qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "block/block-io.h"
  29#include "qapi/error.h"
  30#include "qcow2.h"
  31#include "qemu/bswap.h"
  32#include "qemu/memalign.h"
  33#include "trace.h"
  34
  35int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
  36                                       uint64_t exact_size)
  37{
  38    BDRVQcow2State *s = bs->opaque;
  39    int new_l1_size, i, ret;
  40
  41    if (exact_size >= s->l1_size) {
  42        return 0;
  43    }
  44
  45    new_l1_size = exact_size;
  46
  47#ifdef DEBUG_ALLOC2
  48    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  49#endif
  50
  51    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  52    ret = bdrv_co_pwrite_zeroes(bs->file,
  53                                s->l1_table_offset + new_l1_size * L1E_SIZE,
  54                                (s->l1_size - new_l1_size) * L1E_SIZE, 0);
  55    if (ret < 0) {
  56        goto fail;
  57    }
  58
  59    ret = bdrv_co_flush(bs->file->bs);
  60    if (ret < 0) {
  61        goto fail;
  62    }
  63
  64    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  65    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  66        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  67            continue;
  68        }
  69        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  70                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  71        s->l1_table[i] = 0;
  72    }
  73    return 0;
  74
  75fail:
  76    /*
  77     * If the write in the l1_table failed the image may contain a partially
  78     * overwritten l1_table. In this case it would be better to clear the
  79     * l1_table in memory to avoid possible image corruption.
  80     */
  81    memset(s->l1_table + new_l1_size, 0,
  82           (s->l1_size - new_l1_size) * L1E_SIZE);
  83    return ret;
  84}
  85
  86int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  87                        bool exact_size)
  88{
  89    BDRVQcow2State *s = bs->opaque;
  90    int new_l1_size2, ret, i;
  91    uint64_t *new_l1_table;
  92    int64_t old_l1_table_offset, old_l1_size;
  93    int64_t new_l1_table_offset, new_l1_size;
  94    uint8_t data[12];
  95
  96    if (min_size <= s->l1_size)
  97        return 0;
  98
  99    /* Do a sanity check on min_size before trying to calculate new_l1_size
 100     * (this prevents overflows during the while loop for the calculation of
 101     * new_l1_size) */
 102    if (min_size > INT_MAX / L1E_SIZE) {
 103        return -EFBIG;
 104    }
 105
 106    if (exact_size) {
 107        new_l1_size = min_size;
 108    } else {
 109        /* Bump size up to reduce the number of times we have to grow */
 110        new_l1_size = s->l1_size;
 111        if (new_l1_size == 0) {
 112            new_l1_size = 1;
 113        }
 114        while (min_size > new_l1_size) {
 115            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 116        }
 117    }
 118
 119    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 120    if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
 121        return -EFBIG;
 122    }
 123
 124#ifdef DEBUG_ALLOC2
 125    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 126            s->l1_size, new_l1_size);
 127#endif
 128
 129    new_l1_size2 = L1E_SIZE * new_l1_size;
 130    new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
 131    if (new_l1_table == NULL) {
 132        return -ENOMEM;
 133    }
 134    memset(new_l1_table, 0, new_l1_size2);
 135
 136    if (s->l1_size) {
 137        memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
 138    }
 139
 140    /* write new table (align to cluster) */
 141    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 142    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 143    if (new_l1_table_offset < 0) {
 144        qemu_vfree(new_l1_table);
 145        return new_l1_table_offset;
 146    }
 147
 148    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 149    if (ret < 0) {
 150        goto fail;
 151    }
 152
 153    /* the L1 position has not yet been updated, so these clusters must
 154     * indeed be completely free */
 155    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 156                                        new_l1_size2, false);
 157    if (ret < 0) {
 158        goto fail;
 159    }
 160
 161    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 162    for(i = 0; i < s->l1_size; i++)
 163        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 164    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
 165                           new_l1_table, 0);
 166    if (ret < 0)
 167        goto fail;
 168    for(i = 0; i < s->l1_size; i++)
 169        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 170
 171    /* set new table */
 172    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 173    stl_be_p(data, new_l1_size);
 174    stq_be_p(data + 4, new_l1_table_offset);
 175    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 176                           sizeof(data), data, 0);
 177    if (ret < 0) {
 178        goto fail;
 179    }
 180    qemu_vfree(s->l1_table);
 181    old_l1_table_offset = s->l1_table_offset;
 182    s->l1_table_offset = new_l1_table_offset;
 183    s->l1_table = new_l1_table;
 184    old_l1_size = s->l1_size;
 185    s->l1_size = new_l1_size;
 186    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
 187                        QCOW2_DISCARD_OTHER);
 188    return 0;
 189 fail:
 190    qemu_vfree(new_l1_table);
 191    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 192                        QCOW2_DISCARD_OTHER);
 193    return ret;
 194}
 195
 196/*
 197 * l2_load
 198 *
 199 * @bs: The BlockDriverState
 200 * @offset: A guest offset, used to calculate what slice of the L2
 201 *          table to load.
 202 * @l2_offset: Offset to the L2 table in the image file.
 203 * @l2_slice: Location to store the pointer to the L2 slice.
 204 *
 205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 206 * that are loaded by the qcow2 cache). If the slice is in the cache,
 207 * the cache is used; otherwise the L2 slice is loaded from the image
 208 * file.
 209 */
 210static int l2_load(BlockDriverState *bs, uint64_t offset,
 211                   uint64_t l2_offset, uint64_t **l2_slice)
 212{
 213    BDRVQcow2State *s = bs->opaque;
 214    int start_of_slice = l2_entry_size(s) *
 215        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 216
 217    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 218                           (void **)l2_slice);
 219}
 220
 221/*
 222 * Writes an L1 entry to disk (note that depending on the alignment
 223 * requirements this function may write more that just one entry in
 224 * order to prevent bdrv_pwrite from performing a read-modify-write)
 225 */
 226int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 227{
 228    BDRVQcow2State *s = bs->opaque;
 229    int l1_start_index;
 230    int i, ret;
 231    int bufsize = MAX(L1E_SIZE,
 232                      MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
 233    int nentries = bufsize / L1E_SIZE;
 234    g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
 235
 236    if (buf == NULL) {
 237        return -ENOMEM;
 238    }
 239
 240    l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
 241    for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
 242        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 243    }
 244
 245    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 246            s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
 247    if (ret < 0) {
 248        return ret;
 249    }
 250
 251    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 252    ret = bdrv_pwrite_sync(bs->file,
 253                           s->l1_table_offset + L1E_SIZE * l1_start_index,
 254                           bufsize, buf, 0);
 255    if (ret < 0) {
 256        return ret;
 257    }
 258
 259    return 0;
 260}
 261
 262/*
 263 * l2_allocate
 264 *
 265 * Allocate a new l2 entry in the file. If l1_index points to an already
 266 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 267 * table) copy the contents of the old L2 table into the newly allocated one.
 268 * Otherwise the new table is initialized with zeros.
 269 *
 270 */
 271
 272static int l2_allocate(BlockDriverState *bs, int l1_index)
 273{
 274    BDRVQcow2State *s = bs->opaque;
 275    uint64_t old_l2_offset;
 276    uint64_t *l2_slice = NULL;
 277    unsigned slice, slice_size2, n_slices;
 278    int64_t l2_offset;
 279    int ret;
 280
 281    old_l2_offset = s->l1_table[l1_index];
 282
 283    trace_qcow2_l2_allocate(bs, l1_index);
 284
 285    /* allocate a new l2 entry */
 286
 287    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
 288    if (l2_offset < 0) {
 289        ret = l2_offset;
 290        goto fail;
 291    }
 292
 293    /* The offset must fit in the offset field of the L1 table entry */
 294    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 295
 296    /* If we're allocating the table at offset 0 then something is wrong */
 297    if (l2_offset == 0) {
 298        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 299                                "allocation of L2 table at offset 0");
 300        ret = -EIO;
 301        goto fail;
 302    }
 303
 304    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 305    if (ret < 0) {
 306        goto fail;
 307    }
 308
 309    /* allocate a new entry in the l2 cache */
 310
 311    slice_size2 = s->l2_slice_size * l2_entry_size(s);
 312    n_slices = s->cluster_size / slice_size2;
 313
 314    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 315    for (slice = 0; slice < n_slices; slice++) {
 316        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 317                                    l2_offset + slice * slice_size2,
 318                                    (void **) &l2_slice);
 319        if (ret < 0) {
 320            goto fail;
 321        }
 322
 323        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 324            /* if there was no old l2 table, clear the new slice */
 325            memset(l2_slice, 0, slice_size2);
 326        } else {
 327            uint64_t *old_slice;
 328            uint64_t old_l2_slice_offset =
 329                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 330
 331            /* if there was an old l2 table, read a slice from the disk */
 332            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 333            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 334                                  (void **) &old_slice);
 335            if (ret < 0) {
 336                goto fail;
 337            }
 338
 339            memcpy(l2_slice, old_slice, slice_size2);
 340
 341            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 342        }
 343
 344        /* write the l2 slice to the file */
 345        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 346
 347        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 348        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 349        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 350    }
 351
 352    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 353    if (ret < 0) {
 354        goto fail;
 355    }
 356
 357    /* update the L1 entry */
 358    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 359    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 360    ret = qcow2_write_l1_entry(bs, l1_index);
 361    if (ret < 0) {
 362        goto fail;
 363    }
 364
 365    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 366    return 0;
 367
 368fail:
 369    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 370    if (l2_slice != NULL) {
 371        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 372    }
 373    s->l1_table[l1_index] = old_l2_offset;
 374    if (l2_offset > 0) {
 375        qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 376                            QCOW2_DISCARD_ALWAYS);
 377    }
 378    return ret;
 379}
 380
 381/*
 382 * For a given L2 entry, count the number of contiguous subclusters of
 383 * the same type starting from @sc_from. Compressed clusters are
 384 * treated as if they were divided into subclusters of size
 385 * s->subcluster_size.
 386 *
 387 * Return the number of contiguous subclusters and set @type to the
 388 * subcluster type.
 389 *
 390 * If the L2 entry is invalid return -errno and set @type to
 391 * QCOW2_SUBCLUSTER_INVALID.
 392 */
 393static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
 394                                           uint64_t l2_entry,
 395                                           uint64_t l2_bitmap,
 396                                           unsigned sc_from,
 397                                           QCow2SubclusterType *type)
 398{
 399    BDRVQcow2State *s = bs->opaque;
 400    uint32_t val;
 401
 402    *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
 403
 404    if (*type == QCOW2_SUBCLUSTER_INVALID) {
 405        return -EINVAL;
 406    } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
 407        return s->subclusters_per_cluster - sc_from;
 408    }
 409
 410    switch (*type) {
 411    case QCOW2_SUBCLUSTER_NORMAL:
 412        val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 413        return cto32(val) - sc_from;
 414
 415    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 416    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 417        val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
 418        return cto32(val) - sc_from;
 419
 420    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 421    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
 422        val = ((l2_bitmap >> 32) | l2_bitmap)
 423            & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 424        return ctz32(val) - sc_from;
 425
 426    default:
 427        g_assert_not_reached();
 428    }
 429}
 430
 431/*
 432 * Return the number of contiguous subclusters of the exact same type
 433 * in a given L2 slice, starting from cluster @l2_index, subcluster
 434 * @sc_index. Allocated subclusters are required to be contiguous in
 435 * the image file.
 436 * At most @nb_clusters are checked (note that this means clusters,
 437 * not subclusters).
 438 * Compressed clusters are always processed one by one but for the
 439 * purpose of this count they are treated as if they were divided into
 440 * subclusters of size s->subcluster_size.
 441 * On failure return -errno and update @l2_index to point to the
 442 * invalid entry.
 443 */
 444static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
 445                                        unsigned sc_index, uint64_t *l2_slice,
 446                                        unsigned *l2_index)
 447{
 448    BDRVQcow2State *s = bs->opaque;
 449    int i, count = 0;
 450    bool check_offset = false;
 451    uint64_t expected_offset = 0;
 452    QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
 453
 454    assert(*l2_index + nb_clusters <= s->l2_slice_size);
 455
 456    for (i = 0; i < nb_clusters; i++) {
 457        unsigned first_sc = (i == 0) ? sc_index : 0;
 458        uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
 459        uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
 460        int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
 461                                                  first_sc, &type);
 462        if (ret < 0) {
 463            *l2_index += i; /* Point to the invalid entry */
 464            return -EIO;
 465        }
 466        if (i == 0) {
 467            if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
 468                /* Compressed clusters are always processed one by one */
 469                return ret;
 470            }
 471            expected_type = type;
 472            expected_offset = l2_entry & L2E_OFFSET_MASK;
 473            check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
 474                            type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
 475                            type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
 476        } else if (type != expected_type) {
 477            break;
 478        } else if (check_offset) {
 479            expected_offset += s->cluster_size;
 480            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
 481                break;
 482            }
 483        }
 484        count += ret;
 485        /* Stop if there are type changes before the end of the cluster */
 486        if (first_sc + ret < s->subclusters_per_cluster) {
 487            break;
 488        }
 489    }
 490
 491    return count;
 492}
 493
 494static int coroutine_fn GRAPH_RDLOCK
 495do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset,
 496                    unsigned offset_in_cluster, QEMUIOVector *qiov)
 497{
 498    int ret;
 499
 500    if (qiov->size == 0) {
 501        return 0;
 502    }
 503
 504    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 505
 506    if (!bs->drv) {
 507        return -ENOMEDIUM;
 508    }
 509
 510    /*
 511     * We never deal with requests that don't satisfy
 512     * bdrv_check_qiov_request(), and aligning requests to clusters never
 513     * breaks this condition. So, do some assertions before calling
 514     * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
 515     */
 516    assert(src_cluster_offset <= INT64_MAX);
 517    assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
 518    /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
 519    assert((uint64_t)qiov->size <= INT64_MAX);
 520    bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
 521                            qiov, 0, &error_abort);
 522    /*
 523     * Call .bdrv_co_readv() directly instead of using the public block-layer
 524     * interface.  This avoids double I/O throttling and request tracking,
 525     * which can lead to deadlock when block layer copy-on-read is enabled.
 526     */
 527    ret = bs->drv->bdrv_co_preadv_part(bs,
 528                                       src_cluster_offset + offset_in_cluster,
 529                                       qiov->size, qiov, 0, 0);
 530    if (ret < 0) {
 531        return ret;
 532    }
 533
 534    return 0;
 535}
 536
 537static int coroutine_fn GRAPH_RDLOCK
 538do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset,
 539                     unsigned offset_in_cluster, QEMUIOVector *qiov)
 540{
 541    BDRVQcow2State *s = bs->opaque;
 542    int ret;
 543
 544    if (qiov->size == 0) {
 545        return 0;
 546    }
 547
 548    ret = qcow2_pre_write_overlap_check(bs, 0,
 549            cluster_offset + offset_in_cluster, qiov->size, true);
 550    if (ret < 0) {
 551        return ret;
 552    }
 553
 554    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 555    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 556                          qiov->size, qiov, 0);
 557    if (ret < 0) {
 558        return ret;
 559    }
 560
 561    return 0;
 562}
 563
 564
 565/*
 566 * get_host_offset
 567 *
 568 * For a given offset of the virtual disk find the equivalent host
 569 * offset in the qcow2 file and store it in *host_offset. Neither
 570 * offset needs to be aligned to a cluster boundary.
 571 *
 572 * If the cluster is unallocated then *host_offset will be 0.
 573 * If the cluster is compressed then *host_offset will contain the l2 entry.
 574 *
 575 * On entry, *bytes is the maximum number of contiguous bytes starting at
 576 * offset that we are interested in.
 577 *
 578 * On exit, *bytes is the number of bytes starting at offset that have the same
 579 * subcluster type and (if applicable) are stored contiguously in the image
 580 * file. The subcluster type is stored in *subcluster_type.
 581 * Compressed clusters are always processed one by one.
 582 *
 583 * Returns 0 on success, -errno in error cases.
 584 */
 585int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
 586                          unsigned int *bytes, uint64_t *host_offset,
 587                          QCow2SubclusterType *subcluster_type)
 588{
 589    BDRVQcow2State *s = bs->opaque;
 590    unsigned int l2_index, sc_index;
 591    uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
 592    int sc;
 593    unsigned int offset_in_cluster;
 594    uint64_t bytes_available, bytes_needed, nb_clusters;
 595    QCow2SubclusterType type;
 596    int ret;
 597
 598    offset_in_cluster = offset_into_cluster(s, offset);
 599    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 600
 601    /* compute how many bytes there are between the start of the cluster
 602     * containing offset and the end of the l2 slice that contains
 603     * the entry pointing to it */
 604    bytes_available =
 605        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 606        << s->cluster_bits;
 607
 608    if (bytes_needed > bytes_available) {
 609        bytes_needed = bytes_available;
 610    }
 611
 612    *host_offset = 0;
 613
 614    /* seek to the l2 offset in the l1 table */
 615
 616    l1_index = offset_to_l1_index(s, offset);
 617    if (l1_index >= s->l1_size) {
 618        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 619        goto out;
 620    }
 621
 622    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 623    if (!l2_offset) {
 624        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 625        goto out;
 626    }
 627
 628    if (offset_into_cluster(s, l2_offset)) {
 629        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 630                                " unaligned (L1 index: %#" PRIx64 ")",
 631                                l2_offset, l1_index);
 632        return -EIO;
 633    }
 634
 635    /* load the l2 slice in memory */
 636
 637    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 638    if (ret < 0) {
 639        return ret;
 640    }
 641
 642    /* find the cluster offset for the given disk offset */
 643
 644    l2_index = offset_to_l2_slice_index(s, offset);
 645    sc_index = offset_to_sc_index(s, offset);
 646    l2_entry = get_l2_entry(s, l2_slice, l2_index);
 647    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
 648
 649    nb_clusters = size_to_clusters(s, bytes_needed);
 650    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 651     * integers; the minimum cluster size is 512, so this assertion is always
 652     * true */
 653    assert(nb_clusters <= INT_MAX);
 654
 655    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
 656    if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
 657                                type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
 658        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 659                                " in pre-v3 image (L2 offset: %#" PRIx64
 660                                ", L2 index: %#x)", l2_offset, l2_index);
 661        ret = -EIO;
 662        goto fail;
 663    }
 664    switch (type) {
 665    case QCOW2_SUBCLUSTER_INVALID:
 666        break; /* This is handled by count_contiguous_subclusters() below */
 667    case QCOW2_SUBCLUSTER_COMPRESSED:
 668        if (has_data_file(bs)) {
 669            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 670                                    "entry found in image with external data "
 671                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 672                                    "%#x)", l2_offset, l2_index);
 673            ret = -EIO;
 674            goto fail;
 675        }
 676        *host_offset = l2_entry;
 677        break;
 678    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 679    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 680        break;
 681    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 682    case QCOW2_SUBCLUSTER_NORMAL:
 683    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
 684        uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
 685        *host_offset = host_cluster_offset + offset_in_cluster;
 686        if (offset_into_cluster(s, host_cluster_offset)) {
 687            qcow2_signal_corruption(bs, true, -1, -1,
 688                                    "Cluster allocation offset %#"
 689                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 690                                    ", L2 index: %#x)", host_cluster_offset,
 691                                    l2_offset, l2_index);
 692            ret = -EIO;
 693            goto fail;
 694        }
 695        if (has_data_file(bs) && *host_offset != offset) {
 696            qcow2_signal_corruption(bs, true, -1, -1,
 697                                    "External data file host cluster offset %#"
 698                                    PRIx64 " does not match guest cluster "
 699                                    "offset: %#" PRIx64
 700                                    ", L2 index: %#x)", host_cluster_offset,
 701                                    offset - offset_in_cluster, l2_index);
 702            ret = -EIO;
 703            goto fail;
 704        }
 705        break;
 706    }
 707    default:
 708        abort();
 709    }
 710
 711    sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
 712                                      l2_slice, &l2_index);
 713    if (sc < 0) {
 714        qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
 715                                " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
 716                                l2_offset, l2_index);
 717        ret = -EIO;
 718        goto fail;
 719    }
 720    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 721
 722    bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
 723
 724out:
 725    if (bytes_available > bytes_needed) {
 726        bytes_available = bytes_needed;
 727    }
 728
 729    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 730     * subtracting offset_in_cluster will therefore definitely yield something
 731     * not exceeding UINT_MAX */
 732    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 733    *bytes = bytes_available - offset_in_cluster;
 734
 735    *subcluster_type = type;
 736
 737    return 0;
 738
 739fail:
 740    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 741    return ret;
 742}
 743
 744/*
 745 * get_cluster_table
 746 *
 747 * for a given disk offset, load (and allocate if needed)
 748 * the appropriate slice of its l2 table.
 749 *
 750 * the cluster index in the l2 slice is given to the caller.
 751 *
 752 * Returns 0 on success, -errno in failure case
 753 */
 754static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 755                             uint64_t **new_l2_slice,
 756                             int *new_l2_index)
 757{
 758    BDRVQcow2State *s = bs->opaque;
 759    unsigned int l2_index;
 760    uint64_t l1_index, l2_offset;
 761    uint64_t *l2_slice = NULL;
 762    int ret;
 763
 764    /* seek to the l2 offset in the l1 table */
 765
 766    l1_index = offset_to_l1_index(s, offset);
 767    if (l1_index >= s->l1_size) {
 768        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 769        if (ret < 0) {
 770            return ret;
 771        }
 772    }
 773
 774    assert(l1_index < s->l1_size);
 775    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 776    if (offset_into_cluster(s, l2_offset)) {
 777        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 778                                " unaligned (L1 index: %#" PRIx64 ")",
 779                                l2_offset, l1_index);
 780        return -EIO;
 781    }
 782
 783    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 784        /* First allocate a new L2 table (and do COW if needed) */
 785        ret = l2_allocate(bs, l1_index);
 786        if (ret < 0) {
 787            return ret;
 788        }
 789
 790        /* Then decrease the refcount of the old table */
 791        if (l2_offset) {
 792            qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 793                                QCOW2_DISCARD_OTHER);
 794        }
 795
 796        /* Get the offset of the newly-allocated l2 table */
 797        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 798        assert(offset_into_cluster(s, l2_offset) == 0);
 799    }
 800
 801    /* load the l2 slice in memory */
 802    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 803    if (ret < 0) {
 804        return ret;
 805    }
 806
 807    /* find the cluster offset for the given disk offset */
 808
 809    l2_index = offset_to_l2_slice_index(s, offset);
 810
 811    *new_l2_slice = l2_slice;
 812    *new_l2_index = l2_index;
 813
 814    return 0;
 815}
 816
 817/*
 818 * alloc_compressed_cluster_offset
 819 *
 820 * For a given offset on the virtual disk, allocate a new compressed cluster
 821 * and put the host offset of the cluster into *host_offset. If a cluster is
 822 * already allocated at the offset, return an error.
 823 *
 824 * Return 0 on success and -errno in error cases
 825 */
 826int coroutine_fn qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 827                                                       uint64_t offset,
 828                                                       int compressed_size,
 829                                                       uint64_t *host_offset)
 830{
 831    BDRVQcow2State *s = bs->opaque;
 832    int l2_index, ret;
 833    uint64_t *l2_slice;
 834    int64_t cluster_offset;
 835    int nb_csectors;
 836
 837    if (has_data_file(bs)) {
 838        return 0;
 839    }
 840
 841    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 842    if (ret < 0) {
 843        return ret;
 844    }
 845
 846    /* Compression can't overwrite anything. Fail if the cluster was already
 847     * allocated. */
 848    cluster_offset = get_l2_entry(s, l2_slice, l2_index);
 849    if (cluster_offset & L2E_OFFSET_MASK) {
 850        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 851        return -EIO;
 852    }
 853
 854    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 855    if (cluster_offset < 0) {
 856        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 857        return cluster_offset;
 858    }
 859
 860    nb_csectors =
 861        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 862        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 863
 864    /* The offset and size must fit in their fields of the L2 table entry */
 865    assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
 866    assert((nb_csectors & s->csize_mask) == nb_csectors);
 867
 868    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 869                      ((uint64_t)nb_csectors << s->csize_shift);
 870
 871    /* update L2 table */
 872
 873    /* compressed clusters never have the copied flag */
 874
 875    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 876    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 877    set_l2_entry(s, l2_slice, l2_index, cluster_offset);
 878    if (has_subclusters(s)) {
 879        set_l2_bitmap(s, l2_slice, l2_index, 0);
 880    }
 881    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 882
 883    *host_offset = cluster_offset & s->cluster_offset_mask;
 884    return 0;
 885}
 886
 887static int coroutine_fn GRAPH_RDLOCK
 888perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 889{
 890    BDRVQcow2State *s = bs->opaque;
 891    Qcow2COWRegion *start = &m->cow_start;
 892    Qcow2COWRegion *end = &m->cow_end;
 893    unsigned buffer_size;
 894    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 895    bool merge_reads;
 896    uint8_t *start_buffer, *end_buffer;
 897    QEMUIOVector qiov;
 898    int ret;
 899
 900    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 901    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 902    assert(start->offset + start->nb_bytes <= end->offset);
 903
 904    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 905        return 0;
 906    }
 907
 908    /* If we have to read both the start and end COW regions and the
 909     * middle region is not too large then perform just one read
 910     * operation */
 911    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 912    if (merge_reads) {
 913        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 914    } else {
 915        /* If we have to do two reads, add some padding in the middle
 916         * if necessary to make sure that the end region is optimally
 917         * aligned. */
 918        size_t align = bdrv_opt_mem_align(bs);
 919        assert(align > 0 && align <= UINT_MAX);
 920        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 921               UINT_MAX - end->nb_bytes);
 922        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 923    }
 924
 925    /* Reserve a buffer large enough to store all the data that we're
 926     * going to read */
 927    start_buffer = qemu_try_blockalign(bs, buffer_size);
 928    if (start_buffer == NULL) {
 929        return -ENOMEM;
 930    }
 931    /* The part of the buffer where the end region is located */
 932    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 933
 934    qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
 935                                qemu_iovec_subvec_niov(m->data_qiov,
 936                                                       m->data_qiov_offset,
 937                                                       data_bytes)
 938                                : 0));
 939
 940    qemu_co_mutex_unlock(&s->lock);
 941    /* First we read the existing data from both COW regions. We
 942     * either read the whole region in one go, or the start and end
 943     * regions separately. */
 944    if (merge_reads) {
 945        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 946        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 947    } else {
 948        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 949        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 950        if (ret < 0) {
 951            goto fail;
 952        }
 953
 954        qemu_iovec_reset(&qiov);
 955        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 956        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 957    }
 958    if (ret < 0) {
 959        goto fail;
 960    }
 961
 962    /* Encrypt the data if necessary before writing it */
 963    if (bs->encrypted) {
 964        ret = qcow2_co_encrypt(bs,
 965                               m->alloc_offset + start->offset,
 966                               m->offset + start->offset,
 967                               start_buffer, start->nb_bytes);
 968        if (ret < 0) {
 969            goto fail;
 970        }
 971
 972        ret = qcow2_co_encrypt(bs,
 973                               m->alloc_offset + end->offset,
 974                               m->offset + end->offset,
 975                               end_buffer, end->nb_bytes);
 976        if (ret < 0) {
 977            goto fail;
 978        }
 979    }
 980
 981    /* And now we can write everything. If we have the guest data we
 982     * can write everything in one single operation */
 983    if (m->data_qiov) {
 984        qemu_iovec_reset(&qiov);
 985        if (start->nb_bytes) {
 986            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 987        }
 988        qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
 989        if (end->nb_bytes) {
 990            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 991        }
 992        /* NOTE: we have a write_aio blkdebug event here followed by
 993         * a cow_write one in do_perform_cow_write(), but there's only
 994         * one single I/O operation */
 995        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 996        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 997    } else {
 998        /* If there's no guest data then write both COW regions separately */
 999        qemu_iovec_reset(&qiov);
1000        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1001        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1002        if (ret < 0) {
1003            goto fail;
1004        }
1005
1006        qemu_iovec_reset(&qiov);
1007        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1008        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1009    }
1010
1011fail:
1012    qemu_co_mutex_lock(&s->lock);
1013
1014    /*
1015     * Before we update the L2 table to actually point to the new cluster, we
1016     * need to be sure that the refcounts have been increased and COW was
1017     * handled.
1018     */
1019    if (ret == 0) {
1020        qcow2_cache_depends_on_flush(s->l2_table_cache);
1021    }
1022
1023    qemu_vfree(start_buffer);
1024    qemu_iovec_destroy(&qiov);
1025    return ret;
1026}
1027
1028int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
1029                                             QCowL2Meta *m)
1030{
1031    BDRVQcow2State *s = bs->opaque;
1032    int i, j = 0, l2_index, ret;
1033    uint64_t *old_cluster, *l2_slice;
1034    uint64_t cluster_offset = m->alloc_offset;
1035
1036    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1037    assert(m->nb_clusters > 0);
1038
1039    old_cluster = g_try_new(uint64_t, m->nb_clusters);
1040    if (old_cluster == NULL) {
1041        ret = -ENOMEM;
1042        goto err;
1043    }
1044
1045    /* copy content of unmodified sectors */
1046    ret = perform_cow(bs, m);
1047    if (ret < 0) {
1048        goto err;
1049    }
1050
1051    /* Update L2 table. */
1052    if (s->use_lazy_refcounts) {
1053        qcow2_mark_dirty(bs);
1054    }
1055    if (qcow2_need_accurate_refcounts(s)) {
1056        qcow2_cache_set_dependency(bs, s->l2_table_cache,
1057                                   s->refcount_block_cache);
1058    }
1059
1060    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1061    if (ret < 0) {
1062        goto err;
1063    }
1064    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1065
1066    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1067    assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1068           m->nb_clusters << s->cluster_bits);
1069    for (i = 0; i < m->nb_clusters; i++) {
1070        uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1071        /* if two concurrent writes happen to the same unallocated cluster
1072         * each write allocates separate cluster and writes data concurrently.
1073         * The first one to complete updates l2 table with pointer to its
1074         * cluster the second one has to do RMW (which is done above by
1075         * perform_cow()), update l2 table with its cluster pointer and free
1076         * old cluster. This is what this loop does */
1077        if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1078            old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1079        }
1080
1081        /* The offset must fit in the offset field of the L2 table entry */
1082        assert((offset & L2E_OFFSET_MASK) == offset);
1083
1084        set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1085
1086        /* Update bitmap with the subclusters that were just written */
1087        if (has_subclusters(s) && !m->prealloc) {
1088            uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1089            unsigned written_from = m->cow_start.offset;
1090            unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1091            int first_sc, last_sc;
1092            /* Narrow written_from and written_to down to the current cluster */
1093            written_from = MAX(written_from, i << s->cluster_bits);
1094            written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1095            assert(written_from < written_to);
1096            first_sc = offset_to_sc_index(s, written_from);
1097            last_sc  = offset_to_sc_index(s, written_to - 1);
1098            l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1099            l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1100            set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1101        }
1102     }
1103
1104
1105    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1106
1107    /*
1108     * If this was a COW, we need to decrease the refcount of the old cluster.
1109     *
1110     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1111     * clusters), the next write will reuse them anyway.
1112     */
1113    if (!m->keep_old_clusters && j != 0) {
1114        for (i = 0; i < j; i++) {
1115            qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1116        }
1117    }
1118
1119    ret = 0;
1120err:
1121    g_free(old_cluster);
1122    return ret;
1123 }
1124
1125/**
1126 * Frees the allocated clusters because the request failed and they won't
1127 * actually be linked.
1128 */
1129void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1130{
1131    BDRVQcow2State *s = bs->opaque;
1132    if (!has_data_file(bs) && !m->keep_old_clusters) {
1133        qcow2_free_clusters(bs, m->alloc_offset,
1134                            m->nb_clusters << s->cluster_bits,
1135                            QCOW2_DISCARD_NEVER);
1136    }
1137}
1138
1139/*
1140 * For a given write request, create a new QCowL2Meta structure, add
1141 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1142 * request does not need copy-on-write or changes to the L2 metadata
1143 * then this function does nothing.
1144 *
1145 * @host_cluster_offset points to the beginning of the first cluster.
1146 *
1147 * @guest_offset and @bytes indicate the offset and length of the
1148 * request.
1149 *
1150 * @l2_slice contains the L2 entries of all clusters involved in this
1151 * write request.
1152 *
1153 * If @keep_old is true it means that the clusters were already
1154 * allocated and will be overwritten. If false then the clusters are
1155 * new and we have to decrease the reference count of the old ones.
1156 *
1157 * Returns 0 on success, -errno on failure.
1158 */
1159static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1160                             uint64_t guest_offset, unsigned bytes,
1161                             uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1162{
1163    BDRVQcow2State *s = bs->opaque;
1164    int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1165    uint64_t l2_entry, l2_bitmap;
1166    unsigned cow_start_from, cow_end_to;
1167    unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1168    unsigned cow_end_from = cow_start_to + bytes;
1169    unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1170    QCowL2Meta *old_m = *m;
1171    QCow2SubclusterType type;
1172    int i;
1173    bool skip_cow = keep_old;
1174
1175    assert(nb_clusters <= s->l2_slice_size - l2_index);
1176
1177    /* Check the type of all affected subclusters */
1178    for (i = 0; i < nb_clusters; i++) {
1179        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1180        l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1181        if (skip_cow) {
1182            unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1183            unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1184            int first_sc = offset_to_sc_index(s, write_from);
1185            int last_sc = offset_to_sc_index(s, write_to - 1);
1186            int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1187                                                      first_sc, &type);
1188            /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1189            if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1190                skip_cow = false;
1191            }
1192        } else {
1193            /* If we can't skip the cow we can still look for invalid entries */
1194            type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1195        }
1196        if (type == QCOW2_SUBCLUSTER_INVALID) {
1197            int l1_index = offset_to_l1_index(s, guest_offset);
1198            uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1199            qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1200                                    "entry found (L2 offset: %#" PRIx64
1201                                    ", L2 index: %#x)",
1202                                    l2_offset, l2_index + i);
1203            return -EIO;
1204        }
1205    }
1206
1207    if (skip_cow) {
1208        return 0;
1209    }
1210
1211    /* Get the L2 entry of the first cluster */
1212    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1213    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1214    sc_index = offset_to_sc_index(s, guest_offset);
1215    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1216
1217    if (!keep_old) {
1218        switch (type) {
1219        case QCOW2_SUBCLUSTER_COMPRESSED:
1220            cow_start_from = 0;
1221            break;
1222        case QCOW2_SUBCLUSTER_NORMAL:
1223        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1224        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1225            if (has_subclusters(s)) {
1226                /* Skip all leading zero and unallocated subclusters */
1227                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1228                cow_start_from =
1229                    MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1230            } else {
1231                cow_start_from = 0;
1232            }
1233            break;
1234        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1235        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1236            cow_start_from = sc_index << s->subcluster_bits;
1237            break;
1238        default:
1239            g_assert_not_reached();
1240        }
1241    } else {
1242        switch (type) {
1243        case QCOW2_SUBCLUSTER_NORMAL:
1244            cow_start_from = cow_start_to;
1245            break;
1246        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1247        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1248            cow_start_from = sc_index << s->subcluster_bits;
1249            break;
1250        default:
1251            g_assert_not_reached();
1252        }
1253    }
1254
1255    /* Get the L2 entry of the last cluster */
1256    l2_index += nb_clusters - 1;
1257    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1258    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1259    sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1260    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1261
1262    if (!keep_old) {
1263        switch (type) {
1264        case QCOW2_SUBCLUSTER_COMPRESSED:
1265            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1266            break;
1267        case QCOW2_SUBCLUSTER_NORMAL:
1268        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1269        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1270            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1271            if (has_subclusters(s)) {
1272                /* Skip all trailing zero and unallocated subclusters */
1273                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1274                cow_end_to -=
1275                    MIN(s->subclusters_per_cluster - sc_index - 1,
1276                        clz32(alloc_bitmap)) << s->subcluster_bits;
1277            }
1278            break;
1279        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1280        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1281            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1282            break;
1283        default:
1284            g_assert_not_reached();
1285        }
1286    } else {
1287        switch (type) {
1288        case QCOW2_SUBCLUSTER_NORMAL:
1289            cow_end_to = cow_end_from;
1290            break;
1291        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1292        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1293            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1294            break;
1295        default:
1296            g_assert_not_reached();
1297        }
1298    }
1299
1300    *m = g_malloc0(sizeof(**m));
1301    **m = (QCowL2Meta) {
1302        .next           = old_m,
1303
1304        .alloc_offset   = host_cluster_offset,
1305        .offset         = start_of_cluster(s, guest_offset),
1306        .nb_clusters    = nb_clusters,
1307
1308        .keep_old_clusters = keep_old,
1309
1310        .cow_start = {
1311            .offset     = cow_start_from,
1312            .nb_bytes   = cow_start_to - cow_start_from,
1313        },
1314        .cow_end = {
1315            .offset     = cow_end_from,
1316            .nb_bytes   = cow_end_to - cow_end_from,
1317        },
1318    };
1319
1320    qemu_co_queue_init(&(*m)->dependent_requests);
1321    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1322
1323    return 0;
1324}
1325
1326/*
1327 * Returns true if writing to the cluster pointed to by @l2_entry
1328 * requires a new allocation (that is, if the cluster is unallocated
1329 * or has refcount > 1 and therefore cannot be written in-place).
1330 */
1331static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1332{
1333    switch (qcow2_get_cluster_type(bs, l2_entry)) {
1334    case QCOW2_CLUSTER_NORMAL:
1335    case QCOW2_CLUSTER_ZERO_ALLOC:
1336        if (l2_entry & QCOW_OFLAG_COPIED) {
1337            return false;
1338        }
1339        /* fallthrough */
1340    case QCOW2_CLUSTER_UNALLOCATED:
1341    case QCOW2_CLUSTER_COMPRESSED:
1342    case QCOW2_CLUSTER_ZERO_PLAIN:
1343        return true;
1344    default:
1345        abort();
1346    }
1347}
1348
1349/*
1350 * Returns the number of contiguous clusters that can be written to
1351 * using one single write request, starting from @l2_index.
1352 * At most @nb_clusters are checked.
1353 *
1354 * If @new_alloc is true this counts clusters that are either
1355 * unallocated, or allocated but with refcount > 1 (so they need to be
1356 * newly allocated and COWed).
1357 *
1358 * If @new_alloc is false this counts clusters that are already
1359 * allocated and can be overwritten in-place (this includes clusters
1360 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1361 */
1362static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1363                                       uint64_t *l2_slice, int l2_index,
1364                                       bool new_alloc)
1365{
1366    BDRVQcow2State *s = bs->opaque;
1367    uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1368    uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1369    int i;
1370
1371    for (i = 0; i < nb_clusters; i++) {
1372        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1373        if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1374            break;
1375        }
1376        if (!new_alloc) {
1377            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1378                break;
1379            }
1380            expected_offset += s->cluster_size;
1381        }
1382    }
1383
1384    assert(i <= nb_clusters);
1385    return i;
1386}
1387
1388/*
1389 * Check if there already is an AIO write request in flight which allocates
1390 * the same cluster. In this case we need to wait until the previous
1391 * request has completed and updated the L2 table accordingly.
1392 *
1393 * Returns:
1394 *   0       if there was no dependency. *cur_bytes indicates the number of
1395 *           bytes from guest_offset that can be read before the next
1396 *           dependency must be processed (or the request is complete)
1397 *
1398 *   -EAGAIN if we had to wait for another request, previously gathered
1399 *           information on cluster allocation may be invalid now. The caller
1400 *           must start over anyway, so consider *cur_bytes undefined.
1401 */
1402static int coroutine_fn handle_dependencies(BlockDriverState *bs,
1403                                            uint64_t guest_offset,
1404                                            uint64_t *cur_bytes, QCowL2Meta **m)
1405{
1406    BDRVQcow2State *s = bs->opaque;
1407    QCowL2Meta *old_alloc;
1408    uint64_t bytes = *cur_bytes;
1409
1410    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1411
1412        uint64_t start = guest_offset;
1413        uint64_t end = start + bytes;
1414        uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1415        uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1416
1417        if (end <= old_start || start >= old_end) {
1418            /* No intersection */
1419            continue;
1420        }
1421
1422        if (old_alloc->keep_old_clusters &&
1423            (end <= l2meta_cow_start(old_alloc) ||
1424             start >= l2meta_cow_end(old_alloc)))
1425        {
1426            /*
1427             * Clusters intersect but COW areas don't. And cluster itself is
1428             * already allocated. So, there is no actual conflict.
1429             */
1430            continue;
1431        }
1432
1433        /* Conflict */
1434
1435        if (start < old_start) {
1436            /* Stop at the start of a running allocation */
1437            bytes = old_start - start;
1438        } else {
1439            bytes = 0;
1440        }
1441
1442        /*
1443         * Stop if an l2meta already exists. After yielding, it wouldn't
1444         * be valid any more, so we'd have to clean up the old L2Metas
1445         * and deal with requests depending on them before starting to
1446         * gather new ones. Not worth the trouble.
1447         */
1448        if (bytes == 0 && *m) {
1449            *cur_bytes = 0;
1450            return 0;
1451        }
1452
1453        if (bytes == 0) {
1454            /*
1455             * Wait for the dependency to complete. We need to recheck
1456             * the free/allocated clusters when we continue.
1457             */
1458            qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1459            return -EAGAIN;
1460        }
1461    }
1462
1463    /* Make sure that existing clusters and new allocations are only used up to
1464     * the next dependency if we shortened the request above */
1465    *cur_bytes = bytes;
1466
1467    return 0;
1468}
1469
1470/*
1471 * Checks how many already allocated clusters that don't require a new
1472 * allocation there are at the given guest_offset (up to *bytes).
1473 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1474 * beginning at this host offset are counted.
1475 *
1476 * Note that guest_offset may not be cluster aligned. In this case, the
1477 * returned *host_offset points to exact byte referenced by guest_offset and
1478 * therefore isn't cluster aligned as well.
1479 *
1480 * Returns:
1481 *   0:     if no allocated clusters are available at the given offset.
1482 *          *bytes is normally unchanged. It is set to 0 if the cluster
1483 *          is allocated and can be overwritten in-place but doesn't have
1484 *          the right physical offset.
1485 *
1486 *   1:     if allocated clusters that can be overwritten in place are
1487 *          available at the requested offset. *bytes may have decreased
1488 *          and describes the length of the area that can be written to.
1489 *
1490 *  -errno: in error cases
1491 */
1492static int coroutine_fn handle_copied(BlockDriverState *bs,
1493    uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1494    QCowL2Meta **m)
1495{
1496    BDRVQcow2State *s = bs->opaque;
1497    int l2_index;
1498    uint64_t l2_entry, cluster_offset;
1499    uint64_t *l2_slice;
1500    uint64_t nb_clusters;
1501    unsigned int keep_clusters;
1502    int ret;
1503
1504    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1505                              *bytes);
1506
1507    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1508                                      == offset_into_cluster(s, *host_offset));
1509
1510    /*
1511     * Calculate the number of clusters to look for. We stop at L2 slice
1512     * boundaries to keep things simple.
1513     */
1514    nb_clusters =
1515        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1516
1517    l2_index = offset_to_l2_slice_index(s, guest_offset);
1518    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1519    /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1520    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1521
1522    /* Find L2 entry for the first involved cluster */
1523    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1524    if (ret < 0) {
1525        return ret;
1526    }
1527
1528    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1529    cluster_offset = l2_entry & L2E_OFFSET_MASK;
1530
1531    if (!cluster_needs_new_alloc(bs, l2_entry)) {
1532        if (offset_into_cluster(s, cluster_offset)) {
1533            qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1534                                    "%#" PRIx64 " unaligned (guest offset: %#"
1535                                    PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1536                                    "Preallocated zero" : "Data",
1537                                    cluster_offset, guest_offset);
1538            ret = -EIO;
1539            goto out;
1540        }
1541
1542        /* If a specific host_offset is required, check it */
1543        if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1544            *bytes = 0;
1545            ret = 0;
1546            goto out;
1547        }
1548
1549        /* We keep all QCOW_OFLAG_COPIED clusters */
1550        keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1551                                                    l2_index, false);
1552        assert(keep_clusters <= nb_clusters);
1553
1554        *bytes = MIN(*bytes,
1555                 keep_clusters * s->cluster_size
1556                 - offset_into_cluster(s, guest_offset));
1557        assert(*bytes != 0);
1558
1559        ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1560                                *bytes, l2_slice, m, true);
1561        if (ret < 0) {
1562            goto out;
1563        }
1564
1565        ret = 1;
1566    } else {
1567        ret = 0;
1568    }
1569
1570    /* Cleanup */
1571out:
1572    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1573
1574    /* Only return a host offset if we actually made progress. Otherwise we
1575     * would make requirements for handle_alloc() that it can't fulfill */
1576    if (ret > 0) {
1577        *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1578    }
1579
1580    return ret;
1581}
1582
1583/*
1584 * Allocates new clusters for the given guest_offset.
1585 *
1586 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1587 * contain the number of clusters that have been allocated and are contiguous
1588 * in the image file.
1589 *
1590 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1591 * at which the new clusters must start. *nb_clusters can be 0 on return in
1592 * this case if the cluster at host_offset is already in use. If *host_offset
1593 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1594 *
1595 * *host_offset is updated to contain the offset into the image file at which
1596 * the first allocated cluster starts.
1597 *
1598 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1599 * function has been waiting for another request and the allocation must be
1600 * restarted, but the whole request should not be failed.
1601 */
1602static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1603                                   uint64_t *host_offset, uint64_t *nb_clusters)
1604{
1605    BDRVQcow2State *s = bs->opaque;
1606
1607    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1608                                         *host_offset, *nb_clusters);
1609
1610    if (has_data_file(bs)) {
1611        assert(*host_offset == INV_OFFSET ||
1612               *host_offset == start_of_cluster(s, guest_offset));
1613        *host_offset = start_of_cluster(s, guest_offset);
1614        return 0;
1615    }
1616
1617    /* Allocate new clusters */
1618    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1619    if (*host_offset == INV_OFFSET) {
1620        int64_t cluster_offset =
1621            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1622        if (cluster_offset < 0) {
1623            return cluster_offset;
1624        }
1625        *host_offset = cluster_offset;
1626        return 0;
1627    } else {
1628        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1629        if (ret < 0) {
1630            return ret;
1631        }
1632        *nb_clusters = ret;
1633        return 0;
1634    }
1635}
1636
1637/*
1638 * Allocates new clusters for an area that is either still unallocated or
1639 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1640 * clusters are only allocated if the new allocation can match the specified
1641 * host offset.
1642 *
1643 * Note that guest_offset may not be cluster aligned. In this case, the
1644 * returned *host_offset points to exact byte referenced by guest_offset and
1645 * therefore isn't cluster aligned as well.
1646 *
1647 * Returns:
1648 *   0:     if no clusters could be allocated. *bytes is set to 0,
1649 *          *host_offset is left unchanged.
1650 *
1651 *   1:     if new clusters were allocated. *bytes may be decreased if the
1652 *          new allocation doesn't cover all of the requested area.
1653 *          *host_offset is updated to contain the host offset of the first
1654 *          newly allocated cluster.
1655 *
1656 *  -errno: in error cases
1657 */
1658static int coroutine_fn handle_alloc(BlockDriverState *bs,
1659    uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1660    QCowL2Meta **m)
1661{
1662    BDRVQcow2State *s = bs->opaque;
1663    int l2_index;
1664    uint64_t *l2_slice;
1665    uint64_t nb_clusters;
1666    int ret;
1667
1668    uint64_t alloc_cluster_offset;
1669
1670    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1671                             *bytes);
1672    assert(*bytes > 0);
1673
1674    /*
1675     * Calculate the number of clusters to look for. We stop at L2 slice
1676     * boundaries to keep things simple.
1677     */
1678    nb_clusters =
1679        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1680
1681    l2_index = offset_to_l2_slice_index(s, guest_offset);
1682    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1683    /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1684    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1685
1686    /* Find L2 entry for the first involved cluster */
1687    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1688    if (ret < 0) {
1689        return ret;
1690    }
1691
1692    nb_clusters = count_single_write_clusters(bs, nb_clusters,
1693                                              l2_slice, l2_index, true);
1694
1695    /* This function is only called when there were no non-COW clusters, so if
1696     * we can't find any unallocated or COW clusters either, something is
1697     * wrong with our code. */
1698    assert(nb_clusters > 0);
1699
1700    /* Allocate at a given offset in the image file */
1701    alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1702        start_of_cluster(s, *host_offset);
1703    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1704                                  &nb_clusters);
1705    if (ret < 0) {
1706        goto out;
1707    }
1708
1709    /* Can't extend contiguous allocation */
1710    if (nb_clusters == 0) {
1711        *bytes = 0;
1712        ret = 0;
1713        goto out;
1714    }
1715
1716    assert(alloc_cluster_offset != INV_OFFSET);
1717
1718    /*
1719     * Save info needed for meta data update.
1720     *
1721     * requested_bytes: Number of bytes from the start of the first
1722     * newly allocated cluster to the end of the (possibly shortened
1723     * before) write request.
1724     *
1725     * avail_bytes: Number of bytes from the start of the first
1726     * newly allocated to the end of the last newly allocated cluster.
1727     *
1728     * nb_bytes: The number of bytes from the start of the first
1729     * newly allocated cluster to the end of the area that the write
1730     * request actually writes to (excluding COW at the end)
1731     */
1732    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1733    int avail_bytes = nb_clusters << s->cluster_bits;
1734    int nb_bytes = MIN(requested_bytes, avail_bytes);
1735
1736    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1737    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1738    assert(*bytes != 0);
1739
1740    ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1741                            l2_slice, m, false);
1742    if (ret < 0) {
1743        goto out;
1744    }
1745
1746    ret = 1;
1747
1748out:
1749    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1750    return ret;
1751}
1752
1753/*
1754 * For a given area on the virtual disk defined by @offset and @bytes,
1755 * find the corresponding area on the qcow2 image, allocating new
1756 * clusters (or subclusters) if necessary. The result can span a
1757 * combination of allocated and previously unallocated clusters.
1758 *
1759 * Note that offset may not be cluster aligned. In this case, the returned
1760 * *host_offset points to exact byte referenced by offset and therefore
1761 * isn't cluster aligned as well.
1762 *
1763 * On return, @host_offset is set to the beginning of the requested
1764 * area. This area is guaranteed to be contiguous on the qcow2 file
1765 * but it can be smaller than initially requested. In this case @bytes
1766 * is updated with the actual size.
1767 *
1768 * If any clusters or subclusters were allocated then @m contains a
1769 * list with the information of all the affected regions. Note that
1770 * this can happen regardless of whether this function succeeds or
1771 * not. The caller is responsible for updating the L2 metadata of the
1772 * allocated clusters (on success) or freeing them (on failure), and
1773 * for clearing the contents of @m afterwards in both cases.
1774 *
1775 * If the request conflicts with another write request in flight, the coroutine
1776 * is queued and will be reentered when the dependency has completed.
1777 *
1778 * Return 0 on success and -errno in error cases
1779 */
1780int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1781                                         unsigned int *bytes,
1782                                         uint64_t *host_offset,
1783                                         QCowL2Meta **m)
1784{
1785    BDRVQcow2State *s = bs->opaque;
1786    uint64_t start, remaining;
1787    uint64_t cluster_offset;
1788    uint64_t cur_bytes;
1789    int ret;
1790
1791    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1792
1793again:
1794    start = offset;
1795    remaining = *bytes;
1796    cluster_offset = INV_OFFSET;
1797    *host_offset = INV_OFFSET;
1798    cur_bytes = 0;
1799    *m = NULL;
1800
1801    while (true) {
1802
1803        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1804            *host_offset = cluster_offset;
1805        }
1806
1807        assert(remaining >= cur_bytes);
1808
1809        start           += cur_bytes;
1810        remaining       -= cur_bytes;
1811
1812        if (cluster_offset != INV_OFFSET) {
1813            cluster_offset += cur_bytes;
1814        }
1815
1816        if (remaining == 0) {
1817            break;
1818        }
1819
1820        cur_bytes = remaining;
1821
1822        /*
1823         * Now start gathering as many contiguous clusters as possible:
1824         *
1825         * 1. Check for overlaps with in-flight allocations
1826         *
1827         *      a) Overlap not in the first cluster -> shorten this request and
1828         *         let the caller handle the rest in its next loop iteration.
1829         *
1830         *      b) Real overlaps of two requests. Yield and restart the search
1831         *         for contiguous clusters (the situation could have changed
1832         *         while we were sleeping)
1833         *
1834         *      c) TODO: Request starts in the same cluster as the in-flight
1835         *         allocation ends. Shorten the COW of the in-fight allocation,
1836         *         set cluster_offset to write to the same cluster and set up
1837         *         the right synchronisation between the in-flight request and
1838         *         the new one.
1839         */
1840        ret = handle_dependencies(bs, start, &cur_bytes, m);
1841        if (ret == -EAGAIN) {
1842            /* Currently handle_dependencies() doesn't yield if we already had
1843             * an allocation. If it did, we would have to clean up the L2Meta
1844             * structs before starting over. */
1845            assert(*m == NULL);
1846            goto again;
1847        } else if (ret < 0) {
1848            return ret;
1849        } else if (cur_bytes == 0) {
1850            break;
1851        } else {
1852            /* handle_dependencies() may have decreased cur_bytes (shortened
1853             * the allocations below) so that the next dependency is processed
1854             * correctly during the next loop iteration. */
1855        }
1856
1857        /*
1858         * 2. Count contiguous COPIED clusters.
1859         */
1860        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1861        if (ret < 0) {
1862            return ret;
1863        } else if (ret) {
1864            continue;
1865        } else if (cur_bytes == 0) {
1866            break;
1867        }
1868
1869        /*
1870         * 3. If the request still hasn't completed, allocate new clusters,
1871         *    considering any cluster_offset of steps 1c or 2.
1872         */
1873        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1874        if (ret < 0) {
1875            return ret;
1876        } else if (ret) {
1877            continue;
1878        } else {
1879            assert(cur_bytes == 0);
1880            break;
1881        }
1882    }
1883
1884    *bytes -= remaining;
1885    assert(*bytes > 0);
1886    assert(*host_offset != INV_OFFSET);
1887    assert(offset_into_cluster(s, *host_offset) ==
1888           offset_into_cluster(s, offset));
1889
1890    return 0;
1891}
1892
1893/*
1894 * This discards as many clusters of nb_clusters as possible at once (i.e.
1895 * all clusters in the same L2 slice) and returns the number of discarded
1896 * clusters.
1897 */
1898static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1899                               uint64_t nb_clusters,
1900                               enum qcow2_discard_type type, bool full_discard)
1901{
1902    BDRVQcow2State *s = bs->opaque;
1903    uint64_t *l2_slice;
1904    int l2_index;
1905    int ret;
1906    int i;
1907
1908    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1909    if (ret < 0) {
1910        return ret;
1911    }
1912
1913    /* Limit nb_clusters to one L2 slice */
1914    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1915    assert(nb_clusters <= INT_MAX);
1916
1917    for (i = 0; i < nb_clusters; i++) {
1918        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1919        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1920        uint64_t new_l2_entry = old_l2_entry;
1921        uint64_t new_l2_bitmap = old_l2_bitmap;
1922        QCow2ClusterType cluster_type =
1923            qcow2_get_cluster_type(bs, old_l2_entry);
1924
1925        /*
1926         * If full_discard is true, the cluster should not read back as zeroes,
1927         * but rather fall through to the backing file.
1928         *
1929         * If full_discard is false, make sure that a discarded area reads back
1930         * as zeroes for v3 images (we cannot do it for v2 without actually
1931         * writing a zero-filled buffer). We can skip the operation if the
1932         * cluster is already marked as zero, or if it's unallocated and we
1933         * don't have a backing file.
1934         *
1935         * TODO We might want to use bdrv_block_status(bs) here, but we're
1936         * holding s->lock, so that doesn't work today.
1937         */
1938        if (full_discard) {
1939            new_l2_entry = new_l2_bitmap = 0;
1940        } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1941            if (has_subclusters(s)) {
1942                new_l2_entry = 0;
1943                new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1944            } else {
1945                new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1946            }
1947        }
1948
1949        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1950            continue;
1951        }
1952
1953        /* First remove L2 entries */
1954        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1955        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1956        if (has_subclusters(s)) {
1957            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1958        }
1959        /* Then decrease the refcount */
1960        qcow2_free_any_cluster(bs, old_l2_entry, type);
1961    }
1962
1963    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1964
1965    return nb_clusters;
1966}
1967
1968int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1969                          uint64_t bytes, enum qcow2_discard_type type,
1970                          bool full_discard)
1971{
1972    BDRVQcow2State *s = bs->opaque;
1973    uint64_t end_offset = offset + bytes;
1974    uint64_t nb_clusters;
1975    int64_t cleared;
1976    int ret;
1977
1978    /* Caller must pass aligned values, except at image end */
1979    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1980    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1981           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1982
1983    nb_clusters = size_to_clusters(s, bytes);
1984
1985    s->cache_discards = true;
1986
1987    /* Each L2 slice is handled by its own loop iteration */
1988    while (nb_clusters > 0) {
1989        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1990                                      full_discard);
1991        if (cleared < 0) {
1992            ret = cleared;
1993            goto fail;
1994        }
1995
1996        nb_clusters -= cleared;
1997        offset += (cleared * s->cluster_size);
1998    }
1999
2000    ret = 0;
2001fail:
2002    s->cache_discards = false;
2003    qcow2_process_discards(bs, ret);
2004
2005    return ret;
2006}
2007
2008/*
2009 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2010 * all clusters in the same L2 slice) and returns the number of zeroed
2011 * clusters.
2012 */
2013static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2014                            uint64_t nb_clusters, int flags)
2015{
2016    BDRVQcow2State *s = bs->opaque;
2017    uint64_t *l2_slice;
2018    int l2_index;
2019    int ret;
2020    int i;
2021
2022    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2023    if (ret < 0) {
2024        return ret;
2025    }
2026
2027    /* Limit nb_clusters to one L2 slice */
2028    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2029    assert(nb_clusters <= INT_MAX);
2030
2031    for (i = 0; i < nb_clusters; i++) {
2032        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2033        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2034        QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2035        bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2036            ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2037        uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2038        uint64_t new_l2_bitmap = old_l2_bitmap;
2039
2040        if (has_subclusters(s)) {
2041            new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2042        } else {
2043            new_l2_entry |= QCOW_OFLAG_ZERO;
2044        }
2045
2046        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2047            continue;
2048        }
2049
2050        /* First update L2 entries */
2051        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2052        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2053        if (has_subclusters(s)) {
2054            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2055        }
2056
2057        /* Then decrease the refcount */
2058        if (unmap) {
2059            qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2060        }
2061    }
2062
2063    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2064
2065    return nb_clusters;
2066}
2067
2068static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2069                               unsigned nb_subclusters)
2070{
2071    BDRVQcow2State *s = bs->opaque;
2072    uint64_t *l2_slice;
2073    uint64_t old_l2_bitmap, l2_bitmap;
2074    int l2_index, ret, sc = offset_to_sc_index(s, offset);
2075
2076    /* For full clusters use zero_in_l2_slice() instead */
2077    assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2078    assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2079    assert(offset_into_subcluster(s, offset) == 0);
2080
2081    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2082    if (ret < 0) {
2083        return ret;
2084    }
2085
2086    switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2087    case QCOW2_CLUSTER_COMPRESSED:
2088        ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2089        goto out;
2090    case QCOW2_CLUSTER_NORMAL:
2091    case QCOW2_CLUSTER_UNALLOCATED:
2092        break;
2093    default:
2094        g_assert_not_reached();
2095    }
2096
2097    old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2098
2099    l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2100    l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2101
2102    if (old_l2_bitmap != l2_bitmap) {
2103        set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2104        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2105    }
2106
2107    ret = 0;
2108out:
2109    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2110
2111    return ret;
2112}
2113
2114int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2115                                          uint64_t bytes, int flags)
2116{
2117    BDRVQcow2State *s = bs->opaque;
2118    uint64_t end_offset = offset + bytes;
2119    uint64_t nb_clusters;
2120    unsigned head, tail;
2121    int64_t cleared;
2122    int ret;
2123
2124    /* If we have to stay in sync with an external data file, zero out
2125     * s->data_file first. */
2126    if (data_file_is_raw(bs)) {
2127        assert(has_data_file(bs));
2128        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2129        if (ret < 0) {
2130            return ret;
2131        }
2132    }
2133
2134    /* Caller must pass aligned values, except at image end */
2135    assert(offset_into_subcluster(s, offset) == 0);
2136    assert(offset_into_subcluster(s, end_offset) == 0 ||
2137           end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2138
2139    /*
2140     * The zero flag is only supported by version 3 and newer. However, if we
2141     * have no backing file, we can resort to discard in version 2.
2142     */
2143    if (s->qcow_version < 3) {
2144        if (!bs->backing) {
2145            return qcow2_cluster_discard(bs, offset, bytes,
2146                                         QCOW2_DISCARD_REQUEST, false);
2147        }
2148        return -ENOTSUP;
2149    }
2150
2151    head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2152    offset += head;
2153
2154    tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2155        end_offset - MAX(offset, start_of_cluster(s, end_offset));
2156    end_offset -= tail;
2157
2158    s->cache_discards = true;
2159
2160    if (head) {
2161        ret = zero_l2_subclusters(bs, offset - head,
2162                                  size_to_subclusters(s, head));
2163        if (ret < 0) {
2164            goto fail;
2165        }
2166    }
2167
2168    /* Each L2 slice is handled by its own loop iteration */
2169    nb_clusters = size_to_clusters(s, end_offset - offset);
2170
2171    while (nb_clusters > 0) {
2172        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2173        if (cleared < 0) {
2174            ret = cleared;
2175            goto fail;
2176        }
2177
2178        nb_clusters -= cleared;
2179        offset += (cleared * s->cluster_size);
2180    }
2181
2182    if (tail) {
2183        ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2184        if (ret < 0) {
2185            goto fail;
2186        }
2187    }
2188
2189    ret = 0;
2190fail:
2191    s->cache_discards = false;
2192    qcow2_process_discards(bs, ret);
2193
2194    return ret;
2195}
2196
2197/*
2198 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2199 * non-backed non-pre-allocated zero clusters).
2200 *
2201 * l1_entries and *visited_l1_entries are used to keep track of progress for
2202 * status_cb(). l1_entries contains the total number of L1 entries and
2203 * *visited_l1_entries counts all visited L1 entries.
2204 */
2205static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2206                                      int l1_size, int64_t *visited_l1_entries,
2207                                      int64_t l1_entries,
2208                                      BlockDriverAmendStatusCB *status_cb,
2209                                      void *cb_opaque)
2210{
2211    BDRVQcow2State *s = bs->opaque;
2212    bool is_active_l1 = (l1_table == s->l1_table);
2213    uint64_t *l2_slice = NULL;
2214    unsigned slice, slice_size2, n_slices;
2215    int ret;
2216    int i, j;
2217
2218    /* qcow2_downgrade() is not allowed in images with subclusters */
2219    assert(!has_subclusters(s));
2220
2221    slice_size2 = s->l2_slice_size * l2_entry_size(s);
2222    n_slices = s->cluster_size / slice_size2;
2223
2224    if (!is_active_l1) {
2225        /* inactive L2 tables require a buffer to be stored in when loading
2226         * them from disk */
2227        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2228        if (l2_slice == NULL) {
2229            return -ENOMEM;
2230        }
2231    }
2232
2233    for (i = 0; i < l1_size; i++) {
2234        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2235        uint64_t l2_refcount;
2236
2237        if (!l2_offset) {
2238            /* unallocated */
2239            (*visited_l1_entries)++;
2240            if (status_cb) {
2241                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2242            }
2243            continue;
2244        }
2245
2246        if (offset_into_cluster(s, l2_offset)) {
2247            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2248                                    PRIx64 " unaligned (L1 index: %#x)",
2249                                    l2_offset, i);
2250            ret = -EIO;
2251            goto fail;
2252        }
2253
2254        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2255                                 &l2_refcount);
2256        if (ret < 0) {
2257            goto fail;
2258        }
2259
2260        for (slice = 0; slice < n_slices; slice++) {
2261            uint64_t slice_offset = l2_offset + slice * slice_size2;
2262            bool l2_dirty = false;
2263            if (is_active_l1) {
2264                /* get active L2 tables from cache */
2265                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2266                                      (void **)&l2_slice);
2267            } else {
2268                /* load inactive L2 tables from disk */
2269                ret = bdrv_pread(bs->file, slice_offset, slice_size2,
2270                                 l2_slice, 0);
2271            }
2272            if (ret < 0) {
2273                goto fail;
2274            }
2275
2276            for (j = 0; j < s->l2_slice_size; j++) {
2277                uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2278                int64_t offset = l2_entry & L2E_OFFSET_MASK;
2279                QCow2ClusterType cluster_type =
2280                    qcow2_get_cluster_type(bs, l2_entry);
2281
2282                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2283                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2284                    continue;
2285                }
2286
2287                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2288                    if (!bs->backing) {
2289                        /*
2290                         * not backed; therefore we can simply deallocate the
2291                         * cluster. No need to call set_l2_bitmap(), this
2292                         * function doesn't support images with subclusters.
2293                         */
2294                        set_l2_entry(s, l2_slice, j, 0);
2295                        l2_dirty = true;
2296                        continue;
2297                    }
2298
2299                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
2300                    if (offset < 0) {
2301                        ret = offset;
2302                        goto fail;
2303                    }
2304
2305                    /* The offset must fit in the offset field */
2306                    assert((offset & L2E_OFFSET_MASK) == offset);
2307
2308                    if (l2_refcount > 1) {
2309                        /* For shared L2 tables, set the refcount accordingly
2310                         * (it is already 1 and needs to be l2_refcount) */
2311                        ret = qcow2_update_cluster_refcount(
2312                            bs, offset >> s->cluster_bits,
2313                            refcount_diff(1, l2_refcount), false,
2314                            QCOW2_DISCARD_OTHER);
2315                        if (ret < 0) {
2316                            qcow2_free_clusters(bs, offset, s->cluster_size,
2317                                                QCOW2_DISCARD_OTHER);
2318                            goto fail;
2319                        }
2320                    }
2321                }
2322
2323                if (offset_into_cluster(s, offset)) {
2324                    int l2_index = slice * s->l2_slice_size + j;
2325                    qcow2_signal_corruption(
2326                        bs, true, -1, -1,
2327                        "Cluster allocation offset "
2328                        "%#" PRIx64 " unaligned (L2 offset: %#"
2329                        PRIx64 ", L2 index: %#x)", offset,
2330                        l2_offset, l2_index);
2331                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2332                        qcow2_free_clusters(bs, offset, s->cluster_size,
2333                                            QCOW2_DISCARD_ALWAYS);
2334                    }
2335                    ret = -EIO;
2336                    goto fail;
2337                }
2338
2339                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2340                                                    s->cluster_size, true);
2341                if (ret < 0) {
2342                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2343                        qcow2_free_clusters(bs, offset, s->cluster_size,
2344                                            QCOW2_DISCARD_ALWAYS);
2345                    }
2346                    goto fail;
2347                }
2348
2349                ret = bdrv_pwrite_zeroes(s->data_file, offset,
2350                                         s->cluster_size, 0);
2351                if (ret < 0) {
2352                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2353                        qcow2_free_clusters(bs, offset, s->cluster_size,
2354                                            QCOW2_DISCARD_ALWAYS);
2355                    }
2356                    goto fail;
2357                }
2358
2359                if (l2_refcount == 1) {
2360                    set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2361                } else {
2362                    set_l2_entry(s, l2_slice, j, offset);
2363                }
2364                /*
2365                 * No need to call set_l2_bitmap() after set_l2_entry() because
2366                 * this function doesn't support images with subclusters.
2367                 */
2368                l2_dirty = true;
2369            }
2370
2371            if (is_active_l1) {
2372                if (l2_dirty) {
2373                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2374                    qcow2_cache_depends_on_flush(s->l2_table_cache);
2375                }
2376                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2377            } else {
2378                if (l2_dirty) {
2379                    ret = qcow2_pre_write_overlap_check(
2380                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2381                        slice_offset, slice_size2, false);
2382                    if (ret < 0) {
2383                        goto fail;
2384                    }
2385
2386                    ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
2387                                      l2_slice, 0);
2388                    if (ret < 0) {
2389                        goto fail;
2390                    }
2391                }
2392            }
2393        }
2394
2395        (*visited_l1_entries)++;
2396        if (status_cb) {
2397            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2398        }
2399    }
2400
2401    ret = 0;
2402
2403fail:
2404    if (l2_slice) {
2405        if (!is_active_l1) {
2406            qemu_vfree(l2_slice);
2407        } else {
2408            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2409        }
2410    }
2411    return ret;
2412}
2413
2414/*
2415 * For backed images, expands all zero clusters on the image. For non-backed
2416 * images, deallocates all non-pre-allocated zero clusters (and claims the
2417 * allocation for pre-allocated ones). This is important for downgrading to a
2418 * qcow2 version which doesn't yet support metadata zero clusters.
2419 */
2420int qcow2_expand_zero_clusters(BlockDriverState *bs,
2421                               BlockDriverAmendStatusCB *status_cb,
2422                               void *cb_opaque)
2423{
2424    BDRVQcow2State *s = bs->opaque;
2425    uint64_t *l1_table = NULL;
2426    int64_t l1_entries = 0, visited_l1_entries = 0;
2427    int ret;
2428    int i, j;
2429
2430    if (status_cb) {
2431        l1_entries = s->l1_size;
2432        for (i = 0; i < s->nb_snapshots; i++) {
2433            l1_entries += s->snapshots[i].l1_size;
2434        }
2435    }
2436
2437    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2438                                     &visited_l1_entries, l1_entries,
2439                                     status_cb, cb_opaque);
2440    if (ret < 0) {
2441        goto fail;
2442    }
2443
2444    /* Inactive L1 tables may point to active L2 tables - therefore it is
2445     * necessary to flush the L2 table cache before trying to access the L2
2446     * tables pointed to by inactive L1 entries (else we might try to expand
2447     * zero clusters that have already been expanded); furthermore, it is also
2448     * necessary to empty the L2 table cache, since it may contain tables which
2449     * are now going to be modified directly on disk, bypassing the cache.
2450     * qcow2_cache_empty() does both for us. */
2451    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2452    if (ret < 0) {
2453        goto fail;
2454    }
2455
2456    for (i = 0; i < s->nb_snapshots; i++) {
2457        int l1_size2;
2458        uint64_t *new_l1_table;
2459        Error *local_err = NULL;
2460
2461        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2462                                   s->snapshots[i].l1_size, L1E_SIZE,
2463                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2464                                   &local_err);
2465        if (ret < 0) {
2466            error_report_err(local_err);
2467            goto fail;
2468        }
2469
2470        l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2471        new_l1_table = g_try_realloc(l1_table, l1_size2);
2472
2473        if (!new_l1_table) {
2474            ret = -ENOMEM;
2475            goto fail;
2476        }
2477
2478        l1_table = new_l1_table;
2479
2480        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
2481                         l1_table, 0);
2482        if (ret < 0) {
2483            goto fail;
2484        }
2485
2486        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2487            be64_to_cpus(&l1_table[j]);
2488        }
2489
2490        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2491                                         &visited_l1_entries, l1_entries,
2492                                         status_cb, cb_opaque);
2493        if (ret < 0) {
2494            goto fail;
2495        }
2496    }
2497
2498    ret = 0;
2499
2500fail:
2501    g_free(l1_table);
2502    return ret;
2503}
2504
2505void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2506                                     uint64_t *coffset, int *csize)
2507{
2508    BDRVQcow2State *s = bs->opaque;
2509    int nb_csectors;
2510
2511    assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2512
2513    *coffset = l2_entry & s->cluster_offset_mask;
2514
2515    nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2516    *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2517        (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2518}
2519