s, "clk32-kHz"));
4057    s->led[1] = omap_lpg_init(system_memory,
4058                              0xfffbd800, omap_findclk(s, "clk32-kHz"));
4059
4060    /* Register mappings not currenlty implemented:
4061     * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
4062     * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
4063     * USB W2FC         fffb4000 - fffb47ff
4064     * Camera Interface fffb6800 - fffb6fff
4065     * USB Host         fffba000 - fffba7ff
4066     * FAC              fffba800 - fffbafff
4067     * HDQ/1-Wire       fffbc000 - fffbc7ff
4068     * TIPB switches    fffbc800 - fffbcfff
4069     * Mailbox          fffcf000 - fffcf7ff
4070     * Local bus IF     fffec100 - fffec1ff
4071     * Local bus MMU    fffec200 - fffec2ff
4072     * DSP MMU          fffed200 - fffed2ff
4073     */
4074
4075    omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4076    omap_setup_mpui_io(system_memory, s);
4077
4078    qemu_register_reset(omap1_mpu_reset, s);
4079
4080    return s;
4081}
4082