qemu/target/i386/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/qapi-events-run-state.h"
  17#include "qapi/error.h"
  18#include "qapi/visitor.h"
  19#include <sys/ioctl.h>
  20#include <sys/utsname.h>
  21#include <sys/syscall.h>
  22
  23#include <linux/kvm.h>
  24#include "standard-headers/asm-x86/kvm_para.h"
  25#include "hw/xen/interface/arch-x86/cpuid.h"
  26
  27#include "cpu.h"
  28#include "host-cpu.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/hw_accel.h"
  31#include "sysemu/kvm_int.h"
  32#include "sysemu/runstate.h"
  33#include "kvm_i386.h"
  34#include "sev.h"
  35#include "xen-emu.h"
  36#include "hyperv.h"
  37#include "hyperv-proto.h"
  38
  39#include "exec/gdbstub.h"
  40#include "qemu/host-utils.h"
  41#include "qemu/main-loop.h"
  42#include "qemu/ratelimit.h"
  43#include "qemu/config-file.h"
  44#include "qemu/error-report.h"
  45#include "qemu/memalign.h"
  46#include "hw/i386/x86.h"
  47#include "hw/i386/kvm/xen_evtchn.h"
  48#include "hw/i386/pc.h"
  49#include "hw/i386/apic.h"
  50#include "hw/i386/apic_internal.h"
  51#include "hw/i386/apic-msidef.h"
  52#include "hw/i386/intel_iommu.h"
  53#include "hw/i386/x86-iommu.h"
  54#include "hw/i386/e820_memory_layout.h"
  55
  56#include "hw/xen/xen.h"
  57
  58#include "hw/pci/pci.h"
  59#include "hw/pci/msi.h"
  60#include "hw/pci/msix.h"
  61#include "migration/blocker.h"
  62#include "exec/memattrs.h"
  63#include "trace.h"
  64
  65#include CONFIG_DEVICES
  66
  67//#define DEBUG_KVM
  68
  69#ifdef DEBUG_KVM
  70#define DPRINTF(fmt, ...) \
  71    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  72#else
  73#define DPRINTF(fmt, ...) \
  74    do { } while (0)
  75#endif
  76
  77/* From arch/x86/kvm/lapic.h */
  78#define KVM_APIC_BUS_CYCLE_NS       1
  79#define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
  80
  81#define MSR_KVM_WALL_CLOCK  0x11
  82#define MSR_KVM_SYSTEM_TIME 0x12
  83
  84/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  85 * 255 kvm_msr_entry structs */
  86#define MSR_BUF_SIZE 4096
  87
  88static void kvm_init_msrs(X86CPU *cpu);
  89
  90const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  91    KVM_CAP_INFO(SET_TSS_ADDR),
  92    KVM_CAP_INFO(EXT_CPUID),
  93    KVM_CAP_INFO(MP_STATE),
  94    KVM_CAP_LAST_INFO
  95};
  96
  97static bool has_msr_star;
  98static bool has_msr_hsave_pa;
  99static bool has_msr_tsc_aux;
 100static bool has_msr_tsc_adjust;
 101static bool has_msr_tsc_deadline;
 102static bool has_msr_feature_control;
 103static bool has_msr_misc_enable;
 104static bool has_msr_smbase;
 105static bool has_msr_bndcfgs;
 106static int lm_capable_kernel;
 107static bool has_msr_hv_hypercall;
 108static bool has_msr_hv_crash;
 109static bool has_msr_hv_reset;
 110static bool has_msr_hv_vpindex;
 111static bool hv_vpindex_settable;
 112static bool has_msr_hv_runtime;
 113static bool has_msr_hv_synic;
 114static bool has_msr_hv_stimer;
 115static bool has_msr_hv_frequencies;
 116static bool has_msr_hv_reenlightenment;
 117static bool has_msr_hv_syndbg_options;
 118static bool has_msr_xss;
 119static bool has_msr_umwait;
 120static bool has_msr_spec_ctrl;
 121static bool has_tsc_scale_msr;
 122static bool has_msr_tsx_ctrl;
 123static bool has_msr_virt_ssbd;
 124static bool has_msr_smi_count;
 125static bool has_msr_arch_capabs;
 126static bool has_msr_core_capabs;
 127static bool has_msr_vmx_vmfunc;
 128static bool has_msr_ucode_rev;
 129static bool has_msr_vmx_procbased_ctls2;
 130static bool has_msr_perf_capabs;
 131static bool has_msr_pkrs;
 132
 133static uint32_t has_architectural_pmu_version;
 134static uint32_t num_architectural_pmu_gp_counters;
 135static uint32_t num_architectural_pmu_fixed_counters;
 136
 137static int has_xsave;
 138static int has_xsave2;
 139static int has_xcrs;
 140static int has_pit_state2;
 141static int has_sregs2;
 142static int has_exception_payload;
 143static int has_triple_fault_event;
 144
 145static bool has_msr_mcg_ext_ctl;
 146
 147static struct kvm_cpuid2 *cpuid_cache;
 148static struct kvm_cpuid2 *hv_cpuid_cache;
 149static struct kvm_msr_list *kvm_feature_msrs;
 150
 151static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
 152
 153#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
 154static RateLimit bus_lock_ratelimit_ctrl;
 155static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
 156
 157int kvm_has_pit_state2(void)
 158{
 159    return has_pit_state2;
 160}
 161
 162bool kvm_has_smm(void)
 163{
 164    return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 165}
 166
 167bool kvm_has_adjust_clock_stable(void)
 168{
 169    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 170
 171    return (ret & KVM_CLOCK_TSC_STABLE);
 172}
 173
 174bool kvm_has_adjust_clock(void)
 175{
 176    return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 177}
 178
 179bool kvm_has_exception_payload(void)
 180{
 181    return has_exception_payload;
 182}
 183
 184static bool kvm_x2apic_api_set_flags(uint64_t flags)
 185{
 186    KVMState *s = KVM_STATE(current_accel());
 187
 188    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 189}
 190
 191#define MEMORIZE(fn, _result) \
 192    ({ \
 193        static bool _memorized; \
 194        \
 195        if (_memorized) { \
 196            return _result; \
 197        } \
 198        _memorized = true; \
 199        _result = fn; \
 200    })
 201
 202static bool has_x2apic_api;
 203
 204bool kvm_has_x2apic_api(void)
 205{
 206    return has_x2apic_api;
 207}
 208
 209bool kvm_enable_x2apic(void)
 210{
 211    return MEMORIZE(
 212             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 213                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 214             has_x2apic_api);
 215}
 216
 217bool kvm_hv_vpindex_settable(void)
 218{
 219    return hv_vpindex_settable;
 220}
 221
 222static int kvm_get_tsc(CPUState *cs)
 223{
 224    X86CPU *cpu = X86_CPU(cs);
 225    CPUX86State *env = &cpu->env;
 226    uint64_t value;
 227    int ret;
 228
 229    if (env->tsc_valid) {
 230        return 0;
 231    }
 232
 233    env->tsc_valid = !runstate_is_running();
 234
 235    ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
 236    if (ret < 0) {
 237        return ret;
 238    }
 239
 240    env->tsc = value;
 241    return 0;
 242}
 243
 244static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 245{
 246    kvm_get_tsc(cpu);
 247}
 248
 249void kvm_synchronize_all_tsc(void)
 250{
 251    CPUState *cpu;
 252
 253    if (kvm_enabled()) {
 254        CPU_FOREACH(cpu) {
 255            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 256        }
 257    }
 258}
 259
 260static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 261{
 262    struct kvm_cpuid2 *cpuid;
 263    int r, size;
 264
 265    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 266    cpuid = g_malloc0(size);
 267    cpuid->nent = max;
 268    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 269    if (r == 0 && cpuid->nent >= max) {
 270        r = -E2BIG;
 271    }
 272    if (r < 0) {
 273        if (r == -E2BIG) {
 274            g_free(cpuid);
 275            return NULL;
 276        } else {
 277            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 278                    strerror(-r));
 279            exit(1);
 280        }
 281    }
 282    return cpuid;
 283}
 284
 285/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 286 * for all entries.
 287 */
 288static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 289{
 290    struct kvm_cpuid2 *cpuid;
 291    int max = 1;
 292
 293    if (cpuid_cache != NULL) {
 294        return cpuid_cache;
 295    }
 296    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 297        max *= 2;
 298    }
 299    cpuid_cache = cpuid;
 300    return cpuid;
 301}
 302
 303static bool host_tsx_broken(void)
 304{
 305    int family, model, stepping;\
 306    char vendor[CPUID_VENDOR_SZ + 1];
 307
 308    host_cpu_vendor_fms(vendor, &family, &model, &stepping);
 309
 310    /* Check if we are running on a Haswell host known to have broken TSX */
 311    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 312           (family == 6) &&
 313           ((model == 63 && stepping < 4) ||
 314            model == 60 || model == 69 || model == 70);
 315}
 316
 317/* Returns the value for a specific register on the cpuid entry
 318 */
 319static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 320{
 321    uint32_t ret = 0;
 322    switch (reg) {
 323    case R_EAX:
 324        ret = entry->eax;
 325        break;
 326    case R_EBX:
 327        ret = entry->ebx;
 328        break;
 329    case R_ECX:
 330        ret = entry->ecx;
 331        break;
 332    case R_EDX:
 333        ret = entry->edx;
 334        break;
 335    }
 336    return ret;
 337}
 338
 339/* Find matching entry for function/index on kvm_cpuid2 struct
 340 */
 341static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 342                                                 uint32_t function,
 343                                                 uint32_t index)
 344{
 345    int i;
 346    for (i = 0; i < cpuid->nent; ++i) {
 347        if (cpuid->entries[i].function == function &&
 348            cpuid->entries[i].index == index) {
 349            return &cpuid->entries[i];
 350        }
 351    }
 352    /* not found: */
 353    return NULL;
 354}
 355
 356uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 357                                      uint32_t index, int reg)
 358{
 359    struct kvm_cpuid2 *cpuid;
 360    uint32_t ret = 0;
 361    uint32_t cpuid_1_edx, unused;
 362    uint64_t bitmask;
 363
 364    cpuid = get_supported_cpuid(s);
 365
 366    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 367    if (entry) {
 368        ret = cpuid_entry_get_reg(entry, reg);
 369    }
 370
 371    /* Fixups for the data returned by KVM, below */
 372
 373    if (function == 1 && reg == R_EDX) {
 374        /* KVM before 2.6.30 misreports the following features */
 375        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 376    } else if (function == 1 && reg == R_ECX) {
 377        /* We can set the hypervisor flag, even if KVM does not return it on
 378         * GET_SUPPORTED_CPUID
 379         */
 380        ret |= CPUID_EXT_HYPERVISOR;
 381        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 382         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 383         * and the irqchip is in the kernel.
 384         */
 385        if (kvm_irqchip_in_kernel() &&
 386                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 387            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 388        }
 389
 390        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 391         * without the in-kernel irqchip
 392         */
 393        if (!kvm_irqchip_in_kernel()) {
 394            ret &= ~CPUID_EXT_X2APIC;
 395        }
 396
 397        if (enable_cpu_pm) {
 398            int disable_exits = kvm_check_extension(s,
 399                                                    KVM_CAP_X86_DISABLE_EXITS);
 400
 401            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 402                ret |= CPUID_EXT_MONITOR;
 403            }
 404        }
 405    } else if (function == 6 && reg == R_EAX) {
 406        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 407    } else if (function == 7 && index == 0 && reg == R_EBX) {
 408        /* Not new instructions, just an optimization.  */
 409        uint32_t ebx;
 410        host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
 411        ret |= ebx & CPUID_7_0_EBX_ERMS;
 412
 413        if (host_tsx_broken()) {
 414            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 415        }
 416    } else if (function == 7 && index == 0 && reg == R_EDX) {
 417        /* Not new instructions, just an optimization.  */
 418        uint32_t edx;
 419        host_cpuid(7, 0, &unused, &unused, &unused, &edx);
 420        ret |= edx & CPUID_7_0_EDX_FSRM;
 421
 422        /*
 423         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 424         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 425         * returned by KVM_GET_MSR_INDEX_LIST.
 426         */
 427        if (!has_msr_arch_capabs) {
 428            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 429        }
 430    } else if (function == 7 && index == 1 && reg == R_EAX) {
 431        /* Not new instructions, just an optimization.  */
 432        uint32_t eax;
 433        host_cpuid(7, 1, &eax, &unused, &unused, &unused);
 434        ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
 435    } else if (function == 0xd && index == 0 &&
 436               (reg == R_EAX || reg == R_EDX)) {
 437        /*
 438         * The value returned by KVM_GET_SUPPORTED_CPUID does not include
 439         * features that still have to be enabled with the arch_prctl
 440         * system call.  QEMU needs the full value, which is retrieved
 441         * with KVM_GET_DEVICE_ATTR.
 442         */
 443        struct kvm_device_attr attr = {
 444            .group = 0,
 445            .attr = KVM_X86_XCOMP_GUEST_SUPP,
 446            .addr = (unsigned long) &bitmask
 447        };
 448
 449        bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
 450        if (!sys_attr) {
 451            return ret;
 452        }
 453
 454        int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 455        if (rc < 0) {
 456            if (rc != -ENXIO) {
 457                warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
 458                            "error: %d", rc);
 459            }
 460            return ret;
 461        }
 462        ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
 463    } else if (function == 0x80000001 && reg == R_ECX) {
 464        /*
 465         * It's safe to enable TOPOEXT even if it's not returned by
 466         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 467         * us to keep CPU models including TOPOEXT runnable on older kernels.
 468         */
 469        ret |= CPUID_EXT3_TOPOEXT;
 470    } else if (function == 0x80000001 && reg == R_EDX) {
 471        /* On Intel, kvm returns cpuid according to the Intel spec,
 472         * so add missing bits according to the AMD spec:
 473         */
 474        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 475        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 476    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 477        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 478         * be enabled without the in-kernel irqchip
 479         */
 480        if (!kvm_irqchip_in_kernel()) {
 481            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 482        }
 483        if (kvm_irqchip_is_split()) {
 484            ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
 485        }
 486    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 487        ret |= 1U << KVM_HINTS_REALTIME;
 488    }
 489
 490    return ret;
 491}
 492
 493uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 494{
 495    struct {
 496        struct kvm_msrs info;
 497        struct kvm_msr_entry entries[1];
 498    } msr_data = {};
 499    uint64_t value;
 500    uint32_t ret, can_be_one, must_be_one;
 501
 502    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 503        return 0;
 504    }
 505
 506    /* Check if requested MSR is supported feature MSR */
 507    int i;
 508    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 509        if (kvm_feature_msrs->indices[i] == index) {
 510            break;
 511        }
 512    if (i == kvm_feature_msrs->nmsrs) {
 513        return 0; /* if the feature MSR is not supported, simply return 0 */
 514    }
 515
 516    msr_data.info.nmsrs = 1;
 517    msr_data.entries[0].index = index;
 518
 519    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 520    if (ret != 1) {
 521        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 522            index, strerror(-ret));
 523        exit(1);
 524    }
 525
 526    value = msr_data.entries[0].data;
 527    switch (index) {
 528    case MSR_IA32_VMX_PROCBASED_CTLS2:
 529        if (!has_msr_vmx_procbased_ctls2) {
 530            /* KVM forgot to add these bits for some time, do this ourselves. */
 531            if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
 532                CPUID_XSAVE_XSAVES) {
 533                value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
 534            }
 535            if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
 536                CPUID_EXT_RDRAND) {
 537                value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
 538            }
 539            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 540                CPUID_7_0_EBX_INVPCID) {
 541                value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
 542            }
 543            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 544                CPUID_7_0_EBX_RDSEED) {
 545                value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
 546            }
 547            if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
 548                CPUID_EXT2_RDTSCP) {
 549                value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
 550            }
 551        }
 552        /* fall through */
 553    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 554    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 555    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 556    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 557        /*
 558         * Return true for bits that can be one, but do not have to be one.
 559         * The SDM tells us which bits could have a "must be one" setting,
 560         * so we can do the opposite transformation in make_vmx_msr_value.
 561         */
 562        must_be_one = (uint32_t)value;
 563        can_be_one = (uint32_t)(value >> 32);
 564        return can_be_one & ~must_be_one;
 565
 566    default:
 567        return value;
 568    }
 569}
 570
 571static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 572                                     int *max_banks)
 573{
 574    int r;
 575
 576    r = kvm_check_extension(s, KVM_CAP_MCE);
 577    if (r > 0) {
 578        *max_banks = r;
 579        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 580    }
 581    return -ENOSYS;
 582}
 583
 584static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 585{
 586    CPUState *cs = CPU(cpu);
 587    CPUX86State *env = &cpu->env;
 588    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 589                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 590    uint64_t mcg_status = MCG_STATUS_MCIP;
 591    int flags = 0;
 592
 593    if (code == BUS_MCEERR_AR) {
 594        status |= MCI_STATUS_AR | 0x134;
 595        mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
 596    } else {
 597        status |= 0xc0;
 598        mcg_status |= MCG_STATUS_RIPV;
 599    }
 600
 601    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 602    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 603     * guest kernel back into env->mcg_ext_ctl.
 604     */
 605    cpu_synchronize_state(cs);
 606    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 607        mcg_status |= MCG_STATUS_LMCE;
 608        flags = 0;
 609    }
 610
 611    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 612                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 613}
 614
 615static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
 616{
 617    MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
 618
 619    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
 620                                   &mff);
 621}
 622
 623static void hardware_memory_error(void *host_addr)
 624{
 625    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
 626    error_report("QEMU got Hardware memory error at addr %p", host_addr);
 627    exit(1);
 628}
 629
 630void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 631{
 632    X86CPU *cpu = X86_CPU(c);
 633    CPUX86State *env = &cpu->env;
 634    ram_addr_t ram_addr;
 635    hwaddr paddr;
 636
 637    /* If we get an action required MCE, it has been injected by KVM
 638     * while the VM was running.  An action optional MCE instead should
 639     * be coming from the main thread, which qemu_init_sigbus identifies
 640     * as the "early kill" thread.
 641     */
 642    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 643
 644    if ((env->mcg_cap & MCG_SER_P) && addr) {
 645        ram_addr = qemu_ram_addr_from_host(addr);
 646        if (ram_addr != RAM_ADDR_INVALID &&
 647            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 648            kvm_hwpoison_page_add(ram_addr);
 649            kvm_mce_inject(cpu, paddr, code);
 650
 651            /*
 652             * Use different logging severity based on error type.
 653             * If there is additional MCE reporting on the hypervisor, QEMU VA
 654             * could be another source to identify the PA and MCE details.
 655             */
 656            if (code == BUS_MCEERR_AR) {
 657                error_report("Guest MCE Memory Error at QEMU addr %p and "
 658                    "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 659                    addr, paddr, "BUS_MCEERR_AR");
 660            } else {
 661                 warn_report("Guest MCE Memory Error at QEMU addr %p and "
 662                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 663                     addr, paddr, "BUS_MCEERR_AO");
 664            }
 665
 666            return;
 667        }
 668
 669        if (code == BUS_MCEERR_AO) {
 670            warn_report("Hardware memory error at addr %p of type %s "
 671                "for memory used by QEMU itself instead of guest system!",
 672                 addr, "BUS_MCEERR_AO");
 673        }
 674    }
 675
 676    if (code == BUS_MCEERR_AR) {
 677        hardware_memory_error(addr);
 678    }
 679
 680    /* Hope we are lucky for AO MCE, just notify a event */
 681    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
 682}
 683
 684static void kvm_reset_exception(CPUX86State *env)
 685{
 686    env->exception_nr = -1;
 687    env->exception_pending = 0;
 688    env->exception_injected = 0;
 689    env->exception_has_payload = false;
 690    env->exception_payload = 0;
 691}
 692
 693static void kvm_queue_exception(CPUX86State *env,
 694                                int32_t exception_nr,
 695                                uint8_t exception_has_payload,
 696                                uint64_t exception_payload)
 697{
 698    assert(env->exception_nr == -1);
 699    assert(!env->exception_pending);
 700    assert(!env->exception_injected);
 701    assert(!env->exception_has_payload);
 702
 703    env->exception_nr = exception_nr;
 704
 705    if (has_exception_payload) {
 706        env->exception_pending = 1;
 707
 708        env->exception_has_payload = exception_has_payload;
 709        env->exception_payload = exception_payload;
 710    } else {
 711        env->exception_injected = 1;
 712
 713        if (exception_nr == EXCP01_DB) {
 714            assert(exception_has_payload);
 715            env->dr[6] = exception_payload;
 716        } else if (exception_nr == EXCP0E_PAGE) {
 717            assert(exception_has_payload);
 718            env->cr[2] = exception_payload;
 719        } else {
 720            assert(!exception_has_payload);
 721        }
 722    }
 723}
 724
 725static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 726{
 727    CPUX86State *env = &cpu->env;
 728
 729    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 730        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 731        struct kvm_x86_mce mce;
 732
 733        kvm_reset_exception(env);
 734
 735        /*
 736         * There must be at least one bank in use if an MCE is pending.
 737         * Find it and use its values for the event injection.
 738         */
 739        for (bank = 0; bank < bank_num; bank++) {
 740            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 741                break;
 742            }
 743        }
 744        assert(bank < bank_num);
 745
 746        mce.bank = bank;
 747        mce.status = env->mce_banks[bank * 4 + 1];
 748        mce.mcg_status = env->mcg_status;
 749        mce.addr = env->mce_banks[bank * 4 + 2];
 750        mce.misc = env->mce_banks[bank * 4 + 3];
 751
 752        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 753    }
 754    return 0;
 755}
 756
 757static void cpu_update_state(void *opaque, bool running, RunState state)
 758{
 759    CPUX86State *env = opaque;
 760
 761    if (running) {
 762        env->tsc_valid = false;
 763    }
 764}
 765
 766unsigned long kvm_arch_vcpu_id(CPUState *cs)
 767{
 768    X86CPU *cpu = X86_CPU(cs);
 769    return cpu->apic_id;
 770}
 771
 772#ifndef KVM_CPUID_SIGNATURE_NEXT
 773#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 774#endif
 775
 776static bool hyperv_enabled(X86CPU *cpu)
 777{
 778    return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
 779        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
 780         cpu->hyperv_features || cpu->hyperv_passthrough);
 781}
 782
 783/*
 784 * Check whether target_freq is within conservative
 785 * ntp correctable bounds (250ppm) of freq
 786 */
 787static inline bool freq_within_bounds(int freq, int target_freq)
 788{
 789        int max_freq = freq + (freq * 250 / 1000000);
 790        int min_freq = freq - (freq * 250 / 1000000);
 791
 792        if (target_freq >= min_freq && target_freq <= max_freq) {
 793                return true;
 794        }
 795
 796        return false;
 797}
 798
 799static int kvm_arch_set_tsc_khz(CPUState *cs)
 800{
 801    X86CPU *cpu = X86_CPU(cs);
 802    CPUX86State *env = &cpu->env;
 803    int r, cur_freq;
 804    bool set_ioctl = false;
 805
 806    if (!env->tsc_khz) {
 807        return 0;
 808    }
 809
 810    cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 811               kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
 812
 813    /*
 814     * If TSC scaling is supported, attempt to set TSC frequency.
 815     */
 816    if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
 817        set_ioctl = true;
 818    }
 819
 820    /*
 821     * If desired TSC frequency is within bounds of NTP correction,
 822     * attempt to set TSC frequency.
 823     */
 824    if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
 825        set_ioctl = true;
 826    }
 827
 828    r = set_ioctl ?
 829        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 830        -ENOTSUP;
 831
 832    if (r < 0) {
 833        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 834         * TSC frequency doesn't match the one we want.
 835         */
 836        cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 837                   kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 838                   -ENOTSUP;
 839        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 840            warn_report("TSC frequency mismatch between "
 841                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 842                        "and TSC scaling unavailable",
 843                        env->tsc_khz, cur_freq);
 844            return r;
 845        }
 846    }
 847
 848    return 0;
 849}
 850
 851static bool tsc_is_stable_and_known(CPUX86State *env)
 852{
 853    if (!env->tsc_khz) {
 854        return false;
 855    }
 856    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 857        || env->user_tsc_khz;
 858}
 859
 860#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
 861
 862static struct {
 863    const char *desc;
 864    struct {
 865        uint32_t func;
 866        int reg;
 867        uint32_t bits;
 868    } flags[2];
 869    uint64_t dependencies;
 870} kvm_hyperv_properties[] = {
 871    [HYPERV_FEAT_RELAXED] = {
 872        .desc = "relaxed timing (hv-relaxed)",
 873        .flags = {
 874            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 875             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 876        }
 877    },
 878    [HYPERV_FEAT_VAPIC] = {
 879        .desc = "virtual APIC (hv-vapic)",
 880        .flags = {
 881            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 882             .bits = HV_APIC_ACCESS_AVAILABLE}
 883        }
 884    },
 885    [HYPERV_FEAT_TIME] = {
 886        .desc = "clocksources (hv-time)",
 887        .flags = {
 888            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 889             .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
 890        }
 891    },
 892    [HYPERV_FEAT_CRASH] = {
 893        .desc = "crash MSRs (hv-crash)",
 894        .flags = {
 895            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 896             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 897        }
 898    },
 899    [HYPERV_FEAT_RESET] = {
 900        .desc = "reset MSR (hv-reset)",
 901        .flags = {
 902            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 903             .bits = HV_RESET_AVAILABLE}
 904        }
 905    },
 906    [HYPERV_FEAT_VPINDEX] = {
 907        .desc = "VP_INDEX MSR (hv-vpindex)",
 908        .flags = {
 909            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 910             .bits = HV_VP_INDEX_AVAILABLE}
 911        }
 912    },
 913    [HYPERV_FEAT_RUNTIME] = {
 914        .desc = "VP_RUNTIME MSR (hv-runtime)",
 915        .flags = {
 916            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 917             .bits = HV_VP_RUNTIME_AVAILABLE}
 918        }
 919    },
 920    [HYPERV_FEAT_SYNIC] = {
 921        .desc = "synthetic interrupt controller (hv-synic)",
 922        .flags = {
 923            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 924             .bits = HV_SYNIC_AVAILABLE}
 925        }
 926    },
 927    [HYPERV_FEAT_STIMER] = {
 928        .desc = "synthetic timers (hv-stimer)",
 929        .flags = {
 930            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 931             .bits = HV_SYNTIMERS_AVAILABLE}
 932        },
 933        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 934    },
 935    [HYPERV_FEAT_FREQUENCIES] = {
 936        .desc = "frequency MSRs (hv-frequencies)",
 937        .flags = {
 938            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 939             .bits = HV_ACCESS_FREQUENCY_MSRS},
 940            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 941             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 942        }
 943    },
 944    [HYPERV_FEAT_REENLIGHTENMENT] = {
 945        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 946        .flags = {
 947            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 948             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 949        }
 950    },
 951    [HYPERV_FEAT_TLBFLUSH] = {
 952        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 953        .flags = {
 954            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 955             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 956             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 957        },
 958        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 959    },
 960    [HYPERV_FEAT_EVMCS] = {
 961        .desc = "enlightened VMCS (hv-evmcs)",
 962        .flags = {
 963            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 964             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 965        },
 966        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 967    },
 968    [HYPERV_FEAT_IPI] = {
 969        .desc = "paravirtualized IPI (hv-ipi)",
 970        .flags = {
 971            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 972             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 973             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 974        },
 975        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 976    },
 977    [HYPERV_FEAT_STIMER_DIRECT] = {
 978        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 979        .flags = {
 980            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 981             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 982        },
 983        .dependencies = BIT(HYPERV_FEAT_STIMER)
 984    },
 985    [HYPERV_FEAT_AVIC] = {
 986        .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
 987        .flags = {
 988            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 989             .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
 990        }
 991    },
 992#ifdef CONFIG_SYNDBG
 993    [HYPERV_FEAT_SYNDBG] = {
 994        .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
 995        .flags = {
 996            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 997             .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
 998        },
 999        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1000    },
1001#endif
1002    [HYPERV_FEAT_MSR_BITMAP] = {
1003        .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1004        .flags = {
1005            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1006             .bits = HV_NESTED_MSR_BITMAP}
1007        }
1008    },
1009    [HYPERV_FEAT_XMM_INPUT] = {
1010        .desc = "XMM fast hypercall input (hv-xmm-input)",
1011        .flags = {
1012            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1013             .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1014        }
1015    },
1016    [HYPERV_FEAT_TLBFLUSH_EXT] = {
1017        .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1018        .flags = {
1019            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1020             .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1021        },
1022        .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1023    },
1024    [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1025        .desc = "direct TLB flush (hv-tlbflush-direct)",
1026        .flags = {
1027            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1028             .bits = HV_NESTED_DIRECT_FLUSH}
1029        },
1030        .dependencies = BIT(HYPERV_FEAT_VAPIC)
1031    },
1032};
1033
1034static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1035                                           bool do_sys_ioctl)
1036{
1037    struct kvm_cpuid2 *cpuid;
1038    int r, size;
1039
1040    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1041    cpuid = g_malloc0(size);
1042    cpuid->nent = max;
1043
1044    if (do_sys_ioctl) {
1045        r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1046    } else {
1047        r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1048    }
1049    if (r == 0 && cpuid->nent >= max) {
1050        r = -E2BIG;
1051    }
1052    if (r < 0) {
1053        if (r == -E2BIG) {
1054            g_free(cpuid);
1055            return NULL;
1056        } else {
1057            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1058                    strerror(-r));
1059            exit(1);
1060        }
1061    }
1062    return cpuid;
1063}
1064
1065/*
1066 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1067 * for all entries.
1068 */
1069static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1070{
1071    struct kvm_cpuid2 *cpuid;
1072    /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1073    int max = 11;
1074    int i;
1075    bool do_sys_ioctl;
1076
1077    do_sys_ioctl =
1078        kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1079
1080    /*
1081     * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1082     * unsupported, kvm_hyperv_expand_features() checks for that.
1083     */
1084    assert(do_sys_ioctl || cs->kvm_state);
1085
1086    /*
1087     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1088     * -E2BIG, however, it doesn't report back the right size. Keep increasing
1089     * it and re-trying until we succeed.
1090     */
1091    while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1092        max++;
1093    }
1094
1095    /*
1096     * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1097     * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1098     * information early, just check for the capability and set the bit
1099     * manually.
1100     */
1101    if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1102                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1103        for (i = 0; i < cpuid->nent; i++) {
1104            if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1105                cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1106            }
1107        }
1108    }
1109
1110    return cpuid;
1111}
1112
1113/*
1114 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1115 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1116 */
1117static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1118{
1119    X86CPU *cpu = X86_CPU(cs);
1120    struct kvm_cpuid2 *cpuid;
1121    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1122
1123    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1124    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1125    cpuid->nent = 2;
1126
1127    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1128    entry_feat = &cpuid->entries[0];
1129    entry_feat->function = HV_CPUID_FEATURES;
1130
1131    entry_recomm = &cpuid->entries[1];
1132    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1133    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1134
1135    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1136        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1137        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1138        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1139        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1140        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1141    }
1142
1143    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1144        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1145        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1146    }
1147
1148    if (has_msr_hv_frequencies) {
1149        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1150        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1151    }
1152
1153    if (has_msr_hv_crash) {
1154        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1155    }
1156
1157    if (has_msr_hv_reenlightenment) {
1158        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1159    }
1160
1161    if (has_msr_hv_reset) {
1162        entry_feat->eax |= HV_RESET_AVAILABLE;
1163    }
1164
1165    if (has_msr_hv_vpindex) {
1166        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1167    }
1168
1169    if (has_msr_hv_runtime) {
1170        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1171    }
1172
1173    if (has_msr_hv_synic) {
1174        unsigned int cap = cpu->hyperv_synic_kvm_only ?
1175            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1176
1177        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1178            entry_feat->eax |= HV_SYNIC_AVAILABLE;
1179        }
1180    }
1181
1182    if (has_msr_hv_stimer) {
1183        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1184    }
1185
1186    if (has_msr_hv_syndbg_options) {
1187        entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1188        entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1189        entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1190    }
1191
1192    if (kvm_check_extension(cs->kvm_state,
1193                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1194        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1195        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1196    }
1197
1198    if (kvm_check_extension(cs->kvm_state,
1199                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1200        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1201    }
1202
1203    if (kvm_check_extension(cs->kvm_state,
1204                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
1205        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1206        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1207    }
1208
1209    return cpuid;
1210}
1211
1212static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1213{
1214    struct kvm_cpuid_entry2 *entry;
1215    struct kvm_cpuid2 *cpuid;
1216
1217    if (hv_cpuid_cache) {
1218        cpuid = hv_cpuid_cache;
1219    } else {
1220        if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1221            cpuid = get_supported_hv_cpuid(cs);
1222        } else {
1223            /*
1224             * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1225             * before KVM context is created but this is only done when
1226             * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1227             * KVM_CAP_HYPERV_CPUID.
1228             */
1229            assert(cs->kvm_state);
1230
1231            cpuid = get_supported_hv_cpuid_legacy(cs);
1232        }
1233        hv_cpuid_cache = cpuid;
1234    }
1235
1236    if (!cpuid) {
1237        return 0;
1238    }
1239
1240    entry = cpuid_find_entry(cpuid, func, 0);
1241    if (!entry) {
1242        return 0;
1243    }
1244
1245    return cpuid_entry_get_reg(entry, reg);
1246}
1247
1248static bool hyperv_feature_supported(CPUState *cs, int feature)
1249{
1250    uint32_t func, bits;
1251    int i, reg;
1252
1253    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1254
1255        func = kvm_hyperv_properties[feature].flags[i].func;
1256        reg = kvm_hyperv_properties[feature].flags[i].reg;
1257        bits = kvm_hyperv_properties[feature].flags[i].bits;
1258
1259        if (!func) {
1260            continue;
1261        }
1262
1263        if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1264            return false;
1265        }
1266    }
1267
1268    return true;
1269}
1270
1271/* Checks that all feature dependencies are enabled */
1272static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1273{
1274    uint64_t deps;
1275    int dep_feat;
1276
1277    deps = kvm_hyperv_properties[feature].dependencies;
1278    while (deps) {
1279        dep_feat = ctz64(deps);
1280        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1281            error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1282                       kvm_hyperv_properties[feature].desc,
1283                       kvm_hyperv_properties[dep_feat].desc);
1284            return false;
1285        }
1286        deps &= ~(1ull << dep_feat);
1287    }
1288
1289    return true;
1290}
1291
1292static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1293{
1294    X86CPU *cpu = X86_CPU(cs);
1295    uint32_t r = 0;
1296    int i, j;
1297
1298    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1299        if (!hyperv_feat_enabled(cpu, i)) {
1300            continue;
1301        }
1302
1303        for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1304            if (kvm_hyperv_properties[i].flags[j].func != func) {
1305                continue;
1306            }
1307            if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1308                continue;
1309            }
1310
1311            r |= kvm_hyperv_properties[i].flags[j].bits;
1312        }
1313    }
1314
1315    /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1316    if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1317        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1318            r |= DEFAULT_EVMCS_VERSION;
1319        }
1320    }
1321
1322    return r;
1323}
1324
1325/*
1326 * Expand Hyper-V CPU features. In partucular, check that all the requested
1327 * features are supported by the host and the sanity of the configuration
1328 * (that all the required dependencies are included). Also, this takes care
1329 * of 'hv_passthrough' mode and fills the environment with all supported
1330 * Hyper-V features.
1331 */
1332bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1333{
1334    CPUState *cs = CPU(cpu);
1335    Error *local_err = NULL;
1336    int feat;
1337
1338    if (!hyperv_enabled(cpu))
1339        return true;
1340
1341    /*
1342     * When kvm_hyperv_expand_features is called at CPU feature expansion
1343     * time per-CPU kvm_state is not available yet so we can only proceed
1344     * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1345     */
1346    if (!cs->kvm_state &&
1347        !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1348        return true;
1349
1350    if (cpu->hyperv_passthrough) {
1351        cpu->hyperv_vendor_id[0] =
1352            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1353        cpu->hyperv_vendor_id[1] =
1354            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1355        cpu->hyperv_vendor_id[2] =
1356            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1357        cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1358                                       sizeof(cpu->hyperv_vendor_id) + 1);
1359        memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1360               sizeof(cpu->hyperv_vendor_id));
1361        cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1362
1363        cpu->hyperv_interface_id[0] =
1364            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1365        cpu->hyperv_interface_id[1] =
1366            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1367        cpu->hyperv_interface_id[2] =
1368            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1369        cpu->hyperv_interface_id[3] =
1370            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1371
1372        cpu->hyperv_ver_id_build =
1373            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1374        cpu->hyperv_ver_id_major =
1375            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1376        cpu->hyperv_ver_id_minor =
1377            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1378        cpu->hyperv_ver_id_sp =
1379            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1380        cpu->hyperv_ver_id_sb =
1381            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1382        cpu->hyperv_ver_id_sn =
1383            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1384
1385        cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1386                                            R_EAX);
1387        cpu->hyperv_limits[0] =
1388            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1389        cpu->hyperv_limits[1] =
1390            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1391        cpu->hyperv_limits[2] =
1392            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1393
1394        cpu->hyperv_spinlock_attempts =
1395            hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1396
1397        /*
1398         * Mark feature as enabled in 'cpu->hyperv_features' as
1399         * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1400         */
1401        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1402            if (hyperv_feature_supported(cs, feat)) {
1403                cpu->hyperv_features |= BIT(feat);
1404            }
1405        }
1406    } else {
1407        /* Check features availability and dependencies */
1408        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1409            /* If the feature was not requested skip it. */
1410            if (!hyperv_feat_enabled(cpu, feat)) {
1411                continue;
1412            }
1413
1414            /* Check if the feature is supported by KVM */
1415            if (!hyperv_feature_supported(cs, feat)) {
1416                error_setg(errp, "Hyper-V %s is not supported by kernel",
1417                           kvm_hyperv_properties[feat].desc);
1418                return false;
1419            }
1420
1421            /* Check dependencies */
1422            if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1423                error_propagate(errp, local_err);
1424                return false;
1425            }
1426        }
1427    }
1428
1429    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1430    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1431        !cpu->hyperv_synic_kvm_only &&
1432        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1433        error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1434                   kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1435                   kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1436        return false;
1437    }
1438
1439    return true;
1440}
1441
1442/*
1443 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1444 */
1445static int hyperv_fill_cpuids(CPUState *cs,
1446                              struct kvm_cpuid_entry2 *cpuid_ent)
1447{
1448    X86CPU *cpu = X86_CPU(cs);
1449    struct kvm_cpuid_entry2 *c;
1450    uint32_t signature[3];
1451    uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1452    uint32_t nested_eax =
1453        hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1454
1455    max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1456        HV_CPUID_IMPLEMENT_LIMITS;
1457
1458    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1459        max_cpuid_leaf =
1460            MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1461    }
1462
1463    c = &cpuid_ent[cpuid_i++];
1464    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1465    c->eax = max_cpuid_leaf;
1466    c->ebx = cpu->hyperv_vendor_id[0];
1467    c->ecx = cpu->hyperv_vendor_id[1];
1468    c->edx = cpu->hyperv_vendor_id[2];
1469
1470    c = &cpuid_ent[cpuid_i++];
1471    c->function = HV_CPUID_INTERFACE;
1472    c->eax = cpu->hyperv_interface_id[0];
1473    c->ebx = cpu->hyperv_interface_id[1];
1474    c->ecx = cpu->hyperv_interface_id[2];
1475    c->edx = cpu->hyperv_interface_id[3];
1476
1477    c = &cpuid_ent[cpuid_i++];
1478    c->function = HV_CPUID_VERSION;
1479    c->eax = cpu->hyperv_ver_id_build;
1480    c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1481        cpu->hyperv_ver_id_minor;
1482    c->ecx = cpu->hyperv_ver_id_sp;
1483    c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1484        (cpu->hyperv_ver_id_sn & 0xffffff);
1485
1486    c = &cpuid_ent[cpuid_i++];
1487    c->function = HV_CPUID_FEATURES;
1488    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1489    c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1490    c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1491
1492    /* Unconditionally required with any Hyper-V enlightenment */
1493    c->eax |= HV_HYPERCALL_AVAILABLE;
1494
1495    /* SynIC and Vmbus devices require messages/signals hypercalls */
1496    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1497        !cpu->hyperv_synic_kvm_only) {
1498        c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1499    }
1500
1501
1502    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1503    c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1504
1505    c = &cpuid_ent[cpuid_i++];
1506    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1507    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1508    c->ebx = cpu->hyperv_spinlock_attempts;
1509
1510    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1511        !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1512        c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1513    }
1514
1515    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1516        c->eax |= HV_NO_NONARCH_CORESHARING;
1517    } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1518        c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1519            HV_NO_NONARCH_CORESHARING;
1520    }
1521
1522    c = &cpuid_ent[cpuid_i++];
1523    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1524    c->eax = cpu->hv_max_vps;
1525    c->ebx = cpu->hyperv_limits[0];
1526    c->ecx = cpu->hyperv_limits[1];
1527    c->edx = cpu->hyperv_limits[2];
1528
1529    if (nested_eax) {
1530        uint32_t function;
1531
1532        /* Create zeroed 0x40000006..0x40000009 leaves */
1533        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1534             function < HV_CPUID_NESTED_FEATURES; function++) {
1535            c = &cpuid_ent[cpuid_i++];
1536            c->function = function;
1537        }
1538
1539        c = &cpuid_ent[cpuid_i++];
1540        c->function = HV_CPUID_NESTED_FEATURES;
1541        c->eax = nested_eax;
1542    }
1543
1544    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1545        c = &cpuid_ent[cpuid_i++];
1546        c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1547        c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1548            HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1549        memcpy(signature, "Microsoft VS", 12);
1550        c->eax = 0;
1551        c->ebx = signature[0];
1552        c->ecx = signature[1];
1553        c->edx = signature[2];
1554
1555        c = &cpuid_ent[cpuid_i++];
1556        c->function = HV_CPUID_SYNDBG_INTERFACE;
1557        memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1558        c->eax = signature[0];
1559        c->ebx = 0;
1560        c->ecx = 0;
1561        c->edx = 0;
1562
1563        c = &cpuid_ent[cpuid_i++];
1564        c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1565        c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1566        c->ebx = 0;
1567        c->ecx = 0;
1568        c->edx = 0;
1569    }
1570
1571    return cpuid_i;
1572}
1573
1574static Error *hv_passthrough_mig_blocker;
1575static Error *hv_no_nonarch_cs_mig_blocker;
1576
1577/* Checks that the exposed eVMCS version range is supported by KVM */
1578static bool evmcs_version_supported(uint16_t evmcs_version,
1579                                    uint16_t supported_evmcs_version)
1580{
1581    uint8_t min_version = evmcs_version & 0xff;
1582    uint8_t max_version = evmcs_version >> 8;
1583    uint8_t min_supported_version = supported_evmcs_version & 0xff;
1584    uint8_t max_supported_version = supported_evmcs_version >> 8;
1585
1586    return (min_version >= min_supported_version) &&
1587        (max_version <= max_supported_version);
1588}
1589
1590static int hyperv_init_vcpu(X86CPU *cpu)
1591{
1592    CPUState *cs = CPU(cpu);
1593    Error *local_err = NULL;
1594    int ret;
1595
1596    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1597        error_setg(&hv_passthrough_mig_blocker,
1598                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1599                   " set of hv-* flags instead");
1600        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1601        if (ret < 0) {
1602            error_report_err(local_err);
1603            return ret;
1604        }
1605    }
1606
1607    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1608        hv_no_nonarch_cs_mig_blocker == NULL) {
1609        error_setg(&hv_no_nonarch_cs_mig_blocker,
1610                   "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1611                   " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1612                   " make sure SMT is disabled and/or that vCPUs are properly"
1613                   " pinned)");
1614        ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1615        if (ret < 0) {
1616            error_report_err(local_err);
1617            return ret;
1618        }
1619    }
1620
1621    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1622        /*
1623         * the kernel doesn't support setting vp_index; assert that its value
1624         * is in sync
1625         */
1626        uint64_t value;
1627
1628        ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1629        if (ret < 0) {
1630            return ret;
1631        }
1632
1633        if (value != hyperv_vp_index(CPU(cpu))) {
1634            error_report("kernel's vp_index != QEMU's vp_index");
1635            return -ENXIO;
1636        }
1637    }
1638
1639    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1640        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1641            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1642        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1643        if (ret < 0) {
1644            error_report("failed to turn on HyperV SynIC in KVM: %s",
1645                         strerror(-ret));
1646            return ret;
1647        }
1648
1649        if (!cpu->hyperv_synic_kvm_only) {
1650            ret = hyperv_x86_synic_add(cpu);
1651            if (ret < 0) {
1652                error_report("failed to create HyperV SynIC: %s",
1653                             strerror(-ret));
1654                return ret;
1655            }
1656        }
1657    }
1658
1659    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1660        uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1661        uint16_t supported_evmcs_version;
1662
1663        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1664                                  (uintptr_t)&supported_evmcs_version);
1665
1666        /*
1667         * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1668         * option sets. Note: we hardcode the maximum supported eVMCS version
1669         * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1670         * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1671         * to be added.
1672         */
1673        if (ret < 0) {
1674            error_report("Hyper-V %s is not supported by kernel",
1675                         kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1676            return ret;
1677        }
1678
1679        if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1680            error_report("eVMCS version range [%d..%d] is not supported by "
1681                         "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1682                         evmcs_version >> 8, supported_evmcs_version & 0xff,
1683                         supported_evmcs_version >> 8);
1684            return -ENOTSUP;
1685        }
1686    }
1687
1688    if (cpu->hyperv_enforce_cpuid) {
1689        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1690        if (ret < 0) {
1691            error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1692                         strerror(-ret));
1693            return ret;
1694        }
1695    }
1696
1697    return 0;
1698}
1699
1700static Error *invtsc_mig_blocker;
1701
1702#define KVM_MAX_CPUID_ENTRIES  100
1703
1704static void kvm_init_xsave(CPUX86State *env)
1705{
1706    if (has_xsave2) {
1707        env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1708    } else if (has_xsave) {
1709        env->xsave_buf_len = sizeof(struct kvm_xsave);
1710    } else {
1711        return;
1712    }
1713
1714    env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1715    memset(env->xsave_buf, 0, env->xsave_buf_len);
1716    /*
1717     * The allocated storage must be large enough for all of the
1718     * possible XSAVE state components.
1719     */
1720    assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1721           env->xsave_buf_len);
1722}
1723
1724static void kvm_init_nested_state(CPUX86State *env)
1725{
1726    struct kvm_vmx_nested_state_hdr *vmx_hdr;
1727    uint32_t size;
1728
1729    if (!env->nested_state) {
1730        return;
1731    }
1732
1733    size = env->nested_state->size;
1734
1735    memset(env->nested_state, 0, size);
1736    env->nested_state->size = size;
1737
1738    if (cpu_has_vmx(env)) {
1739        env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1740        vmx_hdr = &env->nested_state->hdr.vmx;
1741        vmx_hdr->vmxon_pa = -1ull;
1742        vmx_hdr->vmcs12_pa = -1ull;
1743    } else if (cpu_has_svm(env)) {
1744        env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1745    }
1746}
1747
1748int kvm_arch_init_vcpu(CPUState *cs)
1749{
1750    struct {
1751        struct kvm_cpuid2 cpuid;
1752        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1753    } cpuid_data;
1754    /*
1755     * The kernel defines these structs with padding fields so there
1756     * should be no extra padding in our cpuid_data struct.
1757     */
1758    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1759                      sizeof(struct kvm_cpuid2) +
1760                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1761
1762    X86CPU *cpu = X86_CPU(cs);
1763    CPUX86State *env = &cpu->env;
1764    uint32_t limit, i, j, cpuid_i;
1765    uint32_t unused;
1766    struct kvm_cpuid_entry2 *c;
1767    uint32_t signature[3];
1768    int kvm_base = KVM_CPUID_SIGNATURE;
1769    int max_nested_state_len;
1770    int r;
1771    Error *local_err = NULL;
1772
1773    memset(&cpuid_data, 0, sizeof(cpuid_data));
1774
1775    cpuid_i = 0;
1776
1777    has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1778
1779    r = kvm_arch_set_tsc_khz(cs);
1780    if (r < 0) {
1781        return r;
1782    }
1783
1784    /* vcpu's TSC frequency is either specified by user, or following
1785     * the value used by KVM if the former is not present. In the
1786     * latter case, we query it from KVM and record in env->tsc_khz,
1787     * so that vcpu's TSC frequency can be migrated later via this field.
1788     */
1789    if (!env->tsc_khz) {
1790        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1791            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1792            -ENOTSUP;
1793        if (r > 0) {
1794            env->tsc_khz = r;
1795        }
1796    }
1797
1798    env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1799
1800    /*
1801     * kvm_hyperv_expand_features() is called here for the second time in case
1802     * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1803     * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1804     * check which Hyper-V enlightenments are supported and which are not, we
1805     * can still proceed and check/expand Hyper-V enlightenments here so legacy
1806     * behavior is preserved.
1807     */
1808    if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1809        error_report_err(local_err);
1810        return -ENOSYS;
1811    }
1812
1813    if (hyperv_enabled(cpu)) {
1814        r = hyperv_init_vcpu(cpu);
1815        if (r) {
1816            return r;
1817        }
1818
1819        cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1820        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1821        has_msr_hv_hypercall = true;
1822    }
1823
1824    if (cs->kvm_state->xen_version) {
1825#ifdef CONFIG_XEN_EMU
1826        struct kvm_cpuid_entry2 *xen_max_leaf;
1827
1828        memcpy(signature, "XenVMMXenVMM", 12);
1829
1830        xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1831        c->function = kvm_base + XEN_CPUID_SIGNATURE;
1832        c->eax = kvm_base + XEN_CPUID_TIME;
1833        c->ebx = signature[0];
1834        c->ecx = signature[1];
1835        c->edx = signature[2];
1836
1837        c = &cpuid_data.entries[cpuid_i++];
1838        c->function = kvm_base + XEN_CPUID_VENDOR;
1839        c->eax = cs->kvm_state->xen_version;
1840        c->ebx = 0;
1841        c->ecx = 0;
1842        c->edx = 0;
1843
1844        c = &cpuid_data.entries[cpuid_i++];
1845        c->function = kvm_base + XEN_CPUID_HVM_MSR;
1846        /* Number of hypercall-transfer pages */
1847        c->eax = 1;
1848        /* Hypercall MSR base address */
1849        if (hyperv_enabled(cpu)) {
1850            c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1851            kvm_xen_init(cs->kvm_state, c->ebx);
1852        } else {
1853            c->ebx = XEN_HYPERCALL_MSR;
1854        }
1855        c->ecx = 0;
1856        c->edx = 0;
1857
1858        c = &cpuid_data.entries[cpuid_i++];
1859        c->function = kvm_base + XEN_CPUID_TIME;
1860        c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1861            (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1862        /* default=0 (emulate if necessary) */
1863        c->ebx = 0;
1864        /* guest tsc frequency */
1865        c->ecx = env->user_tsc_khz;
1866        /* guest tsc incarnation (migration count) */
1867        c->edx = 0;
1868
1869        c = &cpuid_data.entries[cpuid_i++];
1870        c->function = kvm_base + XEN_CPUID_HVM;
1871        xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1872        if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1873            c->function = kvm_base + XEN_CPUID_HVM;
1874
1875            if (cpu->xen_vapic) {
1876                c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1877                c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1878            }
1879
1880            c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1881
1882            if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1883                c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1884                c->ebx = cs->cpu_index;
1885            }
1886        }
1887
1888        r = kvm_xen_init_vcpu(cs);
1889        if (r) {
1890            return r;
1891        }
1892
1893        kvm_base += 0x100;
1894#else /* CONFIG_XEN_EMU */
1895        /* This should never happen as kvm_arch_init() would have died first. */
1896        fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1897        abort();
1898#endif
1899    } else if (cpu->expose_kvm) {
1900        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1901        c = &cpuid_data.entries[cpuid_i++];
1902        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1903        c->eax = KVM_CPUID_FEATURES | kvm_base;
1904        c->ebx = signature[0];
1905        c->ecx = signature[1];
1906        c->edx = signature[2];
1907
1908        c = &cpuid_data.entries[cpuid_i++];
1909        c->function = KVM_CPUID_FEATURES | kvm_base;
1910        c->eax = env->features[FEAT_KVM];
1911        c->edx = env->features[FEAT_KVM_HINTS];
1912    }
1913
1914    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1915
1916    if (cpu->kvm_pv_enforce_cpuid) {
1917        r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1918        if (r < 0) {
1919            fprintf(stderr,
1920                    "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1921                    strerror(-r));
1922            abort();
1923        }
1924    }
1925
1926    for (i = 0; i <= limit; i++) {
1927        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1928            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1929            abort();
1930        }
1931        c = &cpuid_data.entries[cpuid_i++];
1932
1933        switch (i) {
1934        case 2: {
1935            /* Keep reading function 2 till all the input is received */
1936            int times;
1937
1938            c->function = i;
1939            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1940                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1941            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1942            times = c->eax & 0xff;
1943
1944            for (j = 1; j < times; ++j) {
1945                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1946                    fprintf(stderr, "cpuid_data is full, no space for "
1947                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1948                    abort();
1949                }
1950                c = &cpuid_data.entries[cpuid_i++];
1951                c->function = i;
1952                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1953                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1954            }
1955            break;
1956        }
1957        case 0x1f:
1958            if (env->nr_dies < 2) {
1959                break;
1960            }
1961            /* fallthrough */
1962        case 4:
1963        case 0xb:
1964        case 0xd:
1965            for (j = 0; ; j++) {
1966                if (i == 0xd && j == 64) {
1967                    break;
1968                }
1969
1970                if (i == 0x1f && j == 64) {
1971                    break;
1972                }
1973
1974                c->function = i;
1975                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1976                c->index = j;
1977                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1978
1979                if (i == 4 && c->eax == 0) {
1980                    break;
1981                }
1982                if (i == 0xb && !(c->ecx & 0xff00)) {
1983                    break;
1984                }
1985                if (i == 0x1f && !(c->ecx & 0xff00)) {
1986                    break;
1987                }
1988                if (i == 0xd && c->eax == 0) {
1989                    continue;
1990                }
1991                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1992                    fprintf(stderr, "cpuid_data is full, no space for "
1993                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1994                    abort();
1995                }
1996                c = &cpuid_data.entries[cpuid_i++];
1997            }
1998            break;
1999        case 0x7:
2000        case 0x12:
2001            for (j = 0; ; j++) {
2002                c->function = i;
2003                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2004                c->index = j;
2005                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2006
2007                if (j > 1 && (c->eax & 0xf) != 1) {
2008                    break;
2009                }
2010
2011                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2012                    fprintf(stderr, "cpuid_data is full, no space for "
2013                                "cpuid(eax:0x12,ecx:0x%x)\n", j);
2014                    abort();
2015                }
2016                c = &cpuid_data.entries[cpuid_i++];
2017            }
2018            break;
2019        case 0x14:
2020        case 0x1d:
2021        case 0x1e: {
2022            uint32_t times;
2023
2024            c->function = i;
2025            c->index = 0;
2026            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2027            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2028            times = c->eax;
2029
2030            for (j = 1; j <= times; ++j) {
2031                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2032                    fprintf(stderr, "cpuid_data is full, no space for "
2033                                "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2034                    abort();
2035                }
2036                c = &cpuid_data.entries[cpuid_i++];
2037                c->function = i;
2038                c->index = j;
2039                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2040                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2041            }
2042            break;
2043        }
2044        default:
2045            c->function = i;
2046            c->flags = 0;
2047            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2048            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2049                /*
2050                 * KVM already returns all zeroes if a CPUID entry is missing,
2051                 * so we can omit it and avoid hitting KVM's 80-entry limit.
2052                 */
2053                cpuid_i--;
2054            }
2055            break;
2056        }
2057    }
2058
2059    if (limit >= 0x0a) {
2060        uint32_t eax, edx;
2061
2062        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2063
2064        has_architectural_pmu_version = eax & 0xff;
2065        if (has_architectural_pmu_version > 0) {
2066            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2067
2068            /* Shouldn't be more than 32, since that's the number of bits
2069             * available in EBX to tell us _which_ counters are available.
2070             * Play it safe.
2071             */
2072            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2073                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2074            }
2075
2076            if (has_architectural_pmu_version > 1) {
2077                num_architectural_pmu_fixed_counters = edx & 0x1f;
2078
2079                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2080                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2081                }
2082            }
2083        }
2084    }
2085
2086    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2087
2088    for (i = 0x80000000; i <= limit; i++) {
2089        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2090            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2091            abort();
2092        }
2093        c = &cpuid_data.entries[cpuid_i++];
2094
2095        switch (i) {
2096        case 0x8000001d:
2097            /* Query for all AMD cache information leaves */
2098            for (j = 0; ; j++) {
2099                c->function = i;
2100                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2101                c->index = j;
2102                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2103
2104                if (c->eax == 0) {
2105                    break;
2106                }
2107                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2108                    fprintf(stderr, "cpuid_data is full, no space for "
2109                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2110                    abort();
2111                }
2112                c = &cpuid_data.entries[cpuid_i++];
2113            }
2114            break;
2115        default:
2116            c->function = i;
2117            c->flags = 0;
2118            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2119            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2120                /*
2121                 * KVM already returns all zeroes if a CPUID entry is missing,
2122                 * so we can omit it and avoid hitting KVM's 80-entry limit.
2123                 */
2124                cpuid_i--;
2125            }
2126            break;
2127        }
2128    }
2129
2130    /* Call Centaur's CPUID instructions they are supported. */
2131    if (env->cpuid_xlevel2 > 0) {
2132        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2133
2134        for (i = 0xC0000000; i <= limit; i++) {
2135            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2136                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2137                abort();
2138            }
2139            c = &cpuid_data.entries[cpuid_i++];
2140
2141            c->function = i;
2142            c->flags = 0;
2143            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2144        }
2145    }
2146
2147    cpuid_data.cpuid.nent = cpuid_i;
2148
2149    if (((env->cpuid_version >> 8)&0xF) >= 6
2150        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2151           (CPUID_MCE | CPUID_MCA)
2152        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2153        uint64_t mcg_cap, unsupported_caps;
2154        int banks;
2155        int ret;
2156
2157        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2158        if (ret < 0) {
2159            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2160            return ret;
2161        }
2162
2163        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2164            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2165                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2166            return -ENOTSUP;
2167        }
2168
2169        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2170        if (unsupported_caps) {
2171            if (unsupported_caps & MCG_LMCE_P) {
2172                error_report("kvm: LMCE not supported");
2173                return -ENOTSUP;
2174            }
2175            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2176                        unsupported_caps);
2177        }
2178
2179        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2180        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2181        if (ret < 0) {
2182            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2183            return ret;
2184        }
2185    }
2186
2187    cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2188
2189    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2190    if (c) {
2191        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2192                                  !!(c->ecx & CPUID_EXT_SMX);
2193    }
2194
2195    c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2196    if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2197        has_msr_feature_control = true;
2198    }
2199
2200    if (env->mcg_cap & MCG_LMCE_P) {
2201        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2202    }
2203
2204    if (!env->user_tsc_khz) {
2205        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2206            invtsc_mig_blocker == NULL) {
2207            error_setg(&invtsc_mig_blocker,
2208                       "State blocked by non-migratable CPU device"
2209                       " (invtsc flag)");
2210            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2211            if (r < 0) {
2212                error_report_err(local_err);
2213                return r;
2214            }
2215        }
2216    }
2217
2218    if (cpu->vmware_cpuid_freq
2219        /* Guests depend on 0x40000000 to detect this feature, so only expose
2220         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2221        && cpu->expose_kvm
2222        && kvm_base == KVM_CPUID_SIGNATURE
2223        /* TSC clock must be stable and known for this feature. */
2224        && tsc_is_stable_and_known(env)) {
2225
2226        c = &cpuid_data.entries[cpuid_i++];
2227        c->function = KVM_CPUID_SIGNATURE | 0x10;
2228        c->eax = env->tsc_khz;
2229        c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2230        c->ecx = c->edx = 0;
2231
2232        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2233        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2234    }
2235
2236    cpuid_data.cpuid.nent = cpuid_i;
2237
2238    cpuid_data.cpuid.padding = 0;
2239    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2240    if (r) {
2241        goto fail;
2242    }
2243    kvm_init_xsave(env);
2244
2245    max_nested_state_len = kvm_max_nested_state_length();
2246    if (max_nested_state_len > 0) {
2247        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2248
2249        if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2250            env->nested_state = g_malloc0(max_nested_state_len);
2251            env->nested_state->size = max_nested_state_len;
2252
2253            kvm_init_nested_state(env);
2254        }
2255    }
2256
2257    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2258
2259    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2260        has_msr_tsc_aux = false;
2261    }
2262
2263    kvm_init_msrs(cpu);
2264
2265    return 0;
2266
2267 fail:
2268    migrate_del_blocker(invtsc_mig_blocker);
2269
2270    return r;
2271}
2272
2273int kvm_arch_destroy_vcpu(CPUState *cs)
2274{
2275    X86CPU *cpu = X86_CPU(cs);
2276    CPUX86State *env = &cpu->env;
2277
2278    g_free(env->xsave_buf);
2279
2280    g_free(cpu->kvm_msr_buf);
2281    cpu->kvm_msr_buf = NULL;
2282
2283    g_free(env->nested_state);
2284    env->nested_state = NULL;
2285
2286    qemu_del_vm_change_state_handler(cpu->vmsentry);
2287
2288    return 0;
2289}
2290
2291void kvm_arch_reset_vcpu(X86CPU *cpu)
2292{
2293    CPUX86State *env = &cpu->env;
2294
2295    env->xcr0 = 1;
2296    if (kvm_irqchip_in_kernel()) {
2297        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2298                                          KVM_MP_STATE_UNINITIALIZED;
2299    } else {
2300        env->mp_state = KVM_MP_STATE_RUNNABLE;
2301    }
2302
2303    /* enabled by default */
2304    env->poll_control_msr = 1;
2305
2306    kvm_init_nested_state(env);
2307
2308    sev_es_set_reset_vector(CPU(cpu));
2309}
2310
2311void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2312{
2313    CPUX86State *env = &cpu->env;
2314    int i;
2315
2316    /*
2317     * Reset SynIC after all other devices have been reset to let them remove
2318     * their SINT routes first.
2319     */
2320    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2321        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2322            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2323        }
2324
2325        hyperv_x86_synic_reset(cpu);
2326    }
2327}
2328
2329void kvm_arch_do_init_vcpu(X86CPU *cpu)
2330{
2331    CPUX86State *env = &cpu->env;
2332
2333    /* APs get directly into wait-for-SIPI state.  */
2334    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2335        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2336    }
2337}
2338
2339static int kvm_get_supported_feature_msrs(KVMState *s)
2340{
2341    int ret = 0;
2342
2343    if (kvm_feature_msrs != NULL) {
2344        return 0;
2345    }
2346
2347    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2348        return 0;
2349    }
2350
2351    struct kvm_msr_list msr_list;
2352
2353    msr_list.nmsrs = 0;
2354    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2355    if (ret < 0 && ret != -E2BIG) {
2356        error_report("Fetch KVM feature MSR list failed: %s",
2357            strerror(-ret));
2358        return ret;
2359    }
2360
2361    assert(msr_list.nmsrs > 0);
2362    kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2363                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2364
2365    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2366    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2367
2368    if (ret < 0) {
2369        error_report("Fetch KVM feature MSR list failed: %s",
2370            strerror(-ret));
2371        g_free(kvm_feature_msrs);
2372        kvm_feature_msrs = NULL;
2373        return ret;
2374    }
2375
2376    return 0;
2377}
2378
2379static int kvm_get_supported_msrs(KVMState *s)
2380{
2381    int ret = 0;
2382    struct kvm_msr_list msr_list, *kvm_msr_list;
2383
2384    /*
2385     *  Obtain MSR list from KVM.  These are the MSRs that we must
2386     *  save/restore.
2387     */
2388    msr_list.nmsrs = 0;
2389    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2390    if (ret < 0 && ret != -E2BIG) {
2391        return ret;
2392    }
2393    /*
2394     * Old kernel modules had a bug and could write beyond the provided
2395     * memory. Allocate at least a safe amount of 1K.
2396     */
2397    kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2398                                          msr_list.nmsrs *
2399                                          sizeof(msr_list.indices[0])));
2400
2401    kvm_msr_list->nmsrs = msr_list.nmsrs;
2402    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2403    if (ret >= 0) {
2404        int i;
2405
2406        for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2407            switch (kvm_msr_list->indices[i]) {
2408            case MSR_STAR:
2409                has_msr_star = true;
2410                break;
2411            case MSR_VM_HSAVE_PA:
2412                has_msr_hsave_pa = true;
2413                break;
2414            case MSR_TSC_AUX:
2415                has_msr_tsc_aux = true;
2416                break;
2417            case MSR_TSC_ADJUST:
2418                has_msr_tsc_adjust = true;
2419                break;
2420            case MSR_IA32_TSCDEADLINE:
2421                has_msr_tsc_deadline = true;
2422                break;
2423            case MSR_IA32_SMBASE:
2424                has_msr_smbase = true;
2425                break;
2426            case MSR_SMI_COUNT:
2427                has_msr_smi_count = true;
2428                break;
2429            case MSR_IA32_MISC_ENABLE:
2430                has_msr_misc_enable = true;
2431                break;
2432            case MSR_IA32_BNDCFGS:
2433                has_msr_bndcfgs = true;
2434                break;
2435            case MSR_IA32_XSS:
2436                has_msr_xss = true;
2437                break;
2438            case MSR_IA32_UMWAIT_CONTROL:
2439                has_msr_umwait = true;
2440                break;
2441            case HV_X64_MSR_CRASH_CTL:
2442                has_msr_hv_crash = true;
2443                break;
2444            case HV_X64_MSR_RESET:
2445                has_msr_hv_reset = true;
2446                break;
2447            case HV_X64_MSR_VP_INDEX:
2448                has_msr_hv_vpindex = true;
2449                break;
2450            case HV_X64_MSR_VP_RUNTIME:
2451                has_msr_hv_runtime = true;
2452                break;
2453            case HV_X64_MSR_SCONTROL:
2454                has_msr_hv_synic = true;
2455                break;
2456            case HV_X64_MSR_STIMER0_CONFIG:
2457                has_msr_hv_stimer = true;
2458                break;
2459            case HV_X64_MSR_TSC_FREQUENCY:
2460                has_msr_hv_frequencies = true;
2461                break;
2462            case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2463                has_msr_hv_reenlightenment = true;
2464                break;
2465            case HV_X64_MSR_SYNDBG_OPTIONS:
2466                has_msr_hv_syndbg_options = true;
2467                break;
2468            case MSR_IA32_SPEC_CTRL:
2469                has_msr_spec_ctrl = true;
2470                break;
2471            case MSR_AMD64_TSC_RATIO:
2472                has_tsc_scale_msr = true;
2473                break;
2474            case MSR_IA32_TSX_CTRL:
2475                has_msr_tsx_ctrl = true;
2476                break;
2477            case MSR_VIRT_SSBD:
2478                has_msr_virt_ssbd = true;
2479                break;
2480            case MSR_IA32_ARCH_CAPABILITIES:
2481                has_msr_arch_capabs = true;
2482                break;
2483            case MSR_IA32_CORE_CAPABILITY:
2484                has_msr_core_capabs = true;
2485                break;
2486            case MSR_IA32_PERF_CAPABILITIES:
2487                has_msr_perf_capabs = true;
2488                break;
2489            case MSR_IA32_VMX_VMFUNC:
2490                has_msr_vmx_vmfunc = true;
2491                break;
2492            case MSR_IA32_UCODE_REV:
2493                has_msr_ucode_rev = true;
2494                break;
2495            case MSR_IA32_VMX_PROCBASED_CTLS2:
2496                has_msr_vmx_procbased_ctls2 = true;
2497                break;
2498            case MSR_IA32_PKRS:
2499                has_msr_pkrs = true;
2500                break;
2501            }
2502        }
2503    }
2504
2505    g_free(kvm_msr_list);
2506
2507    return ret;
2508}
2509
2510static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2511                                        uint64_t *val)
2512{
2513    CPUState *cs = CPU(cpu);
2514
2515    *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2516    *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2517
2518    return true;
2519}
2520
2521static Notifier smram_machine_done;
2522static KVMMemoryListener smram_listener;
2523static AddressSpace smram_address_space;
2524static MemoryRegion smram_as_root;
2525static MemoryRegion smram_as_mem;
2526
2527static void register_smram_listener(Notifier *n, void *unused)
2528{
2529    MemoryRegion *smram =
2530        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2531
2532    /* Outer container... */
2533    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2534    memory_region_set_enabled(&smram_as_root, true);
2535
2536    /* ... with two regions inside: normal system memory with low
2537     * priority, and...
2538     */
2539    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2540                             get_system_memory(), 0, ~0ull);
2541    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2542    memory_region_set_enabled(&smram_as_mem, true);
2543
2544    if (smram) {
2545        /* ... SMRAM with higher priority */
2546        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2547        memory_region_set_enabled(smram, true);
2548    }
2549
2550    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2551    kvm_memory_listener_register(kvm_state, &smram_listener,
2552                                 &smram_address_space, 1, "kvm-smram");
2553}
2554
2555int kvm_arch_init(MachineState *ms, KVMState *s)
2556{
2557    uint64_t identity_base = 0xfffbc000;
2558    uint64_t shadow_mem;
2559    int ret;
2560    struct utsname utsname;
2561    Error *local_err = NULL;
2562
2563    /*
2564     * Initialize SEV context, if required
2565     *
2566     * If no memory encryption is requested (ms->cgs == NULL) this is
2567     * a no-op.
2568     *
2569     * It's also a no-op if a non-SEV confidential guest support
2570     * mechanism is selected.  SEV is the only mechanism available to
2571     * select on x86 at present, so this doesn't arise, but if new
2572     * mechanisms are supported in future (e.g. TDX), they'll need
2573     * their own initialization either here or elsewhere.
2574     */
2575    ret = sev_kvm_init(ms->cgs, &local_err);
2576    if (ret < 0) {
2577        error_report_err(local_err);
2578        return ret;
2579    }
2580
2581    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2582        error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2583        return -ENOTSUP;
2584    }
2585
2586    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2587    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2588    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2589    has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2590
2591    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2592
2593    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2594    if (has_exception_payload) {
2595        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2596        if (ret < 0) {
2597            error_report("kvm: Failed to enable exception payload cap: %s",
2598                         strerror(-ret));
2599            return ret;
2600        }
2601    }
2602
2603    has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2604    if (has_triple_fault_event) {
2605        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2606        if (ret < 0) {
2607            error_report("kvm: Failed to enable triple fault event cap: %s",
2608                         strerror(-ret));
2609            return ret;
2610        }
2611    }
2612
2613    if (s->xen_version) {
2614#ifdef CONFIG_XEN_EMU
2615        if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2616            error_report("kvm: Xen support only available in PC machine");
2617            return -ENOTSUP;
2618        }
2619        /* hyperv_enabled() doesn't work yet. */
2620        uint32_t msr = XEN_HYPERCALL_MSR;
2621        ret = kvm_xen_init(s, msr);
2622        if (ret < 0) {
2623            return ret;
2624        }
2625#else
2626        error_report("kvm: Xen support not enabled in qemu");
2627        return -ENOTSUP;
2628#endif
2629    }
2630
2631    ret = kvm_get_supported_msrs(s);
2632    if (ret < 0) {
2633        return ret;
2634    }
2635
2636    kvm_get_supported_feature_msrs(s);
2637
2638    uname(&utsname);
2639    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2640
2641    /*
2642     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2643     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2644     * Since these must be part of guest physical memory, we need to allocate
2645     * them, both by setting their start addresses in the kernel and by
2646     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2647     *
2648     * Older KVM versions may not support setting the identity map base. In
2649     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2650     * size.
2651     */
2652    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2653        /* Allows up to 16M BIOSes. */
2654        identity_base = 0xfeffc000;
2655
2656        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2657        if (ret < 0) {
2658            return ret;
2659        }
2660    }
2661
2662    /* Set TSS base one page after EPT identity map. */
2663    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2664    if (ret < 0) {
2665        return ret;
2666    }
2667
2668    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2669    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2670    if (ret < 0) {
2671        fprintf(stderr, "e820_add_entry() table is full\n");
2672        return ret;
2673    }
2674
2675    shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2676    if (shadow_mem != -1) {
2677        shadow_mem /= 4096;
2678        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2679        if (ret < 0) {
2680            return ret;
2681        }
2682    }
2683
2684    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2685        object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2686        x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2687        smram_machine_done.notify = register_smram_listener;
2688        qemu_add_machine_init_done_notifier(&smram_machine_done);
2689    }
2690
2691    if (enable_cpu_pm) {
2692        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2693        int ret;
2694
2695/* Work around for kernel header with a typo. TODO: fix header and drop. */
2696#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2697#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2698#endif
2699        if (disable_exits) {
2700            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2701                              KVM_X86_DISABLE_EXITS_HLT |
2702                              KVM_X86_DISABLE_EXITS_PAUSE |
2703                              KVM_X86_DISABLE_EXITS_CSTATE);
2704        }
2705
2706        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2707                                disable_exits);
2708        if (ret < 0) {
2709            error_report("kvm: guest stopping CPU not supported: %s",
2710                         strerror(-ret));
2711        }
2712    }
2713
2714    if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2715        X86MachineState *x86ms = X86_MACHINE(ms);
2716
2717        if (x86ms->bus_lock_ratelimit > 0) {
2718            ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2719            if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2720                error_report("kvm: bus lock detection unsupported");
2721                return -ENOTSUP;
2722            }
2723            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2724                                    KVM_BUS_LOCK_DETECTION_EXIT);
2725            if (ret < 0) {
2726                error_report("kvm: Failed to enable bus lock detection cap: %s",
2727                             strerror(-ret));
2728                return ret;
2729            }
2730            ratelimit_init(&bus_lock_ratelimit_ctrl);
2731            ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2732                                x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2733        }
2734    }
2735
2736    if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2737        kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2738            uint64_t notify_window_flags =
2739                ((uint64_t)s->notify_window << 32) |
2740                KVM_X86_NOTIFY_VMEXIT_ENABLED |
2741                KVM_X86_NOTIFY_VMEXIT_USER;
2742            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2743                                    notify_window_flags);
2744            if (ret < 0) {
2745                error_report("kvm: Failed to enable notify vmexit cap: %s",
2746                             strerror(-ret));
2747                return ret;
2748            }
2749    }
2750    if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2751        bool r;
2752
2753        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2754                                KVM_MSR_EXIT_REASON_FILTER);
2755        if (ret) {
2756            error_report("Could not enable user space MSRs: %s",
2757                         strerror(-ret));
2758            exit(1);
2759        }
2760
2761        r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2762                           kvm_rdmsr_core_thread_count, NULL);
2763        if (!r) {
2764            error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2765                         strerror(-ret));
2766            exit(1);
2767        }
2768    }
2769
2770    return 0;
2771}
2772
2773static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2774{
2775    lhs->selector = rhs->selector;
2776    lhs->base = rhs->base;
2777    lhs->limit = rhs->limit;
2778    lhs->type = 3;
2779    lhs->present = 1;
2780    lhs->dpl = 3;
2781    lhs->db = 0;
2782    lhs->s = 1;
2783    lhs->l = 0;
2784    lhs->g = 0;
2785    lhs->avl = 0;
2786    lhs->unusable = 0;
2787}
2788
2789static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2790{
2791    unsigned flags = rhs->flags;
2792    lhs->selector = rhs->selector;
2793    lhs->base = rhs->base;
2794    lhs->limit = rhs->limit;
2795    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2796    lhs->present = (flags & DESC_P_MASK) != 0;
2797    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2798    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2799    lhs->s = (flags & DESC_S_MASK) != 0;
2800    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2801    lhs->g = (flags & DESC_G_MASK) != 0;
2802    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2803    lhs->unusable = !lhs->present;
2804    lhs->padding = 0;
2805}
2806
2807static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2808{
2809    lhs->selector = rhs->selector;
2810    lhs->base = rhs->base;
2811    lhs->limit = rhs->limit;
2812    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2813                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2814                 (rhs->dpl << DESC_DPL_SHIFT) |
2815                 (rhs->db << DESC_B_SHIFT) |
2816                 (rhs->s * DESC_S_MASK) |
2817                 (rhs->l << DESC_L_SHIFT) |
2818                 (rhs->g * DESC_G_MASK) |
2819                 (rhs->avl * DESC_AVL_MASK);
2820}
2821
2822static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2823{
2824    if (set) {
2825        *kvm_reg = *qemu_reg;
2826    } else {
2827        *qemu_reg = *kvm_reg;
2828    }
2829}
2830
2831static int kvm_getput_regs(X86CPU *cpu, int set)
2832{
2833    CPUX86State *env = &cpu->env;
2834    struct kvm_regs regs;
2835    int ret = 0;
2836
2837    if (!set) {
2838        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2839        if (ret < 0) {
2840            return ret;
2841        }
2842    }
2843
2844    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2845    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2846    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2847    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2848    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2849    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2850    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2851    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2852#ifdef TARGET_X86_64
2853    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2854    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2855    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2856    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2857    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2858    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2859    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2860    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2861#endif
2862
2863    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2864    kvm_getput_reg(&regs.rip, &env->eip, set);
2865
2866    if (set) {
2867        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2868    }
2869
2870    return ret;
2871}
2872
2873static int kvm_put_fpu(X86CPU *cpu)
2874{
2875    CPUX86State *env = &cpu->env;
2876    struct kvm_fpu fpu;
2877    int i;
2878
2879    memset(&fpu, 0, sizeof fpu);
2880    fpu.fsw = env->fpus & ~(7 << 11);
2881    fpu.fsw |= (env->fpstt & 7) << 11;
2882    fpu.fcw = env->fpuc;
2883    fpu.last_opcode = env->fpop;
2884    fpu.last_ip = env->fpip;
2885    fpu.last_dp = env->fpdp;
2886    for (i = 0; i < 8; ++i) {
2887        fpu.ftwx |= (!env->fptags[i]) << i;
2888    }
2889    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2890    for (i = 0; i < CPU_NB_REGS; i++) {
2891        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2892        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2893    }
2894    fpu.mxcsr = env->mxcsr;
2895
2896    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2897}
2898
2899static int kvm_put_xsave(X86CPU *cpu)
2900{
2901    CPUX86State *env = &cpu->env;
2902    void *xsave = env->xsave_buf;
2903
2904    if (!has_xsave) {
2905        return kvm_put_fpu(cpu);
2906    }
2907    x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2908
2909    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2910}
2911
2912static int kvm_put_xcrs(X86CPU *cpu)
2913{
2914    CPUX86State *env = &cpu->env;
2915    struct kvm_xcrs xcrs = {};
2916
2917    if (!has_xcrs) {
2918        return 0;
2919    }
2920
2921    xcrs.nr_xcrs = 1;
2922    xcrs.flags = 0;
2923    xcrs.xcrs[0].xcr = 0;
2924    xcrs.xcrs[0].value = env->xcr0;
2925    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2926}
2927
2928static int kvm_put_sregs(X86CPU *cpu)
2929{
2930    CPUX86State *env = &cpu->env;
2931    struct kvm_sregs sregs;
2932
2933    /*
2934     * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2935     * always followed by KVM_SET_VCPU_EVENTS.
2936     */
2937    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2938
2939    if ((env->eflags & VM_MASK)) {
2940        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2941        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2942        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2943        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2944        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2945        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2946    } else {
2947        set_seg(&sregs.cs, &env->segs[R_CS]);
2948        set_seg(&sregs.ds, &env->segs[R_DS]);
2949        set_seg(&sregs.es, &env->segs[R_ES]);
2950        set_seg(&sregs.fs, &env->segs[R_FS]);
2951        set_seg(&sregs.gs, &env->segs[R_GS]);
2952        set_seg(&sregs.ss, &env->segs[R_SS]);
2953    }
2954
2955    set_seg(&sregs.tr, &env->tr);
2956    set_seg(&sregs.ldt, &env->ldt);
2957
2958    sregs.idt.limit = env->idt.limit;
2959    sregs.idt.base = env->idt.base;
2960    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2961    sregs.gdt.limit = env->gdt.limit;
2962    sregs.gdt.base = env->gdt.base;
2963    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2964
2965    sregs.cr0 = env->cr[0];
2966    sregs.cr2 = env->cr[2];
2967    sregs.cr3 = env->cr[3];
2968    sregs.cr4 = env->cr[4];
2969
2970    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2971    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2972
2973    sregs.efer = env->efer;
2974
2975    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2976}
2977
2978static int kvm_put_sregs2(X86CPU *cpu)
2979{
2980    CPUX86State *env = &cpu->env;
2981    struct kvm_sregs2 sregs;
2982    int i;
2983
2984    sregs.flags = 0;
2985
2986    if ((env->eflags & VM_MASK)) {
2987        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2988        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2989        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2990        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2991        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2992        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2993    } else {
2994        set_seg(&sregs.cs, &env->segs[R_CS]);
2995        set_seg(&sregs.ds, &env->segs[R_DS]);
2996        set_seg(&sregs.es, &env->segs[R_ES]);
2997        set_seg(&sregs.fs, &env->segs[R_FS]);
2998        set_seg(&sregs.gs, &env->segs[R_GS]);
2999        set_seg(&sregs.ss, &env->segs[R_SS]);
3000    }
3001
3002    set_seg(&sregs.tr, &env->tr);
3003    set_seg(&sregs.ldt, &env->ldt);
3004
3005    sregs.idt.limit = env->idt.limit;
3006    sregs.idt.base = env->idt.base;
3007    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3008    sregs.gdt.limit = env->gdt.limit;
3009    sregs.gdt.base = env->gdt.base;
3010    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3011
3012    sregs.cr0 = env->cr[0];
3013    sregs.cr2 = env->cr[2];
3014    sregs.cr3 = env->cr[3];
3015    sregs.cr4 = env->cr[4];
3016
3017    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3018    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3019
3020    sregs.efer = env->efer;
3021
3022    if (env->pdptrs_valid) {
3023        for (i = 0; i < 4; i++) {
3024            sregs.pdptrs[i] = env->pdptrs[i];
3025        }
3026        sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3027    }
3028
3029    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3030}
3031
3032
3033static void kvm_msr_buf_reset(X86CPU *cpu)
3034{
3035    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3036}
3037
3038static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3039{
3040    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3041    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3042    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3043
3044    assert((void *)(entry + 1) <= limit);
3045
3046    entry->index = index;
3047    entry->reserved = 0;
3048    entry->data = value;
3049    msrs->nmsrs++;
3050}
3051
3052static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3053{
3054    kvm_msr_buf_reset(cpu);
3055    kvm_msr_entry_add(cpu, index, value);
3056
3057    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3058}
3059
3060static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3061{
3062    int ret;
3063    struct {
3064        struct kvm_msrs info;
3065        struct kvm_msr_entry entries[1];
3066    } msr_data = {
3067        .info.nmsrs = 1,
3068        .entries[0].index = index,
3069    };
3070
3071    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3072    if (ret < 0) {
3073        return ret;
3074    }
3075    assert(ret == 1);
3076    *value = msr_data.entries[0].data;
3077    return ret;
3078}
3079void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3080{
3081    int ret;
3082
3083    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3084    assert(ret == 1);
3085}
3086
3087static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3088{
3089    CPUX86State *env = &cpu->env;
3090    int ret;
3091
3092    if (!has_msr_tsc_deadline) {
3093        return 0;
3094    }
3095
3096    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3097    if (ret < 0) {
3098        return ret;
3099    }
3100
3101    assert(ret == 1);
3102    return 0;
3103}
3104
3105/*
3106 * Provide a separate write service for the feature control MSR in order to
3107 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3108 * before writing any other state because forcibly leaving nested mode
3109 * invalidates the VCPU state.
3110 */
3111static int kvm_put_msr_feature_control(X86CPU *cpu)
3112{
3113    int ret;
3114
3115    if (!has_msr_feature_control) {
3116        return 0;
3117    }
3118
3119    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3120                          cpu->env.msr_ia32_feature_control);
3121    if (ret < 0) {
3122        return ret;
3123    }
3124
3125    assert(ret == 1);
3126    return 0;
3127}
3128
3129static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3130{
3131    uint32_t default1, can_be_one, can_be_zero;
3132    uint32_t must_be_one;
3133
3134    switch (index) {
3135    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3136        default1 = 0x00000016;
3137        break;
3138    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3139        default1 = 0x0401e172;
3140        break;
3141    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3142        default1 = 0x000011ff;
3143        break;
3144    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3145        default1 = 0x00036dff;
3146        break;
3147    case MSR_IA32_VMX_PROCBASED_CTLS2:
3148        default1 = 0;
3149        break;
3150    default:
3151        abort();
3152    }
3153
3154    /* If a feature bit is set, the control can be either set or clear.
3155     * Otherwise the value is limited to either 0 or 1 by default1.
3156     */
3157    can_be_one = features | default1;
3158    can_be_zero = features | ~default1;
3159    must_be_one = ~can_be_zero;
3160
3161    /*
3162     * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3163     * Bit 32:63 -> 1 if the control bit can be one.
3164     */
3165    return must_be_one | (((uint64_t)can_be_one) << 32);
3166}
3167
3168static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3169{
3170    uint64_t kvm_vmx_basic =
3171        kvm_arch_get_supported_msr_feature(kvm_state,
3172                                           MSR_IA32_VMX_BASIC);
3173
3174    if (!kvm_vmx_basic) {
3175        /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3176         * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3177         */
3178        return;
3179    }
3180
3181    uint64_t kvm_vmx_misc =
3182        kvm_arch_get_supported_msr_feature(kvm_state,
3183                                           MSR_IA32_VMX_MISC);
3184    uint64_t kvm_vmx_ept_vpid =
3185        kvm_arch_get_supported_msr_feature(kvm_state,
3186                                           MSR_IA32_VMX_EPT_VPID_CAP);
3187
3188    /*
3189     * If the guest is 64-bit, a value of 1 is allowed for the host address
3190     * space size vmexit control.
3191     */
3192    uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3193        ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3194
3195    /*
3196     * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3197     * not change them for backwards compatibility.
3198     */
3199    uint64_t fixed_vmx_basic = kvm_vmx_basic &
3200        (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3201         MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3202         MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3203
3204    /*
3205     * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3206     * change in the future but are always zero for now, clear them to be
3207     * future proof.  Bits 32-63 in theory could change, though KVM does
3208     * not support dual-monitor treatment and probably never will; mask
3209     * them out as well.
3210     */
3211    uint64_t fixed_vmx_misc = kvm_vmx_misc &
3212        (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3213         MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3214
3215    /*
3216     * EPT memory types should not change either, so we do not bother
3217     * adding features for them.
3218     */
3219    uint64_t fixed_vmx_ept_mask =
3220            (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3221             MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3222    uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3223
3224    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3225                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3226                                         f[FEAT_VMX_PROCBASED_CTLS]));
3227    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3228                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3229                                         f[FEAT_VMX_PINBASED_CTLS]));
3230    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3231                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3232                                         f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3233    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3234                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3235                                         f[FEAT_VMX_ENTRY_CTLS]));
3236    kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3237                      make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3238                                         f[FEAT_VMX_SECONDARY_CTLS]));
3239    kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3240                      f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3241    kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3242                      f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3243    kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3244                      f[FEAT_VMX_MISC] | fixed_vmx_misc);
3245    if (has_msr_vmx_vmfunc) {
3246        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3247    }
3248
3249    /*
3250     * Just to be safe, write these with constant values.  The CRn_FIXED1
3251     * MSRs are generated by KVM based on the vCPU's CPUID.
3252     */
3253    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3254                      CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3255    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3256                      CR4_VMXE_MASK);
3257
3258    if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3259        /* TSC multiplier (0x2032).  */
3260        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3261    } else {
3262        /* Preemption timer (0x482E).  */
3263        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3264    }
3265}
3266
3267static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3268{
3269    uint64_t kvm_perf_cap =
3270        kvm_arch_get_supported_msr_feature(kvm_state,
3271                                           MSR_IA32_PERF_CAPABILITIES);
3272
3273    if (kvm_perf_cap) {
3274        kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3275                        kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3276    }
3277}
3278
3279static int kvm_buf_set_msrs(X86CPU *cpu)
3280{
3281    int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3282    if (ret < 0) {
3283        return ret;
3284    }
3285
3286    if (ret < cpu->kvm_msr_buf->nmsrs) {
3287        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3288        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3289                     (uint32_t)e->index, (uint64_t)e->data);
3290    }
3291
3292    assert(ret == cpu->kvm_msr_buf->nmsrs);
3293    return 0;
3294}
3295
3296static void kvm_init_msrs(X86CPU *cpu)
3297{
3298    CPUX86State *env = &cpu->env;
3299
3300    kvm_msr_buf_reset(cpu);
3301    if (has_msr_arch_capabs) {
3302        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3303                          env->features[FEAT_ARCH_CAPABILITIES]);
3304    }
3305
3306    if (has_msr_core_capabs) {
3307        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3308                          env->features[FEAT_CORE_CAPABILITY]);
3309    }
3310
3311    if (has_msr_perf_capabs && cpu->enable_pmu) {
3312        kvm_msr_entry_add_perf(cpu, env->features);
3313    }
3314
3315    if (has_msr_ucode_rev) {
3316        kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3317    }
3318
3319    /*
3320     * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3321     * all kernels with MSR features should have them.
3322     */
3323    if (kvm_feature_msrs && cpu_has_vmx(env)) {
3324        kvm_msr_entry_add_vmx(cpu, env->features);
3325    }
3326
3327    assert(kvm_buf_set_msrs(cpu) == 0);
3328}
3329
3330static int kvm_put_msrs(X86CPU *cpu, int level)
3331{
3332    CPUX86State *env = &cpu->env;
3333    int i;
3334
3335    kvm_msr_buf_reset(cpu);
3336
3337    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3338    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3339    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3340    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3341    if (has_msr_star) {
3342        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3343    }
3344    if (has_msr_hsave_pa) {
3345        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3346    }
3347    if (has_msr_tsc_aux) {
3348        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3349    }
3350    if (has_msr_tsc_adjust) {
3351        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3352    }
3353    if (has_msr_misc_enable) {
3354        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3355                          env->msr_ia32_misc_enable);
3356    }
3357    if (has_msr_smbase) {
3358        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3359    }
3360    if (has_msr_smi_count) {
3361        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3362    }
3363    if (has_msr_pkrs) {
3364        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3365    }
3366    if (has_msr_bndcfgs) {
3367        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3368    }
3369    if (has_msr_xss) {
3370        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3371    }
3372    if (has_msr_umwait) {
3373        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3374    }
3375    if (has_msr_spec_ctrl) {
3376        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3377    }
3378    if (has_tsc_scale_msr) {
3379        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3380    }
3381
3382    if (has_msr_tsx_ctrl) {
3383        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3384    }
3385    if (has_msr_virt_ssbd) {
3386        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3387    }
3388
3389#ifdef TARGET_X86_64
3390    if (lm_capable_kernel) {
3391        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3392        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3393        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3394        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3395    }
3396#endif
3397
3398    /*
3399     * The following MSRs have side effects on the guest or are too heavy
3400     * for normal writeback. Limit them to reset or full state updates.
3401     */
3402    if (level >= KVM_PUT_RESET_STATE) {
3403        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3404        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3405        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3406        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3407            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3408        }
3409        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3410            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3411        }
3412        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3413            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3414        }
3415        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3416            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3417        }
3418
3419        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3420            kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3421        }
3422
3423        if (has_architectural_pmu_version > 0) {
3424            if (has_architectural_pmu_version > 1) {
3425                /* Stop the counter.  */
3426                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3427                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3428            }
3429
3430            /* Set the counter values.  */
3431            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3432                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3433                                  env->msr_fixed_counters[i]);
3434            }
3435            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3436                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3437                                  env->msr_gp_counters[i]);
3438                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3439                                  env->msr_gp_evtsel[i]);
3440            }
3441            if (has_architectural_pmu_version > 1) {
3442                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3443                                  env->msr_global_status);
3444                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3445                                  env->msr_global_ovf_ctrl);
3446
3447                /* Now start the PMU.  */
3448                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3449                                  env->msr_fixed_ctr_ctrl);
3450                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3451                                  env->msr_global_ctrl);
3452            }
3453        }
3454        /*
3455         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3456         * only sync them to KVM on the first cpu
3457         */
3458        if (current_cpu == first_cpu) {
3459            if (has_msr_hv_hypercall) {
3460                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3461                                  env->msr_hv_guest_os_id);
3462                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3463                                  env->msr_hv_hypercall);
3464            }
3465            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3466                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3467                                  env->msr_hv_tsc);
3468            }
3469            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3470                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3471                                  env->msr_hv_reenlightenment_control);
3472                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3473                                  env->msr_hv_tsc_emulation_control);
3474                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3475                                  env->msr_hv_tsc_emulation_status);
3476            }
3477#ifdef CONFIG_SYNDBG
3478            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3479                has_msr_hv_syndbg_options) {
3480                kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3481                                  hyperv_syndbg_query_options());
3482            }
3483#endif
3484        }
3485        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3486            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3487                              env->msr_hv_vapic);
3488        }
3489        if (has_msr_hv_crash) {
3490            int j;
3491
3492            for (j = 0; j < HV_CRASH_PARAMS; j++)
3493                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3494                                  env->msr_hv_crash_params[j]);
3495
3496            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3497        }
3498        if (has_msr_hv_runtime) {
3499            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3500        }
3501        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3502            && hv_vpindex_settable) {
3503            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3504                              hyperv_vp_index(CPU(cpu)));
3505        }
3506        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3507            int j;
3508
3509            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3510
3511            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3512                              env->msr_hv_synic_control);
3513            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3514                              env->msr_hv_synic_evt_page);
3515            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3516                              env->msr_hv_synic_msg_page);
3517
3518            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3519                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3520                                  env->msr_hv_synic_sint[j]);
3521            }
3522        }
3523        if (has_msr_hv_stimer) {
3524            int j;
3525
3526            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3527                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3528                                env->msr_hv_stimer_config[j]);
3529            }
3530
3531            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3532                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3533                                env->msr_hv_stimer_count[j]);
3534            }
3535        }
3536        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3537            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3538
3539            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3540            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3541            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3542            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3543            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3544            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3545            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3546            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3547            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3548            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3549            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3550            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3551            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3552                /* The CPU GPs if we write to a bit above the physical limit of
3553                 * the host CPU (and KVM emulates that)
3554                 */
3555                uint64_t mask = env->mtrr_var[i].mask;
3556                mask &= phys_mask;
3557
3558                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3559                                  env->mtrr_var[i].base);
3560                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3561            }
3562        }
3563        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3564            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3565                                                    0x14, 1, R_EAX) & 0x7;
3566
3567            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3568                            env->msr_rtit_ctrl);
3569            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3570                            env->msr_rtit_status);
3571            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3572                            env->msr_rtit_output_base);
3573            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3574                            env->msr_rtit_output_mask);
3575            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3576                            env->msr_rtit_cr3_match);
3577            for (i = 0; i < addr_num; i++) {
3578                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3579                            env->msr_rtit_addrs[i]);
3580            }
3581        }
3582
3583        if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3584            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3585                              env->msr_ia32_sgxlepubkeyhash[0]);
3586            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3587                              env->msr_ia32_sgxlepubkeyhash[1]);
3588            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3589                              env->msr_ia32_sgxlepubkeyhash[2]);
3590            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3591                              env->msr_ia32_sgxlepubkeyhash[3]);
3592        }
3593
3594        if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3595            kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3596                              env->msr_xfd);
3597            kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3598                              env->msr_xfd_err);
3599        }
3600
3601        if (kvm_enabled() && cpu->enable_pmu &&
3602            (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3603            uint64_t depth;
3604            int i, ret;
3605
3606            /*
3607             * Only migrate Arch LBR states when the host Arch LBR depth
3608             * equals that of source guest's, this is to avoid mismatch
3609             * of guest/host config for the msr hence avoid unexpected
3610             * misbehavior.
3611             */
3612            ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3613
3614            if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3615                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3616                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3617
3618                for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3619                    if (!env->lbr_records[i].from) {
3620                        continue;
3621                    }
3622                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3623                                      env->lbr_records[i].from);
3624                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3625                                      env->lbr_records[i].to);
3626                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3627                                      env->lbr_records[i].info);
3628                }
3629            }
3630        }
3631
3632        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3633         *       kvm_put_msr_feature_control. */
3634    }
3635
3636    if (env->mcg_cap) {
3637        int i;
3638
3639        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3640        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3641        if (has_msr_mcg_ext_ctl) {
3642            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3643        }
3644        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3645            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3646        }
3647    }
3648
3649    return kvm_buf_set_msrs(cpu);
3650}
3651
3652
3653static int kvm_get_fpu(X86CPU *cpu)
3654{
3655    CPUX86State *env = &cpu->env;
3656    struct kvm_fpu fpu;
3657    int i, ret;
3658
3659    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3660    if (ret < 0) {
3661        return ret;
3662    }
3663
3664    env->fpstt = (fpu.fsw >> 11) & 7;
3665    env->fpus = fpu.fsw;
3666    env->fpuc = fpu.fcw;
3667    env->fpop = fpu.last_opcode;
3668    env->fpip = fpu.last_ip;
3669    env->fpdp = fpu.last_dp;
3670    for (i = 0; i < 8; ++i) {
3671        env->fptags[i] = !((fpu.ftwx >> i) & 1);
3672    }
3673    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3674    for (i = 0; i < CPU_NB_REGS; i++) {
3675        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3676        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3677    }
3678    env->mxcsr = fpu.mxcsr;
3679
3680    return 0;
3681}
3682
3683static int kvm_get_xsave(X86CPU *cpu)
3684{
3685    CPUX86State *env = &cpu->env;
3686    void *xsave = env->xsave_buf;
3687    int type, ret;
3688
3689    if (!has_xsave) {
3690        return kvm_get_fpu(cpu);
3691    }
3692
3693    type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3694    ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3695    if (ret < 0) {
3696        return ret;
3697    }
3698    x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3699
3700    return 0;
3701}
3702
3703static int kvm_get_xcrs(X86CPU *cpu)
3704{
3705    CPUX86State *env = &cpu->env;
3706    int i, ret;
3707    struct kvm_xcrs xcrs;
3708
3709    if (!has_xcrs) {
3710        return 0;
3711    }
3712
3713    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3714    if (ret < 0) {
3715        return ret;
3716    }
3717
3718    for (i = 0; i < xcrs.nr_xcrs; i++) {
3719        /* Only support xcr0 now */
3720        if (xcrs.xcrs[i].xcr == 0) {
3721            env->xcr0 = xcrs.xcrs[i].value;
3722            break;
3723        }
3724    }
3725    return 0;
3726}
3727
3728static int kvm_get_sregs(X86CPU *cpu)
3729{
3730    CPUX86State *env = &cpu->env;
3731    struct kvm_sregs sregs;
3732    int ret;
3733
3734    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3735    if (ret < 0) {
3736        return ret;
3737    }
3738
3739    /*
3740     * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3741     * always preceded by KVM_GET_VCPU_EVENTS.
3742     */
3743
3744    get_seg(&env->segs[R_CS], &sregs.cs);
3745    get_seg(&env->segs[R_DS], &sregs.ds);
3746    get_seg(&env->segs[R_ES], &sregs.es);
3747    get_seg(&env->segs[R_FS], &sregs.fs);
3748    get_seg(&env->segs[R_GS], &sregs.gs);
3749    get_seg(&env->segs[R_SS], &sregs.ss);
3750
3751    get_seg(&env->tr, &sregs.tr);
3752    get_seg(&env->ldt, &sregs.ldt);
3753
3754    env->idt.limit = sregs.idt.limit;
3755    env->idt.base = sregs.idt.base;
3756    env->gdt.limit = sregs.gdt.limit;
3757    env->gdt.base = sregs.gdt.base;
3758
3759    env->cr[0] = sregs.cr0;
3760    env->cr[2] = sregs.cr2;
3761    env->cr[3] = sregs.cr3;
3762    env->cr[4] = sregs.cr4;
3763
3764    env->efer = sregs.efer;
3765
3766    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3767    x86_update_hflags(env);
3768
3769    return 0;
3770}
3771
3772static int kvm_get_sregs2(X86CPU *cpu)
3773{
3774    CPUX86State *env = &cpu->env;
3775    struct kvm_sregs2 sregs;
3776    int i, ret;
3777
3778    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3779    if (ret < 0) {
3780        return ret;
3781    }
3782
3783    get_seg(&env->segs[R_CS], &sregs.cs);
3784    get_seg(&env->segs[R_DS], &sregs.ds);
3785    get_seg(&env->segs[R_ES], &sregs.es);
3786    get_seg(&env->segs[R_FS], &sregs.fs);
3787    get_seg(&env->segs[R_GS], &sregs.gs);
3788    get_seg(&env->segs[R_SS], &sregs.ss);
3789
3790    get_seg(&env->tr, &sregs.tr);
3791    get_seg(&env->ldt, &sregs.ldt);
3792
3793    env->idt.limit = sregs.idt.limit;
3794    env->idt.base = sregs.idt.base;
3795    env->gdt.limit = sregs.gdt.limit;
3796    env->gdt.base = sregs.gdt.base;
3797
3798    env->cr[0] = sregs.cr0;
3799    env->cr[2] = sregs.cr2;
3800    env->cr[3] = sregs.cr3;
3801    env->cr[4] = sregs.cr4;
3802
3803    env->efer = sregs.efer;
3804
3805    env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3806
3807    if (env->pdptrs_valid) {
3808        for (i = 0; i < 4; i++) {
3809            env->pdptrs[i] = sregs.pdptrs[i];
3810        }
3811    }
3812
3813    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3814    x86_update_hflags(env);
3815
3816    return 0;
3817}
3818
3819static int kvm_get_msrs(X86CPU *cpu)
3820{
3821    CPUX86State *env = &cpu->env;
3822    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3823    int ret, i;
3824    uint64_t mtrr_top_bits;
3825
3826    kvm_msr_buf_reset(cpu);
3827
3828    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3829    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3830    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3831    kvm_msr_entry_add(cpu, MSR_PAT, 0);
3832    if (has_msr_star) {
3833        kvm_msr_entry_add(cpu, MSR_STAR, 0);
3834    }
3835    if (has_msr_hsave_pa) {
3836        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3837    }
3838    if (has_msr_tsc_aux) {
3839        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3840    }
3841    if (has_msr_tsc_adjust) {
3842        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3843    }
3844    if (has_msr_tsc_deadline) {
3845        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3846    }
3847    if (has_msr_misc_enable) {
3848        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3849    }
3850    if (has_msr_smbase) {
3851        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3852    }
3853    if (has_msr_smi_count) {
3854        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3855    }
3856    if (has_msr_feature_control) {
3857        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3858    }
3859    if (has_msr_pkrs) {
3860        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3861    }
3862    if (has_msr_bndcfgs) {
3863        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3864    }
3865    if (has_msr_xss) {
3866        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3867    }
3868    if (has_msr_umwait) {
3869        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3870    }
3871    if (has_msr_spec_ctrl) {
3872        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3873    }
3874    if (has_tsc_scale_msr) {
3875        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3876    }
3877
3878    if (has_msr_tsx_ctrl) {
3879        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3880    }
3881    if (has_msr_virt_ssbd) {
3882        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3883    }
3884    if (!env->tsc_valid) {
3885        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3886        env->tsc_valid = !runstate_is_running();
3887    }
3888
3889#ifdef TARGET_X86_64
3890    if (lm_capable_kernel) {
3891        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3892        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3893        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3894        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3895    }
3896#endif
3897    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3898    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3899    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3900        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3901    }
3902    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3903        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3904    }
3905    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3906        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3907    }
3908    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3909        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3910    }
3911    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3912        kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3913    }
3914    if (has_architectural_pmu_version > 0) {
3915        if (has_architectural_pmu_version > 1) {
3916            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3917            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3918            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3919            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3920        }
3921        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3922            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3923        }
3924        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3925            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3926            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3927        }
3928    }
3929
3930    if (env->mcg_cap) {
3931        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3932        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3933        if (has_msr_mcg_ext_ctl) {
3934            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3935        }
3936        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3937            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3938        }
3939    }
3940
3941    if (has_msr_hv_hypercall) {
3942        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3943        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3944    }
3945    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3946        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3947    }
3948    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3949        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3950    }
3951    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3952        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3953        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3954        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3955    }
3956    if (has_msr_hv_syndbg_options) {
3957        kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3958    }
3959    if (has_msr_hv_crash) {
3960        int j;
3961
3962        for (j = 0; j < HV_CRASH_PARAMS; j++) {
3963            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3964        }
3965    }
3966    if (has_msr_hv_runtime) {
3967        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3968    }
3969    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3970        uint32_t msr;
3971
3972        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3973        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3974        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3975        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3976            kvm_msr_entry_add(cpu, msr, 0);
3977        }
3978    }
3979    if (has_msr_hv_stimer) {
3980        uint32_t msr;
3981
3982        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3983             msr++) {
3984            kvm_msr_entry_add(cpu, msr, 0);
3985        }
3986    }
3987    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3988        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3989        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3990        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3991        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3992        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3993        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3994        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3995        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3996        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3997        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3998        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3999        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4000        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4001            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4002            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4003        }
4004    }
4005
4006    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4007        int addr_num =
4008            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4009
4010        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4011        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4012        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4013        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4014        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4015        for (i = 0; i < addr_num; i++) {
4016            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4017        }
4018    }
4019
4020    if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4021        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4022        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4023        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4024        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4025    }
4026
4027    if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4028        kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4029        kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4030    }
4031
4032    if (kvm_enabled() && cpu->enable_pmu &&
4033        (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4034        uint64_t depth;
4035        int i, ret;
4036
4037        ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4038        if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4039            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4040            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4041
4042            for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4043                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4044                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4045                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4046            }
4047        }
4048    }
4049
4050    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4051    if (ret < 0) {
4052        return ret;
4053    }
4054
4055    if (ret < cpu->kvm_msr_buf->nmsrs) {
4056        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4057        error_report("error: failed to get MSR 0x%" PRIx32,
4058                     (uint32_t)e->index);
4059    }
4060
4061    assert(ret == cpu->kvm_msr_buf->nmsrs);
4062    /*
4063     * MTRR masks: Each mask consists of 5 parts
4064     * a  10..0: must be zero
4065     * b  11   : valid bit
4066     * c n-1.12: actual mask bits
4067     * d  51..n: reserved must be zero
4068     * e  63.52: reserved must be zero
4069     *
4070     * 'n' is the number of physical bits supported by the CPU and is
4071     * apparently always <= 52.   We know our 'n' but don't know what
4072     * the destinations 'n' is; it might be smaller, in which case
4073     * it masks (c) on loading. It might be larger, in which case
4074     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4075     * we're migrating to.
4076     */
4077
4078    if (cpu->fill_mtrr_mask) {
4079        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4080        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4081        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4082    } else {
4083        mtrr_top_bits = 0;
4084    }
4085
4086    for (i = 0; i < ret; i++) {
4087        uint32_t index = msrs[i].index;
4088        switch (index) {
4089        case MSR_IA32_SYSENTER_CS:
4090            env->sysenter_cs = msrs[i].data;
4091            break;
4092        case MSR_IA32_SYSENTER_ESP:
4093            env->sysenter_esp = msrs[i].data;
4094            break;
4095        case MSR_IA32_SYSENTER_EIP:
4096            env->sysenter_eip = msrs[i].data;
4097            break;
4098        case MSR_PAT:
4099            env->pat = msrs[i].data;
4100            break;
4101        case MSR_STAR:
4102            env->star = msrs[i].data;
4103            break;
4104#ifdef TARGET_X86_64
4105        case MSR_CSTAR:
4106            env->cstar = msrs[i].data;
4107            break;
4108        case MSR_KERNELGSBASE:
4109            env->kernelgsbase = msrs[i].data;
4110            break;
4111        case MSR_FMASK:
4112            env->fmask = msrs[i].data;
4113            break;
4114        case MSR_LSTAR:
4115            env->lstar = msrs[i].data;
4116            break;
4117#endif
4118        case MSR_IA32_TSC:
4119            env->tsc = msrs[i].data;
4120            break;
4121        case MSR_TSC_AUX:
4122            env->tsc_aux = msrs[i].data;
4123            break;
4124        case MSR_TSC_ADJUST:
4125            env->tsc_adjust = msrs[i].data;
4126            break;
4127        case MSR_IA32_TSCDEADLINE:
4128            env->tsc_deadline = msrs[i].data;
4129            break;
4130        case MSR_VM_HSAVE_PA:
4131            env->vm_hsave = msrs[i].data;
4132            break;
4133        case MSR_KVM_SYSTEM_TIME:
4134            env->system_time_msr = msrs[i].data;
4135            break;
4136        case MSR_KVM_WALL_CLOCK:
4137            env->wall_clock_msr = msrs[i].data;
4138            break;
4139        case MSR_MCG_STATUS:
4140            env->mcg_status = msrs[i].data;
4141            break;
4142        case MSR_MCG_CTL:
4143            env->mcg_ctl = msrs[i].data;
4144            break;
4145        case MSR_MCG_EXT_CTL:
4146            env->mcg_ext_ctl = msrs[i].data;
4147            break;
4148        case MSR_IA32_MISC_ENABLE:
4149            env->msr_ia32_misc_enable = msrs[i].data;
4150            break;
4151        case MSR_IA32_SMBASE:
4152            env->smbase = msrs[i].data;
4153            break;
4154        case MSR_SMI_COUNT:
4155            env->msr_smi_count = msrs[i].data;
4156            break;
4157        case MSR_IA32_FEATURE_CONTROL:
4158            env->msr_ia32_feature_control = msrs[i].data;
4159            break;
4160        case MSR_IA32_BNDCFGS:
4161            env->msr_bndcfgs = msrs[i].data;
4162            break;
4163        case MSR_IA32_XSS:
4164            env->xss = msrs[i].data;
4165            break;
4166        case MSR_IA32_UMWAIT_CONTROL:
4167            env->umwait = msrs[i].data;
4168            break;
4169        case MSR_IA32_PKRS:
4170            env->pkrs = msrs[i].data;
4171            break;
4172        default:
4173            if (msrs[i].index >= MSR_MC0_CTL &&
4174                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4175                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4176            }
4177            break;
4178        case MSR_KVM_ASYNC_PF_EN:
4179            env->async_pf_en_msr = msrs[i].data;
4180            break;
4181        case MSR_KVM_ASYNC_PF_INT:
4182            env->async_pf_int_msr = msrs[i].data;
4183            break;
4184        case MSR_KVM_PV_EOI_EN:
4185            env->pv_eoi_en_msr = msrs[i].data;
4186            break;
4187        case MSR_KVM_STEAL_TIME:
4188            env->steal_time_msr = msrs[i].data;
4189            break;
4190        case MSR_KVM_POLL_CONTROL: {
4191            env->poll_control_msr = msrs[i].data;
4192            break;
4193        }
4194        case MSR_CORE_PERF_FIXED_CTR_CTRL:
4195            env->msr_fixed_ctr_ctrl = msrs[i].data;
4196            break;
4197        case MSR_CORE_PERF_GLOBAL_CTRL:
4198            env->msr_global_ctrl = msrs[i].data;
4199            break;
4200        case MSR_CORE_PERF_GLOBAL_STATUS:
4201            env->msr_global_status = msrs[i].data;
4202            break;
4203        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4204            env->msr_global_ovf_ctrl = msrs[i].data;
4205            break;
4206        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4207            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4208            break;
4209        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4210            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4211            break;
4212        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4213            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4214            break;
4215        case HV_X64_MSR_HYPERCALL:
4216            env->msr_hv_hypercall = msrs[i].data;
4217            break;
4218        case HV_X64_MSR_GUEST_OS_ID:
4219            env->msr_hv_guest_os_id = msrs[i].data;
4220            break;
4221        case HV_X64_MSR_APIC_ASSIST_PAGE:
4222            env->msr_hv_vapic = msrs[i].data;
4223            break;
4224        case HV_X64_MSR_REFERENCE_TSC:
4225            env->msr_hv_tsc = msrs[i].data;
4226            break;
4227        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4228            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4229            break;
4230        case HV_X64_MSR_VP_RUNTIME:
4231            env->msr_hv_runtime = msrs[i].data;
4232            break;
4233        case HV_X64_MSR_SCONTROL:
4234            env->msr_hv_synic_control = msrs[i].data;
4235            break;
4236        case HV_X64_MSR_SIEFP:
4237            env->msr_hv_synic_evt_page = msrs[i].data;
4238            break;
4239        case HV_X64_MSR_SIMP:
4240            env->msr_hv_synic_msg_page = msrs[i].data;
4241            break;
4242        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4243            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4244            break;
4245        case HV_X64_MSR_STIMER0_CONFIG:
4246        case HV_X64_MSR_STIMER1_CONFIG:
4247        case HV_X64_MSR_STIMER2_CONFIG:
4248        case HV_X64_MSR_STIMER3_CONFIG:
4249            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4250                                msrs[i].data;
4251            break;
4252        case HV_X64_MSR_STIMER0_COUNT:
4253        case HV_X64_MSR_STIMER1_COUNT:
4254        case HV_X64_MSR_STIMER2_COUNT:
4255        case HV_X64_MSR_STIMER3_COUNT:
4256            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4257                                msrs[i].data;
4258            break;
4259        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4260            env->msr_hv_reenlightenment_control = msrs[i].data;
4261            break;
4262        case HV_X64_MSR_TSC_EMULATION_CONTROL:
4263            env->msr_hv_tsc_emulation_control = msrs[i].data;
4264            break;
4265        case HV_X64_MSR_TSC_EMULATION_STATUS:
4266            env->msr_hv_tsc_emulation_status = msrs[i].data;
4267            break;
4268        case HV_X64_MSR_SYNDBG_OPTIONS:
4269            env->msr_hv_syndbg_options = msrs[i].data;
4270            break;
4271        case MSR_MTRRdefType:
4272            env->mtrr_deftype = msrs[i].data;
4273            break;
4274        case MSR_MTRRfix64K_00000:
4275            env->mtrr_fixed[0] = msrs[i].data;
4276            break;
4277        case MSR_MTRRfix16K_80000:
4278            env->mtrr_fixed[1] = msrs[i].data;
4279            break;
4280        case MSR_MTRRfix16K_A0000:
4281            env->mtrr_fixed[2] = msrs[i].data;
4282            break;
4283        case MSR_MTRRfix4K_C0000:
4284            env->mtrr_fixed[3] = msrs[i].data;
4285            break;
4286        case MSR_MTRRfix4K_C8000:
4287            env->mtrr_fixed[4] = msrs[i].data;
4288            break;
4289        case MSR_MTRRfix4K_D0000:
4290            env->mtrr_fixed[5] = msrs[i].data;
4291            break;
4292        case MSR_MTRRfix4K_D8000:
4293            env->mtrr_fixed[6] = msrs[i].data;
4294            break;
4295        case MSR_MTRRfix4K_E0000:
4296            env->mtrr_fixed[7] = msrs[i].data;
4297            break;
4298        case MSR_MTRRfix4K_E8000:
4299            env->mtrr_fixed[8] = msrs[i].data;
4300            break;
4301        case MSR_MTRRfix4K_F0000:
4302            env->mtrr_fixed[9] = msrs[i].data;
4303            break;
4304        case MSR_MTRRfix4K_F8000:
4305            env->mtrr_fixed[10] = msrs[i].data;
4306            break;
4307        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4308            if (index & 1) {
4309                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4310                                                               mtrr_top_bits;
4311            } else {
4312                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4313            }
4314            break;
4315        case MSR_IA32_SPEC_CTRL:
4316            env->spec_ctrl = msrs[i].data;
4317            break;
4318        case MSR_AMD64_TSC_RATIO:
4319            env->amd_tsc_scale_msr = msrs[i].data;
4320            break;
4321        case MSR_IA32_TSX_CTRL:
4322            env->tsx_ctrl = msrs[i].data;
4323            break;
4324        case MSR_VIRT_SSBD:
4325            env->virt_ssbd = msrs[i].data;
4326            break;
4327        case MSR_IA32_RTIT_CTL:
4328            env->msr_rtit_ctrl = msrs[i].data;
4329            break;
4330        case MSR_IA32_RTIT_STATUS:
4331            env->msr_rtit_status = msrs[i].data;
4332            break;
4333        case MSR_IA32_RTIT_OUTPUT_BASE:
4334            env->msr_rtit_output_base = msrs[i].data;
4335            break;
4336        case MSR_IA32_RTIT_OUTPUT_MASK:
4337            env->msr_rtit_output_mask = msrs[i].data;
4338            break;
4339        case MSR_IA32_RTIT_CR3_MATCH:
4340            env->msr_rtit_cr3_match = msrs[i].data;
4341            break;
4342        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4343            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4344            break;
4345        case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4346            env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4347                           msrs[i].data;
4348            break;
4349        case MSR_IA32_XFD:
4350            env->msr_xfd = msrs[i].data;
4351            break;
4352        case MSR_IA32_XFD_ERR:
4353            env->msr_xfd_err = msrs[i].data;
4354            break;
4355        case MSR_ARCH_LBR_CTL:
4356            env->msr_lbr_ctl = msrs[i].data;
4357            break;
4358        case MSR_ARCH_LBR_DEPTH:
4359            env->msr_lbr_depth = msrs[i].data;
4360            break;
4361        case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4362            env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4363            break;
4364        case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4365            env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4366            break;
4367        case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4368            env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4369            break;
4370        }
4371    }
4372
4373    return 0;
4374}
4375
4376static int kvm_put_mp_state(X86CPU *cpu)
4377{
4378    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4379
4380    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4381}
4382
4383static int kvm_get_mp_state(X86CPU *cpu)
4384{
4385    CPUState *cs = CPU(cpu);
4386    CPUX86State *env = &cpu->env;
4387    struct kvm_mp_state mp_state;
4388    int ret;
4389
4390    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4391    if (ret < 0) {
4392        return ret;
4393    }
4394    env->mp_state = mp_state.mp_state;
4395    if (kvm_irqchip_in_kernel()) {
4396        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4397    }
4398    return 0;
4399}
4400
4401static int kvm_get_apic(X86CPU *cpu)
4402{
4403    DeviceState *apic = cpu->apic_state;
4404    struct kvm_lapic_state kapic;
4405    int ret;
4406
4407    if (apic && kvm_irqchip_in_kernel()) {
4408        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4409        if (ret < 0) {
4410            return ret;
4411        }
4412
4413        kvm_get_apic_state(apic, &kapic);
4414    }
4415    return 0;
4416}
4417
4418static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4419{
4420    CPUState *cs = CPU(cpu);
4421    CPUX86State *env = &cpu->env;
4422    struct kvm_vcpu_events events = {};
4423
4424    if (!kvm_has_vcpu_events()) {
4425        return 0;
4426    }
4427
4428    events.flags = 0;
4429
4430    if (has_exception_payload) {
4431        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4432        events.exception.pending = env->exception_pending;
4433        events.exception_has_payload = env->exception_has_payload;
4434        events.exception_payload = env->exception_payload;
4435    }
4436    events.exception.nr = env->exception_nr;
4437    events.exception.injected = env->exception_injected;
4438    events.exception.has_error_code = env->has_error_code;
4439    events.exception.error_code = env->error_code;
4440
4441    events.interrupt.injected = (env->interrupt_injected >= 0);
4442    events.interrupt.nr = env->interrupt_injected;
4443    events.interrupt.soft = env->soft_interrupt;
4444
4445    events.nmi.injected = env->nmi_injected;
4446    events.nmi.pending = env->nmi_pending;
4447    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4448
4449    events.sipi_vector = env->sipi_vector;
4450
4451    if (has_msr_smbase) {
4452        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4453        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4454        if (kvm_irqchip_in_kernel()) {
4455            /* As soon as these are moved to the kernel, remove them
4456             * from cs->interrupt_request.
4457             */
4458            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4459            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4460            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4461        } else {
4462            /* Keep these in cs->interrupt_request.  */
4463            events.smi.pending = 0;
4464            events.smi.latched_init = 0;
4465        }
4466        /* Stop SMI delivery on old machine types to avoid a reboot
4467         * on an inward migration of an old VM.
4468         */
4469        if (!cpu->kvm_no_smi_migration) {
4470            events.flags |= KVM_VCPUEVENT_VALID_SMM;
4471        }
4472    }
4473
4474    if (level >= KVM_PUT_RESET_STATE) {
4475        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4476        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4477            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4478        }
4479    }
4480
4481    if (has_triple_fault_event) {
4482        events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4483        events.triple_fault.pending = env->triple_fault_pending;
4484    }
4485
4486    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4487}
4488
4489static int kvm_get_vcpu_events(X86CPU *cpu)
4490{
4491    CPUX86State *env = &cpu->env;
4492    struct kvm_vcpu_events events;
4493    int ret;
4494
4495    if (!kvm_has_vcpu_events()) {
4496        return 0;
4497    }
4498
4499    memset(&events, 0, sizeof(events));
4500    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4501    if (ret < 0) {
4502       return ret;
4503    }
4504
4505    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4506        env->exception_pending = events.exception.pending;
4507        env->exception_has_payload = events.exception_has_payload;
4508        env->exception_payload = events.exception_payload;
4509    } else {
4510        env->exception_pending = 0;
4511        env->exception_has_payload = false;
4512    }
4513    env->exception_injected = events.exception.injected;
4514    env->exception_nr =
4515        (env->exception_pending || env->exception_injected) ?
4516        events.exception.nr : -1;
4517    env->has_error_code = events.exception.has_error_code;
4518    env->error_code = events.exception.error_code;
4519
4520    env->interrupt_injected =
4521        events.interrupt.injected ? events.interrupt.nr : -1;
4522    env->soft_interrupt = events.interrupt.soft;
4523
4524    env->nmi_injected = events.nmi.injected;
4525    env->nmi_pending = events.nmi.pending;
4526    if (events.nmi.masked) {
4527        env->hflags2 |= HF2_NMI_MASK;
4528    } else {
4529        env->hflags2 &= ~HF2_NMI_MASK;
4530    }
4531
4532    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4533        if (events.smi.smm) {
4534            env->hflags |= HF_SMM_MASK;
4535        } else {
4536            env->hflags &= ~HF_SMM_MASK;
4537        }
4538        if (events.smi.pending) {
4539            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4540        } else {
4541            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4542        }
4543        if (events.smi.smm_inside_nmi) {
4544            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4545        } else {
4546            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4547        }
4548        if (events.smi.latched_init) {
4549            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4550        } else {
4551            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4552        }
4553    }
4554
4555    if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4556        env->triple_fault_pending = events.triple_fault.pending;
4557    }
4558
4559    env->sipi_vector = events.sipi_vector;
4560
4561    return 0;
4562}
4563
4564static int kvm_guest_debug_workarounds(X86CPU *cpu)
4565{
4566    CPUState *cs = CPU(cpu);
4567    CPUX86State *env = &cpu->env;
4568    int ret = 0;
4569    unsigned long reinject_trap = 0;
4570
4571    if (!kvm_has_vcpu_events()) {
4572        if (env->exception_nr == EXCP01_DB) {
4573            reinject_trap = KVM_GUESTDBG_INJECT_DB;
4574        } else if (env->exception_injected == EXCP03_INT3) {
4575            reinject_trap = KVM_GUESTDBG_INJECT_BP;
4576        }
4577        kvm_reset_exception(env);
4578    }
4579
4580    /*
4581     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4582     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4583     * by updating the debug state once again if single-stepping is on.
4584     * Another reason to call kvm_update_guest_debug here is a pending debug
4585     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4586     * reinject them via SET_GUEST_DEBUG.
4587     */
4588    if (reinject_trap ||
4589        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4590        ret = kvm_update_guest_debug(cs, reinject_trap);
4591    }
4592    return ret;
4593}
4594
4595static int kvm_put_debugregs(X86CPU *cpu)
4596{
4597    CPUX86State *env = &cpu->env;
4598    struct kvm_debugregs dbgregs;
4599    int i;
4600
4601    if (!kvm_has_debugregs()) {
4602        return 0;
4603    }
4604
4605    memset(&dbgregs, 0, sizeof(dbgregs));
4606    for (i = 0; i < 4; i++) {
4607        dbgregs.db[i] = env->dr[i];
4608    }
4609    dbgregs.dr6 = env->dr[6];
4610    dbgregs.dr7 = env->dr[7];
4611    dbgregs.flags = 0;
4612
4613    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4614}
4615
4616static int kvm_get_debugregs(X86CPU *cpu)
4617{
4618    CPUX86State *env = &cpu->env;
4619    struct kvm_debugregs dbgregs;
4620    int i, ret;
4621
4622    if (!kvm_has_debugregs()) {
4623        return 0;
4624    }
4625
4626    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4627    if (ret < 0) {
4628        return ret;
4629    }
4630    for (i = 0; i < 4; i++) {
4631        env->dr[i] = dbgregs.db[i];
4632    }
4633    env->dr[4] = env->dr[6] = dbgregs.dr6;
4634    env->dr[5] = env->dr[7] = dbgregs.dr7;
4635
4636    return 0;
4637}
4638
4639static int kvm_put_nested_state(X86CPU *cpu)
4640{
4641    CPUX86State *env = &cpu->env;
4642    int max_nested_state_len = kvm_max_nested_state_length();
4643
4644    if (!env->nested_state) {
4645        return 0;
4646    }
4647
4648    /*
4649     * Copy flags that are affected by reset from env->hflags and env->hflags2.
4650     */
4651    if (env->hflags & HF_GUEST_MASK) {
4652        env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4653    } else {
4654        env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4655    }
4656
4657    /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4658    if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4659        env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4660    } else {
4661        env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4662    }
4663
4664    assert(env->nested_state->size <= max_nested_state_len);
4665    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4666}
4667
4668static int kvm_get_nested_state(X86CPU *cpu)
4669{
4670    CPUX86State *env = &cpu->env;
4671    int max_nested_state_len = kvm_max_nested_state_length();
4672    int ret;
4673
4674    if (!env->nested_state) {
4675        return 0;
4676    }
4677
4678    /*
4679     * It is possible that migration restored a smaller size into
4680     * nested_state->hdr.size than what our kernel support.
4681     * We preserve migration origin nested_state->hdr.size for
4682     * call to KVM_SET_NESTED_STATE but wish that our next call
4683     * to KVM_GET_NESTED_STATE will use max size our kernel support.
4684     */
4685    env->nested_state->size = max_nested_state_len;
4686
4687    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4688    if (ret < 0) {
4689        return ret;
4690    }
4691
4692    /*
4693     * Copy flags that are affected by reset to env->hflags and env->hflags2.
4694     */
4695    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4696        env->hflags |= HF_GUEST_MASK;
4697    } else {
4698        env->hflags &= ~HF_GUEST_MASK;
4699    }
4700
4701    /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4702    if (cpu_has_svm(env)) {
4703        if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4704            env->hflags2 |= HF2_GIF_MASK;
4705        } else {
4706            env->hflags2 &= ~HF2_GIF_MASK;
4707        }
4708    }
4709
4710    return ret;
4711}
4712
4713int kvm_arch_put_registers(CPUState *cpu, int level)
4714{
4715    X86CPU *x86_cpu = X86_CPU(cpu);
4716    int ret;
4717
4718    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4719
4720    /*
4721     * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4722     * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4723     * preceed kvm_put_nested_state() when 'real' nested state is set.
4724     */
4725    if (level >= KVM_PUT_RESET_STATE) {
4726        ret = kvm_put_msr_feature_control(x86_cpu);
4727        if (ret < 0) {
4728            return ret;
4729        }
4730    }
4731
4732    /* must be before kvm_put_nested_state so that EFER.SVME is set */
4733    ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4734    if (ret < 0) {
4735        return ret;
4736    }
4737
4738    if (level >= KVM_PUT_RESET_STATE) {
4739        ret = kvm_put_nested_state(x86_cpu);
4740        if (ret < 0) {
4741            return ret;
4742        }
4743    }
4744
4745    if (level == KVM_PUT_FULL_STATE) {
4746        /* We don't check for kvm_arch_set_tsc_khz() errors here,
4747         * because TSC frequency mismatch shouldn't abort migration,
4748         * unless the user explicitly asked for a more strict TSC
4749         * setting (e.g. using an explicit "tsc-freq" option).
4750         */
4751        kvm_arch_set_tsc_khz(cpu);
4752    }
4753
4754#ifdef CONFIG_XEN_EMU
4755    if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4756        ret = kvm_put_xen_state(cpu);
4757        if (ret < 0) {
4758            return ret;
4759        }
4760    }
4761#endif
4762
4763    ret = kvm_getput_regs(x86_cpu, 1);
4764    if (ret < 0) {
4765        return ret;
4766    }
4767    ret = kvm_put_xsave(x86_cpu);
4768    if (ret < 0) {
4769        return ret;
4770    }
4771    ret = kvm_put_xcrs(x86_cpu);
4772    if (ret < 0) {
4773        return ret;
4774    }
4775    /* must be before kvm_put_msrs */
4776    ret = kvm_inject_mce_oldstyle(x86_cpu);
4777    if (ret < 0) {
4778        return ret;
4779    }
4780    ret = kvm_put_msrs(x86_cpu, level);
4781    if (ret < 0) {
4782        return ret;
4783    }
4784    ret = kvm_put_vcpu_events(x86_cpu, level);
4785    if (ret < 0) {
4786        return ret;
4787    }
4788    if (level >= KVM_PUT_RESET_STATE) {
4789        ret = kvm_put_mp_state(x86_cpu);
4790        if (ret < 0) {
4791            return ret;
4792        }
4793    }
4794
4795    ret = kvm_put_tscdeadline_msr(x86_cpu);
4796    if (ret < 0) {
4797        return ret;
4798    }
4799    ret = kvm_put_debugregs(x86_cpu);
4800    if (ret < 0) {
4801        return ret;
4802    }
4803    /* must be last */
4804    ret = kvm_guest_debug_workarounds(x86_cpu);
4805    if (ret < 0) {
4806        return ret;
4807    }
4808    return 0;
4809}
4810
4811int kvm_arch_get_registers(CPUState *cs)
4812{
4813    X86CPU *cpu = X86_CPU(cs);
4814    int ret;
4815
4816    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4817
4818    ret = kvm_get_vcpu_events(cpu);
4819    if (ret < 0) {
4820        goto out;
4821    }
4822    /*
4823     * KVM_GET_MPSTATE can modify CS and RIP, call it before
4824     * KVM_GET_REGS and KVM_GET_SREGS.
4825     */
4826    ret = kvm_get_mp_state(cpu);
4827    if (ret < 0) {
4828        goto out;
4829    }
4830    ret = kvm_getput_regs(cpu, 0);
4831    if (ret < 0) {
4832        goto out;
4833    }
4834    ret = kvm_get_xsave(cpu);
4835    if (ret < 0) {
4836        goto out;
4837    }
4838    ret = kvm_get_xcrs(cpu);
4839    if (ret < 0) {
4840        goto out;
4841    }
4842    ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4843    if (ret < 0) {
4844        goto out;
4845    }
4846    ret = kvm_get_msrs(cpu);
4847    if (ret < 0) {
4848        goto out;
4849    }
4850    ret = kvm_get_apic(cpu);
4851    if (ret < 0) {
4852        goto out;
4853    }
4854    ret = kvm_get_debugregs(cpu);
4855    if (ret < 0) {
4856        goto out;
4857    }
4858    ret = kvm_get_nested_state(cpu);
4859    if (ret < 0) {
4860        goto out;
4861    }
4862#ifdef CONFIG_XEN_EMU
4863    if (xen_mode == XEN_EMULATE) {
4864        ret = kvm_get_xen_state(cs);
4865        if (ret < 0) {
4866            goto out;
4867        }
4868    }
4869#endif
4870    ret = 0;
4871 out:
4872    cpu_sync_bndcs_hflags(&cpu->env);
4873    return ret;
4874}
4875
4876void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4877{
4878    X86CPU *x86_cpu = X86_CPU(cpu);
4879    CPUX86State *env = &x86_cpu->env;
4880    int ret;
4881
4882    /* Inject NMI */
4883    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4884        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4885            qemu_mutex_lock_iothread();
4886            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4887            qemu_mutex_unlock_iothread();
4888            DPRINTF("injected NMI\n");
4889            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4890            if (ret < 0) {
4891                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4892                        strerror(-ret));
4893            }
4894        }
4895        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4896            qemu_mutex_lock_iothread();
4897            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4898            qemu_mutex_unlock_iothread();
4899            DPRINTF("injected SMI\n");
4900            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4901            if (ret < 0) {
4902                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4903                        strerror(-ret));
4904            }
4905        }
4906    }
4907
4908    if (!kvm_pic_in_kernel()) {
4909        qemu_mutex_lock_iothread();
4910    }
4911
4912    /* Force the VCPU out of its inner loop to process any INIT requests
4913     * or (for userspace APIC, but it is cheap to combine the checks here)
4914     * pending TPR access reports.
4915     */
4916    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4917        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4918            !(env->hflags & HF_SMM_MASK)) {
4919            cpu->exit_request = 1;
4920        }
4921        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4922            cpu->exit_request = 1;
4923        }
4924    }
4925
4926    if (!kvm_pic_in_kernel()) {
4927        /* Try to inject an interrupt if the guest can accept it */
4928        if (run->ready_for_interrupt_injection &&
4929            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4930            (env->eflags & IF_MASK)) {
4931            int irq;
4932
4933            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4934            irq = cpu_get_pic_interrupt(env);
4935            if (irq >= 0) {
4936                struct kvm_interrupt intr;
4937
4938                intr.irq = irq;
4939                DPRINTF("injected interrupt %d\n", irq);
4940                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4941                if (ret < 0) {
4942                    fprintf(stderr,
4943                            "KVM: injection failed, interrupt lost (%s)\n",
4944                            strerror(-ret));
4945                }
4946            }
4947        }
4948
4949        /* If we have an interrupt but the guest is not ready to receive an
4950         * interrupt, request an interrupt window exit.  This will
4951         * cause a return to userspace as soon as the guest is ready to
4952         * receive interrupts. */
4953        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4954            run->request_interrupt_window = 1;
4955        } else {
4956            run->request_interrupt_window = 0;
4957        }
4958
4959        DPRINTF("setting tpr\n");
4960        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4961
4962        qemu_mutex_unlock_iothread();
4963    }
4964}
4965
4966static void kvm_rate_limit_on_bus_lock(void)
4967{
4968    uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4969
4970    if (delay_ns) {
4971        g_usleep(delay_ns / SCALE_US);
4972    }
4973}
4974
4975MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4976{
4977    X86CPU *x86_cpu = X86_CPU(cpu);
4978    CPUX86State *env = &x86_cpu->env;
4979
4980    if (run->flags & KVM_RUN_X86_SMM) {
4981        env->hflags |= HF_SMM_MASK;
4982    } else {
4983        env->hflags &= ~HF_SMM_MASK;
4984    }
4985    if (run->if_flag) {
4986        env->eflags |= IF_MASK;
4987    } else {
4988        env->eflags &= ~IF_MASK;
4989    }
4990    if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4991        kvm_rate_limit_on_bus_lock();
4992    }
4993
4994#ifdef CONFIG_XEN_EMU    
4995    /*
4996     * If the callback is asserted as a GSI (or PCI INTx) then check if
4997     * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4998     * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4999     * EOI and only resample then, exactly how the VFIO eventfd pairs
5000     * are designed to work for level triggered interrupts.
5001     */
5002    if (x86_cpu->env.xen_callback_asserted) {
5003        kvm_xen_maybe_deassert_callback(cpu);
5004    }
5005#endif
5006
5007    /* We need to protect the apic state against concurrent accesses from
5008     * different threads in case the userspace irqchip is used. */
5009    if (!kvm_irqchip_in_kernel()) {
5010        qemu_mutex_lock_iothread();
5011    }
5012    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5013    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5014    if (!kvm_irqchip_in_kernel()) {
5015        qemu_mutex_unlock_iothread();
5016    }
5017    return cpu_get_mem_attrs(env);
5018}
5019
5020int kvm_arch_process_async_events(CPUState *cs)
5021{
5022    X86CPU *cpu = X86_CPU(cs);
5023    CPUX86State *env = &cpu->env;
5024
5025    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5026        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5027        assert(env->mcg_cap);
5028
5029        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5030
5031        kvm_cpu_synchronize_state(cs);
5032
5033        if (env->exception_nr == EXCP08_DBLE) {
5034            /* this means triple fault */
5035            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5036            cs->exit_request = 1;
5037            return 0;
5038        }
5039        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5040        env->has_error_code = 0;
5041
5042        cs->halted = 0;
5043        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5044            env->mp_state = KVM_MP_STATE_RUNNABLE;
5045        }
5046    }
5047
5048    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5049        !(env->hflags & HF_SMM_MASK)) {
5050        kvm_cpu_synchronize_state(cs);
5051        do_cpu_init(cpu);
5052    }
5053
5054    if (kvm_irqchip_in_kernel()) {
5055        return 0;
5056    }
5057
5058    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5059        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5060        apic_poll_irq(cpu->apic_state);
5061    }
5062    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5063         (env->eflags & IF_MASK)) ||
5064        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5065        cs->halted = 0;
5066    }
5067    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5068        kvm_cpu_synchronize_state(cs);
5069        do_cpu_sipi(cpu);
5070    }
5071    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5072        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5073        kvm_cpu_synchronize_state(cs);
5074        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5075                                      env->tpr_access_type);
5076    }
5077
5078    return cs->halted;
5079}
5080
5081static int kvm_handle_halt(X86CPU *cpu)
5082{
5083    CPUState *cs = CPU(cpu);
5084    CPUX86State *env = &cpu->env;
5085
5086    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5087          (env->eflags & IF_MASK)) &&
5088        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5089        cs->halted = 1;
5090        return EXCP_HLT;
5091    }
5092
5093    return 0;
5094}
5095
5096static int kvm_handle_tpr_access(X86CPU *cpu)
5097{
5098    CPUState *cs = CPU(cpu);
5099    struct kvm_run *run = cs->kvm_run;
5100
5101    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5102                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
5103                                                           : TPR_ACCESS_READ);
5104    return 1;
5105}
5106
5107int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5108{
5109    static const uint8_t int3 = 0xcc;
5110
5111    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5112        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5113        return -EINVAL;
5114    }
5115    return 0;
5116}
5117
5118int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5119{
5120    uint8_t int3;
5121
5122    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5123        return -EINVAL;
5124    }
5125    if (int3 != 0xcc) {
5126        return 0;
5127    }
5128    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5129        return -EINVAL;
5130    }
5131    return 0;
5132}
5133
5134static struct {
5135    target_ulong addr;
5136    int len;
5137    int type;
5138} hw_breakpoint[4];
5139
5140static int nb_hw_breakpoint;
5141
5142static int find_hw_breakpoint(target_ulong addr, int len, int type)
5143{
5144    int n;
5145
5146    for (n = 0; n < nb_hw_breakpoint; n++) {
5147        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5148            (hw_breakpoint[n].len == len || len == -1)) {
5149            return n;
5150        }
5151    }
5152    return -1;
5153}
5154
5155int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5156                                  target_ulong len, int type)
5157{
5158    switch (type) {
5159    case GDB_BREAKPOINT_HW:
5160        len = 1;
5161        break;
5162    case GDB_WATCHPOINT_WRITE:
5163    case GDB_WATCHPOINT_ACCESS:
5164        switch (len) {
5165        case 1:
5166            break;
5167        case 2:
5168        case 4:
5169        case 8:
5170            if (addr & (len - 1)) {
5171                return -EINVAL;
5172            }
5173            break;
5174        default:
5175            return -EINVAL;
5176        }
5177        break;
5178    default:
5179        return -ENOSYS;
5180    }
5181
5182    if (nb_hw_breakpoint == 4) {
5183        return -ENOBUFS;
5184    }
5185    if (find_hw_breakpoint(addr, len, type) >= 0) {
5186        return -EEXIST;
5187    }
5188    hw_breakpoint[nb_hw_breakpoint].addr = addr;
5189    hw_breakpoint[nb_hw_breakpoint].len = len;
5190    hw_breakpoint[nb_hw_breakpoint].type = type;
5191    nb_hw_breakpoint++;
5192
5193    return 0;
5194}
5195
5196int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5197                                  target_ulong len, int type)
5198{
5199    int n;
5200
5201    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5202    if (n < 0) {
5203        return -ENOENT;
5204    }
5205    nb_hw_breakpoint--;
5206    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5207
5208    return 0;
5209}
5210
5211void kvm_arch_remove_all_hw_breakpoints(void)
5212{
5213    nb_hw_breakpoint = 0;
5214}
5215
5216static CPUWatchpoint hw_watchpoint;
5217
5218static int kvm_handle_debug(X86CPU *cpu,
5219                            struct kvm_debug_exit_arch *arch_info)
5220{
5221    CPUState *cs = CPU(cpu);
5222    CPUX86State *env = &cpu->env;
5223    int ret = 0;
5224    int n;
5225
5226    if (arch_info->exception == EXCP01_DB) {
5227        if (arch_info->dr6 & DR6_BS) {
5228            if (cs->singlestep_enabled) {
5229                ret = EXCP_DEBUG;
5230            }
5231        } else {
5232            for (n = 0; n < 4; n++) {
5233                if (arch_info->dr6 & (1 << n)) {
5234                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5235                    case 0x0:
5236                        ret = EXCP_DEBUG;
5237                        break;
5238                    case 0x1:
5239                        ret = EXCP_DEBUG;
5240                        cs->watchpoint_hit = &hw_watchpoint;
5241                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5242                        hw_watchpoint.flags = BP_MEM_WRITE;
5243                        break;
5244                    case 0x3:
5245                        ret = EXCP_DEBUG;
5246                        cs->watchpoint_hit = &hw_watchpoint;
5247                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5248                        hw_watchpoint.flags = BP_MEM_ACCESS;
5249                        break;
5250                    }
5251                }
5252            }
5253        }
5254    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5255        ret = EXCP_DEBUG;
5256    }
5257    if (ret == 0) {
5258        cpu_synchronize_state(cs);
5259        assert(env->exception_nr == -1);
5260
5261        /* pass to guest */
5262        kvm_queue_exception(env, arch_info->exception,
5263                            arch_info->exception == EXCP01_DB,
5264                            arch_info->dr6);
5265        env->has_error_code = 0;
5266    }
5267
5268    return ret;
5269}
5270
5271void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5272{
5273    const uint8_t type_code[] = {
5274        [GDB_BREAKPOINT_HW] = 0x0,
5275        [GDB_WATCHPOINT_WRITE] = 0x1,
5276        [GDB_WATCHPOINT_ACCESS] = 0x3
5277    };
5278    const uint8_t len_code[] = {
5279        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5280    };
5281    int n;
5282
5283    if (kvm_sw_breakpoints_active(cpu)) {
5284        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5285    }
5286    if (nb_hw_breakpoint > 0) {
5287        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5288        dbg->arch.debugreg[7] = 0x0600;
5289        for (n = 0; n < nb_hw_breakpoint; n++) {
5290            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5291            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5292                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5293                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5294        }
5295    }
5296}
5297
5298static bool kvm_install_msr_filters(KVMState *s)
5299{
5300    uint64_t zero = 0;
5301    struct kvm_msr_filter filter = {
5302        .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5303    };
5304    int r, i, j = 0;
5305
5306    for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5307        KVMMSRHandlers *handler = &msr_handlers[i];
5308        if (handler->msr) {
5309            struct kvm_msr_filter_range *range = &filter.ranges[j++];
5310
5311            *range = (struct kvm_msr_filter_range) {
5312                .flags = 0,
5313                .nmsrs = 1,
5314                .base = handler->msr,
5315                .bitmap = (__u8 *)&zero,
5316            };
5317
5318            if (handler->rdmsr) {
5319                range->flags |= KVM_MSR_FILTER_READ;
5320            }
5321
5322            if (handler->wrmsr) {
5323                range->flags |= KVM_MSR_FILTER_WRITE;
5324            }
5325        }
5326    }
5327
5328    r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5329    if (r) {
5330        return false;
5331    }
5332
5333    return true;
5334}
5335
5336bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5337                    QEMUWRMSRHandler *wrmsr)
5338{
5339    int i;
5340
5341    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5342        if (!msr_handlers[i].msr) {
5343            msr_handlers[i] = (KVMMSRHandlers) {
5344                .msr = msr,
5345                .rdmsr = rdmsr,
5346                .wrmsr = wrmsr,
5347            };
5348
5349            if (!kvm_install_msr_filters(s)) {
5350                msr_handlers[i] = (KVMMSRHandlers) { };
5351                return false;
5352            }
5353
5354            return true;
5355        }
5356    }
5357
5358    return false;
5359}
5360
5361static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5362{
5363    int i;
5364    bool r;
5365
5366    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5367        KVMMSRHandlers *handler = &msr_handlers[i];
5368        if (run->msr.index == handler->msr) {
5369            if (handler->rdmsr) {
5370                r = handler->rdmsr(cpu, handler->msr,
5371                                   (uint64_t *)&run->msr.data);
5372                run->msr.error = r ? 0 : 1;
5373                return 0;
5374            }
5375        }
5376    }
5377
5378    assert(false);
5379}
5380
5381static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5382{
5383    int i;
5384    bool r;
5385
5386    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5387        KVMMSRHandlers *handler = &msr_handlers[i];
5388        if (run->msr.index == handler->msr) {
5389            if (handler->wrmsr) {
5390                r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5391                run->msr.error = r ? 0 : 1;
5392                return 0;
5393            }
5394        }
5395    }
5396
5397    assert(false);
5398}
5399
5400static bool has_sgx_provisioning;
5401
5402static bool __kvm_enable_sgx_provisioning(KVMState *s)
5403{
5404    int fd, ret;
5405
5406    if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5407        return false;
5408    }
5409
5410    fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5411    if (fd < 0) {
5412        return false;
5413    }
5414
5415    ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5416    if (ret) {
5417        error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5418        exit(1);
5419    }
5420    close(fd);
5421    return true;
5422}
5423
5424bool kvm_enable_sgx_provisioning(KVMState *s)
5425{
5426    return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5427}
5428
5429static bool host_supports_vmx(void)
5430{
5431    uint32_t ecx, unused;
5432
5433    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5434    return ecx & CPUID_EXT_VMX;
5435}
5436
5437#define VMX_INVALID_GUEST_STATE 0x80000021
5438
5439int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5440{
5441    X86CPU *cpu = X86_CPU(cs);
5442    uint64_t code;
5443    int ret;
5444    bool ctx_invalid;
5445    char str[256];
5446    KVMState *state;
5447
5448    switch (run->exit_reason) {
5449    case KVM_EXIT_HLT:
5450        DPRINTF("handle_hlt\n");
5451        qemu_mutex_lock_iothread();
5452        ret = kvm_handle_halt(cpu);
5453        qemu_mutex_unlock_iothread();
5454        break;
5455    case KVM_EXIT_SET_TPR:
5456        ret = 0;
5457        break;
5458    case KVM_EXIT_TPR_ACCESS:
5459        qemu_mutex_lock_iothread();
5460        ret = kvm_handle_tpr_access(cpu);
5461        qemu_mutex_unlock_iothread();
5462        break;
5463    case KVM_EXIT_FAIL_ENTRY:
5464        code = run->fail_entry.hardware_entry_failure_reason;
5465        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5466                code);
5467        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5468            fprintf(stderr,
5469                    "\nIf you're running a guest on an Intel machine without "
5470                        "unrestricted mode\n"
5471                    "support, the failure can be most likely due to the guest "
5472                        "entering an invalid\n"
5473                    "state for Intel VT. For example, the guest maybe running "
5474                        "in big real mode\n"
5475                    "which is not supported on less recent Intel processors."
5476                        "\n\n");
5477        }
5478        ret = -1;
5479        break;
5480    case KVM_EXIT_EXCEPTION:
5481        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5482                run->ex.exception, run->ex.error_code);
5483        ret = -1;
5484        break;
5485    case KVM_EXIT_DEBUG:
5486        DPRINTF("kvm_exit_debug\n");
5487        qemu_mutex_lock_iothread();
5488        ret = kvm_handle_debug(cpu, &run->debug.arch);
5489        qemu_mutex_unlock_iothread();
5490        break;
5491    case KVM_EXIT_HYPERV:
5492        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5493        break;
5494    case KVM_EXIT_IOAPIC_EOI:
5495        ioapic_eoi_broadcast(run->eoi.vector);
5496        ret = 0;
5497        break;
5498    case KVM_EXIT_X86_BUS_LOCK:
5499        /* already handled in kvm_arch_post_run */
5500        ret = 0;
5501        break;
5502    case KVM_EXIT_NOTIFY:
5503        ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5504        state = KVM_STATE(current_accel());
5505        sprintf(str, "Encounter a notify exit with %svalid context in"
5506                     " guest. There can be possible misbehaves in guest."
5507                     " Please have a look.", ctx_invalid ? "in" : "");
5508        if (ctx_invalid ||
5509            state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5510            warn_report("KVM internal error: %s", str);
5511            ret = -1;
5512        } else {
5513            warn_report_once("KVM: %s", str);
5514            ret = 0;
5515        }
5516        break;
5517    case KVM_EXIT_X86_RDMSR:
5518        /* We only enable MSR filtering, any other exit is bogus */
5519        assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5520        ret = kvm_handle_rdmsr(cpu, run);
5521        break;
5522    case KVM_EXIT_X86_WRMSR:
5523        /* We only enable MSR filtering, any other exit is bogus */
5524        assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5525        ret = kvm_handle_wrmsr(cpu, run);
5526        break;
5527#ifdef CONFIG_XEN_EMU
5528    case KVM_EXIT_XEN:
5529        ret = kvm_xen_handle_exit(cpu, &run->xen);
5530        break;
5531#endif
5532    default:
5533        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5534        ret = -1;
5535        break;
5536    }
5537
5538    return ret;
5539}
5540
5541bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5542{
5543    X86CPU *cpu = X86_CPU(cs);
5544    CPUX86State *env = &cpu->env;
5545
5546    kvm_cpu_synchronize_state(cs);
5547    return !(env->cr[0] & CR0_PE_MASK) ||
5548           ((env->segs[R_CS].selector  & 3) != 3);
5549}
5550
5551void kvm_arch_init_irq_routing(KVMState *s)
5552{
5553    /* We know at this point that we're using the in-kernel
5554     * irqchip, so we can use irqfds, and on x86 we know
5555     * we can use msi via irqfd and GSI routing.
5556     */
5557    kvm_msi_via_irqfd_allowed = true;
5558    kvm_gsi_routing_allowed = true;
5559
5560    if (kvm_irqchip_is_split()) {
5561        KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5562        int i;
5563
5564        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5565           MSI routes for signaling interrupts to the local apics. */
5566        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5567            if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5568                error_report("Could not enable split IRQ mode.");
5569                exit(1);
5570            }
5571        }
5572        kvm_irqchip_commit_route_changes(&c);
5573    }
5574}
5575
5576int kvm_arch_irqchip_create(KVMState *s)
5577{
5578    int ret;
5579    if (kvm_kernel_irqchip_split()) {
5580        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5581        if (ret) {
5582            error_report("Could not enable split irqchip mode: %s",
5583                         strerror(-ret));
5584            exit(1);
5585        } else {
5586            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5587            kvm_split_irqchip = true;
5588            return 1;
5589        }
5590    } else {
5591        return 0;
5592    }
5593}
5594
5595uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5596{
5597    CPUX86State *env;
5598    uint64_t ext_id;
5599
5600    if (!first_cpu) {
5601        return address;
5602    }
5603    env = &X86_CPU(first_cpu)->env;
5604    if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5605        return address;
5606    }
5607
5608    /*
5609     * If the remappable format bit is set, or the upper bits are
5610     * already set in address_hi, or the low extended bits aren't
5611     * there anyway, do nothing.
5612     */
5613    ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5614    if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5615        return address;
5616    }
5617
5618    address &= ~ext_id;
5619    address |= ext_id << 35;
5620    return address;
5621}
5622
5623int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5624                             uint64_t address, uint32_t data, PCIDevice *dev)
5625{
5626    X86IOMMUState *iommu = x86_iommu_get_default();
5627
5628    if (iommu) {
5629        X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5630
5631        if (class->int_remap) {
5632            int ret;
5633            MSIMessage src, dst;
5634
5635            src.address = route->u.msi.address_hi;
5636            src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5637            src.address |= route->u.msi.address_lo;
5638            src.data = route->u.msi.data;
5639
5640            ret = class->int_remap(iommu, &src, &dst, dev ?     \
5641                                   pci_requester_id(dev) :      \
5642                                   X86_IOMMU_SID_INVALID);
5643            if (ret) {
5644                trace_kvm_x86_fixup_msi_error(route->gsi);
5645                return 1;
5646            }
5647
5648            /*
5649             * Handled untranslated compatibilty format interrupt with
5650             * extended destination ID in the low bits 11-5. */
5651            dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5652
5653            route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5654            route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5655            route->u.msi.data = dst.data;
5656            return 0;
5657        }
5658    }
5659
5660#ifdef CONFIG_XEN_EMU
5661    if (xen_mode == XEN_EMULATE) {
5662        int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5663
5664        /*
5665         * If it was a PIRQ and successfully routed (handled == 0) or it was
5666         * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5667         */
5668        if (handled <= 0) {
5669            return handled;
5670        }
5671    }
5672#endif
5673
5674    address = kvm_swizzle_msi_ext_dest_id(address);
5675    route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5676    route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5677    return 0;
5678}
5679
5680typedef struct MSIRouteEntry MSIRouteEntry;
5681
5682struct MSIRouteEntry {
5683    PCIDevice *dev;             /* Device pointer */
5684    int vector;                 /* MSI/MSIX vector index */
5685    int virq;                   /* Virtual IRQ index */
5686    QLIST_ENTRY(MSIRouteEntry) list;
5687};
5688
5689/* List of used GSI routes */
5690static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5691    QLIST_HEAD_INITIALIZER(msi_route_list);
5692
5693void kvm_update_msi_routes_all(void *private, bool global,
5694                               uint32_t index, uint32_t mask)
5695{
5696    int cnt = 0, vector;
5697    MSIRouteEntry *entry;
5698    MSIMessage msg;
5699    PCIDevice *dev;
5700
5701    /* TODO: explicit route update */
5702    QLIST_FOREACH(entry, &msi_route_list, list) {
5703        cnt++;
5704        vector = entry->vector;
5705        dev = entry->dev;
5706        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5707            msg = msix_get_message(dev, vector);
5708        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5709            msg = msi_get_message(dev, vector);
5710        } else {
5711            /*
5712             * Either MSI/MSIX is disabled for the device, or the
5713             * specific message was masked out.  Skip this one.
5714             */
5715            continue;
5716        }
5717        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5718    }
5719    kvm_irqchip_commit_routes(kvm_state);
5720    trace_kvm_x86_update_msi_routes(cnt);
5721}
5722
5723int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5724                                int vector, PCIDevice *dev)
5725{
5726    static bool notify_list_inited = false;
5727    MSIRouteEntry *entry;
5728
5729    if (!dev) {
5730        /* These are (possibly) IOAPIC routes only used for split
5731         * kernel irqchip mode, while what we are housekeeping are
5732         * PCI devices only. */
5733        return 0;
5734    }
5735
5736    entry = g_new0(MSIRouteEntry, 1);
5737    entry->dev = dev;
5738    entry->vector = vector;
5739    entry->virq = route->gsi;
5740    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5741
5742    trace_kvm_x86_add_msi_route(route->gsi);
5743
5744    if (!notify_list_inited) {
5745        /* For the first time we do add route, add ourselves into
5746         * IOMMU's IEC notify list if needed. */
5747        X86IOMMUState *iommu = x86_iommu_get_default();
5748        if (iommu) {
5749            x86_iommu_iec_register_notifier(iommu,
5750                                            kvm_update_msi_routes_all,
5751                                            NULL);
5752        }
5753        notify_list_inited = true;
5754    }
5755    return 0;
5756}
5757
5758int kvm_arch_release_virq_post(int virq)
5759{
5760    MSIRouteEntry *entry, *next;
5761    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5762        if (entry->virq == virq) {
5763            trace_kvm_x86_remove_msi_route(virq);
5764            QLIST_REMOVE(entry, list);
5765            g_free(entry);
5766            break;
5767        }
5768    }
5769    return 0;
5770}
5771
5772int kvm_arch_msi_data_to_gsi(uint32_t data)
5773{
5774    abort();
5775}
5776
5777bool kvm_has_waitpkg(void)
5778{
5779    return has_msr_umwait;
5780}
5781
5782bool kvm_arch_cpu_check_are_resettable(void)
5783{
5784    return !sev_es_enabled();
5785}
5786
5787#define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5788
5789void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5790{
5791    KVMState *s = kvm_state;
5792    uint64_t supported;
5793
5794    mask &= XSTATE_DYNAMIC_MASK;
5795    if (!mask) {
5796        return;
5797    }
5798    /*
5799     * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5800     * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5801     * about them already because they are not supported features.
5802     */
5803    supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5804    supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5805    mask &= supported;
5806
5807    while (mask) {
5808        int bit = ctz64(mask);
5809        int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5810        if (rc) {
5811            /*
5812             * Older kernel version (<5.17) do not support
5813             * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5814             * any dynamic feature from kvm_arch_get_supported_cpuid.
5815             */
5816            warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5817                        "for feature bit %d", bit);
5818        }
5819        mask &= ~BIT_ULL(bit);
5820    }
5821}
5822
5823static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5824{
5825    KVMState *s = KVM_STATE(obj);
5826    return s->notify_vmexit;
5827}
5828
5829static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5830{
5831    KVMState *s = KVM_STATE(obj);
5832
5833    if (s->fd != -1) {
5834        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5835        return;
5836    }
5837
5838    s->notify_vmexit = value;
5839}
5840
5841static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5842                                       const char *name, void *opaque,
5843                                       Error **errp)
5844{
5845    KVMState *s = KVM_STATE(obj);
5846    uint32_t value = s->notify_window;
5847
5848    visit_type_uint32(v, name, &value, errp);
5849}
5850
5851static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5852                                       const char *name, void *opaque,
5853                                       Error **errp)
5854{
5855    KVMState *s = KVM_STATE(obj);
5856    uint32_t value;
5857
5858    if (s->fd != -1) {
5859        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5860        return;
5861    }
5862
5863    if (!visit_type_uint32(v, name, &value, errp)) {
5864        return;
5865    }
5866
5867    s->notify_window = value;
5868}
5869
5870static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5871                                     const char *name, void *opaque,
5872                                     Error **errp)
5873{
5874    KVMState *s = KVM_STATE(obj);
5875    uint32_t value = s->xen_version;
5876
5877    visit_type_uint32(v, name, &value, errp);
5878}
5879
5880static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5881                                     const char *name, void *opaque,
5882                                     Error **errp)
5883{
5884    KVMState *s = KVM_STATE(obj);
5885    Error *error = NULL;
5886    uint32_t value;
5887
5888    visit_type_uint32(v, name, &value, &error);
5889    if (error) {
5890        error_propagate(errp, error);
5891        return;
5892    }
5893
5894    s->xen_version = value;
5895    if (value && xen_mode == XEN_DISABLED) {
5896        xen_mode = XEN_EMULATE;
5897    }
5898}
5899
5900static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5901                                               const char *name, void *opaque,
5902                                               Error **errp)
5903{
5904    KVMState *s = KVM_STATE(obj);
5905    uint16_t value = s->xen_gnttab_max_frames;
5906
5907    visit_type_uint16(v, name, &value, errp);
5908}
5909
5910static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5911                                               const char *name, void *opaque,
5912                                               Error **errp)
5913{
5914    KVMState *s = KVM_STATE(obj);
5915    Error *error = NULL;
5916    uint16_t value;
5917
5918    visit_type_uint16(v, name, &value, &error);
5919    if (error) {
5920        error_propagate(errp, error);
5921        return;
5922    }
5923
5924    s->xen_gnttab_max_frames = value;
5925}
5926
5927static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5928                                             const char *name, void *opaque,
5929                                             Error **errp)
5930{
5931    KVMState *s = KVM_STATE(obj);
5932    uint16_t value = s->xen_evtchn_max_pirq;
5933
5934    visit_type_uint16(v, name, &value, errp);
5935}
5936
5937static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5938                                             const char *name, void *opaque,
5939                                             Error **errp)
5940{
5941    KVMState *s = KVM_STATE(obj);
5942    Error *error = NULL;
5943    uint16_t value;
5944
5945    visit_type_uint16(v, name, &value, &error);
5946    if (error) {
5947        error_propagate(errp, error);
5948        return;
5949    }
5950
5951    s->xen_evtchn_max_pirq = value;
5952}
5953
5954void kvm_arch_accel_class_init(ObjectClass *oc)
5955{
5956    object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5957                                   &NotifyVmexitOption_lookup,
5958                                   kvm_arch_get_notify_vmexit,
5959                                   kvm_arch_set_notify_vmexit);
5960    object_class_property_set_description(oc, "notify-vmexit",
5961                                          "Enable notify VM exit");
5962
5963    object_class_property_add(oc, "notify-window", "uint32",
5964                              kvm_arch_get_notify_window,
5965                              kvm_arch_set_notify_window,
5966                              NULL, NULL);
5967    object_class_property_set_description(oc, "notify-window",
5968                                          "Clock cycles without an event window "
5969                                          "after which a notification VM exit occurs");
5970
5971    object_class_property_add(oc, "xen-version", "uint32",
5972                              kvm_arch_get_xen_version,
5973                              kvm_arch_set_xen_version,
5974                              NULL, NULL);
5975    object_class_property_set_description(oc, "xen-version",
5976                                          "Xen version to be emulated "
5977                                          "(in XENVER_version form "
5978                                          "e.g. 0x4000a for 4.10)");
5979
5980    object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5981                              kvm_arch_get_xen_gnttab_max_frames,
5982                              kvm_arch_set_xen_gnttab_max_frames,
5983                              NULL, NULL);
5984    object_class_property_set_description(oc, "xen-gnttab-max-frames",
5985                                          "Maximum number of grant table frames");
5986
5987    object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5988                              kvm_arch_get_xen_evtchn_max_pirq,
5989                              kvm_arch_set_xen_evtchn_max_pirq,
5990                              NULL, NULL);
5991    object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5992                                          "Maximum number of Xen PIRQs");
5993}
5994
5995void kvm_set_max_apic_id(uint32_t max_apic_id)
5996{
5997    kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5998}
5999