qemu/hw/intc/arm_gicv3.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3 (emulation)
   3 *
   4 * Copyright (c) 2015 Huawei.
   5 * Copyright (c) 2016 Linaro Limited
   6 * Written by Shlomo Pongratz, Peter Maydell
   7 *
   8 * This code is licensed under the GPL, version 2 or (at your option)
   9 * any later version.
  10 */
  11
  12/* This file contains implementation code for an interrupt controller
  13 * which implements the GICv3 architecture. Specifically this is where
  14 * the device class itself and the functions for handling interrupts
  15 * coming in and going out live.
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qapi/error.h"
  20#include "qemu/module.h"
  21#include "hw/intc/arm_gicv3.h"
  22#include "gicv3_internal.h"
  23
  24static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
  25{
  26    /* Return true if this IRQ at this priority should take
  27     * precedence over the current recorded highest priority
  28     * pending interrupt for this CPU. We also return true if
  29     * the current recorded highest priority pending interrupt
  30     * is the same as this one (a property which the calling code
  31     * relies on).
  32     */
  33    if (prio < cs->hppi.prio) {
  34        return true;
  35    }
  36    /* If multiple pending interrupts have the same priority then it is an
  37     * IMPDEF choice which of them to signal to the CPU. We choose to
  38     * signal the one with the lowest interrupt number.
  39     */
  40    if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
  41        return true;
  42    }
  43    return false;
  44}
  45
  46static uint32_t gicd_int_pending(GICv3State *s, int irq)
  47{
  48    /* Recalculate which distributor interrupts are actually pending
  49     * in the group of 32 interrupts starting at irq (which should be a multiple
  50     * of 32), and return a 32-bit integer which has a bit set for each
  51     * interrupt that is eligible to be signaled to the CPU interface.
  52     *
  53     * An interrupt is pending if:
  54     *  + the PENDING latch is set OR it is level triggered and the input is 1
  55     *  + its ENABLE bit is set
  56     *  + the GICD enable bit for its group is set
  57     *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
  58     * Conveniently we can bulk-calculate this with bitwise operations.
  59     */
  60    uint32_t pend, grpmask;
  61    uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
  62    uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
  63    uint32_t level = *gic_bmp_ptr32(s->level, irq);
  64    uint32_t group = *gic_bmp_ptr32(s->group, irq);
  65    uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
  66    uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
  67    uint32_t active = *gic_bmp_ptr32(s->active, irq);
  68
  69    pend = pending | (~edge_trigger & level);
  70    pend &= enable;
  71    pend &= ~active;
  72
  73    if (s->gicd_ctlr & GICD_CTLR_DS) {
  74        grpmod = 0;
  75    }
  76
  77    grpmask = 0;
  78    if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
  79        grpmask |= group;
  80    }
  81    if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
  82        grpmask |= (~group & grpmod);
  83    }
  84    if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
  85        grpmask |= (~group & ~grpmod);
  86    }
  87    pend &= grpmask;
  88
  89    return pend;
  90}
  91
  92static uint32_t gicr_int_pending(GICv3CPUState *cs)
  93{
  94    /* Recalculate which redistributor interrupts are actually pending,
  95     * and return a 32-bit integer which has a bit set for each interrupt
  96     * that is eligible to be signaled to the CPU interface.
  97     *
  98     * An interrupt is pending if:
  99     *  + the PENDING latch is set OR it is level triggered and the input is 1
 100     *  + its ENABLE bit is set
 101     *  + the GICD enable bit for its group is set
 102     *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
 103     * Conveniently we can bulk-calculate this with bitwise operations.
 104     */
 105    uint32_t pend, grpmask, grpmod;
 106
 107    pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
 108    pend &= cs->gicr_ienabler0;
 109    pend &= ~cs->gicr_iactiver0;
 110
 111    if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
 112        grpmod = 0;
 113    } else {
 114        grpmod = cs->gicr_igrpmodr0;
 115    }
 116
 117    grpmask = 0;
 118    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
 119        grpmask |= cs->gicr_igroupr0;
 120    }
 121    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
 122        grpmask |= (~cs->gicr_igroupr0 & grpmod);
 123    }
 124    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
 125        grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
 126    }
 127    pend &= grpmask;
 128
 129    return pend;
 130}
 131
 132/* Update the interrupt status after state in a redistributor
 133 * or CPU interface has changed, but don't tell the CPU i/f.
 134 */
 135static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
 136{
 137    /* Find the highest priority pending interrupt among the
 138     * redistributor interrupts (SGIs and PPIs).
 139     */
 140    bool seenbetter = false;
 141    uint8_t prio;
 142    int i;
 143    uint32_t pend;
 144
 145    /* Find out which redistributor interrupts are eligible to be
 146     * signaled to the CPU interface.
 147     */
 148    pend = gicr_int_pending(cs);
 149
 150    if (pend) {
 151        for (i = 0; i < GIC_INTERNAL; i++) {
 152            if (!(pend & (1 << i))) {
 153                continue;
 154            }
 155            prio = cs->gicr_ipriorityr[i];
 156            if (irqbetter(cs, i, prio)) {
 157                cs->hppi.irq = i;
 158                cs->hppi.prio = prio;
 159                seenbetter = true;
 160            }
 161        }
 162    }
 163
 164    if (seenbetter) {
 165        cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
 166    }
 167
 168    if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable &&
 169        (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) &&
 170        (cs->hpplpi.prio != 0xff)) {
 171        if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio)) {
 172            cs->hppi.irq = cs->hpplpi.irq;
 173            cs->hppi.prio = cs->hpplpi.prio;
 174            cs->hppi.grp = cs->hpplpi.grp;
 175            seenbetter = true;
 176        }
 177    }
 178
 179    /* If the best interrupt we just found would preempt whatever
 180     * was the previous best interrupt before this update, then
 181     * we know it's definitely the best one now.
 182     * If we didn't find an interrupt that would preempt the previous
 183     * best, and the previous best is outside our range (or there was no
 184     * previous pending interrupt at all), then that is still valid, and
 185     * we leave it as the best.
 186     * Otherwise, we need to do a full update (because the previous best
 187     * interrupt has reduced in priority and any other interrupt could
 188     * now be the new best one).
 189     */
 190    if (!seenbetter && cs->hppi.prio != 0xff &&
 191        (cs->hppi.irq < GIC_INTERNAL ||
 192         cs->hppi.irq >= GICV3_LPI_INTID_START)) {
 193        gicv3_full_update_noirqset(cs->gic);
 194    }
 195}
 196
 197/* Update the GIC status after state in a redistributor or
 198 * CPU interface has changed, and inform the CPU i/f of
 199 * its new highest priority pending interrupt.
 200 */
 201void gicv3_redist_update(GICv3CPUState *cs)
 202{
 203    gicv3_redist_update_noirqset(cs);
 204    gicv3_cpuif_update(cs);
 205}
 206
 207/* Update the GIC status after state in the distributor has
 208 * changed affecting @len interrupts starting at @start,
 209 * but don't tell the CPU i/f.
 210 */
 211static void gicv3_update_noirqset(GICv3State *s, int start, int len)
 212{
 213    int i;
 214    uint8_t prio;
 215    uint32_t pend = 0;
 216
 217    assert(start >= GIC_INTERNAL);
 218    assert(len > 0);
 219
 220    for (i = 0; i < s->num_cpu; i++) {
 221        s->cpu[i].seenbetter = false;
 222    }
 223
 224    /* Find the highest priority pending interrupt in this range. */
 225    for (i = start; i < start + len; i++) {
 226        GICv3CPUState *cs;
 227
 228        if (i == start || (i & 0x1f) == 0) {
 229            /* Calculate the next 32 bits worth of pending status */
 230            pend = gicd_int_pending(s, i & ~0x1f);
 231        }
 232
 233        if (!(pend & (1 << (i & 0x1f)))) {
 234            continue;
 235        }
 236        cs = s->gicd_irouter_target[i];
 237        if (!cs) {
 238            /* Interrupts targeting no implemented CPU should remain pending
 239             * and not be forwarded to any CPU.
 240             */
 241            continue;
 242        }
 243        prio = s->gicd_ipriority[i];
 244        if (irqbetter(cs, i, prio)) {
 245            cs->hppi.irq = i;
 246            cs->hppi.prio = prio;
 247            cs->seenbetter = true;
 248        }
 249    }
 250
 251    /* If the best interrupt we just found would preempt whatever
 252     * was the previous best interrupt before this update, then
 253     * we know it's definitely the best one now.
 254     * If we didn't find an interrupt that would preempt the previous
 255     * best, and the previous best is outside our range (or there was
 256     * no previous pending interrupt at all), then that
 257     * is still valid, and we leave it as the best.
 258     * Otherwise, we need to do a full update (because the previous best
 259     * interrupt has reduced in priority and any other interrupt could
 260     * now be the new best one).
 261     */
 262    for (i = 0; i < s->num_cpu; i++) {
 263        GICv3CPUState *cs = &s->cpu[i];
 264
 265        if (cs->seenbetter) {
 266            cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
 267        }
 268
 269        if (!cs->seenbetter && cs->hppi.prio != 0xff &&
 270            cs->hppi.irq >= start && cs->hppi.irq < start + len) {
 271            gicv3_full_update_noirqset(s);
 272            break;
 273        }
 274    }
 275}
 276
 277void gicv3_update(GICv3State *s, int start, int len)
 278{
 279    int i;
 280
 281    gicv3_update_noirqset(s, start, len);
 282    for (i = 0; i < s->num_cpu; i++) {
 283        gicv3_cpuif_update(&s->cpu[i]);
 284    }
 285}
 286
 287void gicv3_full_update_noirqset(GICv3State *s)
 288{
 289    /* Completely recalculate the GIC status from scratch, but
 290     * don't update any outbound IRQ lines.
 291     */
 292    int i;
 293
 294    for (i = 0; i < s->num_cpu; i++) {
 295        s->cpu[i].hppi.prio = 0xff;
 296    }
 297
 298    /* Note that we can guarantee that these functions will not
 299     * recursively call back into gicv3_full_update(), because
 300     * at each point the "previous best" is always outside the
 301     * range we ask them to update.
 302     */
 303    gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
 304
 305    for (i = 0; i < s->num_cpu; i++) {
 306        gicv3_redist_update_noirqset(&s->cpu[i]);
 307    }
 308}
 309
 310void gicv3_full_update(GICv3State *s)
 311{
 312    /* Completely recalculate the GIC status from scratch, including
 313     * updating outbound IRQ lines.
 314     */
 315    int i;
 316
 317    gicv3_full_update_noirqset(s);
 318    for (i = 0; i < s->num_cpu; i++) {
 319        gicv3_cpuif_update(&s->cpu[i]);
 320    }
 321}
 322
 323/* Process a change in an external IRQ input. */
 324static void gicv3_set_irq(void *opaque, int irq, int level)
 325{
 326    /* Meaning of the 'irq' parameter:
 327     *  [0..N-1] : external interrupts
 328     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 329     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 330     *  ...
 331     */
 332    GICv3State *s = opaque;
 333
 334    if (irq < (s->num_irq - GIC_INTERNAL)) {
 335        /* external interrupt (SPI) */
 336        gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
 337    } else {
 338        /* per-cpu interrupt (PPI) */
 339        int cpu;
 340
 341        irq -= (s->num_irq - GIC_INTERNAL);
 342        cpu = irq / GIC_INTERNAL;
 343        irq %= GIC_INTERNAL;
 344        assert(cpu < s->num_cpu);
 345        /* Raising SGIs via this function would be a bug in how the board
 346         * model wires up interrupts.
 347         */
 348        assert(irq >= GIC_NR_SGIS);
 349        gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
 350    }
 351}
 352
 353static void arm_gicv3_post_load(GICv3State *s)
 354{
 355    int i;
 356    /* Recalculate our cached idea of the current highest priority
 357     * pending interrupt, but don't set IRQ or FIQ lines.
 358     */
 359    for (i = 0; i < s->num_cpu; i++) {
 360        gicv3_redist_update_lpi_only(&s->cpu[i]);
 361    }
 362    gicv3_full_update_noirqset(s);
 363    /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
 364    gicv3_cache_all_target_cpustates(s);
 365}
 366
 367static const MemoryRegionOps gic_ops[] = {
 368    {
 369        .read_with_attrs = gicv3_dist_read,
 370        .write_with_attrs = gicv3_dist_write,
 371        .endianness = DEVICE_NATIVE_ENDIAN,
 372        .valid.min_access_size = 1,
 373        .valid.max_access_size = 8,
 374        .impl.min_access_size = 1,
 375        .impl.max_access_size = 8,
 376    },
 377    {
 378        .read_with_attrs = gicv3_redist_read,
 379        .write_with_attrs = gicv3_redist_write,
 380        .endianness = DEVICE_NATIVE_ENDIAN,
 381        .valid.min_access_size = 1,
 382        .valid.max_access_size = 8,
 383        .impl.min_access_size = 1,
 384        .impl.max_access_size = 8,
 385    }
 386};
 387
 388static void arm_gic_realize(DeviceState *dev, Error **errp)
 389{
 390    /* Device instance realize function for the GIC sysbus device */
 391    GICv3State *s = ARM_GICV3(dev);
 392    ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
 393    Error *local_err = NULL;
 394
 395    agc->parent_realize(dev, &local_err);
 396    if (local_err) {
 397        error_propagate(errp, local_err);
 398        return;
 399    }
 400
 401    gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops);
 402
 403    gicv3_init_cpuif(s);
 404}
 405
 406static void arm_gicv3_class_init(ObjectClass *klass, void *data)
 407{
 408    DeviceClass *dc = DEVICE_CLASS(klass);
 409    ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
 410    ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
 411
 412    agcc->post_load = arm_gicv3_post_load;
 413    device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
 414}
 415
 416static const TypeInfo arm_gicv3_info = {
 417    .name = TYPE_ARM_GICV3,
 418    .parent = TYPE_ARM_GICV3_COMMON,
 419    .instance_size = sizeof(GICv3State),
 420    .class_init = arm_gicv3_class_init,
 421    .class_size = sizeof(ARMGICv3Class),
 422};
 423
 424static void arm_gicv3_register_types(void)
 425{
 426    type_register_static(&arm_gicv3_info);
 427}
 428
 429type_init(arm_gicv3_register_types)
 430