qemu/hw/timer/cadence_ttc.c
<<
>>
Prefs
   1/*
   2 * Xilinx Zynq cadence TTC model
   3 *
   4 * Copyright (c) 2011 Xilinx Inc.
   5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
   6 * Copyright (c) 2012 PetaLogix Pty Ltd.
   7 * Written By Haibing Ma
   8 *            M. Habib
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "hw/irq.h"
  21#include "hw/sysbus.h"
  22#include "migration/vmstate.h"
  23#include "qemu/module.h"
  24#include "qemu/timer.h"
  25#include "qom/object.h"
  26
  27#include "hw/timer/cadence_ttc.h"
  28
  29#ifdef CADENCE_TTC_ERR_DEBUG
  30#define DB_PRINT(...) do { \
  31    fprintf(stderr,  ": %s: ", __func__); \
  32    fprintf(stderr, ## __VA_ARGS__); \
  33    } while (0)
  34#else
  35    #define DB_PRINT(...)
  36#endif
  37
  38#define COUNTER_INTR_IV     0x00000001
  39#define COUNTER_INTR_M1     0x00000002
  40#define COUNTER_INTR_M2     0x00000004
  41#define COUNTER_INTR_M3     0x00000008
  42#define COUNTER_INTR_OV     0x00000010
  43#define COUNTER_INTR_EV     0x00000020
  44
  45#define COUNTER_CTRL_DIS    0x00000001
  46#define COUNTER_CTRL_INT    0x00000002
  47#define COUNTER_CTRL_DEC    0x00000004
  48#define COUNTER_CTRL_MATCH  0x00000008
  49#define COUNTER_CTRL_RST    0x00000010
  50
  51#define CLOCK_CTRL_PS_EN    0x00000001
  52#define CLOCK_CTRL_PS_V     0x0000001e
  53
  54static void cadence_timer_update(CadenceTimerState *s)
  55{
  56    qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
  57}
  58
  59static CadenceTimerState *cadence_timer_from_addr(void *opaque,
  60                                        hwaddr offset)
  61{
  62    unsigned int index;
  63    CadenceTTCState *s = (CadenceTTCState *)opaque;
  64
  65    index = (offset >> 2) % 3;
  66
  67    return &s->timer[index];
  68}
  69
  70static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
  71{
  72    /* timer_steps has max value of 0x100000000. double check it
  73     * (or overflow can happen below) */
  74    assert(timer_steps <= 1ULL << 32);
  75
  76    uint64_t r = timer_steps * 1000000000ULL;
  77    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
  78        r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
  79    } else {
  80        r >>= 16;
  81    }
  82    r /= (uint64_t)s->freq;
  83    return r;
  84}
  85
  86static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
  87{
  88    uint64_t to_divide = 1000000000ULL;
  89
  90    uint64_t r = ns;
  91     /* for very large intervals (> 8s) do some division first to stop
  92      * overflow (costs some prescision) */
  93    while (r >= 8ULL << 30 && to_divide > 1) {
  94        r /= 1000;
  95        to_divide /= 1000;
  96    }
  97    r <<= 16;
  98    /* keep early-dividing as needed */
  99    while (r >= 8ULL << 30 && to_divide > 1) {
 100        r /= 1000;
 101        to_divide /= 1000;
 102    }
 103    r *= (uint64_t)s->freq;
 104    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
 105        r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
 106    }
 107
 108    r /= to_divide;
 109    return r;
 110}
 111
 112/* determine if x is in between a and b, exclusive of a, inclusive of b */
 113
 114static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
 115{
 116    if (a < b) {
 117        return x > a && x <= b;
 118    }
 119    return x < a && x >= b;
 120}
 121
 122static void cadence_timer_run(CadenceTimerState *s)
 123{
 124    int i;
 125    int64_t event_interval, next_value;
 126
 127    assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
 128
 129    if (s->reg_count & COUNTER_CTRL_DIS) {
 130        s->cpu_time_valid = 0;
 131        return;
 132    }
 133
 134    { /* figure out what's going to happen next (rollover or match) */
 135        int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
 136                (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
 137        next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
 138        for (i = 0; i < 3; ++i) {
 139            int64_t cand = (uint64_t)s->reg_match[i] << 16;
 140            if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
 141                next_value = cand;
 142            }
 143        }
 144    }
 145    DB_PRINT("next timer event value: %09llx\n",
 146            (unsigned long long)next_value);
 147
 148    event_interval = next_value - (int64_t)s->reg_value;
 149    event_interval = (event_interval < 0) ? -event_interval : event_interval;
 150
 151    timer_mod(s->timer, s->cpu_time +
 152                cadence_timer_get_ns(s, event_interval));
 153}
 154
 155static void cadence_timer_sync(CadenceTimerState *s)
 156{
 157    int i;
 158    int64_t r, x;
 159    int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
 160            (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
 161    uint64_t old_time = s->cpu_time;
 162
 163    s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 164    DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
 165
 166    if (!s->cpu_time_valid || old_time == s->cpu_time) {
 167        s->cpu_time_valid = 1;
 168        return;
 169    }
 170
 171    r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
 172    x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
 173
 174    for (i = 0; i < 3; ++i) {
 175        int64_t m = (int64_t)s->reg_match[i] << 16;
 176        if (m > interval) {
 177            continue;
 178        }
 179        /* check to see if match event has occurred. check m +/- interval
 180         * to account for match events in wrap around cases */
 181        if (is_between(m, s->reg_value, x) ||
 182            is_between(m + interval, s->reg_value, x) ||
 183            is_between(m - interval, s->reg_value, x)) {
 184            s->reg_intr |= (2 << i);
 185        }
 186    }
 187    if ((x < 0) || (x >= interval)) {
 188        s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
 189            COUNTER_INTR_IV : COUNTER_INTR_OV;
 190    }
 191    while (x < 0) {
 192        x += interval;
 193    }
 194    s->reg_value = (uint32_t)(x % interval);
 195    cadence_timer_update(s);
 196}
 197
 198static void cadence_timer_tick(void *opaque)
 199{
 200    CadenceTimerState *s = opaque;
 201
 202    DB_PRINT("\n");
 203    cadence_timer_sync(s);
 204    cadence_timer_run(s);
 205}
 206
 207static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
 208{
 209    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
 210    uint32_t value;
 211
 212    cadence_timer_sync(s);
 213    cadence_timer_run(s);
 214
 215    switch (offset) {
 216    case 0x00: /* clock control */
 217    case 0x04:
 218    case 0x08:
 219        return s->reg_clock;
 220
 221    case 0x0c: /* counter control */
 222    case 0x10:
 223    case 0x14:
 224        return s->reg_count;
 225
 226    case 0x18: /* counter value */
 227    case 0x1c:
 228    case 0x20:
 229        return (uint16_t)(s->reg_value >> 16);
 230
 231    case 0x24: /* reg_interval counter */
 232    case 0x28:
 233    case 0x2c:
 234        return s->reg_interval;
 235
 236    case 0x30: /* match 1 counter */
 237    case 0x34:
 238    case 0x38:
 239        return s->reg_match[0];
 240
 241    case 0x3c: /* match 2 counter */
 242    case 0x40:
 243    case 0x44:
 244        return s->reg_match[1];
 245
 246    case 0x48: /* match 3 counter */
 247    case 0x4c:
 248    case 0x50:
 249        return s->reg_match[2];
 250
 251    case 0x54: /* interrupt register */
 252    case 0x58:
 253    case 0x5c:
 254        /* cleared after read */
 255        value = s->reg_intr;
 256        s->reg_intr = 0;
 257        cadence_timer_update(s);
 258        return value;
 259
 260    case 0x60: /* interrupt enable */
 261    case 0x64:
 262    case 0x68:
 263        return s->reg_intr_en;
 264
 265    case 0x6c:
 266    case 0x70:
 267    case 0x74:
 268        return s->reg_event_ctrl;
 269
 270    case 0x78:
 271    case 0x7c:
 272    case 0x80:
 273        return s->reg_event;
 274
 275    default:
 276        return 0;
 277    }
 278}
 279
 280static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
 281    unsigned size)
 282{
 283    uint32_t ret = cadence_ttc_read_imp(opaque, offset);
 284
 285    DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
 286    return ret;
 287}
 288
 289static void cadence_ttc_write(void *opaque, hwaddr offset,
 290        uint64_t value, unsigned size)
 291{
 292    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
 293
 294    DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
 295
 296    cadence_timer_sync(s);
 297
 298    switch (offset) {
 299    case 0x00: /* clock control */
 300    case 0x04:
 301    case 0x08:
 302        s->reg_clock = value & 0x3F;
 303        break;
 304
 305    case 0x0c: /* counter control */
 306    case 0x10:
 307    case 0x14:
 308        if (value & COUNTER_CTRL_RST) {
 309            s->reg_value = 0;
 310        }
 311        s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
 312        break;
 313
 314    case 0x24: /* interval register */
 315    case 0x28:
 316    case 0x2c:
 317        s->reg_interval = value & 0xffff;
 318        break;
 319
 320    case 0x30: /* match register */
 321    case 0x34:
 322    case 0x38:
 323        s->reg_match[0] = value & 0xffff;
 324        break;
 325
 326    case 0x3c: /* match register */
 327    case 0x40:
 328    case 0x44:
 329        s->reg_match[1] = value & 0xffff;
 330        break;
 331
 332    case 0x48: /* match register */
 333    case 0x4c:
 334    case 0x50:
 335        s->reg_match[2] = value & 0xffff;
 336        break;
 337
 338    case 0x54: /* interrupt register */
 339    case 0x58:
 340    case 0x5c:
 341        break;
 342
 343    case 0x60: /* interrupt enable */
 344    case 0x64:
 345    case 0x68:
 346        s->reg_intr_en = value & 0x3f;
 347        break;
 348
 349    case 0x6c: /* event control */
 350    case 0x70:
 351    case 0x74:
 352        s->reg_event_ctrl = value & 0x07;
 353        break;
 354
 355    default:
 356        return;
 357    }
 358
 359    cadence_timer_run(s);
 360    cadence_timer_update(s);
 361}
 362
 363static const MemoryRegionOps cadence_ttc_ops = {
 364    .read = cadence_ttc_read,
 365    .write = cadence_ttc_write,
 366    .endianness = DEVICE_NATIVE_ENDIAN,
 367};
 368
 369static void cadence_timer_reset(CadenceTimerState *s)
 370{
 371   s->reg_count = 0x21;
 372}
 373
 374static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
 375{
 376    memset(s, 0, sizeof(CadenceTimerState));
 377    s->freq = freq;
 378
 379    cadence_timer_reset(s);
 380
 381    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
 382}
 383
 384static void cadence_ttc_init(Object *obj)
 385{
 386    CadenceTTCState *s = CADENCE_TTC(obj);
 387
 388    memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
 389                          "timer", 0x1000);
 390    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
 391}
 392
 393static void cadence_ttc_realize(DeviceState *dev, Error **errp)
 394{
 395    CadenceTTCState *s = CADENCE_TTC(dev);
 396    int i;
 397
 398    for (i = 0; i < 3; ++i) {
 399        cadence_timer_init(133000000, &s->timer[i]);
 400        sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq);
 401    }
 402}
 403
 404static int cadence_timer_pre_save(void *opaque)
 405{
 406    cadence_timer_sync((CadenceTimerState *)opaque);
 407
 408    return 0;
 409}
 410
 411static int cadence_timer_post_load(void *opaque, int version_id)
 412{
 413    CadenceTimerState *s = opaque;
 414
 415    s->cpu_time_valid = 0;
 416    cadence_timer_sync(s);
 417    cadence_timer_run(s);
 418    cadence_timer_update(s);
 419    return 0;
 420}
 421
 422static const VMStateDescription vmstate_cadence_timer = {
 423    .name = "cadence_timer",
 424    .version_id = 1,
 425    .minimum_version_id = 1,
 426    .pre_save = cadence_timer_pre_save,
 427    .post_load = cadence_timer_post_load,
 428    .fields = (VMStateField[]) {
 429        VMSTATE_UINT32(reg_clock, CadenceTimerState),
 430        VMSTATE_UINT32(reg_count, CadenceTimerState),
 431        VMSTATE_UINT32(reg_value, CadenceTimerState),
 432        VMSTATE_UINT16(reg_interval, CadenceTimerState),
 433        VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
 434        VMSTATE_UINT32(reg_intr, CadenceTimerState),
 435        VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
 436        VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
 437        VMSTATE_UINT32(reg_event, CadenceTimerState),
 438        VMSTATE_END_OF_LIST()
 439    }
 440};
 441
 442static const VMStateDescription vmstate_cadence_ttc = {
 443    .name = "cadence_TTC",
 444    .version_id = 1,
 445    .minimum_version_id = 1,
 446    .fields = (VMStateField[]) {
 447        VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
 448                            vmstate_cadence_timer,
 449                            CadenceTimerState),
 450        VMSTATE_END_OF_LIST()
 451    }
 452};
 453
 454static void cadence_ttc_class_init(ObjectClass *klass, void *data)
 455{
 456    DeviceClass *dc = DEVICE_CLASS(klass);
 457
 458    dc->vmsd = &vmstate_cadence_ttc;
 459    dc->realize = cadence_ttc_realize;
 460}
 461
 462static const TypeInfo cadence_ttc_info = {
 463    .name  = TYPE_CADENCE_TTC,
 464    .parent = TYPE_SYS_BUS_DEVICE,
 465    .instance_size  = sizeof(CadenceTTCState),
 466    .instance_init = cadence_ttc_init,
 467    .class_init = cadence_ttc_class_init,
 468};
 469
 470static void cadence_ttc_register_types(void)
 471{
 472    type_register_static(&cadence_ttc_info);
 473}
 474
 475type_init(cadence_ttc_register_types)
 476