qemu/hw/net/e1000x_common.c
<<
>>
Prefs
   1/*
   2* QEMU e1000(e) emulation - shared code
   3*
   4* Copyright (c) 2008 Qumranet
   5*
   6* Based on work done by:
   7* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
   8* Copyright (c) 2007 Dan Aloni
   9* Copyright (c) 2004 Antony T Curtis
  10*
  11* This library is free software; you can redistribute it and/or
  12* modify it under the terms of the GNU Lesser General Public
  13* License as published by the Free Software Foundation; either
  14* version 2.1 of the License, or (at your option) any later version.
  15*
  16* This library is distributed in the hope that it will be useful,
  17* but WITHOUT ANY WARRANTY; without even the implied warranty of
  18* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19* Lesser General Public License for more details.
  20*
  21* You should have received a copy of the GNU Lesser General Public
  22* License along with this library; if not, see <http://www.gnu.org/licenses/>.
  23*/
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "hw/net/mii.h"
  28#include "hw/pci/pci_device.h"
  29#include "net/eth.h"
  30#include "net/net.h"
  31
  32#include "e1000_common.h"
  33#include "e1000x_common.h"
  34
  35#include "trace.h"
  36
  37bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
  38{
  39    bool link_up = mac[STATUS] & E1000_STATUS_LU;
  40    bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
  41    bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
  42
  43    if (!link_up || !rx_enabled || !pci_master) {
  44        trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
  45        return false;
  46    }
  47
  48    return true;
  49}
  50
  51bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
  52{
  53    uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
  54    bool res = (eth_proto == vet);
  55
  56    trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
  57
  58    return res;
  59}
  60
  61bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
  62{
  63    static const int mta_shift[] = { 4, 3, 2, 0 };
  64    uint32_t f, ra[2], *rp, rctl = mac[RCTL];
  65
  66    for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
  67        if (!(rp[1] & E1000_RAH_AV)) {
  68            continue;
  69        }
  70        ra[0] = cpu_to_le32(rp[0]);
  71        ra[1] = cpu_to_le32(rp[1]);
  72        if (!memcmp(buf, (uint8_t *)ra, ETH_ALEN)) {
  73            trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
  74                                            MAC_ARG(buf));
  75            return true;
  76        }
  77    }
  78    trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
  79
  80    f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
  81    f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
  82    if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
  83        return true;
  84    }
  85
  86    trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
  87                                         (rctl >> E1000_RCTL_MO_SHIFT) & 3,
  88                                         f >> 5,
  89                                         mac[MTA + (f >> 5)]);
  90
  91    return false;
  92}
  93
  94bool e1000x_hw_rx_enabled(uint32_t *mac)
  95{
  96    if (!(mac[STATUS] & E1000_STATUS_LU)) {
  97        trace_e1000x_rx_link_down(mac[STATUS]);
  98        return false;
  99    }
 100
 101    if (!(mac[RCTL] & E1000_RCTL_EN)) {
 102        trace_e1000x_rx_disabled(mac[RCTL]);
 103        return false;
 104    }
 105
 106    return true;
 107}
 108
 109bool e1000x_is_oversized(uint32_t *mac, size_t size)
 110{
 111    /* this is the size past which hardware will
 112       drop packets when setting LPE=0 */
 113    static const int maximum_ethernet_vlan_size = 1522;
 114    /* this is the size past which hardware will
 115       drop packets when setting LPE=1 */
 116    static const int maximum_ethernet_lpe_size = 16 * KiB;
 117
 118    if ((size > maximum_ethernet_lpe_size ||
 119        (size > maximum_ethernet_vlan_size
 120            && !(mac[RCTL] & E1000_RCTL_LPE)))
 121        && !(mac[RCTL] & E1000_RCTL_SBP)) {
 122        e1000x_inc_reg_if_not_full(mac, ROC);
 123        trace_e1000x_rx_oversized(size);
 124        return true;
 125    }
 126
 127    return false;
 128}
 129
 130void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
 131{
 132    e1000x_update_regs_on_link_down(mac, phy);
 133    trace_e1000x_link_negotiation_start();
 134    timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
 135}
 136
 137void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
 138                           uint8_t *mac_addr)
 139{
 140    int i;
 141
 142    mac_regs[RA] = 0;
 143    mac_regs[RA + 1] = E1000_RAH_AV;
 144    for (i = 0; i < 4; i++) {
 145        mac_regs[RA] |= mac_addr[i] << (8 * i);
 146        mac_regs[RA + 1] |=
 147            (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
 148    }
 149
 150    qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
 151    trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
 152}
 153
 154void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
 155{
 156    e1000x_update_regs_on_link_up(mac, phy);
 157    phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
 158    phy[MII_BMSR] |= MII_BMSR_AN_COMP;
 159    trace_e1000x_link_negotiation_done();
 160}
 161
 162void
 163e1000x_core_prepare_eeprom(uint16_t       *eeprom,
 164                           const uint16_t *templ,
 165                           uint32_t        templ_size,
 166                           uint16_t        dev_id,
 167                           const uint8_t  *macaddr)
 168{
 169    uint16_t checksum = 0;
 170    int i;
 171
 172    memmove(eeprom, templ, templ_size);
 173
 174    for (i = 0; i < 3; i++) {
 175        eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
 176    }
 177
 178    eeprom[11] = eeprom[13] = dev_id;
 179
 180    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
 181        checksum += eeprom[i];
 182    }
 183
 184    checksum = (uint16_t) EEPROM_SUM - checksum;
 185
 186    eeprom[EEPROM_CHECKSUM_REG] = checksum;
 187}
 188
 189uint32_t
 190e1000x_rxbufsize(uint32_t rctl)
 191{
 192    rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
 193        E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
 194        E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
 195    switch (rctl) {
 196    case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
 197        return 16384;
 198    case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
 199        return 8192;
 200    case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
 201        return 4096;
 202    case E1000_RCTL_SZ_1024:
 203        return 1024;
 204    case E1000_RCTL_SZ_512:
 205        return 512;
 206    case E1000_RCTL_SZ_256:
 207        return 256;
 208    }
 209    return 2048;
 210}
 211
 212void
 213e1000x_update_rx_total_stats(uint32_t *mac,
 214                             eth_pkt_types_e pkt_type,
 215                             size_t pkt_size,
 216                             size_t pkt_fcs_size)
 217{
 218    static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
 219                                    PRC1023, PRC1522 };
 220
 221    e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size);
 222    e1000x_inc_reg_if_not_full(mac, TPR);
 223    e1000x_inc_reg_if_not_full(mac, GPRC);
 224    /* TOR - Total Octets Received:
 225    * This register includes bytes received in a packet from the <Destination
 226    * Address> field through the <CRC> field, inclusively.
 227    * Always include FCS length (4) in size.
 228    */
 229    e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4);
 230    e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4);
 231
 232    switch (pkt_type) {
 233    case ETH_PKT_BCAST:
 234        e1000x_inc_reg_if_not_full(mac, BPRC);
 235        break;
 236
 237    case ETH_PKT_MCAST:
 238        e1000x_inc_reg_if_not_full(mac, MPRC);
 239        break;
 240
 241    default:
 242        break;
 243    }
 244}
 245
 246void
 247e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
 248{
 249    if (size > 1023) {
 250        e1000x_inc_reg_if_not_full(mac, size_regs[5]);
 251    } else if (size > 511) {
 252        e1000x_inc_reg_if_not_full(mac, size_regs[4]);
 253    } else if (size > 255) {
 254        e1000x_inc_reg_if_not_full(mac, size_regs[3]);
 255    } else if (size > 127) {
 256        e1000x_inc_reg_if_not_full(mac, size_regs[2]);
 257    } else if (size > 64) {
 258        e1000x_inc_reg_if_not_full(mac, size_regs[1]);
 259    } else if (size == 64) {
 260        e1000x_inc_reg_if_not_full(mac, size_regs[0]);
 261    }
 262}
 263
 264void
 265e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
 266                         e1000x_txd_props *props)
 267{
 268    uint32_t op = le32_to_cpu(d->cmd_and_length);
 269
 270    props->ipcss = d->lower_setup.ip_fields.ipcss;
 271    props->ipcso = d->lower_setup.ip_fields.ipcso;
 272    props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
 273    props->tucss = d->upper_setup.tcp_fields.tucss;
 274    props->tucso = d->upper_setup.tcp_fields.tucso;
 275    props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
 276    props->paylen = op & 0xfffff;
 277    props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
 278    props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
 279    props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
 280    props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
 281    props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
 282}
 283
 284void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
 285{
 286    int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 287    uint32_t timinca = mac[TIMINCA];
 288    uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
 289    uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
 290    int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
 291
 292    mac[lo] = timestamp & 0xffffffff;
 293    mac[hi] = timestamp >> 32;
 294}
 295
 296void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
 297{
 298    int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 299    uint32_t old_val = mac[TIMINCA];
 300    uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
 301    uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
 302    uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
 303    uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
 304
 305    mac[TIMINCA] = val;
 306    *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
 307}
 308