qemu/hw/mips/malta.c
<<
>>
Prefs
   1/*
   2 * QEMU Malta board support
   3 *
   4 * Copyright (c) 2006 Aurelien Jarno
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qemu/bitops.h"
  28#include "qemu/datadir.h"
  29#include "qemu/guest-random.h"
  30#include "hw/clock.h"
  31#include "hw/southbridge/piix.h"
  32#include "hw/isa/superio.h"
  33#include "hw/char/serial.h"
  34#include "net/net.h"
  35#include "hw/boards.h"
  36#include "hw/i2c/smbus_eeprom.h"
  37#include "hw/block/flash.h"
  38#include "hw/mips/mips.h"
  39#include "hw/mips/bootloader.h"
  40#include "hw/mips/cpudevs.h"
  41#include "hw/pci/pci.h"
  42#include "hw/pci/pci_bus.h"
  43#include "qemu/log.h"
  44#include "hw/mips/bios.h"
  45#include "hw/ide/pci.h"
  46#include "hw/irq.h"
  47#include "hw/loader.h"
  48#include "elf.h"
  49#include "qom/object.h"
  50#include "hw/sysbus.h"             /* SysBusDevice */
  51#include "qemu/host-utils.h"
  52#include "sysemu/qtest.h"
  53#include "sysemu/reset.h"
  54#include "sysemu/runstate.h"
  55#include "qapi/error.h"
  56#include "qemu/error-report.h"
  57#include "sysemu/kvm.h"
  58#include "semihosting/semihost.h"
  59#include "hw/mips/cps.h"
  60#include "hw/qdev-clock.h"
  61#include "target/mips/internal.h"
  62#include "trace.h"
  63
  64#define ENVP_PADDR          0x2000
  65#define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
  66#define ENVP_NB_ENTRIES     16
  67#define ENVP_ENTRY_SIZE     256
  68
  69/* Hardware addresses */
  70#define FLASH_ADDRESS       0x1e000000ULL
  71#define FPGA_ADDRESS        0x1f000000ULL
  72#define RESET_ADDRESS       0x1fc00000ULL
  73
  74#define FLASH_SIZE          0x400000
  75
  76#define PIIX4_PCI_DEVFN     PCI_DEVFN(10, 0)
  77
  78typedef struct {
  79    MemoryRegion iomem;
  80    MemoryRegion iomem_lo; /* 0 - 0x900 */
  81    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
  82    uint32_t leds;
  83    uint32_t brk;
  84    uint32_t gpout;
  85    uint32_t i2cin;
  86    uint32_t i2coe;
  87    uint32_t i2cout;
  88    uint32_t i2csel;
  89    CharBackend display;
  90    char display_text[9];
  91    SerialMM *uart;
  92    bool display_inited;
  93} MaltaFPGAState;
  94
  95#define TYPE_MIPS_MALTA "mips-malta"
  96OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
  97
  98struct MaltaState {
  99    SysBusDevice parent_obj;
 100
 101    Clock *cpuclk;
 102    MIPSCPSState cps;
 103};
 104
 105static struct _loaderparams {
 106    int ram_size, ram_low_size;
 107    const char *kernel_filename;
 108    const char *kernel_cmdline;
 109    const char *initrd_filename;
 110} loaderparams;
 111
 112/* Malta FPGA */
 113static void malta_fpga_update_display_leds(MaltaFPGAState *s)
 114{
 115    char leds_text[9];
 116    int i;
 117
 118    for (i = 7 ; i >= 0 ; i--) {
 119        if (s->leds & (1 << i)) {
 120            leds_text[i] = '#';
 121        } else {
 122            leds_text[i] = ' ';
 123        }
 124    }
 125    leds_text[8] = '\0';
 126
 127    trace_malta_fpga_leds(leds_text);
 128    qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
 129                       leds_text);
 130}
 131
 132static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
 133{
 134    trace_malta_fpga_display(s->display_text);
 135    qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
 136                       s->display_text);
 137}
 138
 139/*
 140 * EEPROM 24C01 / 24C02 emulation.
 141 *
 142 * Emulation for serial EEPROMs:
 143 * 24C01 - 1024 bit (128 x 8)
 144 * 24C02 - 2048 bit (256 x 8)
 145 *
 146 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 147 */
 148
 149#if defined(DEBUG)
 150#  define logout(fmt, ...) \
 151          fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
 152#else
 153#  define logout(fmt, ...) ((void)0)
 154#endif
 155
 156struct _eeprom24c0x_t {
 157  uint8_t tick;
 158  uint8_t address;
 159  uint8_t command;
 160  uint8_t ack;
 161  uint8_t scl;
 162  uint8_t sda;
 163  uint8_t data;
 164  /* uint16_t size; */
 165  uint8_t contents[256];
 166};
 167
 168typedef struct _eeprom24c0x_t eeprom24c0x_t;
 169
 170static eeprom24c0x_t spd_eeprom = {
 171    .contents = {
 172        /* 00000000: */
 173        0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
 174        /* 00000008: */
 175        0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
 176        /* 00000010: */
 177        0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
 178        /* 00000018: */
 179        0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
 180        /* 00000020: */
 181        0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
 182        /* 00000028: */
 183        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 184        /* 00000030: */
 185        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 186        /* 00000038: */
 187        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
 188        /* 00000040: */
 189        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 190        /* 00000048: */
 191        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 192        /* 00000050: */
 193        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 194        /* 00000058: */
 195        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 196        /* 00000060: */
 197        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 198        /* 00000068: */
 199        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 200        /* 00000070: */
 201        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 202        /* 00000078: */
 203        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
 204    },
 205};
 206
 207static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
 208{
 209    enum { SDR = 0x4, DDR2 = 0x8 } type;
 210    uint8_t *spd = spd_eeprom.contents;
 211    uint8_t nbanks = 0;
 212    uint16_t density = 0;
 213    int i;
 214
 215    /* work in terms of MB */
 216    ram_size /= MiB;
 217
 218    while ((ram_size >= 4) && (nbanks <= 2)) {
 219        int sz_log2 = MIN(31 - clz32(ram_size), 14);
 220        nbanks++;
 221        density |= 1 << (sz_log2 - 2);
 222        ram_size -= 1 << sz_log2;
 223    }
 224
 225    /* split to 2 banks if possible */
 226    if ((nbanks == 1) && (density > 1)) {
 227        nbanks++;
 228        density >>= 1;
 229    }
 230
 231    if (density & 0xff00) {
 232        density = (density & 0xe0) | ((density >> 8) & 0x1f);
 233        type = DDR2;
 234    } else if (!(density & 0x1f)) {
 235        type = DDR2;
 236    } else {
 237        type = SDR;
 238    }
 239
 240    if (ram_size) {
 241        warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
 242                    " of SDRAM", ram_size);
 243    }
 244
 245    /* fill in SPD memory information */
 246    spd[2] = type;
 247    spd[5] = nbanks;
 248    spd[31] = density;
 249
 250    /* checksum */
 251    spd[63] = 0;
 252    for (i = 0; i < 63; i++) {
 253        spd[63] += spd[i];
 254    }
 255
 256    /* copy for SMBUS */
 257    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
 258}
 259
 260static void generate_eeprom_serial(uint8_t *eeprom)
 261{
 262    int i, pos = 0;
 263    uint8_t mac[6] = { 0x00 };
 264    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
 265
 266    /* version */
 267    eeprom[pos++] = 0x01;
 268
 269    /* count */
 270    eeprom[pos++] = 0x02;
 271
 272    /* MAC address */
 273    eeprom[pos++] = 0x01; /* MAC */
 274    eeprom[pos++] = 0x06; /* length */
 275    memcpy(&eeprom[pos], mac, sizeof(mac));
 276    pos += sizeof(mac);
 277
 278    /* serial number */
 279    eeprom[pos++] = 0x02; /* serial */
 280    eeprom[pos++] = 0x05; /* length */
 281    memcpy(&eeprom[pos], sn, sizeof(sn));
 282    pos += sizeof(sn);
 283
 284    /* checksum */
 285    eeprom[pos] = 0;
 286    for (i = 0; i < pos; i++) {
 287        eeprom[pos] += eeprom[i];
 288    }
 289}
 290
 291static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
 292{
 293    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
 294        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
 295    return eeprom->sda;
 296}
 297
 298static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
 299{
 300    if (eeprom->scl && scl && (eeprom->sda != sda)) {
 301        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
 302                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
 303                sda ? "stop" : "start");
 304        if (!sda) {
 305            eeprom->tick = 1;
 306            eeprom->command = 0;
 307        }
 308    } else if (eeprom->tick == 0 && !eeprom->ack) {
 309        /* Waiting for start. */
 310        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
 311                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 312    } else if (!eeprom->scl && scl) {
 313        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
 314                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 315        if (eeprom->ack) {
 316            logout("\ti2c ack bit = 0\n");
 317            sda = 0;
 318            eeprom->ack = 0;
 319        } else if (eeprom->sda == sda) {
 320            uint8_t bit = (sda != 0);
 321            logout("\ti2c bit = %d\n", bit);
 322            if (eeprom->tick < 9) {
 323                eeprom->command <<= 1;
 324                eeprom->command += bit;
 325                eeprom->tick++;
 326                if (eeprom->tick == 9) {
 327                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
 328                           bit ? "read" : "write");
 329                    eeprom->ack = 1;
 330                }
 331            } else if (eeprom->tick < 17) {
 332                if (eeprom->command & 1) {
 333                    sda = ((eeprom->data & 0x80) != 0);
 334                }
 335                eeprom->address <<= 1;
 336                eeprom->address += bit;
 337                eeprom->tick++;
 338                eeprom->data <<= 1;
 339                if (eeprom->tick == 17) {
 340                    eeprom->data = eeprom->contents[eeprom->address];
 341                    logout("\taddress 0x%04x, data 0x%02x\n",
 342                           eeprom->address, eeprom->data);
 343                    eeprom->ack = 1;
 344                    eeprom->tick = 0;
 345                }
 346            } else if (eeprom->tick >= 17) {
 347                sda = 0;
 348            }
 349        } else {
 350            logout("\tsda changed with raising scl\n");
 351        }
 352    } else {
 353        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
 354               scl, eeprom->sda, sda);
 355    }
 356    eeprom->scl = scl;
 357    eeprom->sda = sda;
 358}
 359
 360static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
 361                                unsigned size)
 362{
 363    MaltaFPGAState *s = opaque;
 364    uint32_t val = 0;
 365    uint32_t saddr;
 366
 367    saddr = (addr & 0xfffff);
 368
 369    switch (saddr) {
 370
 371    /* SWITCH Register */
 372    case 0x00200:
 373        val = 0x00000000;
 374        break;
 375
 376    /* STATUS Register */
 377    case 0x00208:
 378#if TARGET_BIG_ENDIAN
 379        val = 0x00000012;
 380#else
 381        val = 0x00000010;
 382#endif
 383        break;
 384
 385    /* JMPRS Register */
 386    case 0x00210:
 387        val = 0x00;
 388        break;
 389
 390    /* LEDBAR Register */
 391    case 0x00408:
 392        val = s->leds;
 393        break;
 394
 395    /* BRKRES Register */
 396    case 0x00508:
 397        val = s->brk;
 398        break;
 399
 400    /* UART Registers are handled directly by the serial device */
 401
 402    /* GPOUT Register */
 403    case 0x00a00:
 404        val = s->gpout;
 405        break;
 406
 407    /* XXX: implement a real I2C controller */
 408
 409    /* GPINP Register */
 410    case 0x00a08:
 411        /* IN = OUT until a real I2C control is implemented */
 412        if (s->i2csel) {
 413            val = s->i2cout;
 414        } else {
 415            val = 0x00;
 416        }
 417        break;
 418
 419    /* I2CINP Register */
 420    case 0x00b00:
 421        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
 422        break;
 423
 424    /* I2COE Register */
 425    case 0x00b08:
 426        val = s->i2coe;
 427        break;
 428
 429    /* I2COUT Register */
 430    case 0x00b10:
 431        val = s->i2cout;
 432        break;
 433
 434    /* I2CSEL Register */
 435    case 0x00b18:
 436        val = s->i2csel;
 437        break;
 438
 439    default:
 440        qemu_log_mask(LOG_GUEST_ERROR,
 441                      "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
 442                      addr);
 443        break;
 444    }
 445    return val;
 446}
 447
 448static void malta_fpga_write(void *opaque, hwaddr addr,
 449                             uint64_t val, unsigned size)
 450{
 451    MaltaFPGAState *s = opaque;
 452    uint32_t saddr;
 453
 454    saddr = (addr & 0xfffff);
 455
 456    switch (saddr) {
 457
 458    /* SWITCH Register */
 459    case 0x00200:
 460        break;
 461
 462    /* JMPRS Register */
 463    case 0x00210:
 464        break;
 465
 466    /* LEDBAR Register */
 467    case 0x00408:
 468        s->leds = val & 0xff;
 469        malta_fpga_update_display_leds(s);
 470        break;
 471
 472    /* ASCIIWORD Register */
 473    case 0x00410:
 474        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
 475        malta_fpga_update_display_ascii(s);
 476        break;
 477
 478    /* ASCIIPOS0 to ASCIIPOS7 Registers */
 479    case 0x00418:
 480    case 0x00420:
 481    case 0x00428:
 482    case 0x00430:
 483    case 0x00438:
 484    case 0x00440:
 485    case 0x00448:
 486    case 0x00450:
 487        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
 488        malta_fpga_update_display_ascii(s);
 489        break;
 490
 491    /* SOFTRES Register */
 492    case 0x00500:
 493        if (val == 0x42) {
 494            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 495        }
 496        break;
 497
 498    /* BRKRES Register */
 499    case 0x00508:
 500        s->brk = val & 0xff;
 501        break;
 502
 503    /* UART Registers are handled directly by the serial device */
 504
 505    /* GPOUT Register */
 506    case 0x00a00:
 507        s->gpout = val & 0xff;
 508        break;
 509
 510    /* I2COE Register */
 511    case 0x00b08:
 512        s->i2coe = val & 0x03;
 513        break;
 514
 515    /* I2COUT Register */
 516    case 0x00b10:
 517        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
 518        s->i2cout = val;
 519        break;
 520
 521    /* I2CSEL Register */
 522    case 0x00b18:
 523        s->i2csel = val & 0x01;
 524        break;
 525
 526    default:
 527        qemu_log_mask(LOG_GUEST_ERROR,
 528                      "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
 529                      addr);
 530        break;
 531    }
 532}
 533
 534static const MemoryRegionOps malta_fpga_ops = {
 535    .read = malta_fpga_read,
 536    .write = malta_fpga_write,
 537    .endianness = DEVICE_NATIVE_ENDIAN,
 538};
 539
 540static void malta_fpga_reset(void *opaque)
 541{
 542    MaltaFPGAState *s = opaque;
 543
 544    s->leds   = 0x00;
 545    s->brk    = 0x0a;
 546    s->gpout  = 0x00;
 547    s->i2cin  = 0x3;
 548    s->i2coe  = 0x0;
 549    s->i2cout = 0x3;
 550    s->i2csel = 0x1;
 551
 552    s->display_text[8] = '\0';
 553    snprintf(s->display_text, 9, "        ");
 554}
 555
 556static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
 557{
 558    MaltaFPGAState *s = opaque;
 559
 560    if (event == CHR_EVENT_OPENED && !s->display_inited) {
 561        qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
 562        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 563        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 564        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 565        qemu_chr_fe_printf(&s->display, "\n");
 566        qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
 567        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 568        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 569        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 570        s->display_inited = true;
 571    }
 572}
 573
 574static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
 575         hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
 576{
 577    MaltaFPGAState *s;
 578    Chardev *chr;
 579
 580    s = g_new0(MaltaFPGAState, 1);
 581
 582    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
 583                          "malta-fpga", 0x100000);
 584    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
 585                             &s->iomem, 0, 0x900);
 586    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
 587                             &s->iomem, 0xa00, 0x100000 - 0xa00);
 588
 589    memory_region_add_subregion(address_space, base, &s->iomem_lo);
 590    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
 591
 592    chr = qemu_chr_new("fpga", "vc:320x200", NULL);
 593    qemu_chr_fe_init(&s->display, chr, NULL);
 594    qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
 595                             malta_fgpa_display_event, NULL, s, NULL, true);
 596
 597    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
 598                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);
 599
 600    malta_fpga_reset(s);
 601    qemu_register_reset(malta_fpga_reset, s);
 602
 603    return s;
 604}
 605
 606/* Network support */
 607static void network_init(PCIBus *pci_bus)
 608{
 609    int i;
 610
 611    for (i = 0; i < nb_nics; i++) {
 612        NICInfo *nd = &nd_table[i];
 613        const char *default_devaddr = NULL;
 614
 615        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
 616            /* The malta board has a PCNet card using PCI SLOT 11 */
 617            default_devaddr = "0b";
 618
 619        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
 620    }
 621}
 622
 623static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
 624                                         uint64_t kernel_entry)
 625{
 626    static const char pci_pins_cfg[PCI_NUM_PINS] = {
 627        10, 10, 11, 11 /* PIIX IRQRC[A:D] */
 628    };
 629
 630    /* Bus endianess is always reversed */
 631#if TARGET_BIG_ENDIAN
 632#define cpu_to_gt32(x) (x)
 633#else
 634#define cpu_to_gt32(x) bswap32(x)
 635#endif
 636
 637    /* setup MEM-to-PCI0 mapping as done by YAMON */
 638
 639    /* move GT64120 registers from 0x14000000 to 0x1be00000 */
 640    bl_gen_write_u32(p, /* GT_ISD */
 641                     cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
 642                     cpu_to_gt32(0x1be00000 << 3));
 643
 644    /* setup PCI0 io window to 0x18000000-0x181fffff */
 645    bl_gen_write_u32(p, /* GT_PCI0IOLD */
 646                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
 647                     cpu_to_gt32(0x18000000 << 3));
 648    bl_gen_write_u32(p, /* GT_PCI0IOHD */
 649                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
 650                     cpu_to_gt32(0x08000000 << 3));
 651
 652    /* setup PCI0 mem windows */
 653    bl_gen_write_u32(p, /* GT_PCI0M0LD */
 654                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
 655                     cpu_to_gt32(0x10000000 << 3));
 656    bl_gen_write_u32(p, /* GT_PCI0M0HD */
 657                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
 658                     cpu_to_gt32(0x07e00000 << 3));
 659    bl_gen_write_u32(p, /* GT_PCI0M1LD */
 660                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
 661                     cpu_to_gt32(0x18200000 << 3));
 662    bl_gen_write_u32(p, /* GT_PCI0M1HD */
 663                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
 664                     cpu_to_gt32(0x0bc00000 << 3));
 665
 666#undef cpu_to_gt32
 667
 668    /*
 669     * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
 670     * Load the PIIX IRQC[A:D] routing config address, then
 671     * write routing configuration to the config data register.
 672     */
 673    bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
 674                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
 675                     tswap32((1 << 31) /* ConfigEn */
 676                             | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
 677                             | PIIX_PIRQCA));
 678    bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
 679                     cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
 680                     tswap32(ldl_be_p(pci_pins_cfg)));
 681
 682    bl_gen_jump_kernel(p,
 683                       true, ENVP_VADDR - 64,
 684                       /*
 685                        * If semihosting is used, arguments have already
 686                        * been passed, so we preserve $a0.
 687                        */
 688                       !semihosting_get_argc(), 2,
 689                       true, ENVP_VADDR,
 690                       true, ENVP_VADDR + 8,
 691                       true, loaderparams.ram_low_size,
 692                       kernel_entry);
 693}
 694
 695static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
 696                                      uint64_t kernel_entry)
 697{
 698    uint16_t *p;
 699
 700    /* Small bootloader */
 701    p = (uint16_t *)base;
 702
 703    stw_p(p++, 0x2800); stw_p(p++, 0x001c);
 704                                /* bc to_here */
 705    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 706                                /* nop */
 707    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 708                                /* nop */
 709    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 710                                /* nop */
 711    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 712                                /* nop */
 713    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 714                                /* nop */
 715    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 716                                /* nop */
 717    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 718                                /* nop */
 719
 720    /* to_here: */
 721
 722    bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
 723}
 724
 725/*
 726 * ROM and pseudo bootloader
 727 *
 728 * The following code implements a very very simple bootloader. It first
 729 * loads the registers a0 to a3 to the values expected by the OS, and
 730 * then jump at the kernel address.
 731 *
 732 * The bootloader should pass the locations of the kernel arguments and
 733 * environment variables tables. Those tables contain the 32-bit address
 734 * of NULL terminated strings. The environment variables table should be
 735 * terminated by a NULL address.
 736 *
 737 * For a simpler implementation, the number of kernel arguments is fixed
 738 * to two (the name of the kernel and the command line), and the two
 739 * tables are actually the same one.
 740 *
 741 * The registers a0 to a3 should contain the following values:
 742 *   a0 - number of kernel arguments
 743 *   a1 - 32-bit address of the kernel arguments table
 744 *   a2 - 32-bit address of the environment variables table
 745 *   a3 - RAM size in bytes
 746 */
 747static void write_bootloader(uint8_t *base, uint64_t run_addr,
 748                             uint64_t kernel_entry)
 749{
 750    uint32_t *p;
 751    void *v;
 752
 753    /* Small bootloader */
 754    p = (uint32_t *)base;
 755
 756    stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
 757                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
 758    stl_p(p++, 0x00000000);                  /* nop */
 759
 760    /* YAMON service vector */
 761    stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
 762    stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
 763    stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
 764    stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
 765    stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
 766    stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
 767    stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
 768    stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
 769    stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
 770    stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
 771    stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
 772    stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
 773    stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
 774
 775
 776    /* Second part of the bootloader */
 777    p = (uint32_t *) (base + 0x580);
 778
 779    /*
 780     * Load BAR registers as done by YAMON:
 781     *
 782     *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
 783     *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
 784     *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
 785     *
 786     */
 787
 788    v = p;
 789    bl_setup_gt64120_jump_kernel(&v, run_addr, kernel_entry);
 790    p = v;
 791
 792    /* YAMON subroutines */
 793    p = (uint32_t *) (base + 0x800);
 794    stl_p(p++, 0x03e00009);                  /* jalr ra */
 795    stl_p(p++, 0x24020000);                  /* li v0,0 */
 796    /* 808 YAMON print */
 797    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 798    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 799    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 800    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 801    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 802    stl_p(p++, 0x10800005);                  /* beqz a0,834 */
 803    stl_p(p++, 0x00000000);                  /* nop */
 804    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 805    stl_p(p++, 0x00000000);                  /* nop */
 806    stl_p(p++, 0x1000fff9);                  /* b 814 */
 807    stl_p(p++, 0x00000000);                  /* nop */
 808    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 809    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 810    /* 0x83c YAMON print_count */
 811    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 812    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 813    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 814    stl_p(p++, 0x00c06021);                  /* move t4,a2 */
 815    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 816    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 817    stl_p(p++, 0x00000000);                  /* nop */
 818    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 819    stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
 820    stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
 821    stl_p(p++, 0x00000000);                  /* nop */
 822    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 823    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 824    /* 0x870 */
 825    stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
 826    stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
 827    stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
 828    stl_p(p++, 0x00000000);                  /* nop */
 829    stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
 830    stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
 831    stl_p(p++, 0x00000000);                  /* nop */
 832    stl_p(p++, 0x03e00009);                  /* jalr ra */
 833    stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
 834}
 835
 836static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
 837                                        const char *string, ...)
 838{
 839    va_list ap;
 840    uint32_t table_addr;
 841
 842    if (index >= ENVP_NB_ENTRIES) {
 843        return;
 844    }
 845
 846    if (string == NULL) {
 847        prom_buf[index] = 0;
 848        return;
 849    }
 850
 851    table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
 852    prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
 853
 854    va_start(ap, string);
 855    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
 856    va_end(ap);
 857}
 858
 859static void reinitialize_rng_seed(void *opaque)
 860{
 861    char *rng_seed_hex = opaque;
 862    uint8_t rng_seed[32];
 863
 864    qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
 865    for (size_t i = 0; i < sizeof(rng_seed); ++i) {
 866        sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
 867    }
 868}
 869
 870/* Kernel */
 871static uint64_t load_kernel(void)
 872{
 873    uint64_t kernel_entry, kernel_high, initrd_size;
 874    long kernel_size;
 875    ram_addr_t initrd_offset;
 876    int big_endian;
 877    uint32_t *prom_buf;
 878    long prom_size;
 879    int prom_index = 0;
 880    uint8_t rng_seed[32];
 881    char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
 882    size_t rng_seed_prom_offset;
 883
 884#if TARGET_BIG_ENDIAN
 885    big_endian = 1;
 886#else
 887    big_endian = 0;
 888#endif
 889
 890    kernel_size = load_elf(loaderparams.kernel_filename, NULL,
 891                           cpu_mips_kseg0_to_phys, NULL,
 892                           &kernel_entry, NULL,
 893                           &kernel_high, NULL, big_endian, EM_MIPS,
 894                           1, 0);
 895    if (kernel_size < 0) {
 896        error_report("could not load kernel '%s': %s",
 897                     loaderparams.kernel_filename,
 898                     load_elf_strerror(kernel_size));
 899        exit(1);
 900    }
 901
 902    /* Check where the kernel has been linked */
 903    if (kernel_entry <= USEG_LIMIT) {
 904        error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
 905                     " are not supported");
 906        exit(1);
 907    }
 908
 909    /* load initrd */
 910    initrd_size = 0;
 911    initrd_offset = 0;
 912    if (loaderparams.initrd_filename) {
 913        initrd_size = get_image_size(loaderparams.initrd_filename);
 914        if (initrd_size > 0) {
 915            /*
 916             * The kernel allocates the bootmap memory in the low memory after
 917             * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
 918             * pages.
 919             */
 920            initrd_offset = ROUND_UP(loaderparams.ram_low_size
 921                                     - (initrd_size + 128 * KiB),
 922                                     INITRD_PAGE_SIZE);
 923            if (kernel_high >= initrd_offset) {
 924                error_report("memory too small for initial ram disk '%s'",
 925                             loaderparams.initrd_filename);
 926                exit(1);
 927            }
 928            initrd_size = load_image_targphys(loaderparams.initrd_filename,
 929                                              initrd_offset,
 930                                              loaderparams.ram_size - initrd_offset);
 931        }
 932        if (initrd_size == (target_ulong) -1) {
 933            error_report("could not load initial ram disk '%s'",
 934                         loaderparams.initrd_filename);
 935            exit(1);
 936        }
 937    }
 938
 939    /* Setup prom parameters. */
 940    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
 941    prom_buf = g_malloc(prom_size);
 942
 943    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
 944    if (initrd_size > 0) {
 945        prom_set(prom_buf, prom_index++,
 946                 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
 947                 cpu_mips_phys_to_kseg0(NULL, initrd_offset),
 948                 initrd_size, loaderparams.kernel_cmdline);
 949    } else {
 950        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
 951    }
 952
 953    prom_set(prom_buf, prom_index++, "memsize");
 954    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
 955
 956    prom_set(prom_buf, prom_index++, "ememsize");
 957    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
 958
 959    prom_set(prom_buf, prom_index++, "modetty0");
 960    prom_set(prom_buf, prom_index++, "38400n8r");
 961
 962    qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
 963    for (size_t i = 0; i < sizeof(rng_seed); ++i) {
 964        sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
 965    }
 966    prom_set(prom_buf, prom_index++, "rngseed");
 967    rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
 968                           sizeof(uint32_t) * ENVP_NB_ENTRIES;
 969    prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
 970
 971    prom_set(prom_buf, prom_index++, NULL);
 972
 973    rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
 974    qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
 975            rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
 976
 977    g_free(prom_buf);
 978    return kernel_entry;
 979}
 980
 981static void malta_mips_config(MIPSCPU *cpu)
 982{
 983    MachineState *ms = MACHINE(qdev_get_machine());
 984    unsigned int smp_cpus = ms->smp.cpus;
 985    CPUMIPSState *env = &cpu->env;
 986    CPUState *cs = CPU(cpu);
 987
 988    if (ase_mt_available(env)) {
 989        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
 990                                           CP0MVPC0_PTC, 8,
 991                                           smp_cpus * cs->nr_threads - 1);
 992        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
 993                                           CP0MVPC0_PVPE, 4, smp_cpus - 1);
 994    }
 995}
 996
 997static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
 998{
 999    int slot;
1000
1001    slot = PCI_SLOT(pci_dev->devfn);
1002
1003    switch (slot) {
1004    /* PIIX4 USB */
1005    case 10:
1006        return 3;
1007    /* AMD 79C973 Ethernet */
1008    case 11:
1009        return 1;
1010    /* Crystal 4281 Sound */
1011    case 12:
1012        return 2;
1013    /* PCI slot 1 to 4 */
1014    case 18 ... 21:
1015        return ((slot - 18) + irq_num) & 0x03;
1016    /* Unknown device, don't do any translation */
1017    default:
1018        return irq_num;
1019    }
1020}
1021
1022static void main_cpu_reset(void *opaque)
1023{
1024    MIPSCPU *cpu = opaque;
1025    CPUMIPSState *env = &cpu->env;
1026
1027    cpu_reset(CPU(cpu));
1028
1029    /*
1030     * The bootloader does not need to be rewritten as it is located in a
1031     * read only location. The kernel location and the arguments table
1032     * location does not change.
1033     */
1034    if (loaderparams.kernel_filename) {
1035        env->CP0_Status &= ~(1 << CP0St_ERL);
1036    }
1037
1038    malta_mips_config(cpu);
1039}
1040
1041static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1042                                   qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1043{
1044    CPUMIPSState *env;
1045    MIPSCPU *cpu;
1046    int i;
1047
1048    for (i = 0; i < ms->smp.cpus; i++) {
1049        cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1050
1051        /* Init internal devices */
1052        cpu_mips_irq_init_cpu(cpu);
1053        cpu_mips_clock_init(cpu);
1054        qemu_register_reset(main_cpu_reset, cpu);
1055    }
1056
1057    cpu = MIPS_CPU(first_cpu);
1058    env = &cpu->env;
1059    *i8259_irq = env->irq[2];
1060    *cbus_irq = env->irq[4];
1061}
1062
1063static void create_cps(MachineState *ms, MaltaState *s,
1064                       qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1065{
1066    object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1067    object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1068                            &error_fatal);
1069    object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1070                            &error_fatal);
1071    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1072    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1073
1074    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1075
1076    *i8259_irq = get_cps_irq(&s->cps, 3);
1077    *cbus_irq = NULL;
1078}
1079
1080static void mips_create_cpu(MachineState *ms, MaltaState *s,
1081                            qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1082{
1083    if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1084        create_cps(ms, s, cbus_irq, i8259_irq);
1085    } else {
1086        create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1087    }
1088}
1089
1090static
1091void mips_malta_init(MachineState *machine)
1092{
1093    ram_addr_t ram_size = machine->ram_size;
1094    ram_addr_t ram_low_size;
1095    const char *kernel_filename = machine->kernel_filename;
1096    const char *kernel_cmdline = machine->kernel_cmdline;
1097    const char *initrd_filename = machine->initrd_filename;
1098    char *filename;
1099    PFlashCFI01 *fl;
1100    MemoryRegion *system_memory = get_system_memory();
1101    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1102    MemoryRegion *ram_low_postio;
1103    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1104    const size_t smbus_eeprom_size = 8 * 256;
1105    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1106    uint64_t kernel_entry, bootloader_run_addr;
1107    PCIBus *pci_bus;
1108    ISABus *isa_bus;
1109    qemu_irq cbus_irq, i8259_irq;
1110    I2CBus *smbus;
1111    DriveInfo *dinfo;
1112    int fl_idx = 0;
1113    int be;
1114    MaltaState *s;
1115    PCIDevice *piix4;
1116    DeviceState *dev;
1117
1118    s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1119    sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1120
1121    /* create CPU */
1122    mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1123
1124    /* allocate RAM */
1125    if (ram_size > 2 * GiB) {
1126        error_report("Too much memory for this machine: %" PRId64 "MB,"
1127                     " maximum 2048MB", ram_size / MiB);
1128        exit(1);
1129    }
1130
1131    /* register RAM at high address where it is undisturbed by IO */
1132    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1133
1134    /* alias for pre IO hole access */
1135    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1136                             machine->ram, 0, MIN(ram_size, 256 * MiB));
1137    memory_region_add_subregion(system_memory, 0, ram_low_preio);
1138
1139    /* alias for post IO hole access, if there is enough RAM */
1140    if (ram_size > 512 * MiB) {
1141        ram_low_postio = g_new(MemoryRegion, 1);
1142        memory_region_init_alias(ram_low_postio, NULL,
1143                                 "mips_malta_low_postio.ram",
1144                                 machine->ram, 512 * MiB,
1145                                 ram_size - 512 * MiB);
1146        memory_region_add_subregion(system_memory, 512 * MiB,
1147                                    ram_low_postio);
1148    }
1149
1150#if TARGET_BIG_ENDIAN
1151    be = 1;
1152#else
1153    be = 0;
1154#endif
1155
1156    /* FPGA */
1157
1158    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1159    malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1160
1161    /* Load firmware in flash / BIOS. */
1162    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1163    fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1164                               FLASH_SIZE,
1165                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1166                               65536,
1167                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1168    bios = pflash_cfi01_get_memory(fl);
1169    fl_idx++;
1170    if (kernel_filename) {
1171        ram_low_size = MIN(ram_size, 256 * MiB);
1172        bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1173
1174        /* Write a small bootloader to the flash location. */
1175        loaderparams.ram_size = ram_size;
1176        loaderparams.ram_low_size = ram_low_size;
1177        loaderparams.kernel_filename = kernel_filename;
1178        loaderparams.kernel_cmdline = kernel_cmdline;
1179        loaderparams.initrd_filename = initrd_filename;
1180        kernel_entry = load_kernel();
1181
1182        if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1183            write_bootloader(memory_region_get_ram_ptr(bios),
1184                             bootloader_run_addr, kernel_entry);
1185        } else {
1186            write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1187                                      bootloader_run_addr, kernel_entry);
1188        }
1189    } else {
1190        target_long bios_size = FLASH_SIZE;
1191        /* Load firmware from flash. */
1192        if (!dinfo) {
1193            /* Load a BIOS image. */
1194            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1195                                      machine->firmware ?: BIOS_FILENAME);
1196            if (filename) {
1197                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1198                                                BIOS_SIZE);
1199                g_free(filename);
1200            } else {
1201                bios_size = -1;
1202            }
1203            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1204                machine->firmware && !qtest_enabled()) {
1205                error_report("Could not load MIPS bios '%s'", machine->firmware);
1206                exit(1);
1207            }
1208        }
1209        /*
1210         * In little endian mode the 32bit words in the bios are swapped,
1211         * a neat trick which allows bi-endian firmware.
1212         */
1213#if !TARGET_BIG_ENDIAN
1214        {
1215            uint32_t *end, *addr;
1216            const size_t swapsize = MIN(bios_size, 0x3e0000);
1217            addr = rom_ptr(FLASH_ADDRESS, swapsize);
1218            if (!addr) {
1219                addr = memory_region_get_ram_ptr(bios);
1220            }
1221            end = (void *)addr + swapsize;
1222            while (addr < end) {
1223                bswap32s(addr);
1224                addr++;
1225            }
1226        }
1227#endif
1228    }
1229
1230    /*
1231     * Map the BIOS at a 2nd physical location, as on the real board.
1232     * Copy it so that we can patch in the MIPS revision, which cannot be
1233     * handled by an overlapping region as the resulting ROM code subpage
1234     * regions are not executable.
1235     */
1236    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1237                           &error_fatal);
1238    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1239                  FLASH_ADDRESS, BIOS_SIZE)) {
1240        memcpy(memory_region_get_ram_ptr(bios_copy),
1241               memory_region_get_ram_ptr(bios), BIOS_SIZE);
1242    }
1243    memory_region_set_readonly(bios_copy, true);
1244    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1245
1246    /* Board ID = 0x420 (Malta Board with CoreLV) */
1247    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1248
1249    /* Northbridge */
1250    dev = qdev_new("gt64120");
1251    qdev_prop_set_bit(dev, "cpu-little-endian", !be);
1252    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1253    pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1254    pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1255
1256    /* Southbridge */
1257    piix4 = pci_create_simple_multifunction(pci_bus, PIIX4_PCI_DEVFN, true,
1258                                            TYPE_PIIX4_PCI_DEVICE);
1259    isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1260
1261    dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1262    pci_ide_create_devs(PCI_DEVICE(dev));
1263
1264    /* Interrupt controller */
1265    qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1266
1267    /* generate SPD EEPROM data */
1268    dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1269    smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1270    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1271    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1272    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1273    g_free(smbus_eeprom_buf);
1274
1275    /* Super I/O: SMS FDC37M817 */
1276    isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1277
1278    /* Network card */
1279    network_init(pci_bus);
1280
1281    /* Optional PCI video card */
1282    pci_vga_init(pci_bus);
1283}
1284
1285static void mips_malta_instance_init(Object *obj)
1286{
1287    MaltaState *s = MIPS_MALTA(obj);
1288
1289    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1290    clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1291}
1292
1293static const TypeInfo mips_malta_device = {
1294    .name          = TYPE_MIPS_MALTA,
1295    .parent        = TYPE_SYS_BUS_DEVICE,
1296    .instance_size = sizeof(MaltaState),
1297    .instance_init = mips_malta_instance_init,
1298};
1299
1300GlobalProperty malta_compat[] = {
1301    { "PIIX4_PM", "memory-hotplug-support", "off" },
1302    { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1303    { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1304    { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1305};
1306const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1307
1308static void mips_malta_machine_init(MachineClass *mc)
1309{
1310    mc->desc = "MIPS Malta Core LV";
1311    mc->init = mips_malta_init;
1312    mc->block_default_type = IF_IDE;
1313    mc->max_cpus = 16;
1314    mc->is_default = true;
1315#ifdef TARGET_MIPS64
1316    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1317#else
1318    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1319#endif
1320    mc->default_ram_id = "mips_malta.ram";
1321    compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1322}
1323
1324DEFINE_MACHINE("malta", mips_malta_machine_init)
1325
1326static void mips_malta_register_types(void)
1327{
1328    type_register_static(&mips_malta_device);
1329}
1330
1331type_init(mips_malta_register_types)
1332