qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29#include "tcg/tcg-gvec-desc.h"
  30#include "syndrome.h"
  31
  32/* register banks for CPU modes */
  33#define BANK_USRSYS 0
  34#define BANK_SVC    1
  35#define BANK_ABT    2
  36#define BANK_UND    3
  37#define BANK_IRQ    4
  38#define BANK_FIQ    5
  39#define BANK_HYP    6
  40#define BANK_MON    7
  41
  42static inline bool excp_is_internal(int excp)
  43{
  44    /* Return true if this exception number represents a QEMU-internal
  45     * exception that will not be passed to the guest.
  46     */
  47    return excp == EXCP_INTERRUPT
  48        || excp == EXCP_HLT
  49        || excp == EXCP_DEBUG
  50        || excp == EXCP_HALTED
  51        || excp == EXCP_EXCEPTION_EXIT
  52        || excp == EXCP_KERNEL_TRAP
  53        || excp == EXCP_SEMIHOST;
  54}
  55
  56/* Scale factor for generic timers, ie number of ns per tick.
  57 * This gives a 62.5MHz timer.
  58 */
  59#define GTIMER_SCALE 16
  60
  61/* Bit definitions for the v7M CONTROL register */
  62FIELD(V7M_CONTROL, NPRIV, 0, 1)
  63FIELD(V7M_CONTROL, SPSEL, 1, 1)
  64FIELD(V7M_CONTROL, FPCA, 2, 1)
  65FIELD(V7M_CONTROL, SFPA, 3, 1)
  66
  67/* Bit definitions for v7M exception return payload */
  68FIELD(V7M_EXCRET, ES, 0, 1)
  69FIELD(V7M_EXCRET, RES0, 1, 1)
  70FIELD(V7M_EXCRET, SPSEL, 2, 1)
  71FIELD(V7M_EXCRET, MODE, 3, 1)
  72FIELD(V7M_EXCRET, FTYPE, 4, 1)
  73FIELD(V7M_EXCRET, DCRS, 5, 1)
  74FIELD(V7M_EXCRET, S, 6, 1)
  75FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  76
  77/* Minimum value which is a magic number for exception return */
  78#define EXC_RETURN_MIN_MAGIC 0xff000000
  79/* Minimum number which is a magic number for function or exception return
  80 * when using v8M security extension
  81 */
  82#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  83
  84/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
  85FIELD(DBGWCR, E, 0, 1)
  86FIELD(DBGWCR, PAC, 1, 2)
  87FIELD(DBGWCR, LSC, 3, 2)
  88FIELD(DBGWCR, BAS, 5, 8)
  89FIELD(DBGWCR, HMC, 13, 1)
  90FIELD(DBGWCR, SSC, 14, 2)
  91FIELD(DBGWCR, LBN, 16, 4)
  92FIELD(DBGWCR, WT, 20, 1)
  93FIELD(DBGWCR, MASK, 24, 5)
  94FIELD(DBGWCR, SSCE, 29, 1)
  95
  96/* We use a few fake FSR values for internal purposes in M profile.
  97 * M profile cores don't have A/R format FSRs, but currently our
  98 * get_phys_addr() code assumes A/R profile and reports failures via
  99 * an A/R format FSR value. We then translate that into the proper
 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
 101 * Mostly the FSR values we use for this are those defined for v7PMSA,
 102 * since we share some of that codepath. A few kinds of fault are
 103 * only for M profile and have no A/R equivalent, though, so we have
 104 * to pick a value from the reserved range (which we never otherwise
 105 * generate) to use for these.
 106 * These values will never be visible to the guest.
 107 */
 108#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
 109#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
 110
 111/**
 112 * raise_exception: Raise the specified exception.
 113 * Raise a guest exception with the specified value, syndrome register
 114 * and target exception level. This should be called from helper functions,
 115 * and never returns because we will longjump back up to the CPU main loop.
 116 */
 117G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
 118                                uint32_t syndrome, uint32_t target_el);
 119
 120/*
 121 * Similarly, but also use unwinding to restore cpu state.
 122 */
 123G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
 124                                      uint32_t syndrome, uint32_t target_el,
 125                                      uintptr_t ra);
 126
 127/*
 128 * For AArch64, map a given EL to an index in the banked_spsr array.
 129 * Note that this mapping and the AArch32 mapping defined in bank_number()
 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 131 * mandated mapping between each other.
 132 */
 133static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 134{
 135    static const unsigned int map[4] = {
 136        [1] = BANK_SVC, /* EL1.  */
 137        [2] = BANK_HYP, /* EL2.  */
 138        [3] = BANK_MON, /* EL3.  */
 139    };
 140    assert(el >= 1 && el <= 3);
 141    return map[el];
 142}
 143
 144/* Map CPU modes onto saved register banks.  */
 145static inline int bank_number(int mode)
 146{
 147    switch (mode) {
 148    case ARM_CPU_MODE_USR:
 149    case ARM_CPU_MODE_SYS:
 150        return BANK_USRSYS;
 151    case ARM_CPU_MODE_SVC:
 152        return BANK_SVC;
 153    case ARM_CPU_MODE_ABT:
 154        return BANK_ABT;
 155    case ARM_CPU_MODE_UND:
 156        return BANK_UND;
 157    case ARM_CPU_MODE_IRQ:
 158        return BANK_IRQ;
 159    case ARM_CPU_MODE_FIQ:
 160        return BANK_FIQ;
 161    case ARM_CPU_MODE_HYP:
 162        return BANK_HYP;
 163    case ARM_CPU_MODE_MON:
 164        return BANK_MON;
 165    }
 166    g_assert_not_reached();
 167}
 168
 169/**
 170 * r14_bank_number: Map CPU mode onto register bank for r14
 171 *
 172 * Given an AArch32 CPU mode, return the index into the saved register
 173 * banks to use for the R14 (LR) in that mode. This is the same as
 174 * bank_number(), except for the special case of Hyp mode, where
 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 176 * This should be used as the index into env->banked_r14[], and
 177 * bank_number() used for the index into env->banked_r13[] and
 178 * env->banked_spsr[].
 179 */
 180static inline int r14_bank_number(int mode)
 181{
 182    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 183}
 184
 185void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 186void arm_translate_init(void);
 187
 188void arm_restore_state_to_opc(CPUState *cs,
 189                              const TranslationBlock *tb,
 190                              const uint64_t *data);
 191
 192#ifdef CONFIG_TCG
 193void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
 194#endif /* CONFIG_TCG */
 195
 196typedef enum ARMFPRounding {
 197    FPROUNDING_TIEEVEN,
 198    FPROUNDING_POSINF,
 199    FPROUNDING_NEGINF,
 200    FPROUNDING_ZERO,
 201    FPROUNDING_TIEAWAY,
 202    FPROUNDING_ODD
 203} ARMFPRounding;
 204
 205extern const FloatRoundMode arm_rmode_to_sf_map[6];
 206
 207static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
 208{
 209    assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
 210    return arm_rmode_to_sf_map[rmode];
 211}
 212
 213static inline void aarch64_save_sp(CPUARMState *env, int el)
 214{
 215    if (env->pstate & PSTATE_SP) {
 216        env->sp_el[el] = env->xregs[31];
 217    } else {
 218        env->sp_el[0] = env->xregs[31];
 219    }
 220}
 221
 222static inline void aarch64_restore_sp(CPUARMState *env, int el)
 223{
 224    if (env->pstate & PSTATE_SP) {
 225        env->xregs[31] = env->sp_el[el];
 226    } else {
 227        env->xregs[31] = env->sp_el[0];
 228    }
 229}
 230
 231static inline void update_spsel(CPUARMState *env, uint32_t imm)
 232{
 233    unsigned int cur_el = arm_current_el(env);
 234    /* Update PSTATE SPSel bit; this requires us to update the
 235     * working stack pointer in xregs[31].
 236     */
 237    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 238        return;
 239    }
 240    aarch64_save_sp(env, cur_el);
 241    env->pstate = deposit32(env->pstate, 0, 1, imm);
 242
 243    /* We rely on illegal updates to SPsel from EL0 to get trapped
 244     * at translation time.
 245     */
 246    assert(cur_el >= 1 && cur_el <= 3);
 247    aarch64_restore_sp(env, cur_el);
 248}
 249
 250/*
 251 * arm_pamax
 252 * @cpu: ARMCPU
 253 *
 254 * Returns the implementation defined bit-width of physical addresses.
 255 * The ARMv8 reference manuals refer to this as PAMax().
 256 */
 257unsigned int arm_pamax(ARMCPU *cpu);
 258
 259/* Return true if extended addresses are enabled.
 260 * This is always the case if our translation regime is 64 bit,
 261 * but depends on TTBCR.EAE for 32 bit.
 262 */
 263static inline bool extended_addresses_enabled(CPUARMState *env)
 264{
 265    uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 266    if (arm_feature(env, ARM_FEATURE_PMSA) &&
 267        arm_feature(env, ARM_FEATURE_V8)) {
 268        return true;
 269    }
 270    return arm_el_is_aa64(env, 1) ||
 271           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
 272}
 273
 274/* Update a QEMU watchpoint based on the information the guest has set in the
 275 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 276 */
 277void hw_watchpoint_update(ARMCPU *cpu, int n);
 278/* Update the QEMU watchpoints for every guest watchpoint. This does a
 279 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 280 * suitable for use after migration or on reset.
 281 */
 282void hw_watchpoint_update_all(ARMCPU *cpu);
 283/* Update a QEMU breakpoint based on the information the guest has set in the
 284 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 285 */
 286void hw_breakpoint_update(ARMCPU *cpu, int n);
 287/* Update the QEMU breakpoints for every guest breakpoint. This does a
 288 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 289 * suitable for use after migration or on reset.
 290 */
 291void hw_breakpoint_update_all(ARMCPU *cpu);
 292
 293/* Callback function for checking if a breakpoint should trigger. */
 294bool arm_debug_check_breakpoint(CPUState *cs);
 295
 296/* Callback function for checking if a watchpoint should trigger. */
 297bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 298
 299/* Adjust addresses (in BE32 mode) before testing against watchpoint
 300 * addresses.
 301 */
 302vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 303
 304/* Callback function for when a watchpoint or breakpoint triggers. */
 305void arm_debug_excp_handler(CPUState *cs);
 306
 307#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
 308static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 309{
 310    return false;
 311}
 312static inline void arm_handle_psci_call(ARMCPU *cpu)
 313{
 314    g_assert_not_reached();
 315}
 316#else
 317/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 318bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 319/* Actually handle a PSCI call */
 320void arm_handle_psci_call(ARMCPU *cpu);
 321#endif
 322
 323/**
 324 * arm_clear_exclusive: clear the exclusive monitor
 325 * @env: CPU env
 326 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 327 */
 328static inline void arm_clear_exclusive(CPUARMState *env)
 329{
 330    env->exclusive_addr = -1;
 331}
 332
 333/**
 334 * ARMFaultType: type of an ARM MMU fault
 335 * This corresponds to the v8A pseudocode's Fault enumeration,
 336 * with extensions for QEMU internal conditions.
 337 */
 338typedef enum ARMFaultType {
 339    ARMFault_None,
 340    ARMFault_AccessFlag,
 341    ARMFault_Alignment,
 342    ARMFault_Background,
 343    ARMFault_Domain,
 344    ARMFault_Permission,
 345    ARMFault_Translation,
 346    ARMFault_AddressSize,
 347    ARMFault_SyncExternal,
 348    ARMFault_SyncExternalOnWalk,
 349    ARMFault_SyncParity,
 350    ARMFault_SyncParityOnWalk,
 351    ARMFault_AsyncParity,
 352    ARMFault_AsyncExternal,
 353    ARMFault_Debug,
 354    ARMFault_TLBConflict,
 355    ARMFault_UnsuppAtomicUpdate,
 356    ARMFault_Lockdown,
 357    ARMFault_Exclusive,
 358    ARMFault_ICacheMaint,
 359    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 360    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 361} ARMFaultType;
 362
 363/**
 364 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 365 * @type: Type of fault
 366 * @level: Table walk level (for translation, access flag and permission faults)
 367 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 368 * @s2addr: Address that caused a fault at stage 2
 369 * @stage2: True if we faulted at stage 2
 370 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 371 * @s1ns: True if we faulted on a non-secure IPA while in secure state
 372 * @ea: True if we should set the EA (external abort type) bit in syndrome
 373 */
 374typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 375struct ARMMMUFaultInfo {
 376    ARMFaultType type;
 377    target_ulong s2addr;
 378    int level;
 379    int domain;
 380    bool stage2;
 381    bool s1ptw;
 382    bool s1ns;
 383    bool ea;
 384};
 385
 386/**
 387 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 388 * Compare pseudocode EncodeSDFSC(), though unlike that function
 389 * we set up a whole FSR-format code including domain field and
 390 * putting the high bit of the FSC into bit 10.
 391 */
 392static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 393{
 394    uint32_t fsc;
 395
 396    switch (fi->type) {
 397    case ARMFault_None:
 398        return 0;
 399    case ARMFault_AccessFlag:
 400        fsc = fi->level == 1 ? 0x3 : 0x6;
 401        break;
 402    case ARMFault_Alignment:
 403        fsc = 0x1;
 404        break;
 405    case ARMFault_Permission:
 406        fsc = fi->level == 1 ? 0xd : 0xf;
 407        break;
 408    case ARMFault_Domain:
 409        fsc = fi->level == 1 ? 0x9 : 0xb;
 410        break;
 411    case ARMFault_Translation:
 412        fsc = fi->level == 1 ? 0x5 : 0x7;
 413        break;
 414    case ARMFault_SyncExternal:
 415        fsc = 0x8 | (fi->ea << 12);
 416        break;
 417    case ARMFault_SyncExternalOnWalk:
 418        fsc = fi->level == 1 ? 0xc : 0xe;
 419        fsc |= (fi->ea << 12);
 420        break;
 421    case ARMFault_SyncParity:
 422        fsc = 0x409;
 423        break;
 424    case ARMFault_SyncParityOnWalk:
 425        fsc = fi->level == 1 ? 0x40c : 0x40e;
 426        break;
 427    case ARMFault_AsyncParity:
 428        fsc = 0x408;
 429        break;
 430    case ARMFault_AsyncExternal:
 431        fsc = 0x406 | (fi->ea << 12);
 432        break;
 433    case ARMFault_Debug:
 434        fsc = 0x2;
 435        break;
 436    case ARMFault_TLBConflict:
 437        fsc = 0x400;
 438        break;
 439    case ARMFault_Lockdown:
 440        fsc = 0x404;
 441        break;
 442    case ARMFault_Exclusive:
 443        fsc = 0x405;
 444        break;
 445    case ARMFault_ICacheMaint:
 446        fsc = 0x4;
 447        break;
 448    case ARMFault_Background:
 449        fsc = 0x0;
 450        break;
 451    case ARMFault_QEMU_NSCExec:
 452        fsc = M_FAKE_FSR_NSC_EXEC;
 453        break;
 454    case ARMFault_QEMU_SFault:
 455        fsc = M_FAKE_FSR_SFAULT;
 456        break;
 457    default:
 458        /* Other faults can't occur in a context that requires a
 459         * short-format status code.
 460         */
 461        g_assert_not_reached();
 462    }
 463
 464    fsc |= (fi->domain << 4);
 465    return fsc;
 466}
 467
 468/**
 469 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 470 * Compare pseudocode EncodeLDFSC(), though unlike that function
 471 * we fill in also the LPAE bit 9 of a DFSR format.
 472 */
 473static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 474{
 475    uint32_t fsc;
 476
 477    switch (fi->type) {
 478    case ARMFault_None:
 479        return 0;
 480    case ARMFault_AddressSize:
 481        assert(fi->level >= -1 && fi->level <= 3);
 482        if (fi->level < 0) {
 483            fsc = 0b101001;
 484        } else {
 485            fsc = fi->level;
 486        }
 487        break;
 488    case ARMFault_AccessFlag:
 489        assert(fi->level >= 0 && fi->level <= 3);
 490        fsc = 0b001000 | fi->level;
 491        break;
 492    case ARMFault_Permission:
 493        assert(fi->level >= 0 && fi->level <= 3);
 494        fsc = 0b001100 | fi->level;
 495        break;
 496    case ARMFault_Translation:
 497        assert(fi->level >= -1 && fi->level <= 3);
 498        if (fi->level < 0) {
 499            fsc = 0b101011;
 500        } else {
 501            fsc = 0b000100 | fi->level;
 502        }
 503        break;
 504    case ARMFault_SyncExternal:
 505        fsc = 0x10 | (fi->ea << 12);
 506        break;
 507    case ARMFault_SyncExternalOnWalk:
 508        assert(fi->level >= -1 && fi->level <= 3);
 509        if (fi->level < 0) {
 510            fsc = 0b010011;
 511        } else {
 512            fsc = 0b010100 | fi->level;
 513        }
 514        fsc |= fi->ea << 12;
 515        break;
 516    case ARMFault_SyncParity:
 517        fsc = 0x18;
 518        break;
 519    case ARMFault_SyncParityOnWalk:
 520        assert(fi->level >= -1 && fi->level <= 3);
 521        if (fi->level < 0) {
 522            fsc = 0b011011;
 523        } else {
 524            fsc = 0b011100 | fi->level;
 525        }
 526        break;
 527    case ARMFault_AsyncParity:
 528        fsc = 0x19;
 529        break;
 530    case ARMFault_AsyncExternal:
 531        fsc = 0x11 | (fi->ea << 12);
 532        break;
 533    case ARMFault_Alignment:
 534        fsc = 0x21;
 535        break;
 536    case ARMFault_Debug:
 537        fsc = 0x22;
 538        break;
 539    case ARMFault_TLBConflict:
 540        fsc = 0x30;
 541        break;
 542    case ARMFault_UnsuppAtomicUpdate:
 543        fsc = 0x31;
 544        break;
 545    case ARMFault_Lockdown:
 546        fsc = 0x34;
 547        break;
 548    case ARMFault_Exclusive:
 549        fsc = 0x35;
 550        break;
 551    default:
 552        /* Other faults can't occur in a context that requires a
 553         * long-format status code.
 554         */
 555        g_assert_not_reached();
 556    }
 557
 558    fsc |= 1 << 9;
 559    return fsc;
 560}
 561
 562static inline bool arm_extabort_type(MemTxResult result)
 563{
 564    /* The EA bit in syndromes and fault status registers is an
 565     * IMPDEF classification of external aborts. ARM implementations
 566     * usually use this to indicate AXI bus Decode error (0) or
 567     * Slave error (1); in QEMU we follow that.
 568     */
 569    return result != MEMTX_DECODE_ERROR;
 570}
 571
 572#ifdef CONFIG_USER_ONLY
 573void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
 574                            MMUAccessType access_type,
 575                            bool maperr, uintptr_t ra);
 576void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
 577                           MMUAccessType access_type, uintptr_t ra);
 578#else
 579bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 580                      MMUAccessType access_type, int mmu_idx,
 581                      bool probe, uintptr_t retaddr);
 582#endif
 583
 584static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 585{
 586    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 587}
 588
 589static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 590{
 591    if (arm_feature(env, ARM_FEATURE_M)) {
 592        return mmu_idx | ARM_MMU_IDX_M;
 593    } else {
 594        return mmu_idx | ARM_MMU_IDX_A;
 595    }
 596}
 597
 598static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
 599{
 600    /* AArch64 is always a-profile. */
 601    return mmu_idx | ARM_MMU_IDX_A;
 602}
 603
 604int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
 605
 606/* Return the MMU index for a v7M CPU in the specified security state */
 607ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
 608
 609/*
 610 * Return true if the stage 1 translation regime is using LPAE
 611 * format page tables
 612 */
 613bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 614
 615/* Raise a data fault alignment exception for the specified virtual address */
 616G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 617                                            MMUAccessType access_type,
 618                                            int mmu_idx, uintptr_t retaddr);
 619
 620#ifndef CONFIG_USER_ONLY
 621/* arm_cpu_do_transaction_failed: handle a memory system error response
 622 * (eg "no device/memory present at address") by raising an external abort
 623 * exception
 624 */
 625void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 626                                   vaddr addr, unsigned size,
 627                                   MMUAccessType access_type,
 628                                   int mmu_idx, MemTxAttrs attrs,
 629                                   MemTxResult response, uintptr_t retaddr);
 630#endif
 631
 632/* Call any registered EL change hooks */
 633static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 634{
 635    ARMELChangeHook *hook, *next;
 636    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 637        hook->hook(cpu, hook->opaque);
 638    }
 639}
 640static inline void arm_call_el_change_hook(ARMCPU *cpu)
 641{
 642    ARMELChangeHook *hook, *next;
 643    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 644        hook->hook(cpu, hook->opaque);
 645    }
 646}
 647
 648/* Return true if this address translation regime has two ranges.  */
 649static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
 650{
 651    switch (mmu_idx) {
 652    case ARMMMUIdx_Stage1_E0:
 653    case ARMMMUIdx_Stage1_E1:
 654    case ARMMMUIdx_Stage1_E1_PAN:
 655    case ARMMMUIdx_E10_0:
 656    case ARMMMUIdx_E10_1:
 657    case ARMMMUIdx_E10_1_PAN:
 658    case ARMMMUIdx_E20_0:
 659    case ARMMMUIdx_E20_2:
 660    case ARMMMUIdx_E20_2_PAN:
 661        return true;
 662    default:
 663        return false;
 664    }
 665}
 666
 667static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
 668{
 669    switch (mmu_idx) {
 670    case ARMMMUIdx_Stage1_E1_PAN:
 671    case ARMMMUIdx_E10_1_PAN:
 672    case ARMMMUIdx_E20_2_PAN:
 673        return true;
 674    default:
 675        return false;
 676    }
 677}
 678
 679static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
 680{
 681    return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
 682}
 683
 684/* Return the exception level which controls this address translation regime */
 685static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 686{
 687    switch (mmu_idx) {
 688    case ARMMMUIdx_E20_0:
 689    case ARMMMUIdx_E20_2:
 690    case ARMMMUIdx_E20_2_PAN:
 691    case ARMMMUIdx_Stage2:
 692    case ARMMMUIdx_Stage2_S:
 693    case ARMMMUIdx_E2:
 694        return 2;
 695    case ARMMMUIdx_E3:
 696        return 3;
 697    case ARMMMUIdx_E10_0:
 698    case ARMMMUIdx_Stage1_E0:
 699        return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
 700    case ARMMMUIdx_Stage1_E1:
 701    case ARMMMUIdx_Stage1_E1_PAN:
 702    case ARMMMUIdx_E10_1:
 703    case ARMMMUIdx_E10_1_PAN:
 704    case ARMMMUIdx_MPrivNegPri:
 705    case ARMMMUIdx_MUserNegPri:
 706    case ARMMMUIdx_MPriv:
 707    case ARMMMUIdx_MUser:
 708    case ARMMMUIdx_MSPrivNegPri:
 709    case ARMMMUIdx_MSUserNegPri:
 710    case ARMMMUIdx_MSPriv:
 711    case ARMMMUIdx_MSUser:
 712        return 1;
 713    default:
 714        g_assert_not_reached();
 715    }
 716}
 717
 718static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
 719{
 720    switch (mmu_idx) {
 721    case ARMMMUIdx_E20_0:
 722    case ARMMMUIdx_Stage1_E0:
 723    case ARMMMUIdx_MUser:
 724    case ARMMMUIdx_MSUser:
 725    case ARMMMUIdx_MUserNegPri:
 726    case ARMMMUIdx_MSUserNegPri:
 727        return true;
 728    default:
 729        return false;
 730    case ARMMMUIdx_E10_0:
 731    case ARMMMUIdx_E10_1:
 732    case ARMMMUIdx_E10_1_PAN:
 733        g_assert_not_reached();
 734    }
 735}
 736
 737/* Return the SCTLR value which controls this address translation regime */
 738static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
 739{
 740    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
 741}
 742
 743/*
 744 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
 745 * and the Non-Secure stage 2 translation regimes (and hence which are
 746 * not present in VSTCR_EL2).
 747 */
 748#define VTCR_SHARED_FIELD_MASK \
 749    (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
 750     R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
 751     R_VTCR_DS_MASK)
 752
 753/* Return the value of the TCR controlling this translation regime */
 754static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 755{
 756    if (mmu_idx == ARMMMUIdx_Stage2) {
 757        return env->cp15.vtcr_el2;
 758    }
 759    if (mmu_idx == ARMMMUIdx_Stage2_S) {
 760        /*
 761         * Secure stage 2 shares fields from VTCR_EL2. We merge those
 762         * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
 763         * value so the callers don't need to special case this.
 764         *
 765         * If a future architecture change defines bits in VSTCR_EL2 that
 766         * overlap with these VTCR_EL2 fields we may need to revisit this.
 767         */
 768        uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
 769        v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
 770        return v;
 771    }
 772    return env->cp15.tcr_el[regime_el(env, mmu_idx)];
 773}
 774
 775/* Return true if the translation regime is using LPAE format page tables */
 776static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
 777{
 778    int el = regime_el(env, mmu_idx);
 779    if (el == 2 || arm_el_is_aa64(env, el)) {
 780        return true;
 781    }
 782    if (arm_feature(env, ARM_FEATURE_PMSA) &&
 783        arm_feature(env, ARM_FEATURE_V8)) {
 784        return true;
 785    }
 786    if (arm_feature(env, ARM_FEATURE_LPAE)
 787        && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
 788        return true;
 789    }
 790    return false;
 791}
 792
 793/**
 794 * arm_num_brps: Return number of implemented breakpoints.
 795 * Note that the ID register BRPS field is "number of bps - 1",
 796 * and we return the actual number of breakpoints.
 797 */
 798static inline int arm_num_brps(ARMCPU *cpu)
 799{
 800    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 801        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
 802    } else {
 803        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
 804    }
 805}
 806
 807/**
 808 * arm_num_wrps: Return number of implemented watchpoints.
 809 * Note that the ID register WRPS field is "number of wps - 1",
 810 * and we return the actual number of watchpoints.
 811 */
 812static inline int arm_num_wrps(ARMCPU *cpu)
 813{
 814    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 815        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
 816    } else {
 817        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
 818    }
 819}
 820
 821/**
 822 * arm_num_ctx_cmps: Return number of implemented context comparators.
 823 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
 824 * and we return the actual number of comparators.
 825 */
 826static inline int arm_num_ctx_cmps(ARMCPU *cpu)
 827{
 828    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 829        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
 830    } else {
 831        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
 832    }
 833}
 834
 835/**
 836 * v7m_using_psp: Return true if using process stack pointer
 837 * Return true if the CPU is currently using the process stack
 838 * pointer, or false if it is using the main stack pointer.
 839 */
 840static inline bool v7m_using_psp(CPUARMState *env)
 841{
 842    /* Handler mode always uses the main stack; for thread mode
 843     * the CONTROL.SPSEL bit determines the answer.
 844     * Note that in v7M it is not possible to be in Handler mode with
 845     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 846     */
 847    return !arm_v7m_is_handler_mode(env) &&
 848        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 849}
 850
 851/**
 852 * v7m_sp_limit: Return SP limit for current CPU state
 853 * Return the SP limit value for the current CPU security state
 854 * and stack pointer.
 855 */
 856static inline uint32_t v7m_sp_limit(CPUARMState *env)
 857{
 858    if (v7m_using_psp(env)) {
 859        return env->v7m.psplim[env->v7m.secure];
 860    } else {
 861        return env->v7m.msplim[env->v7m.secure];
 862    }
 863}
 864
 865/**
 866 * v7m_cpacr_pass:
 867 * Return true if the v7M CPACR permits access to the FPU for the specified
 868 * security state and privilege level.
 869 */
 870static inline bool v7m_cpacr_pass(CPUARMState *env,
 871                                  bool is_secure, bool is_priv)
 872{
 873    switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
 874    case 0:
 875    case 2: /* UNPREDICTABLE: we treat like 0 */
 876        return false;
 877    case 1:
 878        return is_priv;
 879    case 3:
 880        return true;
 881    default:
 882        g_assert_not_reached();
 883    }
 884}
 885
 886/**
 887 * aarch32_mode_name(): Return name of the AArch32 CPU mode
 888 * @psr: Program Status Register indicating CPU mode
 889 *
 890 * Returns, for debug logging purposes, a printable representation
 891 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 892 * the low bits of the specified PSR.
 893 */
 894static inline const char *aarch32_mode_name(uint32_t psr)
 895{
 896    static const char cpu_mode_names[16][4] = {
 897        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 898        "???", "???", "hyp", "und", "???", "???", "???", "sys"
 899    };
 900
 901    return cpu_mode_names[psr & 0xf];
 902}
 903
 904/**
 905 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 906 *
 907 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 908 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 909 * Must be called with the iothread lock held.
 910 */
 911void arm_cpu_update_virq(ARMCPU *cpu);
 912
 913/**
 914 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 915 *
 916 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 917 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 918 * Must be called with the iothread lock held.
 919 */
 920void arm_cpu_update_vfiq(ARMCPU *cpu);
 921
 922/**
 923 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
 924 *
 925 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
 926 * following a change to the HCR_EL2.VSE bit.
 927 */
 928void arm_cpu_update_vserr(ARMCPU *cpu);
 929
 930/**
 931 * arm_mmu_idx_el:
 932 * @env: The cpu environment
 933 * @el: The EL to use.
 934 *
 935 * Return the full ARMMMUIdx for the translation regime for EL.
 936 */
 937ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
 938
 939/**
 940 * arm_mmu_idx:
 941 * @env: The cpu environment
 942 *
 943 * Return the full ARMMMUIdx for the current translation regime.
 944 */
 945ARMMMUIdx arm_mmu_idx(CPUARMState *env);
 946
 947/**
 948 * arm_stage1_mmu_idx:
 949 * @env: The cpu environment
 950 *
 951 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
 952 */
 953#ifdef CONFIG_USER_ONLY
 954static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
 955{
 956    return ARMMMUIdx_Stage1_E0;
 957}
 958static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 959{
 960    return ARMMMUIdx_Stage1_E0;
 961}
 962#else
 963ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
 964ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
 965#endif
 966
 967/**
 968 * arm_mmu_idx_is_stage1_of_2:
 969 * @mmu_idx: The ARMMMUIdx to test
 970 *
 971 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
 972 * first stage of a two stage regime.
 973 */
 974static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
 975{
 976    switch (mmu_idx) {
 977    case ARMMMUIdx_Stage1_E0:
 978    case ARMMMUIdx_Stage1_E1:
 979    case ARMMMUIdx_Stage1_E1_PAN:
 980        return true;
 981    default:
 982        return false;
 983    }
 984}
 985
 986static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
 987                                               const ARMISARegisters *id)
 988{
 989    uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
 990
 991    if ((features >> ARM_FEATURE_V4T) & 1) {
 992        valid |= CPSR_T;
 993    }
 994    if ((features >> ARM_FEATURE_V5) & 1) {
 995        valid |= CPSR_Q; /* V5TE in reality*/
 996    }
 997    if ((features >> ARM_FEATURE_V6) & 1) {
 998        valid |= CPSR_E | CPSR_GE;
 999    }
1000    if ((features >> ARM_FEATURE_THUMB2) & 1) {
1001        valid |= CPSR_IT;
1002    }
1003    if (isar_feature_aa32_jazelle(id)) {
1004        valid |= CPSR_J;
1005    }
1006    if (isar_feature_aa32_pan(id)) {
1007        valid |= CPSR_PAN;
1008    }
1009    if (isar_feature_aa32_dit(id)) {
1010        valid |= CPSR_DIT;
1011    }
1012    if (isar_feature_aa32_ssbs(id)) {
1013        valid |= CPSR_SSBS;
1014    }
1015
1016    return valid;
1017}
1018
1019static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1020{
1021    uint32_t valid;
1022
1023    valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1024    if (isar_feature_aa64_bti(id)) {
1025        valid |= PSTATE_BTYPE;
1026    }
1027    if (isar_feature_aa64_pan(id)) {
1028        valid |= PSTATE_PAN;
1029    }
1030    if (isar_feature_aa64_uao(id)) {
1031        valid |= PSTATE_UAO;
1032    }
1033    if (isar_feature_aa64_dit(id)) {
1034        valid |= PSTATE_DIT;
1035    }
1036    if (isar_feature_aa64_ssbs(id)) {
1037        valid |= PSTATE_SSBS;
1038    }
1039    if (isar_feature_aa64_mte(id)) {
1040        valid |= PSTATE_TCO;
1041    }
1042
1043    return valid;
1044}
1045
1046/* Granule size (i.e. page size) */
1047typedef enum ARMGranuleSize {
1048    /* Same order as TG0 encoding */
1049    Gran4K,
1050    Gran64K,
1051    Gran16K,
1052    GranInvalid,
1053} ARMGranuleSize;
1054
1055/**
1056 * arm_granule_bits: Return address size of the granule in bits
1057 *
1058 * Return the address size of the granule in bits. This corresponds
1059 * to the pseudocode TGxGranuleBits().
1060 */
1061static inline int arm_granule_bits(ARMGranuleSize gran)
1062{
1063    switch (gran) {
1064    case Gran64K:
1065        return 16;
1066    case Gran16K:
1067        return 14;
1068    case Gran4K:
1069        return 12;
1070    default:
1071        g_assert_not_reached();
1072    }
1073}
1074
1075/*
1076 * Parameters of a given virtual address, as extracted from the
1077 * translation control register (TCR) for a given regime.
1078 */
1079typedef struct ARMVAParameters {
1080    unsigned tsz    : 8;
1081    unsigned ps     : 3;
1082    unsigned sh     : 2;
1083    unsigned select : 1;
1084    bool tbi        : 1;
1085    bool epd        : 1;
1086    bool hpd        : 1;
1087    bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1088    bool ds         : 1;
1089    bool ha         : 1;
1090    bool hd         : 1;
1091    ARMGranuleSize gran : 2;
1092} ARMVAParameters;
1093
1094/**
1095 * aa64_va_parameters: Return parameters for an AArch64 virtual address
1096 * @env: CPU
1097 * @va: virtual address to look up
1098 * @mmu_idx: determines translation regime to use
1099 * @data: true if this is a data access
1100 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1101 *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1102 */
1103ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1104                                   ARMMMUIdx mmu_idx, bool data,
1105                                   bool el1_is_aa32);
1106
1107int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1108int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1109int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1110
1111/* Determine if allocation tags are available.  */
1112static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1113                                                 uint64_t sctlr)
1114{
1115    if (el < 3
1116        && arm_feature(env, ARM_FEATURE_EL3)
1117        && !(env->cp15.scr_el3 & SCR_ATA)) {
1118        return false;
1119    }
1120    if (el < 2 && arm_is_el2_enabled(env)) {
1121        uint64_t hcr = arm_hcr_el2_eff(env);
1122        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1123            return false;
1124        }
1125    }
1126    sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1127    return sctlr != 0;
1128}
1129
1130#ifndef CONFIG_USER_ONLY
1131
1132/* Security attributes for an address, as returned by v8m_security_lookup. */
1133typedef struct V8M_SAttributes {
1134    bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1135    bool ns;
1136    bool nsc;
1137    uint8_t sregion;
1138    bool srvalid;
1139    uint8_t iregion;
1140    bool irvalid;
1141} V8M_SAttributes;
1142
1143void v8m_security_lookup(CPUARMState *env, uint32_t address,
1144                         MMUAccessType access_type, ARMMMUIdx mmu_idx,
1145                         bool secure, V8M_SAttributes *sattrs);
1146
1147/* Cacheability and shareability attributes for a memory access */
1148typedef struct ARMCacheAttrs {
1149    /*
1150     * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1151     * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1152     */
1153    unsigned int attrs:8;
1154    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1155    bool is_s2_format:1;
1156    bool guarded:1;              /* guarded bit of the v8-64 PTE */
1157} ARMCacheAttrs;
1158
1159/* Fields that are valid upon success. */
1160typedef struct GetPhysAddrResult {
1161    CPUTLBEntryFull f;
1162    ARMCacheAttrs cacheattrs;
1163} GetPhysAddrResult;
1164
1165/**
1166 * get_phys_addr_with_secure: get the physical address for a virtual address
1167 * @env: CPUARMState
1168 * @address: virtual address to get physical address for
1169 * @access_type: 0 for read, 1 for write, 2 for execute
1170 * @mmu_idx: MMU index indicating required translation regime
1171 * @is_secure: security state for the access
1172 * @result: set on translation success.
1173 * @fi: set to fault info if the translation fails
1174 *
1175 * Find the physical address corresponding to the given virtual address,
1176 * by doing a translation table walk on MMU based systems or using the
1177 * MPU state on MPU based systems.
1178 *
1179 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1180 * prot and page_size may not be filled in, and the populated fsr value provides
1181 * information on why the translation aborted, in the format of a
1182 * DFSR/IFSR fault register, with the following caveats:
1183 *  * we honour the short vs long DFSR format differences.
1184 *  * the WnR bit is never set (the caller must do this).
1185 *  * for PSMAv5 based systems we don't bother to return a full FSR format
1186 *    value.
1187 */
1188bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1189                               MMUAccessType access_type,
1190                               ARMMMUIdx mmu_idx, bool is_secure,
1191                               GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1192    __attribute__((nonnull));
1193
1194/**
1195 * get_phys_addr: get the physical address for a virtual address
1196 * @env: CPUARMState
1197 * @address: virtual address to get physical address for
1198 * @access_type: 0 for read, 1 for write, 2 for execute
1199 * @mmu_idx: MMU index indicating required translation regime
1200 * @result: set on translation success.
1201 * @fi: set to fault info if the translation fails
1202 *
1203 * Similarly, but use the security regime of @mmu_idx.
1204 */
1205bool get_phys_addr(CPUARMState *env, target_ulong address,
1206                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
1207                   GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1208    __attribute__((nonnull));
1209
1210bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1211                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
1212                       bool is_secure, GetPhysAddrResult *result,
1213                       ARMMMUFaultInfo *fi, uint32_t *mregion);
1214
1215void arm_log_exception(CPUState *cs);
1216
1217#endif /* !CONFIG_USER_ONLY */
1218
1219/*
1220 * The log2 of the words in the tag block, for GMID_EL1.BS.
1221 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1222 */
1223#define GMID_EL1_BS  6
1224
1225/*
1226 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1227 * the same simd_desc() encoding due to restrictions on size.
1228 * Use these instead.
1229 */
1230FIELD(PREDDESC, OPRSZ, 0, 6)
1231FIELD(PREDDESC, ESZ, 6, 2)
1232FIELD(PREDDESC, DATA, 8, 24)
1233
1234/*
1235 * The SVE simd_data field, for memory ops, contains either
1236 * rd (5 bits) or a shift count (2 bits).
1237 */
1238#define SVE_MTEDESC_SHIFT 5
1239
1240/* Bits within a descriptor passed to the helper_mte_check* functions. */
1241FIELD(MTEDESC, MIDX,  0, 4)
1242FIELD(MTEDESC, TBI,   4, 2)
1243FIELD(MTEDESC, TCMA,  6, 2)
1244FIELD(MTEDESC, WRITE, 8, 1)
1245FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1246
1247bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1248uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1249
1250static inline int allocation_tag_from_addr(uint64_t ptr)
1251{
1252    return extract64(ptr, 56, 4);
1253}
1254
1255static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1256{
1257    return deposit64(ptr, 56, 4, rtag);
1258}
1259
1260/* Return true if tbi bits mean that the access is checked.  */
1261static inline bool tbi_check(uint32_t desc, int bit55)
1262{
1263    return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1264}
1265
1266/* Return true if tcma bits mean that the access is unchecked.  */
1267static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1268{
1269    /*
1270     * We had extracted bit55 and ptr_tag for other reasons, so fold
1271     * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1272     */
1273    bool match = ((ptr_tag + bit55) & 0xf) == 0;
1274    bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1275    return tcma && match;
1276}
1277
1278/*
1279 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1280 * for the tag to be present in the FAR_ELx register.  But for user-only
1281 * mode, we do not have a TLB with which to implement this, so we must
1282 * remove the top byte.
1283 */
1284static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1285{
1286#ifdef CONFIG_USER_ONLY
1287    /* TBI0 is known to be enabled, while TBI1 is disabled. */
1288    ptr &= sextract64(ptr, 0, 56);
1289#endif
1290    return ptr;
1291}
1292
1293static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1294{
1295#ifdef CONFIG_USER_ONLY
1296    int64_t clean_ptr = sextract64(ptr, 0, 56);
1297    if (tbi_check(desc, clean_ptr < 0)) {
1298        ptr = clean_ptr;
1299    }
1300#endif
1301    return ptr;
1302}
1303
1304/* Values for M-profile PSR.ECI for MVE insns */
1305enum MVEECIState {
1306    ECI_NONE = 0, /* No completed beats */
1307    ECI_A0 = 1, /* Completed: A0 */
1308    ECI_A0A1 = 2, /* Completed: A0, A1 */
1309    /* 3 is reserved */
1310    ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1311    ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1312    /* All other values reserved */
1313};
1314
1315/* Definitions for the PMU registers */
1316#define PMCRN_MASK  0xf800
1317#define PMCRN_SHIFT 11
1318#define PMCRLP  0x80
1319#define PMCRLC  0x40
1320#define PMCRDP  0x20
1321#define PMCRX   0x10
1322#define PMCRD   0x8
1323#define PMCRC   0x4
1324#define PMCRP   0x2
1325#define PMCRE   0x1
1326/*
1327 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1328 * which can be written as 1 to trigger behaviour but which stay RAZ).
1329 */
1330#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1331
1332#define PMXEVTYPER_P          0x80000000
1333#define PMXEVTYPER_U          0x40000000
1334#define PMXEVTYPER_NSK        0x20000000
1335#define PMXEVTYPER_NSU        0x10000000
1336#define PMXEVTYPER_NSH        0x08000000
1337#define PMXEVTYPER_M          0x04000000
1338#define PMXEVTYPER_MT         0x02000000
1339#define PMXEVTYPER_EVTCOUNT   0x0000ffff
1340#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1341                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1342                               PMXEVTYPER_M | PMXEVTYPER_MT | \
1343                               PMXEVTYPER_EVTCOUNT)
1344
1345#define PMCCFILTR             0xf8000000
1346#define PMCCFILTR_M           PMXEVTYPER_M
1347#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1348
1349static inline uint32_t pmu_num_counters(CPUARMState *env)
1350{
1351    ARMCPU *cpu = env_archcpu(env);
1352
1353    return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1354}
1355
1356/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1357static inline uint64_t pmu_counter_mask(CPUARMState *env)
1358{
1359  return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1360}
1361
1362#ifdef TARGET_AARCH64
1363int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1364int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1365int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1366int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1367int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1368int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1369int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1370void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1371void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1372void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1373void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1374#endif
1375
1376/* Read the CONTROL register as the MRS instruction would. */
1377uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1378
1379/*
1380 * Return a pointer to the location where we currently store the
1381 * stack pointer for the requested security state and thread mode.
1382 * This pointer will become invalid if the CPU state is updated
1383 * such that the stack pointers are switched around (eg changing
1384 * the SPSEL control bit).
1385 */
1386uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1387                             bool threadmode, bool spsel);
1388
1389#ifdef CONFIG_USER_ONLY
1390static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1391#else
1392void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1393#endif
1394
1395bool el_is_in_host(CPUARMState *env, int el);
1396
1397void aa32_max_features(ARMCPU *cpu);
1398int exception_target_el(CPUARMState *env);
1399bool arm_singlestep_active(CPUARMState *env);
1400bool arm_generate_debug_exceptions(CPUARMState *env);
1401
1402/**
1403 * pauth_ptr_mask:
1404 * @param: parameters defining the MMU setup
1405 *
1406 * Return a mask of the address bits that contain the authentication code,
1407 * given the MMU config defined by @param.
1408 */
1409static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1410{
1411    int bot_pac_bit = 64 - param.tsz;
1412    int top_pac_bit = 64 - 8 * param.tbi;
1413
1414    return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1415}
1416
1417/* Add the cpreg definitions for debug related system registers */
1418void define_debug_regs(ARMCPU *cpu);
1419
1420/* Effective value of MDCR_EL2 */
1421static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1422{
1423    return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1424}
1425
1426/* Powers of 2 for sve_vq_map et al. */
1427#define SVE_VQ_POW2_MAP                                 \
1428    ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1429     (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1430
1431/*
1432 * Return true if it is possible to take a fine-grained-trap to EL2.
1433 */
1434static inline bool arm_fgt_active(CPUARMState *env, int el)
1435{
1436    /*
1437     * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1438     * that can affect EL0, but it is harmless to do the test also for
1439     * traps on registers that are only accessible at EL1 because if the test
1440     * returns true then we can't be executing at EL1 anyway.
1441     * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1442     * traps from AArch32 only happen for the EL0 is AArch32 case.
1443     */
1444    return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1445        el < 2 && arm_is_el2_enabled(env) &&
1446        arm_el_is_aa64(env, 1) &&
1447        (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1448        (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1449}
1450
1451void assert_hflags_rebuild_correctly(CPUARMState *env);
1452#endif
1453