qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "memory-region"
  37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
  38                         TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
  41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
  42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
  43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
  44
  45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
  46typedef struct RamDiscardManagerClass RamDiscardManagerClass;
  47typedef struct RamDiscardManager RamDiscardManager;
  48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
  49                     RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
  50
  51#ifdef CONFIG_FUZZ
  52void fuzz_dma_read_cb(size_t addr,
  53                      size_t len,
  54                      MemoryRegion *mr);
  55#else
  56static inline void fuzz_dma_read_cb(size_t addr,
  57                                    size_t len,
  58                                    MemoryRegion *mr)
  59{
  60    /* Do Nothing */
  61}
  62#endif
  63
  64/* Possible bits for global_dirty_log_{start|stop} */
  65
  66/* Dirty tracking enabled because migration is running */
  67#define GLOBAL_DIRTY_MIGRATION  (1U << 0)
  68
  69/* Dirty tracking enabled because measuring dirty rate */
  70#define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
  71
  72/* Dirty tracking enabled because dirty limit */
  73#define GLOBAL_DIRTY_LIMIT      (1U << 2)
  74
  75#define GLOBAL_DIRTY_MASK  (0x7)
  76
  77extern unsigned int global_dirty_tracking;
  78
  79typedef struct MemoryRegionOps MemoryRegionOps;
  80
  81struct ReservedRegion {
  82    hwaddr low;
  83    hwaddr high;
  84    unsigned type;
  85};
  86
  87/**
  88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
  89 *
  90 * @mr: the region, or %NULL if empty
  91 * @fv: the flat view of the address space the region is mapped in
  92 * @offset_within_region: the beginning of the section, relative to @mr's start
  93 * @size: the size of the section; will not exceed @mr's boundaries
  94 * @offset_within_address_space: the address of the first byte of the section
  95 *     relative to the region's address space
  96 * @readonly: writes to this section are ignored
  97 * @nonvolatile: this section is non-volatile
  98 */
  99struct MemoryRegionSection {
 100    Int128 size;
 101    MemoryRegion *mr;
 102    FlatView *fv;
 103    hwaddr offset_within_region;
 104    hwaddr offset_within_address_space;
 105    bool readonly;
 106    bool nonvolatile;
 107};
 108
 109typedef struct IOMMUTLBEntry IOMMUTLBEntry;
 110
 111/* See address_space_translate: bit 0 is read, bit 1 is write.  */
 112typedef enum {
 113    IOMMU_NONE = 0,
 114    IOMMU_RO   = 1,
 115    IOMMU_WO   = 2,
 116    IOMMU_RW   = 3,
 117} IOMMUAccessFlags;
 118
 119#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
 120
 121struct IOMMUTLBEntry {
 122    AddressSpace    *target_as;
 123    hwaddr           iova;
 124    hwaddr           translated_addr;
 125    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 126    IOMMUAccessFlags perm;
 127};
 128
 129/*
 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 131 * register with one or multiple IOMMU Notifier capability bit(s).
 132 *
 133 * Normally there're two use cases for the notifiers:
 134 *
 135 *   (1) When the device needs accurate synchronizations of the vIOMMU page
 136 *       tables, it needs to register with both MAP|UNMAP notifies (which
 137 *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
 138 *
 139 *       Regarding to accurate synchronization, it's when the notified
 140 *       device maintains a shadow page table and must be notified on each
 141 *       guest MAP (page table entry creation) and UNMAP (invalidation)
 142 *       events (e.g. VFIO). Both notifications must be accurate so that
 143 *       the shadow page table is fully in sync with the guest view.
 144 *
 145 *   (2) When the device doesn't need accurate synchronizations of the
 146 *       vIOMMU page tables, it needs to register only with UNMAP or
 147 *       DEVIOTLB_UNMAP notifies.
 148 *
 149 *       It's when the device maintains a cache of IOMMU translations
 150 *       (IOTLB) and is able to fill that cache by requesting translations
 151 *       from the vIOMMU through a protocol similar to ATS (Address
 152 *       Translation Service).
 153 *
 154 *       Note that in this mode the vIOMMU will not maintain a shadowed
 155 *       page table for the address space, and the UNMAP messages can cover
 156 *       more than the pages that used to get mapped.  The IOMMU notifiee
 157 *       should be able to take care of over-sized invalidations.
 158 */
 159typedef enum {
 160    IOMMU_NOTIFIER_NONE = 0,
 161    /* Notify cache invalidations */
 162    IOMMU_NOTIFIER_UNMAP = 0x1,
 163    /* Notify entry changes (newly created entries) */
 164    IOMMU_NOTIFIER_MAP = 0x2,
 165    /* Notify changes on device IOTLB entries */
 166    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
 167} IOMMUNotifierFlag;
 168
 169#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 170#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
 171#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
 172                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
 173
 174struct IOMMUNotifier;
 175typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 176                            IOMMUTLBEntry *data);
 177
 178struct IOMMUNotifier {
 179    IOMMUNotify notify;
 180    IOMMUNotifierFlag notifier_flags;
 181    /* Notify for address space range start <= addr <= end */
 182    hwaddr start;
 183    hwaddr end;
 184    int iommu_idx;
 185    QLIST_ENTRY(IOMMUNotifier) node;
 186};
 187typedef struct IOMMUNotifier IOMMUNotifier;
 188
 189typedef struct IOMMUTLBEvent {
 190    IOMMUNotifierFlag type;
 191    IOMMUTLBEntry entry;
 192} IOMMUTLBEvent;
 193
 194/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 195#define RAM_PREALLOC   (1 << 0)
 196
 197/* RAM is mmap-ed with MAP_SHARED */
 198#define RAM_SHARED     (1 << 1)
 199
 200/* Only a portion of RAM (used_length) is actually used, and migrated.
 201 * Resizing RAM while migrating can result in the migration being canceled.
 202 */
 203#define RAM_RESIZEABLE (1 << 2)
 204
 205/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 206 * zero the page and wake waiting processes.
 207 * (Set during postcopy)
 208 */
 209#define RAM_UF_ZEROPAGE (1 << 3)
 210
 211/* RAM can be migrated */
 212#define RAM_MIGRATABLE (1 << 4)
 213
 214/* RAM is a persistent kind memory */
 215#define RAM_PMEM (1 << 5)
 216
 217
 218/*
 219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
 220 * support 'write-tracking' migration type.
 221 * Implies ram_state->ram_wt_enabled.
 222 */
 223#define RAM_UF_WRITEPROTECT (1 << 6)
 224
 225/*
 226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
 227 * pages if applicable) is skipped: will bail out if not supported. When not
 228 * set, the OS will do the reservation, if supported for the memory type.
 229 */
 230#define RAM_NORESERVE (1 << 7)
 231
 232/* RAM that isn't accessible through normal means. */
 233#define RAM_PROTECTED (1 << 8)
 234
 235static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 236                                       IOMMUNotifierFlag flags,
 237                                       hwaddr start, hwaddr end,
 238                                       int iommu_idx)
 239{
 240    n->notify = fn;
 241    n->notifier_flags = flags;
 242    n->start = start;
 243    n->end = end;
 244    n->iommu_idx = iommu_idx;
 245}
 246
 247/*
 248 * Memory region callbacks
 249 */
 250struct MemoryRegionOps {
 251    /* Read from the memory region. @addr is relative to @mr; @size is
 252     * in bytes. */
 253    uint64_t (*read)(void *opaque,
 254                     hwaddr addr,
 255                     unsigned size);
 256    /* Write to the memory region. @addr is relative to @mr; @size is
 257     * in bytes. */
 258    void (*write)(void *opaque,
 259                  hwaddr addr,
 260                  uint64_t data,
 261                  unsigned size);
 262
 263    MemTxResult (*read_with_attrs)(void *opaque,
 264                                   hwaddr addr,
 265                                   uint64_t *data,
 266                                   unsigned size,
 267                                   MemTxAttrs attrs);
 268    MemTxResult (*write_with_attrs)(void *opaque,
 269                                    hwaddr addr,
 270                                    uint64_t data,
 271                                    unsigned size,
 272                                    MemTxAttrs attrs);
 273
 274    enum device_endian endianness;
 275    /* Guest-visible constraints: */
 276    struct {
 277        /* If nonzero, specify bounds on access sizes beyond which a machine
 278         * check is thrown.
 279         */
 280        unsigned min_access_size;
 281        unsigned max_access_size;
 282        /* If true, unaligned accesses are supported.  Otherwise unaligned
 283         * accesses throw machine checks.
 284         */
 285         bool unaligned;
 286        /*
 287         * If present, and returns #false, the transaction is not accepted
 288         * by the device (and results in machine dependent behaviour such
 289         * as a machine check exception).
 290         */
 291        bool (*accepts)(void *opaque, hwaddr addr,
 292                        unsigned size, bool is_write,
 293                        MemTxAttrs attrs);
 294    } valid;
 295    /* Internal implementation constraints: */
 296    struct {
 297        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 298         * will be rounded upwards and a partial result will be returned.
 299         */
 300        unsigned min_access_size;
 301        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 302         * will be done as a series of accesses with smaller sizes.
 303         */
 304        unsigned max_access_size;
 305        /* If true, unaligned accesses are supported.  Otherwise all accesses
 306         * are converted to (possibly multiple) naturally aligned accesses.
 307         */
 308        bool unaligned;
 309    } impl;
 310};
 311
 312typedef struct MemoryRegionClass {
 313    /* private */
 314    ObjectClass parent_class;
 315} MemoryRegionClass;
 316
 317
 318enum IOMMUMemoryRegionAttr {
 319    IOMMU_ATTR_SPAPR_TCE_FD
 320};
 321
 322/*
 323 * IOMMUMemoryRegionClass:
 324 *
 325 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 326 * and provide an implementation of at least the @translate method here
 327 * to handle requests to the memory region. Other methods are optional.
 328 *
 329 * The IOMMU implementation must use the IOMMU notifier infrastructure
 330 * to report whenever mappings are changed, by calling
 331 * memory_region_notify_iommu() (or, if necessary, by calling
 332 * memory_region_notify_iommu_one() for each registered notifier).
 333 *
 334 * Conceptually an IOMMU provides a mapping from input address
 335 * to an output TLB entry. If the IOMMU is aware of memory transaction
 336 * attributes and the output TLB entry depends on the transaction
 337 * attributes, we represent this using IOMMU indexes. Each index
 338 * selects a particular translation table that the IOMMU has:
 339 *
 340 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 341 *
 342 *   @translate takes an input address and an IOMMU index
 343 *
 344 * and the mapping returned can only depend on the input address and the
 345 * IOMMU index.
 346 *
 347 * Most IOMMUs don't care about the transaction attributes and support
 348 * only a single IOMMU index. A more complex IOMMU might have one index
 349 * for secure transactions and one for non-secure transactions.
 350 */
 351struct IOMMUMemoryRegionClass {
 352    /* private: */
 353    MemoryRegionClass parent_class;
 354
 355    /* public: */
 356    /**
 357     * @translate:
 358     *
 359     * Return a TLB entry that contains a given address.
 360     *
 361     * The IOMMUAccessFlags indicated via @flag are optional and may
 362     * be specified as IOMMU_NONE to indicate that the caller needs
 363     * the full translation information for both reads and writes. If
 364     * the access flags are specified then the IOMMU implementation
 365     * may use this as an optimization, to stop doing a page table
 366     * walk as soon as it knows that the requested permissions are not
 367     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 368     * full page table walk and report the permissions in the returned
 369     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 370     * return different mappings for reads and writes.)
 371     *
 372     * The returned information remains valid while the caller is
 373     * holding the big QEMU lock or is inside an RCU critical section;
 374     * if the caller wishes to cache the mapping beyond that it must
 375     * register an IOMMU notifier so it can invalidate its cached
 376     * information when the IOMMU mapping changes.
 377     *
 378     * @iommu: the IOMMUMemoryRegion
 379     *
 380     * @hwaddr: address to be translated within the memory region
 381     *
 382     * @flag: requested access permission
 383     *
 384     * @iommu_idx: IOMMU index for the translation
 385     */
 386    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 387                               IOMMUAccessFlags flag, int iommu_idx);
 388    /**
 389     * @get_min_page_size:
 390     *
 391     * Returns minimum supported page size in bytes.
 392     *
 393     * If this method is not provided then the minimum is assumed to
 394     * be TARGET_PAGE_SIZE.
 395     *
 396     * @iommu: the IOMMUMemoryRegion
 397     */
 398    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 399    /**
 400     * @notify_flag_changed:
 401     *
 402     * Called when IOMMU Notifier flag changes (ie when the set of
 403     * events which IOMMU users are requesting notification for changes).
 404     * Optional method -- need not be provided if the IOMMU does not
 405     * need to know exactly which events must be notified.
 406     *
 407     * @iommu: the IOMMUMemoryRegion
 408     *
 409     * @old_flags: events which previously needed to be notified
 410     *
 411     * @new_flags: events which now need to be notified
 412     *
 413     * Returns 0 on success, or a negative errno; in particular
 414     * returns -EINVAL if the new flag bitmap is not supported by the
 415     * IOMMU memory region. In case of failure, the error object
 416     * must be created
 417     */
 418    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 419                               IOMMUNotifierFlag old_flags,
 420                               IOMMUNotifierFlag new_flags,
 421                               Error **errp);
 422    /**
 423     * @replay:
 424     *
 425     * Called to handle memory_region_iommu_replay().
 426     *
 427     * The default implementation of memory_region_iommu_replay() is to
 428     * call the IOMMU translate method for every page in the address space
 429     * with flag == IOMMU_NONE and then call the notifier if translate
 430     * returns a valid mapping. If this method is implemented then it
 431     * overrides the default behaviour, and must provide the full semantics
 432     * of memory_region_iommu_replay(), by calling @notifier for every
 433     * translation present in the IOMMU.
 434     *
 435     * Optional method -- an IOMMU only needs to provide this method
 436     * if the default is inefficient or produces undesirable side effects.
 437     *
 438     * Note: this is not related to record-and-replay functionality.
 439     */
 440    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 441
 442    /**
 443     * @get_attr:
 444     *
 445     * Get IOMMU misc attributes. This is an optional method that
 446     * can be used to allow users of the IOMMU to get implementation-specific
 447     * information. The IOMMU implements this method to handle calls
 448     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 449     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 450     * the IOMMU supports. If the method is unimplemented then
 451     * memory_region_iommu_get_attr() will always return -EINVAL.
 452     *
 453     * @iommu: the IOMMUMemoryRegion
 454     *
 455     * @attr: attribute being queried
 456     *
 457     * @data: memory to fill in with the attribute data
 458     *
 459     * Returns 0 on success, or a negative errno; in particular
 460     * returns -EINVAL for unrecognized or unimplemented attribute types.
 461     */
 462    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 463                    void *data);
 464
 465    /**
 466     * @attrs_to_index:
 467     *
 468     * Return the IOMMU index to use for a given set of transaction attributes.
 469     *
 470     * Optional method: if an IOMMU only supports a single IOMMU index then
 471     * the default implementation of memory_region_iommu_attrs_to_index()
 472     * will return 0.
 473     *
 474     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 475     *
 476     * @iommu: the IOMMUMemoryRegion
 477     * @attrs: memory transaction attributes
 478     */
 479    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 480
 481    /**
 482     * @num_indexes:
 483     *
 484     * Return the number of IOMMU indexes this IOMMU supports.
 485     *
 486     * Optional method: if this method is not provided, then
 487     * memory_region_iommu_num_indexes() will return 1, indicating that
 488     * only a single IOMMU index is supported.
 489     *
 490     * @iommu: the IOMMUMemoryRegion
 491     */
 492    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 493
 494    /**
 495     * @iommu_set_page_size_mask:
 496     *
 497     * Restrict the page size mask that can be supported with a given IOMMU
 498     * memory region. Used for example to propagate host physical IOMMU page
 499     * size mask limitations to the virtual IOMMU.
 500     *
 501     * Optional method: if this method is not provided, then the default global
 502     * page mask is used.
 503     *
 504     * @iommu: the IOMMUMemoryRegion
 505     *
 506     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
 507     * representing the smallest page size, must be set. Additional set bits
 508     * represent supported block sizes. For example a host physical IOMMU that
 509     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
 510     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
 511     * block sizes is specified with mask 0xfffffffffffff000.
 512     *
 513     * Returns 0 on success, or a negative error. In case of failure, the error
 514     * object must be created.
 515     */
 516     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
 517                                     uint64_t page_size_mask,
 518                                     Error **errp);
 519};
 520
 521typedef struct RamDiscardListener RamDiscardListener;
 522typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
 523                                 MemoryRegionSection *section);
 524typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
 525                                 MemoryRegionSection *section);
 526
 527struct RamDiscardListener {
 528    /*
 529     * @notify_populate:
 530     *
 531     * Notification that previously discarded memory is about to get populated.
 532     * Listeners are able to object. If any listener objects, already
 533     * successfully notified listeners are notified about a discard again.
 534     *
 535     * @rdl: the #RamDiscardListener getting notified
 536     * @section: the #MemoryRegionSection to get populated. The section
 537     *           is aligned within the memory region to the minimum granularity
 538     *           unless it would exceed the registered section.
 539     *
 540     * Returns 0 on success. If the notification is rejected by the listener,
 541     * an error is returned.
 542     */
 543    NotifyRamPopulate notify_populate;
 544
 545    /*
 546     * @notify_discard:
 547     *
 548     * Notification that previously populated memory was discarded successfully
 549     * and listeners should drop all references to such memory and prevent
 550     * new population (e.g., unmap).
 551     *
 552     * @rdl: the #RamDiscardListener getting notified
 553     * @section: the #MemoryRegionSection to get populated. The section
 554     *           is aligned within the memory region to the minimum granularity
 555     *           unless it would exceed the registered section.
 556     */
 557    NotifyRamDiscard notify_discard;
 558
 559    /*
 560     * @double_discard_supported:
 561     *
 562     * The listener suppors getting @notify_discard notifications that span
 563     * already discarded parts.
 564     */
 565    bool double_discard_supported;
 566
 567    MemoryRegionSection *section;
 568    QLIST_ENTRY(RamDiscardListener) next;
 569};
 570
 571static inline void ram_discard_listener_init(RamDiscardListener *rdl,
 572                                             NotifyRamPopulate populate_fn,
 573                                             NotifyRamDiscard discard_fn,
 574                                             bool double_discard_supported)
 575{
 576    rdl->notify_populate = populate_fn;
 577    rdl->notify_discard = discard_fn;
 578    rdl->double_discard_supported = double_discard_supported;
 579}
 580
 581typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
 582typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
 583
 584/*
 585 * RamDiscardManagerClass:
 586 *
 587 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
 588 * regions are currently populated to be used/accessed by the VM, notifying
 589 * after parts were discarded (freeing up memory) and before parts will be
 590 * populated (consuming memory), to be used/accessed by the VM.
 591 *
 592 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
 593 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
 594 * mapped.
 595 *
 596 * The #RamDiscardManager is intended to be used by technologies that are
 597 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
 598 * memory inside a #MemoryRegion), and require proper coordination to only
 599 * map the currently populated parts, to hinder parts that are expected to
 600 * remain discarded from silently getting populated and consuming memory.
 601 * Technologies that support discarding of RAM don't have to bother and can
 602 * simply map the whole #MemoryRegion.
 603 *
 604 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
 605 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
 606 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
 607 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
 608 * properly coordinate with listeners before memory is plugged (populated),
 609 * and after memory is unplugged (discarded).
 610 *
 611 * Listeners are called in multiples of the minimum granularity (unless it
 612 * would exceed the registered range) and changes are aligned to the minimum
 613 * granularity within the #MemoryRegion. Listeners have to prepare for memory
 614 * becoming discarded in a different granularity than it was populated and the
 615 * other way around.
 616 */
 617struct RamDiscardManagerClass {
 618    /* private */
 619    InterfaceClass parent_class;
 620
 621    /* public */
 622
 623    /**
 624     * @get_min_granularity:
 625     *
 626     * Get the minimum granularity in which listeners will get notified
 627     * about changes within the #MemoryRegion via the #RamDiscardManager.
 628     *
 629     * @rdm: the #RamDiscardManager
 630     * @mr: the #MemoryRegion
 631     *
 632     * Returns the minimum granularity.
 633     */
 634    uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
 635                                    const MemoryRegion *mr);
 636
 637    /**
 638     * @is_populated:
 639     *
 640     * Check whether the given #MemoryRegionSection is completely populated
 641     * (i.e., no parts are currently discarded) via the #RamDiscardManager.
 642     * There are no alignment requirements.
 643     *
 644     * @rdm: the #RamDiscardManager
 645     * @section: the #MemoryRegionSection
 646     *
 647     * Returns whether the given range is completely populated.
 648     */
 649    bool (*is_populated)(const RamDiscardManager *rdm,
 650                         const MemoryRegionSection *section);
 651
 652    /**
 653     * @replay_populated:
 654     *
 655     * Call the #ReplayRamPopulate callback for all populated parts within the
 656     * #MemoryRegionSection via the #RamDiscardManager.
 657     *
 658     * In case any call fails, no further calls are made.
 659     *
 660     * @rdm: the #RamDiscardManager
 661     * @section: the #MemoryRegionSection
 662     * @replay_fn: the #ReplayRamPopulate callback
 663     * @opaque: pointer to forward to the callback
 664     *
 665     * Returns 0 on success, or a negative error if any notification failed.
 666     */
 667    int (*replay_populated)(const RamDiscardManager *rdm,
 668                            MemoryRegionSection *section,
 669                            ReplayRamPopulate replay_fn, void *opaque);
 670
 671    /**
 672     * @replay_discarded:
 673     *
 674     * Call the #ReplayRamDiscard callback for all discarded parts within the
 675     * #MemoryRegionSection via the #RamDiscardManager.
 676     *
 677     * @rdm: the #RamDiscardManager
 678     * @section: the #MemoryRegionSection
 679     * @replay_fn: the #ReplayRamDiscard callback
 680     * @opaque: pointer to forward to the callback
 681     */
 682    void (*replay_discarded)(const RamDiscardManager *rdm,
 683                             MemoryRegionSection *section,
 684                             ReplayRamDiscard replay_fn, void *opaque);
 685
 686    /**
 687     * @register_listener:
 688     *
 689     * Register a #RamDiscardListener for the given #MemoryRegionSection and
 690     * immediately notify the #RamDiscardListener about all populated parts
 691     * within the #MemoryRegionSection via the #RamDiscardManager.
 692     *
 693     * In case any notification fails, no further notifications are triggered
 694     * and an error is logged.
 695     *
 696     * @rdm: the #RamDiscardManager
 697     * @rdl: the #RamDiscardListener
 698     * @section: the #MemoryRegionSection
 699     */
 700    void (*register_listener)(RamDiscardManager *rdm,
 701                              RamDiscardListener *rdl,
 702                              MemoryRegionSection *section);
 703
 704    /**
 705     * @unregister_listener:
 706     *
 707     * Unregister a previously registered #RamDiscardListener via the
 708     * #RamDiscardManager after notifying the #RamDiscardListener about all
 709     * populated parts becoming unpopulated within the registered
 710     * #MemoryRegionSection.
 711     *
 712     * @rdm: the #RamDiscardManager
 713     * @rdl: the #RamDiscardListener
 714     */
 715    void (*unregister_listener)(RamDiscardManager *rdm,
 716                                RamDiscardListener *rdl);
 717};
 718
 719uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
 720                                                 const MemoryRegion *mr);
 721
 722bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
 723                                      const MemoryRegionSection *section);
 724
 725int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
 726                                         MemoryRegionSection *section,
 727                                         ReplayRamPopulate replay_fn,
 728                                         void *opaque);
 729
 730void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
 731                                          MemoryRegionSection *section,
 732                                          ReplayRamDiscard replay_fn,
 733                                          void *opaque);
 734
 735void ram_discard_manager_register_listener(RamDiscardManager *rdm,
 736                                           RamDiscardListener *rdl,
 737                                           MemoryRegionSection *section);
 738
 739void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
 740                                             RamDiscardListener *rdl);
 741
 742bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
 743                          ram_addr_t *ram_addr, bool *read_only,
 744                          bool *mr_has_discard_manager);
 745
 746typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 747typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 748
 749/** MemoryRegion:
 750 *
 751 * A struct representing a memory region.
 752 */
 753struct MemoryRegion {
 754    Object parent_obj;
 755
 756    /* private: */
 757
 758    /* The following fields should fit in a cache line */
 759    bool romd_mode;
 760    bool ram;
 761    bool subpage;
 762    bool readonly; /* For RAM regions */
 763    bool nonvolatile;
 764    bool rom_device;
 765    bool flush_coalesced_mmio;
 766    uint8_t dirty_log_mask;
 767    bool is_iommu;
 768    RAMBlock *ram_block;
 769    Object *owner;
 770
 771    const MemoryRegionOps *ops;
 772    void *opaque;
 773    MemoryRegion *container;
 774    int mapped_via_alias; /* Mapped via an alias, container might be NULL */
 775    Int128 size;
 776    hwaddr addr;
 777    void (*destructor)(MemoryRegion *mr);
 778    uint64_t align;
 779    bool terminates;
 780    bool ram_device;
 781    bool enabled;
 782    bool warning_printed; /* For reservations */
 783    uint8_t vga_logging_count;
 784    MemoryRegion *alias;
 785    hwaddr alias_offset;
 786    int32_t priority;
 787    QTAILQ_HEAD(, MemoryRegion) subregions;
 788    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 789    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 790    const char *name;
 791    unsigned ioeventfd_nb;
 792    MemoryRegionIoeventfd *ioeventfds;
 793    RamDiscardManager *rdm; /* Only for RAM */
 794};
 795
 796struct IOMMUMemoryRegion {
 797    MemoryRegion parent_obj;
 798
 799    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 800    IOMMUNotifierFlag iommu_notify_flags;
 801};
 802
 803#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 804    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 805
 806/**
 807 * struct MemoryListener: callbacks structure for updates to the physical memory map
 808 *
 809 * Allows a component to adjust to changes in the guest-visible memory map.
 810 * Use with memory_listener_register() and memory_listener_unregister().
 811 */
 812struct MemoryListener {
 813    /**
 814     * @begin:
 815     *
 816     * Called at the beginning of an address space update transaction.
 817     * Followed by calls to #MemoryListener.region_add(),
 818     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 819     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 820     * increasing address order.
 821     *
 822     * @listener: The #MemoryListener.
 823     */
 824    void (*begin)(MemoryListener *listener);
 825
 826    /**
 827     * @commit:
 828     *
 829     * Called at the end of an address space update transaction,
 830     * after the last call to #MemoryListener.region_add(),
 831     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 832     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 833     *
 834     * @listener: The #MemoryListener.
 835     */
 836    void (*commit)(MemoryListener *listener);
 837
 838    /**
 839     * @region_add:
 840     *
 841     * Called during an address space update transaction,
 842     * for a section of the address space that is new in this address space
 843     * space since the last transaction.
 844     *
 845     * @listener: The #MemoryListener.
 846     * @section: The new #MemoryRegionSection.
 847     */
 848    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 849
 850    /**
 851     * @region_del:
 852     *
 853     * Called during an address space update transaction,
 854     * for a section of the address space that has disappeared in the address
 855     * space since the last transaction.
 856     *
 857     * @listener: The #MemoryListener.
 858     * @section: The old #MemoryRegionSection.
 859     */
 860    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 861
 862    /**
 863     * @region_nop:
 864     *
 865     * Called during an address space update transaction,
 866     * for a section of the address space that is in the same place in the address
 867     * space as in the last transaction.
 868     *
 869     * @listener: The #MemoryListener.
 870     * @section: The #MemoryRegionSection.
 871     */
 872    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 873
 874    /**
 875     * @log_start:
 876     *
 877     * Called during an address space update transaction, after
 878     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 879     * #MemoryListener.region_nop(), if dirty memory logging clients have
 880     * become active since the last transaction.
 881     *
 882     * @listener: The #MemoryListener.
 883     * @section: The #MemoryRegionSection.
 884     * @old: A bitmap of dirty memory logging clients that were active in
 885     * the previous transaction.
 886     * @new: A bitmap of dirty memory logging clients that are active in
 887     * the current transaction.
 888     */
 889    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 890                      int old, int new);
 891
 892    /**
 893     * @log_stop:
 894     *
 895     * Called during an address space update transaction, after
 896     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 897     * #MemoryListener.region_nop() and possibly after
 898     * #MemoryListener.log_start(), if dirty memory logging clients have
 899     * become inactive since the last transaction.
 900     *
 901     * @listener: The #MemoryListener.
 902     * @section: The #MemoryRegionSection.
 903     * @old: A bitmap of dirty memory logging clients that were active in
 904     * the previous transaction.
 905     * @new: A bitmap of dirty memory logging clients that are active in
 906     * the current transaction.
 907     */
 908    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 909                     int old, int new);
 910
 911    /**
 912     * @log_sync:
 913     *
 914     * Called by memory_region_snapshot_and_clear_dirty() and
 915     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 916     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 917     *
 918     * @listener: The #MemoryListener.
 919     * @section: The #MemoryRegionSection.
 920     */
 921    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 922
 923    /**
 924     * @log_sync_global:
 925     *
 926     * This is the global version of @log_sync when the listener does
 927     * not have a way to synchronize the log with finer granularity.
 928     * When the listener registers with @log_sync_global defined, then
 929     * its @log_sync must be NULL.  Vice versa.
 930     *
 931     * @listener: The #MemoryListener.
 932     */
 933    void (*log_sync_global)(MemoryListener *listener);
 934
 935    /**
 936     * @log_clear:
 937     *
 938     * Called before reading the dirty memory bitmap for a
 939     * #MemoryRegionSection.
 940     *
 941     * @listener: The #MemoryListener.
 942     * @section: The #MemoryRegionSection.
 943     */
 944    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 945
 946    /**
 947     * @log_global_start:
 948     *
 949     * Called by memory_global_dirty_log_start(), which
 950     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 951     * the address space.  #MemoryListener.log_global_start() is also
 952     * called when a #MemoryListener is added, if global dirty logging is
 953     * active at that time.
 954     *
 955     * @listener: The #MemoryListener.
 956     */
 957    void (*log_global_start)(MemoryListener *listener);
 958
 959    /**
 960     * @log_global_stop:
 961     *
 962     * Called by memory_global_dirty_log_stop(), which
 963     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 964     * the address space.
 965     *
 966     * @listener: The #MemoryListener.
 967     */
 968    void (*log_global_stop)(MemoryListener *listener);
 969
 970    /**
 971     * @log_global_after_sync:
 972     *
 973     * Called after reading the dirty memory bitmap
 974     * for any #MemoryRegionSection.
 975     *
 976     * @listener: The #MemoryListener.
 977     */
 978    void (*log_global_after_sync)(MemoryListener *listener);
 979
 980    /**
 981     * @eventfd_add:
 982     *
 983     * Called during an address space update transaction,
 984     * for a section of the address space that has had a new ioeventfd
 985     * registration since the last transaction.
 986     *
 987     * @listener: The #MemoryListener.
 988     * @section: The new #MemoryRegionSection.
 989     * @match_data: The @match_data parameter for the new ioeventfd.
 990     * @data: The @data parameter for the new ioeventfd.
 991     * @e: The #EventNotifier parameter for the new ioeventfd.
 992     */
 993    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 994                        bool match_data, uint64_t data, EventNotifier *e);
 995
 996    /**
 997     * @eventfd_del:
 998     *
 999     * Called during an address space update transaction,
1000     * for a section of the address space that has dropped an ioeventfd
1001     * registration since the last transaction.
1002     *
1003     * @listener: The #MemoryListener.
1004     * @section: The new #MemoryRegionSection.
1005     * @match_data: The @match_data parameter for the dropped ioeventfd.
1006     * @data: The @data parameter for the dropped ioeventfd.
1007     * @e: The #EventNotifier parameter for the dropped ioeventfd.
1008     */
1009    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1010                        bool match_data, uint64_t data, EventNotifier *e);
1011
1012    /**
1013     * @coalesced_io_add:
1014     *
1015     * Called during an address space update transaction,
1016     * for a section of the address space that has had a new coalesced
1017     * MMIO range registration since the last transaction.
1018     *
1019     * @listener: The #MemoryListener.
1020     * @section: The new #MemoryRegionSection.
1021     * @addr: The starting address for the coalesced MMIO range.
1022     * @len: The length of the coalesced MMIO range.
1023     */
1024    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1025                               hwaddr addr, hwaddr len);
1026
1027    /**
1028     * @coalesced_io_del:
1029     *
1030     * Called during an address space update transaction,
1031     * for a section of the address space that has dropped a coalesced
1032     * MMIO range since the last transaction.
1033     *
1034     * @listener: The #MemoryListener.
1035     * @section: The new #MemoryRegionSection.
1036     * @addr: The starting address for the coalesced MMIO range.
1037     * @len: The length of the coalesced MMIO range.
1038     */
1039    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1040                               hwaddr addr, hwaddr len);
1041    /**
1042     * @priority:
1043     *
1044     * Govern the order in which memory listeners are invoked. Lower priorities
1045     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1046     * or "stop" callbacks.
1047     */
1048    unsigned priority;
1049
1050    /**
1051     * @name:
1052     *
1053     * Name of the listener.  It can be used in contexts where we'd like to
1054     * identify one memory listener with the rest.
1055     */
1056    const char *name;
1057
1058    /* private: */
1059    AddressSpace *address_space;
1060    QTAILQ_ENTRY(MemoryListener) link;
1061    QTAILQ_ENTRY(MemoryListener) link_as;
1062};
1063
1064/**
1065 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1066 */
1067struct AddressSpace {
1068    /* private: */
1069    struct rcu_head rcu;
1070    char *name;
1071    MemoryRegion *root;
1072
1073    /* Accessed via RCU.  */
1074    struct FlatView *current_map;
1075
1076    int ioeventfd_nb;
1077    struct MemoryRegionIoeventfd *ioeventfds;
1078    QTAILQ_HEAD(, MemoryListener) listeners;
1079    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1080};
1081
1082typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1083typedef struct FlatRange FlatRange;
1084
1085/* Flattened global view of current active memory hierarchy.  Kept in sorted
1086 * order.
1087 */
1088struct FlatView {
1089    struct rcu_head rcu;
1090    unsigned ref;
1091    FlatRange *ranges;
1092    unsigned nr;
1093    unsigned nr_allocated;
1094    struct AddressSpaceDispatch *dispatch;
1095    MemoryRegion *root;
1096};
1097
1098static inline FlatView *address_space_to_flatview(AddressSpace *as)
1099{
1100    return qatomic_rcu_read(&as->current_map);
1101}
1102
1103/**
1104 * typedef flatview_cb: callback for flatview_for_each_range()
1105 *
1106 * @start: start address of the range within the FlatView
1107 * @len: length of the range in bytes
1108 * @mr: MemoryRegion covering this range
1109 * @offset_in_region: offset of the first byte of the range within @mr
1110 * @opaque: data pointer passed to flatview_for_each_range()
1111 *
1112 * Returns: true to stop the iteration, false to keep going.
1113 */
1114typedef bool (*flatview_cb)(Int128 start,
1115                            Int128 len,
1116                            const MemoryRegion *mr,
1117                            hwaddr offset_in_region,
1118                            void *opaque);
1119
1120/**
1121 * flatview_for_each_range: Iterate through a FlatView
1122 * @fv: the FlatView to iterate through
1123 * @cb: function to call for each range
1124 * @opaque: opaque data pointer to pass to @cb
1125 *
1126 * A FlatView is made up of a list of non-overlapping ranges, each of
1127 * which is a slice of a MemoryRegion. This function iterates through
1128 * each range in @fv, calling @cb. The callback function can terminate
1129 * iteration early by returning 'true'.
1130 */
1131void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1132
1133static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1134                                          MemoryRegionSection *b)
1135{
1136    return a->mr == b->mr &&
1137           a->fv == b->fv &&
1138           a->offset_within_region == b->offset_within_region &&
1139           a->offset_within_address_space == b->offset_within_address_space &&
1140           int128_eq(a->size, b->size) &&
1141           a->readonly == b->readonly &&
1142           a->nonvolatile == b->nonvolatile;
1143}
1144
1145/**
1146 * memory_region_section_new_copy: Copy a memory region section
1147 *
1148 * Allocate memory for a new copy, copy the memory region section, and
1149 * properly take a reference on all relevant members.
1150 *
1151 * @s: the #MemoryRegionSection to copy
1152 */
1153MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1154
1155/**
1156 * memory_region_section_new_copy: Free a copied memory region section
1157 *
1158 * Free a copy of a memory section created via memory_region_section_new_copy().
1159 * properly dropping references on all relevant members.
1160 *
1161 * @s: the #MemoryRegionSection to copy
1162 */
1163void memory_region_section_free_copy(MemoryRegionSection *s);
1164
1165/**
1166 * memory_region_init: Initialize a memory region
1167 *
1168 * The region typically acts as a container for other memory regions.  Use
1169 * memory_region_add_subregion() to add subregions.
1170 *
1171 * @mr: the #MemoryRegion to be initialized
1172 * @owner: the object that tracks the region's reference count
1173 * @name: used for debugging; not visible to the user or ABI
1174 * @size: size of the region; any subregions beyond this size will be clipped
1175 */
1176void memory_region_init(MemoryRegion *mr,
1177                        Object *owner,
1178                        const char *name,
1179                        uint64_t size);
1180
1181/**
1182 * memory_region_ref: Add 1 to a memory region's reference count
1183 *
1184 * Whenever memory regions are accessed outside the BQL, they need to be
1185 * preserved against hot-unplug.  MemoryRegions actually do not have their
1186 * own reference count; they piggyback on a QOM object, their "owner".
1187 * This function adds a reference to the owner.
1188 *
1189 * All MemoryRegions must have an owner if they can disappear, even if the
1190 * device they belong to operates exclusively under the BQL.  This is because
1191 * the region could be returned at any time by memory_region_find, and this
1192 * is usually under guest control.
1193 *
1194 * @mr: the #MemoryRegion
1195 */
1196void memory_region_ref(MemoryRegion *mr);
1197
1198/**
1199 * memory_region_unref: Remove 1 to a memory region's reference count
1200 *
1201 * Whenever memory regions are accessed outside the BQL, they need to be
1202 * preserved against hot-unplug.  MemoryRegions actually do not have their
1203 * own reference count; they piggyback on a QOM object, their "owner".
1204 * This function removes a reference to the owner and possibly destroys it.
1205 *
1206 * @mr: the #MemoryRegion
1207 */
1208void memory_region_unref(MemoryRegion *mr);
1209
1210/**
1211 * memory_region_init_io: Initialize an I/O memory region.
1212 *
1213 * Accesses into the region will cause the callbacks in @ops to be called.
1214 * if @size is nonzero, subregions will be clipped to @size.
1215 *
1216 * @mr: the #MemoryRegion to be initialized.
1217 * @owner: the object that tracks the region's reference count
1218 * @ops: a structure containing read and write callbacks to be used when
1219 *       I/O is performed on the region.
1220 * @opaque: passed to the read and write callbacks of the @ops structure.
1221 * @name: used for debugging; not visible to the user or ABI
1222 * @size: size of the region.
1223 */
1224void memory_region_init_io(MemoryRegion *mr,
1225                           Object *owner,
1226                           const MemoryRegionOps *ops,
1227                           void *opaque,
1228                           const char *name,
1229                           uint64_t size);
1230
1231/**
1232 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1233 *                                    into the region will modify memory
1234 *                                    directly.
1235 *
1236 * @mr: the #MemoryRegion to be initialized.
1237 * @owner: the object that tracks the region's reference count
1238 * @name: Region name, becomes part of RAMBlock name used in migration stream
1239 *        must be unique within any device
1240 * @size: size of the region.
1241 * @errp: pointer to Error*, to store an error if it happens.
1242 *
1243 * Note that this function does not do anything to cause the data in the
1244 * RAM memory region to be migrated; that is the responsibility of the caller.
1245 */
1246void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1247                                      Object *owner,
1248                                      const char *name,
1249                                      uint64_t size,
1250                                      Error **errp);
1251
1252/**
1253 * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1254 *                                          Accesses into the region will
1255 *                                          modify memory directly.
1256 *
1257 * @mr: the #MemoryRegion to be initialized.
1258 * @owner: the object that tracks the region's reference count
1259 * @name: Region name, becomes part of RAMBlock name used in migration stream
1260 *        must be unique within any device
1261 * @size: size of the region.
1262 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1263 * @errp: pointer to Error*, to store an error if it happens.
1264 *
1265 * Note that this function does not do anything to cause the data in the
1266 * RAM memory region to be migrated; that is the responsibility of the caller.
1267 */
1268void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1269                                            Object *owner,
1270                                            const char *name,
1271                                            uint64_t size,
1272                                            uint32_t ram_flags,
1273                                            Error **errp);
1274
1275/**
1276 * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1277 *                                     RAM.  Accesses into the region will
1278 *                                     modify memory directly.  Only an initial
1279 *                                     portion of this RAM is actually used.
1280 *                                     Changing the size while migrating
1281 *                                     can result in the migration being
1282 *                                     canceled.
1283 *
1284 * @mr: the #MemoryRegion to be initialized.
1285 * @owner: the object that tracks the region's reference count
1286 * @name: Region name, becomes part of RAMBlock name used in migration stream
1287 *        must be unique within any device
1288 * @size: used size of the region.
1289 * @max_size: max size of the region.
1290 * @resized: callback to notify owner about used size change.
1291 * @errp: pointer to Error*, to store an error if it happens.
1292 *
1293 * Note that this function does not do anything to cause the data in the
1294 * RAM memory region to be migrated; that is the responsibility of the caller.
1295 */
1296void memory_region_init_resizeable_ram(MemoryRegion *mr,
1297                                       Object *owner,
1298                                       const char *name,
1299                                       uint64_t size,
1300                                       uint64_t max_size,
1301                                       void (*resized)(const char*,
1302                                                       uint64_t length,
1303                                                       void *host),
1304                                       Error **errp);
1305#ifdef CONFIG_POSIX
1306
1307/**
1308 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1309 *                                    mmap-ed backend.
1310 *
1311 * @mr: the #MemoryRegion to be initialized.
1312 * @owner: the object that tracks the region's reference count
1313 * @name: Region name, becomes part of RAMBlock name used in migration stream
1314 *        must be unique within any device
1315 * @size: size of the region.
1316 * @align: alignment of the region base address; if 0, the default alignment
1317 *         (getpagesize()) will be used.
1318 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1319 *             RAM_NORESERVE,
1320 * @path: the path in which to allocate the RAM.
1321 * @readonly: true to open @path for reading, false for read/write.
1322 * @errp: pointer to Error*, to store an error if it happens.
1323 *
1324 * Note that this function does not do anything to cause the data in the
1325 * RAM memory region to be migrated; that is the responsibility of the caller.
1326 */
1327void memory_region_init_ram_from_file(MemoryRegion *mr,
1328                                      Object *owner,
1329                                      const char *name,
1330                                      uint64_t size,
1331                                      uint64_t align,
1332                                      uint32_t ram_flags,
1333                                      const char *path,
1334                                      bool readonly,
1335                                      Error **errp);
1336
1337/**
1338 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1339 *                                  mmap-ed backend.
1340 *
1341 * @mr: the #MemoryRegion to be initialized.
1342 * @owner: the object that tracks the region's reference count
1343 * @name: the name of the region.
1344 * @size: size of the region.
1345 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1346 *             RAM_NORESERVE, RAM_PROTECTED.
1347 * @fd: the fd to mmap.
1348 * @offset: offset within the file referenced by fd
1349 * @errp: pointer to Error*, to store an error if it happens.
1350 *
1351 * Note that this function does not do anything to cause the data in the
1352 * RAM memory region to be migrated; that is the responsibility of the caller.
1353 */
1354void memory_region_init_ram_from_fd(MemoryRegion *mr,
1355                                    Object *owner,
1356                                    const char *name,
1357                                    uint64_t size,
1358                                    uint32_t ram_flags,
1359                                    int fd,
1360                                    ram_addr_t offset,
1361                                    Error **errp);
1362#endif
1363
1364/**
1365 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1366 *                              user-provided pointer.  Accesses into the
1367 *                              region will modify memory directly.
1368 *
1369 * @mr: the #MemoryRegion to be initialized.
1370 * @owner: the object that tracks the region's reference count
1371 * @name: Region name, becomes part of RAMBlock name used in migration stream
1372 *        must be unique within any device
1373 * @size: size of the region.
1374 * @ptr: memory to be mapped; must contain at least @size bytes.
1375 *
1376 * Note that this function does not do anything to cause the data in the
1377 * RAM memory region to be migrated; that is the responsibility of the caller.
1378 */
1379void memory_region_init_ram_ptr(MemoryRegion *mr,
1380                                Object *owner,
1381                                const char *name,
1382                                uint64_t size,
1383                                void *ptr);
1384
1385/**
1386 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1387 *                                     a user-provided pointer.
1388 *
1389 * A RAM device represents a mapping to a physical device, such as to a PCI
1390 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1391 * into the VM address space and access to the region will modify memory
1392 * directly.  However, the memory region should not be included in a memory
1393 * dump (device may not be enabled/mapped at the time of the dump), and
1394 * operations incompatible with manipulating MMIO should be avoided.  Replaces
1395 * skip_dump flag.
1396 *
1397 * @mr: the #MemoryRegion to be initialized.
1398 * @owner: the object that tracks the region's reference count
1399 * @name: the name of the region.
1400 * @size: size of the region.
1401 * @ptr: memory to be mapped; must contain at least @size bytes.
1402 *
1403 * Note that this function does not do anything to cause the data in the
1404 * RAM memory region to be migrated; that is the responsibility of the caller.
1405 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1406 */
1407void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1408                                       Object *owner,
1409                                       const char *name,
1410                                       uint64_t size,
1411                                       void *ptr);
1412
1413/**
1414 * memory_region_init_alias: Initialize a memory region that aliases all or a
1415 *                           part of another memory region.
1416 *
1417 * @mr: the #MemoryRegion to be initialized.
1418 * @owner: the object that tracks the region's reference count
1419 * @name: used for debugging; not visible to the user or ABI
1420 * @orig: the region to be referenced; @mr will be equivalent to
1421 *        @orig between @offset and @offset + @size - 1.
1422 * @offset: start of the section in @orig to be referenced.
1423 * @size: size of the region.
1424 */
1425void memory_region_init_alias(MemoryRegion *mr,
1426                              Object *owner,
1427                              const char *name,
1428                              MemoryRegion *orig,
1429                              hwaddr offset,
1430                              uint64_t size);
1431
1432/**
1433 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1434 *
1435 * This has the same effect as calling memory_region_init_ram_nomigrate()
1436 * and then marking the resulting region read-only with
1437 * memory_region_set_readonly().
1438 *
1439 * Note that this function does not do anything to cause the data in the
1440 * RAM side of the memory region to be migrated; that is the responsibility
1441 * of the caller.
1442 *
1443 * @mr: the #MemoryRegion to be initialized.
1444 * @owner: the object that tracks the region's reference count
1445 * @name: Region name, becomes part of RAMBlock name used in migration stream
1446 *        must be unique within any device
1447 * @size: size of the region.
1448 * @errp: pointer to Error*, to store an error if it happens.
1449 */
1450void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1451                                      Object *owner,
1452                                      const char *name,
1453                                      uint64_t size,
1454                                      Error **errp);
1455
1456/**
1457 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1458 *                                 Writes are handled via callbacks.
1459 *
1460 * Note that this function does not do anything to cause the data in the
1461 * RAM side of the memory region to be migrated; that is the responsibility
1462 * of the caller.
1463 *
1464 * @mr: the #MemoryRegion to be initialized.
1465 * @owner: the object that tracks the region's reference count
1466 * @ops: callbacks for write access handling (must not be NULL).
1467 * @opaque: passed to the read and write callbacks of the @ops structure.
1468 * @name: Region name, becomes part of RAMBlock name used in migration stream
1469 *        must be unique within any device
1470 * @size: size of the region.
1471 * @errp: pointer to Error*, to store an error if it happens.
1472 */
1473void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1474                                             Object *owner,
1475                                             const MemoryRegionOps *ops,
1476                                             void *opaque,
1477                                             const char *name,
1478                                             uint64_t size,
1479                                             Error **errp);
1480
1481/**
1482 * memory_region_init_iommu: Initialize a memory region of a custom type
1483 * that translates addresses
1484 *
1485 * An IOMMU region translates addresses and forwards accesses to a target
1486 * memory region.
1487 *
1488 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1489 * @_iommu_mr should be a pointer to enough memory for an instance of
1490 * that subclass, @instance_size is the size of that subclass, and
1491 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1492 * instance of the subclass, and its methods will then be called to handle
1493 * accesses to the memory region. See the documentation of
1494 * #IOMMUMemoryRegionClass for further details.
1495 *
1496 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1497 * @instance_size: the IOMMUMemoryRegion subclass instance size
1498 * @mrtypename: the type name of the #IOMMUMemoryRegion
1499 * @owner: the object that tracks the region's reference count
1500 * @name: used for debugging; not visible to the user or ABI
1501 * @size: size of the region.
1502 */
1503void memory_region_init_iommu(void *_iommu_mr,
1504                              size_t instance_size,
1505                              const char *mrtypename,
1506                              Object *owner,
1507                              const char *name,
1508                              uint64_t size);
1509
1510/**
1511 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1512 *                          region will modify memory directly.
1513 *
1514 * @mr: the #MemoryRegion to be initialized
1515 * @owner: the object that tracks the region's reference count (must be
1516 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1517 * @name: name of the memory region
1518 * @size: size of the region in bytes
1519 * @errp: pointer to Error*, to store an error if it happens.
1520 *
1521 * This function allocates RAM for a board model or device, and
1522 * arranges for it to be migrated (by calling vmstate_register_ram()
1523 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1524 * @owner is NULL).
1525 *
1526 * TODO: Currently we restrict @owner to being either NULL (for
1527 * global RAM regions with no owner) or devices, so that we can
1528 * give the RAM block a unique name for migration purposes.
1529 * We should lift this restriction and allow arbitrary Objects.
1530 * If you pass a non-NULL non-device @owner then we will assert.
1531 */
1532void memory_region_init_ram(MemoryRegion *mr,
1533                            Object *owner,
1534                            const char *name,
1535                            uint64_t size,
1536                            Error **errp);
1537
1538/**
1539 * memory_region_init_rom: Initialize a ROM memory region.
1540 *
1541 * This has the same effect as calling memory_region_init_ram()
1542 * and then marking the resulting region read-only with
1543 * memory_region_set_readonly(). This includes arranging for the
1544 * contents to be migrated.
1545 *
1546 * TODO: Currently we restrict @owner to being either NULL (for
1547 * global RAM regions with no owner) or devices, so that we can
1548 * give the RAM block a unique name for migration purposes.
1549 * We should lift this restriction and allow arbitrary Objects.
1550 * If you pass a non-NULL non-device @owner then we will assert.
1551 *
1552 * @mr: the #MemoryRegion to be initialized.
1553 * @owner: the object that tracks the region's reference count
1554 * @name: Region name, becomes part of RAMBlock name used in migration stream
1555 *        must be unique within any device
1556 * @size: size of the region.
1557 * @errp: pointer to Error*, to store an error if it happens.
1558 */
1559void memory_region_init_rom(MemoryRegion *mr,
1560                            Object *owner,
1561                            const char *name,
1562                            uint64_t size,
1563                            Error **errp);
1564
1565/**
1566 * memory_region_init_rom_device:  Initialize a ROM memory region.
1567 *                                 Writes are handled via callbacks.
1568 *
1569 * This function initializes a memory region backed by RAM for reads
1570 * and callbacks for writes, and arranges for the RAM backing to
1571 * be migrated (by calling vmstate_register_ram()
1572 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1573 * @owner is NULL).
1574 *
1575 * TODO: Currently we restrict @owner to being either NULL (for
1576 * global RAM regions with no owner) or devices, so that we can
1577 * give the RAM block a unique name for migration purposes.
1578 * We should lift this restriction and allow arbitrary Objects.
1579 * If you pass a non-NULL non-device @owner then we will assert.
1580 *
1581 * @mr: the #MemoryRegion to be initialized.
1582 * @owner: the object that tracks the region's reference count
1583 * @ops: callbacks for write access handling (must not be NULL).
1584 * @opaque: passed to the read and write callbacks of the @ops structure.
1585 * @name: Region name, becomes part of RAMBlock name used in migration stream
1586 *        must be unique within any device
1587 * @size: size of the region.
1588 * @errp: pointer to Error*, to store an error if it happens.
1589 */
1590void memory_region_init_rom_device(MemoryRegion *mr,
1591                                   Object *owner,
1592                                   const MemoryRegionOps *ops,
1593                                   void *opaque,
1594                                   const char *name,
1595                                   uint64_t size,
1596                                   Error **errp);
1597
1598
1599/**
1600 * memory_region_owner: get a memory region's owner.
1601 *
1602 * @mr: the memory region being queried.
1603 */
1604Object *memory_region_owner(MemoryRegion *mr);
1605
1606/**
1607 * memory_region_size: get a memory region's size.
1608 *
1609 * @mr: the memory region being queried.
1610 */
1611uint64_t memory_region_size(MemoryRegion *mr);
1612
1613/**
1614 * memory_region_is_ram: check whether a memory region is random access
1615 *
1616 * Returns %true if a memory region is random access.
1617 *
1618 * @mr: the memory region being queried
1619 */
1620static inline bool memory_region_is_ram(MemoryRegion *mr)
1621{
1622    return mr->ram;
1623}
1624
1625/**
1626 * memory_region_is_ram_device: check whether a memory region is a ram device
1627 *
1628 * Returns %true if a memory region is a device backed ram region
1629 *
1630 * @mr: the memory region being queried
1631 */
1632bool memory_region_is_ram_device(MemoryRegion *mr);
1633
1634/**
1635 * memory_region_is_romd: check whether a memory region is in ROMD mode
1636 *
1637 * Returns %true if a memory region is a ROM device and currently set to allow
1638 * direct reads.
1639 *
1640 * @mr: the memory region being queried
1641 */
1642static inline bool memory_region_is_romd(MemoryRegion *mr)
1643{
1644    return mr->rom_device && mr->romd_mode;
1645}
1646
1647/**
1648 * memory_region_is_protected: check whether a memory region is protected
1649 *
1650 * Returns %true if a memory region is protected RAM and cannot be accessed
1651 * via standard mechanisms, e.g. DMA.
1652 *
1653 * @mr: the memory region being queried
1654 */
1655bool memory_region_is_protected(MemoryRegion *mr);
1656
1657/**
1658 * memory_region_get_iommu: check whether a memory region is an iommu
1659 *
1660 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1661 * otherwise NULL.
1662 *
1663 * @mr: the memory region being queried
1664 */
1665static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1666{
1667    if (mr->alias) {
1668        return memory_region_get_iommu(mr->alias);
1669    }
1670    if (mr->is_iommu) {
1671        return (IOMMUMemoryRegion *) mr;
1672    }
1673    return NULL;
1674}
1675
1676/**
1677 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1678 *   if an iommu or NULL if not
1679 *
1680 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1681 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1682 *
1683 * @iommu_mr: the memory region being queried
1684 */
1685static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1686        IOMMUMemoryRegion *iommu_mr)
1687{
1688    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1689}
1690
1691#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1692
1693/**
1694 * memory_region_iommu_get_min_page_size: get minimum supported page size
1695 * for an iommu
1696 *
1697 * Returns minimum supported page size for an iommu.
1698 *
1699 * @iommu_mr: the memory region being queried
1700 */
1701uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1702
1703/**
1704 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1705 *
1706 * Note: for any IOMMU implementation, an in-place mapping change
1707 * should be notified with an UNMAP followed by a MAP.
1708 *
1709 * @iommu_mr: the memory region that was changed
1710 * @iommu_idx: the IOMMU index for the translation table which has changed
1711 * @event: TLB event with the new entry in the IOMMU translation table.
1712 *         The entry replaces all old entries for the same virtual I/O address
1713 *         range.
1714 */
1715void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1716                                int iommu_idx,
1717                                IOMMUTLBEvent event);
1718
1719/**
1720 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1721 *                           entry to a single notifier
1722 *
1723 * This works just like memory_region_notify_iommu(), but it only
1724 * notifies a specific notifier, not all of them.
1725 *
1726 * @notifier: the notifier to be notified
1727 * @event: TLB event with the new entry in the IOMMU translation table.
1728 *         The entry replaces all old entries for the same virtual I/O address
1729 *         range.
1730 */
1731void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1732                                    IOMMUTLBEvent *event);
1733
1734/**
1735 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1736 *                                           translation that covers the
1737 *                                           range of a notifier
1738 *
1739 * @notifier: the notifier to be notified
1740 */
1741void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1742
1743
1744/**
1745 * memory_region_register_iommu_notifier: register a notifier for changes to
1746 * IOMMU translation entries.
1747 *
1748 * Returns 0 on success, or a negative errno otherwise. In particular,
1749 * -EINVAL indicates that at least one of the attributes of the notifier
1750 * is not supported (flag/range) by the IOMMU memory region. In case of error
1751 * the error object must be created.
1752 *
1753 * @mr: the memory region to observe
1754 * @n: the IOMMUNotifier to be added; the notify callback receives a
1755 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1756 *     ceases to be valid on exit from the notifier.
1757 * @errp: pointer to Error*, to store an error if it happens.
1758 */
1759int memory_region_register_iommu_notifier(MemoryRegion *mr,
1760                                          IOMMUNotifier *n, Error **errp);
1761
1762/**
1763 * memory_region_iommu_replay: replay existing IOMMU translations to
1764 * a notifier with the minimum page granularity returned by
1765 * mr->iommu_ops->get_page_size().
1766 *
1767 * Note: this is not related to record-and-replay functionality.
1768 *
1769 * @iommu_mr: the memory region to observe
1770 * @n: the notifier to which to replay iommu mappings
1771 */
1772void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1773
1774/**
1775 * memory_region_unregister_iommu_notifier: unregister a notifier for
1776 * changes to IOMMU translation entries.
1777 *
1778 * @mr: the memory region which was observed and for which notity_stopped()
1779 *      needs to be called
1780 * @n: the notifier to be removed.
1781 */
1782void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1783                                             IOMMUNotifier *n);
1784
1785/**
1786 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1787 * defined on the IOMMU.
1788 *
1789 * Returns 0 on success, or a negative errno otherwise. In particular,
1790 * -EINVAL indicates that the IOMMU does not support the requested
1791 * attribute.
1792 *
1793 * @iommu_mr: the memory region
1794 * @attr: the requested attribute
1795 * @data: a pointer to the requested attribute data
1796 */
1797int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1798                                 enum IOMMUMemoryRegionAttr attr,
1799                                 void *data);
1800
1801/**
1802 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1803 * use for translations with the given memory transaction attributes.
1804 *
1805 * @iommu_mr: the memory region
1806 * @attrs: the memory transaction attributes
1807 */
1808int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1809                                       MemTxAttrs attrs);
1810
1811/**
1812 * memory_region_iommu_num_indexes: return the total number of IOMMU
1813 * indexes that this IOMMU supports.
1814 *
1815 * @iommu_mr: the memory region
1816 */
1817int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1818
1819/**
1820 * memory_region_iommu_set_page_size_mask: set the supported page
1821 * sizes for a given IOMMU memory region
1822 *
1823 * @iommu_mr: IOMMU memory region
1824 * @page_size_mask: supported page size mask
1825 * @errp: pointer to Error*, to store an error if it happens.
1826 */
1827int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1828                                           uint64_t page_size_mask,
1829                                           Error **errp);
1830
1831/**
1832 * memory_region_name: get a memory region's name
1833 *
1834 * Returns the string that was used to initialize the memory region.
1835 *
1836 * @mr: the memory region being queried
1837 */
1838const char *memory_region_name(const MemoryRegion *mr);
1839
1840/**
1841 * memory_region_is_logging: return whether a memory region is logging writes
1842 *
1843 * Returns %true if the memory region is logging writes for the given client
1844 *
1845 * @mr: the memory region being queried
1846 * @client: the client being queried
1847 */
1848bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1849
1850/**
1851 * memory_region_get_dirty_log_mask: return the clients for which a
1852 * memory region is logging writes.
1853 *
1854 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1855 * are the bit indices.
1856 *
1857 * @mr: the memory region being queried
1858 */
1859uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1860
1861/**
1862 * memory_region_is_rom: check whether a memory region is ROM
1863 *
1864 * Returns %true if a memory region is read-only memory.
1865 *
1866 * @mr: the memory region being queried
1867 */
1868static inline bool memory_region_is_rom(MemoryRegion *mr)
1869{
1870    return mr->ram && mr->readonly;
1871}
1872
1873/**
1874 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1875 *
1876 * Returns %true is a memory region is non-volatile memory.
1877 *
1878 * @mr: the memory region being queried
1879 */
1880static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1881{
1882    return mr->nonvolatile;
1883}
1884
1885/**
1886 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1887 *
1888 * Returns a file descriptor backing a file-based RAM memory region,
1889 * or -1 if the region is not a file-based RAM memory region.
1890 *
1891 * @mr: the RAM or alias memory region being queried.
1892 */
1893int memory_region_get_fd(MemoryRegion *mr);
1894
1895/**
1896 * memory_region_from_host: Convert a pointer into a RAM memory region
1897 * and an offset within it.
1898 *
1899 * Given a host pointer inside a RAM memory region (created with
1900 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1901 * the MemoryRegion and the offset within it.
1902 *
1903 * Use with care; by the time this function returns, the returned pointer is
1904 * not protected by RCU anymore.  If the caller is not within an RCU critical
1905 * section and does not hold the iothread lock, it must have other means of
1906 * protecting the pointer, such as a reference to the region that includes
1907 * the incoming ram_addr_t.
1908 *
1909 * @ptr: the host pointer to be converted
1910 * @offset: the offset within memory region
1911 */
1912MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1913
1914/**
1915 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1916 *
1917 * Returns a host pointer to a RAM memory region (created with
1918 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1919 *
1920 * Use with care; by the time this function returns, the returned pointer is
1921 * not protected by RCU anymore.  If the caller is not within an RCU critical
1922 * section and does not hold the iothread lock, it must have other means of
1923 * protecting the pointer, such as a reference to the region that includes
1924 * the incoming ram_addr_t.
1925 *
1926 * @mr: the memory region being queried.
1927 */
1928void *memory_region_get_ram_ptr(MemoryRegion *mr);
1929
1930/* memory_region_ram_resize: Resize a RAM region.
1931 *
1932 * Resizing RAM while migrating can result in the migration being canceled.
1933 * Care has to be taken if the guest might have already detected the memory.
1934 *
1935 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1936 * @newsize: the new size the region
1937 * @errp: pointer to Error*, to store an error if it happens.
1938 */
1939void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1940                              Error **errp);
1941
1942/**
1943 * memory_region_msync: Synchronize selected address range of
1944 * a memory mapped region
1945 *
1946 * @mr: the memory region to be msync
1947 * @addr: the initial address of the range to be sync
1948 * @size: the size of the range to be sync
1949 */
1950void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1951
1952/**
1953 * memory_region_writeback: Trigger cache writeback for
1954 * selected address range
1955 *
1956 * @mr: the memory region to be updated
1957 * @addr: the initial address of the range to be written back
1958 * @size: the size of the range to be written back
1959 */
1960void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1961
1962/**
1963 * memory_region_set_log: Turn dirty logging on or off for a region.
1964 *
1965 * Turns dirty logging on or off for a specified client (display, migration).
1966 * Only meaningful for RAM regions.
1967 *
1968 * @mr: the memory region being updated.
1969 * @log: whether dirty logging is to be enabled or disabled.
1970 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1971 */
1972void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1973
1974/**
1975 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1976 *
1977 * Marks a range of bytes as dirty, after it has been dirtied outside
1978 * guest code.
1979 *
1980 * @mr: the memory region being dirtied.
1981 * @addr: the address (relative to the start of the region) being dirtied.
1982 * @size: size of the range being dirtied.
1983 */
1984void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1985                             hwaddr size);
1986
1987/**
1988 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1989 *
1990 * This function is called when the caller wants to clear the remote
1991 * dirty bitmap of a memory range within the memory region.  This can
1992 * be used by e.g. KVM to manually clear dirty log when
1993 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1994 * kernel.
1995 *
1996 * @mr:     the memory region to clear the dirty log upon
1997 * @start:  start address offset within the memory region
1998 * @len:    length of the memory region to clear dirty bitmap
1999 */
2000void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2001                                      hwaddr len);
2002
2003/**
2004 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2005 *                                         bitmap and clear it.
2006 *
2007 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2008 * returns the snapshot.  The snapshot can then be used to query dirty
2009 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2010 * querying the same page multiple times, which is especially useful for
2011 * display updates where the scanlines often are not page aligned.
2012 *
2013 * The dirty bitmap region which gets copied into the snapshot (and
2014 * cleared afterwards) can be larger than requested.  The boundaries
2015 * are rounded up/down so complete bitmap longs (covering 64 pages on
2016 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2017 * isn't a problem for display updates as the extra pages are outside
2018 * the visible area, and in case the visible area changes a full
2019 * display redraw is due anyway.  Should other use cases for this
2020 * function emerge we might have to revisit this implementation
2021 * detail.
2022 *
2023 * Use g_free to release DirtyBitmapSnapshot.
2024 *
2025 * @mr: the memory region being queried.
2026 * @addr: the address (relative to the start of the region) being queried.
2027 * @size: the size of the range being queried.
2028 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2029 */
2030DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2031                                                            hwaddr addr,
2032                                                            hwaddr size,
2033                                                            unsigned client);
2034
2035/**
2036 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2037 *                                   in the specified dirty bitmap snapshot.
2038 *
2039 * @mr: the memory region being queried.
2040 * @snap: the dirty bitmap snapshot
2041 * @addr: the address (relative to the start of the region) being queried.
2042 * @size: the size of the range being queried.
2043 */
2044bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2045                                      DirtyBitmapSnapshot *snap,
2046                                      hwaddr addr, hwaddr size);
2047
2048/**
2049 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2050 *                            client.
2051 *
2052 * Marks a range of pages as no longer dirty.
2053 *
2054 * @mr: the region being updated.
2055 * @addr: the start of the subrange being cleaned.
2056 * @size: the size of the subrange being cleaned.
2057 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2058 *          %DIRTY_MEMORY_VGA.
2059 */
2060void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2061                               hwaddr size, unsigned client);
2062
2063/**
2064 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2065 *                                 TBs (for self-modifying code).
2066 *
2067 * The MemoryRegionOps->write() callback of a ROM device must use this function
2068 * to mark byte ranges that have been modified internally, such as by directly
2069 * accessing the memory returned by memory_region_get_ram_ptr().
2070 *
2071 * This function marks the range dirty and invalidates TBs so that TCG can
2072 * detect self-modifying code.
2073 *
2074 * @mr: the region being flushed.
2075 * @addr: the start, relative to the start of the region, of the range being
2076 *        flushed.
2077 * @size: the size, in bytes, of the range being flushed.
2078 */
2079void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2080
2081/**
2082 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2083 *
2084 * Allows a memory region to be marked as read-only (turning it into a ROM).
2085 * only useful on RAM regions.
2086 *
2087 * @mr: the region being updated.
2088 * @readonly: whether rhe region is to be ROM or RAM.
2089 */
2090void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2091
2092/**
2093 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2094 *
2095 * Allows a memory region to be marked as non-volatile.
2096 * only useful on RAM regions.
2097 *
2098 * @mr: the region being updated.
2099 * @nonvolatile: whether rhe region is to be non-volatile.
2100 */
2101void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2102
2103/**
2104 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2105 *
2106 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2107 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2108 * device is mapped to guest memory and satisfies read access directly.
2109 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2110 * Writes are always handled by the #MemoryRegion.write function.
2111 *
2112 * @mr: the memory region to be updated
2113 * @romd_mode: %true to put the region into ROMD mode
2114 */
2115void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2116
2117/**
2118 * memory_region_set_coalescing: Enable memory coalescing for the region.
2119 *
2120 * Enabled writes to a region to be queued for later processing. MMIO ->write
2121 * callbacks may be delayed until a non-coalesced MMIO is issued.
2122 * Only useful for IO regions.  Roughly similar to write-combining hardware.
2123 *
2124 * @mr: the memory region to be write coalesced
2125 */
2126void memory_region_set_coalescing(MemoryRegion *mr);
2127
2128/**
2129 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2130 *                               a region.
2131 *
2132 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2133 * Multiple calls can be issued coalesced disjoint ranges.
2134 *
2135 * @mr: the memory region to be updated.
2136 * @offset: the start of the range within the region to be coalesced.
2137 * @size: the size of the subrange to be coalesced.
2138 */
2139void memory_region_add_coalescing(MemoryRegion *mr,
2140                                  hwaddr offset,
2141                                  uint64_t size);
2142
2143/**
2144 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2145 *
2146 * Disables any coalescing caused by memory_region_set_coalescing() or
2147 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2148 * hardware.
2149 *
2150 * @mr: the memory region to be updated.
2151 */
2152void memory_region_clear_coalescing(MemoryRegion *mr);
2153
2154/**
2155 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2156 *                                    accesses.
2157 *
2158 * Ensure that pending coalesced MMIO request are flushed before the memory
2159 * region is accessed. This property is automatically enabled for all regions
2160 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2161 *
2162 * @mr: the memory region to be updated.
2163 */
2164void memory_region_set_flush_coalesced(MemoryRegion *mr);
2165
2166/**
2167 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2168 *                                      accesses.
2169 *
2170 * Clear the automatic coalesced MMIO flushing enabled via
2171 * memory_region_set_flush_coalesced. Note that this service has no effect on
2172 * memory regions that have MMIO coalescing enabled for themselves. For them,
2173 * automatic flushing will stop once coalescing is disabled.
2174 *
2175 * @mr: the memory region to be updated.
2176 */
2177void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2178
2179/**
2180 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2181 *                            is written to a location.
2182 *
2183 * Marks a word in an IO region (initialized with memory_region_init_io())
2184 * as a trigger for an eventfd event.  The I/O callback will not be called.
2185 * The caller must be prepared to handle failure (that is, take the required
2186 * action if the callback _is_ called).
2187 *
2188 * @mr: the memory region being updated.
2189 * @addr: the address within @mr that is to be monitored
2190 * @size: the size of the access to trigger the eventfd
2191 * @match_data: whether to match against @data, instead of just @addr
2192 * @data: the data to match against the guest write
2193 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2194 **/
2195void memory_region_add_eventfd(MemoryRegion *mr,
2196                               hwaddr addr,
2197                               unsigned size,
2198                               bool match_data,
2199                               uint64_t data,
2200                               EventNotifier *e);
2201
2202/**
2203 * memory_region_del_eventfd: Cancel an eventfd.
2204 *
2205 * Cancels an eventfd trigger requested by a previous
2206 * memory_region_add_eventfd() call.
2207 *
2208 * @mr: the memory region being updated.
2209 * @addr: the address within @mr that is to be monitored
2210 * @size: the size of the access to trigger the eventfd
2211 * @match_data: whether to match against @data, instead of just @addr
2212 * @data: the data to match against the guest write
2213 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2214 */
2215void memory_region_del_eventfd(MemoryRegion *mr,
2216                               hwaddr addr,
2217                               unsigned size,
2218                               bool match_data,
2219                               uint64_t data,
2220                               EventNotifier *e);
2221
2222/**
2223 * memory_region_add_subregion: Add a subregion to a container.
2224 *
2225 * Adds a subregion at @offset.  The subregion may not overlap with other
2226 * subregions (except for those explicitly marked as overlapping).  A region
2227 * may only be added once as a subregion (unless removed with
2228 * memory_region_del_subregion()); use memory_region_init_alias() if you
2229 * want a region to be a subregion in multiple locations.
2230 *
2231 * @mr: the region to contain the new subregion; must be a container
2232 *      initialized with memory_region_init().
2233 * @offset: the offset relative to @mr where @subregion is added.
2234 * @subregion: the subregion to be added.
2235 */
2236void memory_region_add_subregion(MemoryRegion *mr,
2237                                 hwaddr offset,
2238                                 MemoryRegion *subregion);
2239/**
2240 * memory_region_add_subregion_overlap: Add a subregion to a container
2241 *                                      with overlap.
2242 *
2243 * Adds a subregion at @offset.  The subregion may overlap with other
2244 * subregions.  Conflicts are resolved by having a higher @priority hide a
2245 * lower @priority. Subregions without priority are taken as @priority 0.
2246 * A region may only be added once as a subregion (unless removed with
2247 * memory_region_del_subregion()); use memory_region_init_alias() if you
2248 * want a region to be a subregion in multiple locations.
2249 *
2250 * @mr: the region to contain the new subregion; must be a container
2251 *      initialized with memory_region_init().
2252 * @offset: the offset relative to @mr where @subregion is added.
2253 * @subregion: the subregion to be added.
2254 * @priority: used for resolving overlaps; highest priority wins.
2255 */
2256void memory_region_add_subregion_overlap(MemoryRegion *mr,
2257                                         hwaddr offset,
2258                                         MemoryRegion *subregion,
2259                                         int priority);
2260
2261/**
2262 * memory_region_get_ram_addr: Get the ram address associated with a memory
2263 *                             region
2264 *
2265 * @mr: the region to be queried
2266 */
2267ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2268
2269uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2270/**
2271 * memory_region_del_subregion: Remove a subregion.
2272 *
2273 * Removes a subregion from its container.
2274 *
2275 * @mr: the container to be updated.
2276 * @subregion: the region being removed; must be a current subregion of @mr.
2277 */
2278void memory_region_del_subregion(MemoryRegion *mr,
2279                                 MemoryRegion *subregion);
2280
2281/*
2282 * memory_region_set_enabled: dynamically enable or disable a region
2283 *
2284 * Enables or disables a memory region.  A disabled memory region
2285 * ignores all accesses to itself and its subregions.  It does not
2286 * obscure sibling subregions with lower priority - it simply behaves as
2287 * if it was removed from the hierarchy.
2288 *
2289 * Regions default to being enabled.
2290 *
2291 * @mr: the region to be updated
2292 * @enabled: whether to enable or disable the region
2293 */
2294void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2295
2296/*
2297 * memory_region_set_address: dynamically update the address of a region
2298 *
2299 * Dynamically updates the address of a region, relative to its container.
2300 * May be used on regions are currently part of a memory hierarchy.
2301 *
2302 * @mr: the region to be updated
2303 * @addr: new address, relative to container region
2304 */
2305void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2306
2307/*
2308 * memory_region_set_size: dynamically update the size of a region.
2309 *
2310 * Dynamically updates the size of a region.
2311 *
2312 * @mr: the region to be updated
2313 * @size: used size of the region.
2314 */
2315void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2316
2317/*
2318 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2319 *
2320 * Dynamically updates the offset into the target region that an alias points
2321 * to, as if the fourth argument to memory_region_init_alias() has changed.
2322 *
2323 * @mr: the #MemoryRegion to be updated; should be an alias.
2324 * @offset: the new offset into the target memory region
2325 */
2326void memory_region_set_alias_offset(MemoryRegion *mr,
2327                                    hwaddr offset);
2328
2329/**
2330 * memory_region_present: checks if an address relative to a @container
2331 * translates into #MemoryRegion within @container
2332 *
2333 * Answer whether a #MemoryRegion within @container covers the address
2334 * @addr.
2335 *
2336 * @container: a #MemoryRegion within which @addr is a relative address
2337 * @addr: the area within @container to be searched
2338 */
2339bool memory_region_present(MemoryRegion *container, hwaddr addr);
2340
2341/**
2342 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2343 * into another memory region, which does not necessarily imply that it is
2344 * mapped into an address space.
2345 *
2346 * @mr: a #MemoryRegion which should be checked if it's mapped
2347 */
2348bool memory_region_is_mapped(MemoryRegion *mr);
2349
2350/**
2351 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2352 * #MemoryRegion
2353 *
2354 * The #RamDiscardManager cannot change while a memory region is mapped.
2355 *
2356 * @mr: the #MemoryRegion
2357 */
2358RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2359
2360/**
2361 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2362 * #RamDiscardManager assigned
2363 *
2364 * @mr: the #MemoryRegion
2365 */
2366static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2367{
2368    return !!memory_region_get_ram_discard_manager(mr);
2369}
2370
2371/**
2372 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2373 * #MemoryRegion
2374 *
2375 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2376 * that does not cover RAM, or a #MemoryRegion that already has a
2377 * #RamDiscardManager assigned.
2378 *
2379 * @mr: the #MemoryRegion
2380 * @rdm: #RamDiscardManager to set
2381 */
2382void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2383                                           RamDiscardManager *rdm);
2384
2385/**
2386 * memory_region_find: translate an address/size relative to a
2387 * MemoryRegion into a #MemoryRegionSection.
2388 *
2389 * Locates the first #MemoryRegion within @mr that overlaps the range
2390 * given by @addr and @size.
2391 *
2392 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2393 * It will have the following characteristics:
2394 * - @size = 0 iff no overlap was found
2395 * - @mr is non-%NULL iff an overlap was found
2396 *
2397 * Remember that in the return value the @offset_within_region is
2398 * relative to the returned region (in the .@mr field), not to the
2399 * @mr argument.
2400 *
2401 * Similarly, the .@offset_within_address_space is relative to the
2402 * address space that contains both regions, the passed and the
2403 * returned one.  However, in the special case where the @mr argument
2404 * has no container (and thus is the root of the address space), the
2405 * following will hold:
2406 * - @offset_within_address_space >= @addr
2407 * - @offset_within_address_space + .@size <= @addr + @size
2408 *
2409 * @mr: a MemoryRegion within which @addr is a relative address
2410 * @addr: start of the area within @as to be searched
2411 * @size: size of the area to be searched
2412 */
2413MemoryRegionSection memory_region_find(MemoryRegion *mr,
2414                                       hwaddr addr, uint64_t size);
2415
2416/**
2417 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2418 *
2419 * Synchronizes the dirty page log for all address spaces.
2420 */
2421void memory_global_dirty_log_sync(void);
2422
2423/**
2424 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2425 *
2426 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2427 * This function must be called after the dirty log bitmap is cleared, and
2428 * before dirty guest memory pages are read.  If you are using
2429 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2430 * care of doing this.
2431 */
2432void memory_global_after_dirty_log_sync(void);
2433
2434/**
2435 * memory_region_transaction_begin: Start a transaction.
2436 *
2437 * During a transaction, changes will be accumulated and made visible
2438 * only when the transaction ends (is committed).
2439 */
2440void memory_region_transaction_begin(void);
2441
2442/**
2443 * memory_region_transaction_commit: Commit a transaction and make changes
2444 *                                   visible to the guest.
2445 */
2446void memory_region_transaction_commit(void);
2447
2448/**
2449 * memory_listener_register: register callbacks to be called when memory
2450 *                           sections are mapped or unmapped into an address
2451 *                           space
2452 *
2453 * @listener: an object containing the callbacks to be called
2454 * @filter: if non-%NULL, only regions in this address space will be observed
2455 */
2456void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2457
2458/**
2459 * memory_listener_unregister: undo the effect of memory_listener_register()
2460 *
2461 * @listener: an object containing the callbacks to be removed
2462 */
2463void memory_listener_unregister(MemoryListener *listener);
2464
2465/**
2466 * memory_global_dirty_log_start: begin dirty logging for all regions
2467 *
2468 * @flags: purpose of starting dirty log, migration or dirty rate
2469 */
2470void memory_global_dirty_log_start(unsigned int flags);
2471
2472/**
2473 * memory_global_dirty_log_stop: end dirty logging for all regions
2474 *
2475 * @flags: purpose of stopping dirty log, migration or dirty rate
2476 */
2477void memory_global_dirty_log_stop(unsigned int flags);
2478
2479void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2480
2481bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2482                                unsigned size, bool is_write,
2483                                MemTxAttrs attrs);
2484
2485/**
2486 * memory_region_dispatch_read: perform a read directly to the specified
2487 * MemoryRegion.
2488 *
2489 * @mr: #MemoryRegion to access
2490 * @addr: address within that region
2491 * @pval: pointer to uint64_t which the data is written to
2492 * @op: size, sign, and endianness of the memory operation
2493 * @attrs: memory transaction attributes to use for the access
2494 */
2495MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2496                                        hwaddr addr,
2497                                        uint64_t *pval,
2498                                        MemOp op,
2499                                        MemTxAttrs attrs);
2500/**
2501 * memory_region_dispatch_write: perform a write directly to the specified
2502 * MemoryRegion.
2503 *
2504 * @mr: #MemoryRegion to access
2505 * @addr: address within that region
2506 * @data: data to write
2507 * @op: size, sign, and endianness of the memory operation
2508 * @attrs: memory transaction attributes to use for the access
2509 */
2510MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2511                                         hwaddr addr,
2512                                         uint64_t data,
2513                                         MemOp op,
2514                                         MemTxAttrs attrs);
2515
2516/**
2517 * address_space_init: initializes an address space
2518 *
2519 * @as: an uninitialized #AddressSpace
2520 * @root: a #MemoryRegion that routes addresses for the address space
2521 * @name: an address space name.  The name is only used for debugging
2522 *        output.
2523 */
2524void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2525
2526/**
2527 * address_space_destroy: destroy an address space
2528 *
2529 * Releases all resources associated with an address space.  After an address space
2530 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2531 * as well.
2532 *
2533 * @as: address space to be destroyed
2534 */
2535void address_space_destroy(AddressSpace *as);
2536
2537/**
2538 * address_space_remove_listeners: unregister all listeners of an address space
2539 *
2540 * Removes all callbacks previously registered with memory_listener_register()
2541 * for @as.
2542 *
2543 * @as: an initialized #AddressSpace
2544 */
2545void address_space_remove_listeners(AddressSpace *as);
2546
2547/**
2548 * address_space_rw: read from or write to an address space.
2549 *
2550 * Return a MemTxResult indicating whether the operation succeeded
2551 * or failed (eg unassigned memory, device rejected the transaction,
2552 * IOMMU fault).
2553 *
2554 * @as: #AddressSpace to be accessed
2555 * @addr: address within that address space
2556 * @attrs: memory transaction attributes
2557 * @buf: buffer with the data transferred
2558 * @len: the number of bytes to read or write
2559 * @is_write: indicates the transfer direction
2560 */
2561MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2562                             MemTxAttrs attrs, void *buf,
2563                             hwaddr len, bool is_write);
2564
2565/**
2566 * address_space_write: write to address space.
2567 *
2568 * Return a MemTxResult indicating whether the operation succeeded
2569 * or failed (eg unassigned memory, device rejected the transaction,
2570 * IOMMU fault).
2571 *
2572 * @as: #AddressSpace to be accessed
2573 * @addr: address within that address space
2574 * @attrs: memory transaction attributes
2575 * @buf: buffer with the data transferred
2576 * @len: the number of bytes to write
2577 */
2578MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2579                                MemTxAttrs attrs,
2580                                const void *buf, hwaddr len);
2581
2582/**
2583 * address_space_write_rom: write to address space, including ROM.
2584 *
2585 * This function writes to the specified address space, but will
2586 * write data to both ROM and RAM. This is used for non-guest
2587 * writes like writes from the gdb debug stub or initial loading
2588 * of ROM contents.
2589 *
2590 * Note that portions of the write which attempt to write data to
2591 * a device will be silently ignored -- only real RAM and ROM will
2592 * be written to.
2593 *
2594 * Return a MemTxResult indicating whether the operation succeeded
2595 * or failed (eg unassigned memory, device rejected the transaction,
2596 * IOMMU fault).
2597 *
2598 * @as: #AddressSpace to be accessed
2599 * @addr: address within that address space
2600 * @attrs: memory transaction attributes
2601 * @buf: buffer with the data transferred
2602 * @len: the number of bytes to write
2603 */
2604MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2605                                    MemTxAttrs attrs,
2606                                    const void *buf, hwaddr len);
2607
2608/* address_space_ld*: load from an address space
2609 * address_space_st*: store to an address space
2610 *
2611 * These functions perform a load or store of the byte, word,
2612 * longword or quad to the specified address within the AddressSpace.
2613 * The _le suffixed functions treat the data as little endian;
2614 * _be indicates big endian; no suffix indicates "same endianness
2615 * as guest CPU".
2616 *
2617 * The "guest CPU endianness" accessors are deprecated for use outside
2618 * target-* code; devices should be CPU-agnostic and use either the LE
2619 * or the BE accessors.
2620 *
2621 * @as #AddressSpace to be accessed
2622 * @addr: address within that address space
2623 * @val: data value, for stores
2624 * @attrs: memory transaction attributes
2625 * @result: location to write the success/failure of the transaction;
2626 *   if NULL, this information is discarded
2627 */
2628
2629#define SUFFIX
2630#define ARG1         as
2631#define ARG1_DECL    AddressSpace *as
2632#include "exec/memory_ldst.h.inc"
2633
2634#define SUFFIX
2635#define ARG1         as
2636#define ARG1_DECL    AddressSpace *as
2637#include "exec/memory_ldst_phys.h.inc"
2638
2639struct MemoryRegionCache {
2640    void *ptr;
2641    hwaddr xlat;
2642    hwaddr len;
2643    FlatView *fv;
2644    MemoryRegionSection mrs;
2645    bool is_write;
2646};
2647
2648#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2649
2650
2651/* address_space_ld*_cached: load from a cached #MemoryRegion
2652 * address_space_st*_cached: store into a cached #MemoryRegion
2653 *
2654 * These functions perform a load or store of the byte, word,
2655 * longword or quad to the specified address.  The address is
2656 * a physical address in the AddressSpace, but it must lie within
2657 * a #MemoryRegion that was mapped with address_space_cache_init.
2658 *
2659 * The _le suffixed functions treat the data as little endian;
2660 * _be indicates big endian; no suffix indicates "same endianness
2661 * as guest CPU".
2662 *
2663 * The "guest CPU endianness" accessors are deprecated for use outside
2664 * target-* code; devices should be CPU-agnostic and use either the LE
2665 * or the BE accessors.
2666 *
2667 * @cache: previously initialized #MemoryRegionCache to be accessed
2668 * @addr: address within the address space
2669 * @val: data value, for stores
2670 * @attrs: memory transaction attributes
2671 * @result: location to write the success/failure of the transaction;
2672 *   if NULL, this information is discarded
2673 */
2674
2675#define SUFFIX       _cached_slow
2676#define ARG1         cache
2677#define ARG1_DECL    MemoryRegionCache *cache
2678#include "exec/memory_ldst.h.inc"
2679
2680/* Inline fast path for direct RAM access.  */
2681static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2682    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2683{
2684    assert(addr < cache->len);
2685    if (likely(cache->ptr)) {
2686        return ldub_p(cache->ptr + addr);
2687    } else {
2688        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2689    }
2690}
2691
2692static inline void address_space_stb_cached(MemoryRegionCache *cache,
2693    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2694{
2695    assert(addr < cache->len);
2696    if (likely(cache->ptr)) {
2697        stb_p(cache->ptr + addr, val);
2698    } else {
2699        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2700    }
2701}
2702
2703#define ENDIANNESS   _le
2704#include "exec/memory_ldst_cached.h.inc"
2705
2706#define ENDIANNESS   _be
2707#include "exec/memory_ldst_cached.h.inc"
2708
2709#define SUFFIX       _cached
2710#define ARG1         cache
2711#define ARG1_DECL    MemoryRegionCache *cache
2712#include "exec/memory_ldst_phys.h.inc"
2713
2714/* address_space_cache_init: prepare for repeated access to a physical
2715 * memory region
2716 *
2717 * @cache: #MemoryRegionCache to be filled
2718 * @as: #AddressSpace to be accessed
2719 * @addr: address within that address space
2720 * @len: length of buffer
2721 * @is_write: indicates the transfer direction
2722 *
2723 * Will only work with RAM, and may map a subset of the requested range by
2724 * returning a value that is less than @len.  On failure, return a negative
2725 * errno value.
2726 *
2727 * Because it only works with RAM, this function can be used for
2728 * read-modify-write operations.  In this case, is_write should be %true.
2729 *
2730 * Note that addresses passed to the address_space_*_cached functions
2731 * are relative to @addr.
2732 */
2733int64_t address_space_cache_init(MemoryRegionCache *cache,
2734                                 AddressSpace *as,
2735                                 hwaddr addr,
2736                                 hwaddr len,
2737                                 bool is_write);
2738
2739/**
2740 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2741 *
2742 * @cache: The #MemoryRegionCache to operate on.
2743 * @addr: The first physical address that was written, relative to the
2744 * address that was passed to @address_space_cache_init.
2745 * @access_len: The number of bytes that were written starting at @addr.
2746 */
2747void address_space_cache_invalidate(MemoryRegionCache *cache,
2748                                    hwaddr addr,
2749                                    hwaddr access_len);
2750
2751/**
2752 * address_space_cache_destroy: free a #MemoryRegionCache
2753 *
2754 * @cache: The #MemoryRegionCache whose memory should be released.
2755 */
2756void address_space_cache_destroy(MemoryRegionCache *cache);
2757
2758/* address_space_get_iotlb_entry: translate an address into an IOTLB
2759 * entry. Should be called from an RCU critical section.
2760 */
2761IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2762                                            bool is_write, MemTxAttrs attrs);
2763
2764/* address_space_translate: translate an address range into an address space
2765 * into a MemoryRegion and an address range into that section.  Should be
2766 * called from an RCU critical section, to avoid that the last reference
2767 * to the returned region disappears after address_space_translate returns.
2768 *
2769 * @fv: #FlatView to be accessed
2770 * @addr: address within that address space
2771 * @xlat: pointer to address within the returned memory region section's
2772 * #MemoryRegion.
2773 * @len: pointer to length
2774 * @is_write: indicates the transfer direction
2775 * @attrs: memory attributes
2776 */
2777MemoryRegion *flatview_translate(FlatView *fv,
2778                                 hwaddr addr, hwaddr *xlat,
2779                                 hwaddr *len, bool is_write,
2780                                 MemTxAttrs attrs);
2781
2782static inline MemoryRegion *address_space_translate(AddressSpace *as,
2783                                                    hwaddr addr, hwaddr *xlat,
2784                                                    hwaddr *len, bool is_write,
2785                                                    MemTxAttrs attrs)
2786{
2787    return flatview_translate(address_space_to_flatview(as),
2788                              addr, xlat, len, is_write, attrs);
2789}
2790
2791/* address_space_access_valid: check for validity of accessing an address
2792 * space range
2793 *
2794 * Check whether memory is assigned to the given address space range, and
2795 * access is permitted by any IOMMU regions that are active for the address
2796 * space.
2797 *
2798 * For now, addr and len should be aligned to a page size.  This limitation
2799 * will be lifted in the future.
2800 *
2801 * @as: #AddressSpace to be accessed
2802 * @addr: address within that address space
2803 * @len: length of the area to be checked
2804 * @is_write: indicates the transfer direction
2805 * @attrs: memory attributes
2806 */
2807bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2808                                bool is_write, MemTxAttrs attrs);
2809
2810/* address_space_map: map a physical memory region into a host virtual address
2811 *
2812 * May map a subset of the requested range, given by and returned in @plen.
2813 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2814 * the mapping are exhausted.
2815 * Use only for reads OR writes - not for read-modify-write operations.
2816 * Use cpu_register_map_client() to know when retrying the map operation is
2817 * likely to succeed.
2818 *
2819 * @as: #AddressSpace to be accessed
2820 * @addr: address within that address space
2821 * @plen: pointer to length of buffer; updated on return
2822 * @is_write: indicates the transfer direction
2823 * @attrs: memory attributes
2824 */
2825void *address_space_map(AddressSpace *as, hwaddr addr,
2826                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2827
2828/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2829 *
2830 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2831 * the amount of memory that was actually read or written by the caller.
2832 *
2833 * @as: #AddressSpace used
2834 * @buffer: host pointer as returned by address_space_map()
2835 * @len: buffer length as returned by address_space_map()
2836 * @access_len: amount of data actually transferred
2837 * @is_write: indicates the transfer direction
2838 */
2839void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2840                         bool is_write, hwaddr access_len);
2841
2842
2843/* Internal functions, part of the implementation of address_space_read.  */
2844MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2845                                    MemTxAttrs attrs, void *buf, hwaddr len);
2846MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2847                                   MemTxAttrs attrs, void *buf,
2848                                   hwaddr len, hwaddr addr1, hwaddr l,
2849                                   MemoryRegion *mr);
2850void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2851
2852/* Internal functions, part of the implementation of address_space_read_cached
2853 * and address_space_write_cached.  */
2854MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2855                                           hwaddr addr, void *buf, hwaddr len);
2856MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2857                                            hwaddr addr, const void *buf,
2858                                            hwaddr len);
2859
2860int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2861bool prepare_mmio_access(MemoryRegion *mr);
2862
2863static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2864{
2865    if (is_write) {
2866        return memory_region_is_ram(mr) && !mr->readonly &&
2867               !mr->rom_device && !memory_region_is_ram_device(mr);
2868    } else {
2869        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2870               memory_region_is_romd(mr);
2871    }
2872}
2873
2874/**
2875 * address_space_read: read from an address space.
2876 *
2877 * Return a MemTxResult indicating whether the operation succeeded
2878 * or failed (eg unassigned memory, device rejected the transaction,
2879 * IOMMU fault).  Called within RCU critical section.
2880 *
2881 * @as: #AddressSpace to be accessed
2882 * @addr: address within that address space
2883 * @attrs: memory transaction attributes
2884 * @buf: buffer with the data transferred
2885 * @len: length of the data transferred
2886 */
2887static inline __attribute__((__always_inline__))
2888MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2889                               MemTxAttrs attrs, void *buf,
2890                               hwaddr len)
2891{
2892    MemTxResult result = MEMTX_OK;
2893    hwaddr l, addr1;
2894    void *ptr;
2895    MemoryRegion *mr;
2896    FlatView *fv;
2897
2898    if (__builtin_constant_p(len)) {
2899        if (len) {
2900            RCU_READ_LOCK_GUARD();
2901            fv = address_space_to_flatview(as);
2902            l = len;
2903            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2904            if (len == l && memory_access_is_direct(mr, false)) {
2905                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2906                memcpy(buf, ptr, len);
2907            } else {
2908                result = flatview_read_continue(fv, addr, attrs, buf, len,
2909                                                addr1, l, mr);
2910            }
2911        }
2912    } else {
2913        result = address_space_read_full(as, addr, attrs, buf, len);
2914    }
2915    return result;
2916}
2917
2918/**
2919 * address_space_read_cached: read from a cached RAM region
2920 *
2921 * @cache: Cached region to be addressed
2922 * @addr: address relative to the base of the RAM region
2923 * @buf: buffer with the data transferred
2924 * @len: length of the data transferred
2925 */
2926static inline MemTxResult
2927address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2928                          void *buf, hwaddr len)
2929{
2930    assert(addr < cache->len && len <= cache->len - addr);
2931    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2932    if (likely(cache->ptr)) {
2933        memcpy(buf, cache->ptr + addr, len);
2934        return MEMTX_OK;
2935    } else {
2936        return address_space_read_cached_slow(cache, addr, buf, len);
2937    }
2938}
2939
2940/**
2941 * address_space_write_cached: write to a cached RAM region
2942 *
2943 * @cache: Cached region to be addressed
2944 * @addr: address relative to the base of the RAM region
2945 * @buf: buffer with the data transferred
2946 * @len: length of the data transferred
2947 */
2948static inline MemTxResult
2949address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2950                           const void *buf, hwaddr len)
2951{
2952    assert(addr < cache->len && len <= cache->len - addr);
2953    if (likely(cache->ptr)) {
2954        memcpy(cache->ptr + addr, buf, len);
2955        return MEMTX_OK;
2956    } else {
2957        return address_space_write_cached_slow(cache, addr, buf, len);
2958    }
2959}
2960
2961/**
2962 * address_space_set: Fill address space with a constant byte.
2963 *
2964 * Return a MemTxResult indicating whether the operation succeeded
2965 * or failed (eg unassigned memory, device rejected the transaction,
2966 * IOMMU fault).
2967 *
2968 * @as: #AddressSpace to be accessed
2969 * @addr: address within that address space
2970 * @c: constant byte to fill the memory
2971 * @len: the number of bytes to fill with the constant byte
2972 * @attrs: memory transaction attributes
2973 */
2974MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2975                              uint8_t c, hwaddr len, MemTxAttrs attrs);
2976
2977#ifdef NEED_CPU_H
2978/* enum device_endian to MemOp.  */
2979static inline MemOp devend_memop(enum device_endian end)
2980{
2981    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2982                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2983
2984#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2985    /* Swap if non-host endianness or native (target) endianness */
2986    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2987#else
2988    const int non_host_endianness =
2989        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2990
2991    /* In this case, native (target) endianness needs no swap.  */
2992    return (end == non_host_endianness) ? MO_BSWAP : 0;
2993#endif
2994}
2995#endif
2996
2997/*
2998 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2999 * to manage the actual amount of memory consumed by the VM (then, the memory
3000 * provided by RAM blocks might be bigger than the desired memory consumption).
3001 * This *must* be set if:
3002 * - Discarding parts of a RAM blocks does not result in the change being
3003 *   reflected in the VM and the pages getting freed.
3004 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3005 *   discards blindly.
3006 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3007 *   encrypted VMs).
3008 * Technologies that only temporarily pin the current working set of a
3009 * driver are fine, because we don't expect such pages to be discarded
3010 * (esp. based on guest action like balloon inflation).
3011 *
3012 * This is *not* to be used to protect from concurrent discards (esp.,
3013 * postcopy).
3014 *
3015 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3016 * discards to work reliably is active.
3017 */
3018int ram_block_discard_disable(bool state);
3019
3020/*
3021 * See ram_block_discard_disable(): only disable uncoordinated discards,
3022 * keeping coordinated discards (via the RamDiscardManager) enabled.
3023 */
3024int ram_block_uncoordinated_discard_disable(bool state);
3025
3026/*
3027 * Inhibit technologies that disable discarding of pages in RAM blocks.
3028 *
3029 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3030 * broken.
3031 */
3032int ram_block_discard_require(bool state);
3033
3034/*
3035 * See ram_block_discard_require(): only inhibit technologies that disable
3036 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3037 * technologies that only inhibit uncoordinated discards (via the
3038 * RamDiscardManager).
3039 */
3040int ram_block_coordinated_discard_require(bool state);
3041
3042/*
3043 * Test if any discarding of memory in ram blocks is disabled.
3044 */
3045bool ram_block_discard_is_disabled(void);
3046
3047/*
3048 * Test if any discarding of memory in ram blocks is required to work reliably.
3049 */
3050bool ram_block_discard_is_required(void);
3051
3052#endif
3053
3054#endif
3055