qemu/target/arm/helper.c
<<
>>
Prefs
   1/*
   2 * ARM generic helpers.
   3 *
   4 * This code is licensed under the GNU GPL v2 or later.
   5 *
   6 * SPDX-License-Identifier: GPL-2.0-or-later
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/log.h"
  11#include "trace.h"
  12#include "cpu.h"
  13#include "internals.h"
  14#include "exec/helper-proto.h"
  15#include "qemu/main-loop.h"
  16#include "qemu/timer.h"
  17#include "qemu/bitops.h"
  18#include "qemu/crc32c.h"
  19#include "qemu/qemu-print.h"
  20#include "exec/exec-all.h"
  21#include <zlib.h> /* For crc32 */
  22#include "hw/irq.h"
  23#include "sysemu/cpu-timers.h"
  24#include "sysemu/kvm.h"
  25#include "sysemu/tcg.h"
  26#include "qapi/error.h"
  27#include "qemu/guest-random.h"
  28#ifdef CONFIG_TCG
  29#include "semihosting/common-semi.h"
  30#endif
  31#include "cpregs.h"
  32
  33#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
  34
  35static void switch_mode(CPUARMState *env, int mode);
  36
  37static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
  38{
  39    assert(ri->fieldoffset);
  40    if (cpreg_field_is_64bit(ri)) {
  41        return CPREG_FIELD64(env, ri);
  42    } else {
  43        return CPREG_FIELD32(env, ri);
  44    }
  45}
  46
  47void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
  48{
  49    assert(ri->fieldoffset);
  50    if (cpreg_field_is_64bit(ri)) {
  51        CPREG_FIELD64(env, ri) = value;
  52    } else {
  53        CPREG_FIELD32(env, ri) = value;
  54    }
  55}
  56
  57static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
  58{
  59    return (char *)env + ri->fieldoffset;
  60}
  61
  62uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
  63{
  64    /* Raw read of a coprocessor register (as needed for migration, etc). */
  65    if (ri->type & ARM_CP_CONST) {
  66        return ri->resetvalue;
  67    } else if (ri->raw_readfn) {
  68        return ri->raw_readfn(env, ri);
  69    } else if (ri->readfn) {
  70        return ri->readfn(env, ri);
  71    } else {
  72        return raw_read(env, ri);
  73    }
  74}
  75
  76static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
  77                             uint64_t v)
  78{
  79    /*
  80     * Raw write of a coprocessor register (as needed for migration, etc).
  81     * Note that constant registers are treated as write-ignored; the
  82     * caller should check for success by whether a readback gives the
  83     * value written.
  84     */
  85    if (ri->type & ARM_CP_CONST) {
  86        return;
  87    } else if (ri->raw_writefn) {
  88        ri->raw_writefn(env, ri, v);
  89    } else if (ri->writefn) {
  90        ri->writefn(env, ri, v);
  91    } else {
  92        raw_write(env, ri, v);
  93    }
  94}
  95
  96static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
  97{
  98   /*
  99    * Return true if the regdef would cause an assertion if you called
 100    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 101    * program bug for it not to have the NO_RAW flag).
 102    * NB that returning false here doesn't necessarily mean that calling
 103    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 104    * read/write access functions which are safe for raw use" from "has
 105    * read/write access functions which have side effects but has forgotten
 106    * to provide raw access functions".
 107    * The tests here line up with the conditions in read/write_raw_cp_reg()
 108    * and assertions in raw_read()/raw_write().
 109    */
 110    if ((ri->type & ARM_CP_CONST) ||
 111        ri->fieldoffset ||
 112        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 113        return false;
 114    }
 115    return true;
 116}
 117
 118bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
 119{
 120    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 121    int i;
 122    bool ok = true;
 123
 124    for (i = 0; i < cpu->cpreg_array_len; i++) {
 125        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 126        const ARMCPRegInfo *ri;
 127        uint64_t newval;
 128
 129        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 130        if (!ri) {
 131            ok = false;
 132            continue;
 133        }
 134        if (ri->type & ARM_CP_NO_RAW) {
 135            continue;
 136        }
 137
 138        newval = read_raw_cp_reg(&cpu->env, ri);
 139        if (kvm_sync) {
 140            /*
 141             * Only sync if the previous list->cpustate sync succeeded.
 142             * Rather than tracking the success/failure state for every
 143             * item in the list, we just recheck "does the raw write we must
 144             * have made in write_list_to_cpustate() read back OK" here.
 145             */
 146            uint64_t oldval = cpu->cpreg_values[i];
 147
 148            if (oldval == newval) {
 149                continue;
 150            }
 151
 152            write_raw_cp_reg(&cpu->env, ri, oldval);
 153            if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
 154                continue;
 155            }
 156
 157            write_raw_cp_reg(&cpu->env, ri, newval);
 158        }
 159        cpu->cpreg_values[i] = newval;
 160    }
 161    return ok;
 162}
 163
 164bool write_list_to_cpustate(ARMCPU *cpu)
 165{
 166    int i;
 167    bool ok = true;
 168
 169    for (i = 0; i < cpu->cpreg_array_len; i++) {
 170        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 171        uint64_t v = cpu->cpreg_values[i];
 172        const ARMCPRegInfo *ri;
 173
 174        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 175        if (!ri) {
 176            ok = false;
 177            continue;
 178        }
 179        if (ri->type & ARM_CP_NO_RAW) {
 180            continue;
 181        }
 182        /*
 183         * Write value and confirm it reads back as written
 184         * (to catch read-only registers and partially read-only
 185         * registers where the incoming migration value doesn't match)
 186         */
 187        write_raw_cp_reg(&cpu->env, ri, v);
 188        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 189            ok = false;
 190        }
 191    }
 192    return ok;
 193}
 194
 195static void add_cpreg_to_list(gpointer key, gpointer opaque)
 196{
 197    ARMCPU *cpu = opaque;
 198    uint32_t regidx = (uintptr_t)key;
 199    const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 200
 201    if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
 202        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 203        /* The value array need not be initialized at this point */
 204        cpu->cpreg_array_len++;
 205    }
 206}
 207
 208static void count_cpreg(gpointer key, gpointer opaque)
 209{
 210    ARMCPU *cpu = opaque;
 211    const ARMCPRegInfo *ri;
 212
 213    ri = g_hash_table_lookup(cpu->cp_regs, key);
 214
 215    if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
 216        cpu->cpreg_array_len++;
 217    }
 218}
 219
 220static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 221{
 222    uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
 223    uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
 224
 225    if (aidx > bidx) {
 226        return 1;
 227    }
 228    if (aidx < bidx) {
 229        return -1;
 230    }
 231    return 0;
 232}
 233
 234void init_cpreg_list(ARMCPU *cpu)
 235{
 236    /*
 237     * Initialise the cpreg_tuples[] array based on the cp_regs hash.
 238     * Note that we require cpreg_tuples[] to be sorted by key ID.
 239     */
 240    GList *keys;
 241    int arraylen;
 242
 243    keys = g_hash_table_get_keys(cpu->cp_regs);
 244    keys = g_list_sort(keys, cpreg_key_compare);
 245
 246    cpu->cpreg_array_len = 0;
 247
 248    g_list_foreach(keys, count_cpreg, cpu);
 249
 250    arraylen = cpu->cpreg_array_len;
 251    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 252    cpu->cpreg_values = g_new(uint64_t, arraylen);
 253    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 254    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 255    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 256    cpu->cpreg_array_len = 0;
 257
 258    g_list_foreach(keys, add_cpreg_to_list, cpu);
 259
 260    assert(cpu->cpreg_array_len == arraylen);
 261
 262    g_list_free(keys);
 263}
 264
 265/*
 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
 267 */
 268static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 269                                        const ARMCPRegInfo *ri,
 270                                        bool isread)
 271{
 272    if (!is_a64(env) && arm_current_el(env) == 3 &&
 273        arm_is_secure_below_el3(env)) {
 274        return CP_ACCESS_TRAP_UNCATEGORIZED;
 275    }
 276    return CP_ACCESS_OK;
 277}
 278
 279/*
 280 * Some secure-only AArch32 registers trap to EL3 if used from
 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 283 * We assume that the .access field is set to PL1_RW.
 284 */
 285static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 286                                            const ARMCPRegInfo *ri,
 287                                            bool isread)
 288{
 289    if (arm_current_el(env) == 3) {
 290        return CP_ACCESS_OK;
 291    }
 292    if (arm_is_secure_below_el3(env)) {
 293        if (env->cp15.scr_el3 & SCR_EEL2) {
 294            return CP_ACCESS_TRAP_EL2;
 295        }
 296        return CP_ACCESS_TRAP_EL3;
 297    }
 298    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 299    return CP_ACCESS_TRAP_UNCATEGORIZED;
 300}
 301
 302/*
 303 * Check for traps to performance monitor registers, which are controlled
 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 305 */
 306static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 307                                 bool isread)
 308{
 309    int el = arm_current_el(env);
 310    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 311
 312    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
 313        return CP_ACCESS_TRAP_EL2;
 314    }
 315    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 316        return CP_ACCESS_TRAP_EL3;
 317    }
 318    return CP_ACCESS_OK;
 319}
 320
 321/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
 322static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
 323                                      bool isread)
 324{
 325    if (arm_current_el(env) == 1) {
 326        uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
 327        if (arm_hcr_el2_eff(env) & trap) {
 328            return CP_ACCESS_TRAP_EL2;
 329        }
 330    }
 331    return CP_ACCESS_OK;
 332}
 333
 334/* Check for traps from EL1 due to HCR_EL2.TSW.  */
 335static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
 336                                 bool isread)
 337{
 338    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
 339        return CP_ACCESS_TRAP_EL2;
 340    }
 341    return CP_ACCESS_OK;
 342}
 343
 344/* Check for traps from EL1 due to HCR_EL2.TACR.  */
 345static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
 346                                  bool isread)
 347{
 348    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
 349        return CP_ACCESS_TRAP_EL2;
 350    }
 351    return CP_ACCESS_OK;
 352}
 353
 354/* Check for traps from EL1 due to HCR_EL2.TTLB. */
 355static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
 356                                  bool isread)
 357{
 358    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
 359        return CP_ACCESS_TRAP_EL2;
 360    }
 361    return CP_ACCESS_OK;
 362}
 363
 364/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
 365static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
 366                                    bool isread)
 367{
 368    if (arm_current_el(env) == 1 &&
 369        (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
 370        return CP_ACCESS_TRAP_EL2;
 371    }
 372    return CP_ACCESS_OK;
 373}
 374
 375#ifdef TARGET_AARCH64
 376/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
 377static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
 378                                    bool isread)
 379{
 380    if (arm_current_el(env) == 1 &&
 381        (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
 382        return CP_ACCESS_TRAP_EL2;
 383    }
 384    return CP_ACCESS_OK;
 385}
 386#endif
 387
 388static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 389{
 390    ARMCPU *cpu = env_archcpu(env);
 391
 392    raw_write(env, ri, value);
 393    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 394}
 395
 396static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 397{
 398    ARMCPU *cpu = env_archcpu(env);
 399
 400    if (raw_read(env, ri) != value) {
 401        /*
 402         * Unlike real hardware the qemu TLB uses virtual addresses,
 403         * not modified virtual addresses, so this causes a TLB flush.
 404         */
 405        tlb_flush(CPU(cpu));
 406        raw_write(env, ri, value);
 407    }
 408}
 409
 410static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 411                             uint64_t value)
 412{
 413    ARMCPU *cpu = env_archcpu(env);
 414
 415    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 416        && !extended_addresses_enabled(env)) {
 417        /*
 418         * For VMSA (when not using the LPAE long descriptor page table
 419         * format) this register includes the ASID, so do a TLB flush.
 420         * For PMSA it is purely a process ID and no action is needed.
 421         */
 422        tlb_flush(CPU(cpu));
 423    }
 424    raw_write(env, ri, value);
 425}
 426
 427static int alle1_tlbmask(CPUARMState *env)
 428{
 429    /*
 430     * Note that the 'ALL' scope must invalidate both stage 1 and
 431     * stage 2 translations, whereas most other scopes only invalidate
 432     * stage 1 translations.
 433     */
 434    return (ARMMMUIdxBit_E10_1 |
 435            ARMMMUIdxBit_E10_1_PAN |
 436            ARMMMUIdxBit_E10_0 |
 437            ARMMMUIdxBit_Stage2 |
 438            ARMMMUIdxBit_Stage2_S);
 439}
 440
 441
 442/* IS variants of TLB operations must affect all cores */
 443static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 444                             uint64_t value)
 445{
 446    CPUState *cs = env_cpu(env);
 447
 448    tlb_flush_all_cpus_synced(cs);
 449}
 450
 451static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 452                             uint64_t value)
 453{
 454    CPUState *cs = env_cpu(env);
 455
 456    tlb_flush_all_cpus_synced(cs);
 457}
 458
 459static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 460                             uint64_t value)
 461{
 462    CPUState *cs = env_cpu(env);
 463
 464    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 465}
 466
 467static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 468                             uint64_t value)
 469{
 470    CPUState *cs = env_cpu(env);
 471
 472    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 473}
 474
 475/*
 476 * Non-IS variants of TLB operations are upgraded to
 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
 478 * force broadcast of these operations.
 479 */
 480static bool tlb_force_broadcast(CPUARMState *env)
 481{
 482    return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
 483}
 484
 485static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 486                          uint64_t value)
 487{
 488    /* Invalidate all (TLBIALL) */
 489    CPUState *cs = env_cpu(env);
 490
 491    if (tlb_force_broadcast(env)) {
 492        tlb_flush_all_cpus_synced(cs);
 493    } else {
 494        tlb_flush(cs);
 495    }
 496}
 497
 498static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 499                          uint64_t value)
 500{
 501    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 502    CPUState *cs = env_cpu(env);
 503
 504    value &= TARGET_PAGE_MASK;
 505    if (tlb_force_broadcast(env)) {
 506        tlb_flush_page_all_cpus_synced(cs, value);
 507    } else {
 508        tlb_flush_page(cs, value);
 509    }
 510}
 511
 512static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 513                           uint64_t value)
 514{
 515    /* Invalidate by ASID (TLBIASID) */
 516    CPUState *cs = env_cpu(env);
 517
 518    if (tlb_force_broadcast(env)) {
 519        tlb_flush_all_cpus_synced(cs);
 520    } else {
 521        tlb_flush(cs);
 522    }
 523}
 524
 525static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 526                           uint64_t value)
 527{
 528    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 529    CPUState *cs = env_cpu(env);
 530
 531    value &= TARGET_PAGE_MASK;
 532    if (tlb_force_broadcast(env)) {
 533        tlb_flush_page_all_cpus_synced(cs, value);
 534    } else {
 535        tlb_flush_page(cs, value);
 536    }
 537}
 538
 539static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 540                               uint64_t value)
 541{
 542    CPUState *cs = env_cpu(env);
 543
 544    tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
 545}
 546
 547static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 548                                  uint64_t value)
 549{
 550    CPUState *cs = env_cpu(env);
 551
 552    tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
 553}
 554
 555
 556static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 557                              uint64_t value)
 558{
 559    CPUState *cs = env_cpu(env);
 560
 561    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
 562}
 563
 564static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 565                                 uint64_t value)
 566{
 567    CPUState *cs = env_cpu(env);
 568
 569    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
 570}
 571
 572static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 573                              uint64_t value)
 574{
 575    CPUState *cs = env_cpu(env);
 576    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 577
 578    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
 579}
 580
 581static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 582                                 uint64_t value)
 583{
 584    CPUState *cs = env_cpu(env);
 585    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 586
 587    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 588                                             ARMMMUIdxBit_E2);
 589}
 590
 591static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 592                                uint64_t value)
 593{
 594    CPUState *cs = env_cpu(env);
 595    uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
 596
 597    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
 598}
 599
 600static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 601                                uint64_t value)
 602{
 603    CPUState *cs = env_cpu(env);
 604    uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
 605
 606    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
 607}
 608
 609static const ARMCPRegInfo cp_reginfo[] = {
 610    /*
 611     * Define the secure and non-secure FCSE identifier CP registers
 612     * separately because there is no secure bank in V8 (no _EL3).  This allows
 613     * the secure register to be properly reset and migrated. There is also no
 614     * v8 EL1 version of the register so the non-secure instance stands alone.
 615     */
 616    { .name = "FCSEIDR",
 617      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 618      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 619      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 620      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 621    { .name = "FCSEIDR_S",
 622      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 623      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 624      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 625      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 626    /*
 627     * Define the secure and non-secure context identifier CP registers
 628     * separately because there is no secure bank in V8 (no _EL3).  This allows
 629     * the secure register to be properly reset and migrated.  In the
 630     * non-secure case, the 32-bit register will have reset and migration
 631     * disabled during registration as it is handled by the 64-bit instance.
 632     */
 633    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 634      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 635      .access = PL1_RW, .accessfn = access_tvm_trvm,
 636      .fgt = FGT_CONTEXTIDR_EL1,
 637      .secure = ARM_CP_SECSTATE_NS,
 638      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 639      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 640    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
 641      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 642      .access = PL1_RW, .accessfn = access_tvm_trvm,
 643      .secure = ARM_CP_SECSTATE_S,
 644      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 645      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 646};
 647
 648static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 649    /*
 650     * NB: Some of these registers exist in v8 but with more precise
 651     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 652     */
 653    /* MMU Domain access control / MPU write buffer control */
 654    { .name = "DACR",
 655      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 656      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 657      .writefn = dacr_write, .raw_writefn = raw_write,
 658      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 659                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 660    /*
 661     * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 662     * For v6 and v5, these mappings are overly broad.
 663     */
 664    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 665      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 666    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 667      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 668    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 669      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 670    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 671      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 672    /* Cache maintenance ops; some of this space may be overridden later. */
 673    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 674      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 675      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 676};
 677
 678static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 679    /*
 680     * Not all pre-v6 cores implemented this WFI, so this is slightly
 681     * over-broad.
 682     */
 683    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 684      .access = PL1_W, .type = ARM_CP_WFI },
 685};
 686
 687static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 688    /*
 689     * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 690     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 691     */
 692    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 693      .access = PL1_W, .type = ARM_CP_WFI },
 694    /*
 695     * L1 cache lockdown. Not architectural in v6 and earlier but in practice
 696     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 697     * OMAPCP will override this space.
 698     */
 699    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 700      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 701      .resetvalue = 0 },
 702    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 703      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 704      .resetvalue = 0 },
 705    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 706    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 707      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 708      .resetvalue = 0 },
 709    /*
 710     * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 711     * implementing it as RAZ means the "debug architecture version" bits
 712     * will read as a reserved value, which should cause Linux to not try
 713     * to use the debug hardware.
 714     */
 715    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 716      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 717    /*
 718     * MMU TLB control. Note that the wildcarding means we cover not just
 719     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 720     */
 721    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 722      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 723      .type = ARM_CP_NO_RAW },
 724    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 725      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 726      .type = ARM_CP_NO_RAW },
 727    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 728      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 729      .type = ARM_CP_NO_RAW },
 730    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 731      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 732      .type = ARM_CP_NO_RAW },
 733    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 734      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 735    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 736      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 737};
 738
 739static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 740                        uint64_t value)
 741{
 742    uint32_t mask = 0;
 743
 744    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 745    if (!arm_feature(env, ARM_FEATURE_V8)) {
 746        /*
 747         * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 748         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 749         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 750         */
 751        if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
 752            /* VFP coprocessor: cp10 & cp11 [23:20] */
 753            mask |= R_CPACR_ASEDIS_MASK |
 754                    R_CPACR_D32DIS_MASK |
 755                    R_CPACR_CP11_MASK |
 756                    R_CPACR_CP10_MASK;
 757
 758            if (!arm_feature(env, ARM_FEATURE_NEON)) {
 759                /* ASEDIS [31] bit is RAO/WI */
 760                value |= R_CPACR_ASEDIS_MASK;
 761            }
 762
 763            /*
 764             * VFPv3 and upwards with NEON implement 32 double precision
 765             * registers (D0-D31).
 766             */
 767            if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
 768                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 769                value |= R_CPACR_D32DIS_MASK;
 770            }
 771        }
 772        value &= mask;
 773    }
 774
 775    /*
 776     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 777     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 778     */
 779    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 780        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 781        mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
 782        value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
 783    }
 784
 785    env->cp15.cpacr_el1 = value;
 786}
 787
 788static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 789{
 790    /*
 791     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 792     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 793     */
 794    uint64_t value = env->cp15.cpacr_el1;
 795
 796    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 797        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 798        value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
 799    }
 800    return value;
 801}
 802
 803
 804static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 805{
 806    /*
 807     * Call cpacr_write() so that we reset with the correct RAO bits set
 808     * for our CPU features.
 809     */
 810    cpacr_write(env, ri, 0);
 811}
 812
 813static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 814                                   bool isread)
 815{
 816    if (arm_feature(env, ARM_FEATURE_V8)) {
 817        /* Check if CPACR accesses are to be trapped to EL2 */
 818        if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
 819            FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
 820            return CP_ACCESS_TRAP_EL2;
 821        /* Check if CPACR accesses are to be trapped to EL3 */
 822        } else if (arm_current_el(env) < 3 &&
 823                   FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
 824            return CP_ACCESS_TRAP_EL3;
 825        }
 826    }
 827
 828    return CP_ACCESS_OK;
 829}
 830
 831static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 832                                  bool isread)
 833{
 834    /* Check if CPTR accesses are set to trap to EL3 */
 835    if (arm_current_el(env) == 2 &&
 836        FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
 837        return CP_ACCESS_TRAP_EL3;
 838    }
 839
 840    return CP_ACCESS_OK;
 841}
 842
 843static const ARMCPRegInfo v6_cp_reginfo[] = {
 844    /* prefetch by MVA in v6, NOP in v7 */
 845    { .name = "MVA_prefetch",
 846      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 847      .access = PL1_W, .type = ARM_CP_NOP },
 848    /*
 849     * We need to break the TB after ISB to execute self-modifying code
 850     * correctly and also to take any pending interrupts immediately.
 851     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 852     */
 853    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 854      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 855    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 856      .access = PL0_W, .type = ARM_CP_NOP },
 857    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 858      .access = PL0_W, .type = ARM_CP_NOP },
 859    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 860      .access = PL1_RW, .accessfn = access_tvm_trvm,
 861      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
 862                             offsetof(CPUARMState, cp15.ifar_ns) },
 863      .resetvalue = 0, },
 864    /*
 865     * Watchpoint Fault Address Register : should actually only be present
 866     * for 1136, 1176, 11MPCore.
 867     */
 868    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 869      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 870    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
 871      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
 872      .fgt = FGT_CPACR_EL1,
 873      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
 874      .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
 875};
 876
 877typedef struct pm_event {
 878    uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
 879    /* If the event is supported on this CPU (used to generate PMCEID[01]) */
 880    bool (*supported)(CPUARMState *);
 881    /*
 882     * Retrieve the current count of the underlying event. The programmed
 883     * counters hold a difference from the return value from this function
 884     */
 885    uint64_t (*get_count)(CPUARMState *);
 886    /*
 887     * Return how many nanoseconds it will take (at a minimum) for count events
 888     * to occur. A negative value indicates the counter will never overflow, or
 889     * that the counter has otherwise arranged for the overflow bit to be set
 890     * and the PMU interrupt to be raised on overflow.
 891     */
 892    int64_t (*ns_per_count)(uint64_t);
 893} pm_event;
 894
 895static bool event_always_supported(CPUARMState *env)
 896{
 897    return true;
 898}
 899
 900static uint64_t swinc_get_count(CPUARMState *env)
 901{
 902    /*
 903     * SW_INCR events are written directly to the pmevcntr's by writes to
 904     * PMSWINC, so there is no underlying count maintained by the PMU itself
 905     */
 906    return 0;
 907}
 908
 909static int64_t swinc_ns_per(uint64_t ignored)
 910{
 911    return -1;
 912}
 913
 914/*
 915 * Return the underlying cycle count for the PMU cycle counters. If we're in
 916 * usermode, simply return 0.
 917 */
 918static uint64_t cycles_get_count(CPUARMState *env)
 919{
 920#ifndef CONFIG_USER_ONLY
 921    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 922                   ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 923#else
 924    return cpu_get_host_ticks();
 925#endif
 926}
 927
 928#ifndef CONFIG_USER_ONLY
 929static int64_t cycles_ns_per(uint64_t cycles)
 930{
 931    return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
 932}
 933
 934static bool instructions_supported(CPUARMState *env)
 935{
 936    return icount_enabled() == 1; /* Precise instruction counting */
 937}
 938
 939static uint64_t instructions_get_count(CPUARMState *env)
 940{
 941    return (uint64_t)icount_get_raw();
 942}
 943
 944static int64_t instructions_ns_per(uint64_t icount)
 945{
 946    return icount_to_ns((int64_t)icount);
 947}
 948#endif
 949
 950static bool pmuv3p1_events_supported(CPUARMState *env)
 951{
 952    /* For events which are supported in any v8.1 PMU */
 953    return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
 954}
 955
 956static bool pmuv3p4_events_supported(CPUARMState *env)
 957{
 958    /* For events which are supported in any v8.1 PMU */
 959    return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
 960}
 961
 962static uint64_t zero_event_get_count(CPUARMState *env)
 963{
 964    /* For events which on QEMU never fire, so their count is always zero */
 965    return 0;
 966}
 967
 968static int64_t zero_event_ns_per(uint64_t cycles)
 969{
 970    /* An event which never fires can never overflow */
 971    return -1;
 972}
 973
 974static const pm_event pm_events[] = {
 975    { .number = 0x000, /* SW_INCR */
 976      .supported = event_always_supported,
 977      .get_count = swinc_get_count,
 978      .ns_per_count = swinc_ns_per,
 979    },
 980#ifndef CONFIG_USER_ONLY
 981    { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
 982      .supported = instructions_supported,
 983      .get_count = instructions_get_count,
 984      .ns_per_count = instructions_ns_per,
 985    },
 986    { .number = 0x011, /* CPU_CYCLES, Cycle */
 987      .supported = event_always_supported,
 988      .get_count = cycles_get_count,
 989      .ns_per_count = cycles_ns_per,
 990    },
 991#endif
 992    { .number = 0x023, /* STALL_FRONTEND */
 993      .supported = pmuv3p1_events_supported,
 994      .get_count = zero_event_get_count,
 995      .ns_per_count = zero_event_ns_per,
 996    },
 997    { .number = 0x024, /* STALL_BACKEND */
 998      .supported = pmuv3p1_events_supported,
 999      .get_count = zero_event_get_count,
1000      .ns_per_count = zero_event_ns_per,
1001    },
1002    { .number = 0x03c, /* STALL */
1003      .supported = pmuv3p4_events_supported,
1004      .get_count = zero_event_get_count,
1005      .ns_per_count = zero_event_ns_per,
1006    },
1007};
1008
1009/*
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1014 */
1015#define MAX_EVENT_ID 0x3c
1016#define UNSUPPORTED_EVENT UINT16_MAX
1017static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018
1019/*
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
1022 *
1023 * Note: Events in the 0x40XX range are not currently supported.
1024 */
1025void pmu_init(ARMCPU *cpu)
1026{
1027    unsigned int i;
1028
1029    /*
1030     * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031     * events to them
1032     */
1033    for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034        supported_event_map[i] = UNSUPPORTED_EVENT;
1035    }
1036    cpu->pmceid0 = 0;
1037    cpu->pmceid1 = 0;
1038
1039    for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040        const pm_event *cnt = &pm_events[i];
1041        assert(cnt->number <= MAX_EVENT_ID);
1042        /* We do not currently support events in the 0x40xx range */
1043        assert(cnt->number <= 0x3f);
1044
1045        if (cnt->supported(&cpu->env)) {
1046            supported_event_map[cnt->number] = i;
1047            uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048            if (cnt->number & 0x20) {
1049                cpu->pmceid1 |= event_mask;
1050            } else {
1051                cpu->pmceid0 |= event_mask;
1052            }
1053        }
1054    }
1055}
1056
1057/*
1058 * Check at runtime whether a PMU event is supported for the current machine
1059 */
1060static bool event_supported(uint16_t number)
1061{
1062    if (number > MAX_EVENT_ID) {
1063        return false;
1064    }
1065    return supported_event_map[number] != UNSUPPORTED_EVENT;
1066}
1067
1068static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                   bool isread)
1070{
1071    /*
1072     * Performance monitor registers user accessibility is controlled
1073     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074     * trapping to EL2 or EL3 for other accesses.
1075     */
1076    int el = arm_current_el(env);
1077    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078
1079    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080        return CP_ACCESS_TRAP;
1081    }
1082    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083        return CP_ACCESS_TRAP_EL2;
1084    }
1085    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086        return CP_ACCESS_TRAP_EL3;
1087    }
1088
1089    return CP_ACCESS_OK;
1090}
1091
1092static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                           const ARMCPRegInfo *ri,
1094                                           bool isread)
1095{
1096    /* ER: event counter read trap control */
1097    if (arm_feature(env, ARM_FEATURE_V8)
1098        && arm_current_el(env) == 0
1099        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100        && isread) {
1101        return CP_ACCESS_OK;
1102    }
1103
1104    return pmreg_access(env, ri, isread);
1105}
1106
1107static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                         const ARMCPRegInfo *ri,
1109                                         bool isread)
1110{
1111    /* SW: software increment write trap control */
1112    if (arm_feature(env, ARM_FEATURE_V8)
1113        && arm_current_el(env) == 0
1114        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115        && !isread) {
1116        return CP_ACCESS_OK;
1117    }
1118
1119    return pmreg_access(env, ri, isread);
1120}
1121
1122static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                        const ARMCPRegInfo *ri,
1124                                        bool isread)
1125{
1126    /* ER: event counter read trap control */
1127    if (arm_feature(env, ARM_FEATURE_V8)
1128        && arm_current_el(env) == 0
1129        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130        return CP_ACCESS_OK;
1131    }
1132
1133    return pmreg_access(env, ri, isread);
1134}
1135
1136static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                         const ARMCPRegInfo *ri,
1138                                         bool isread)
1139{
1140    /* CR: cycle counter read trap control */
1141    if (arm_feature(env, ARM_FEATURE_V8)
1142        && arm_current_el(env) == 0
1143        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144        && isread) {
1145        return CP_ACCESS_OK;
1146    }
1147
1148    return pmreg_access(env, ri, isread);
1149}
1150
1151/*
1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153 * We use these to decide whether we need to wrap a write to MDCR_EL2
1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155 */
1156#define MDCR_EL2_PMU_ENABLE_BITS \
1157    (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159
1160/*
1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162 * the current EL, security state, and register configuration.
1163 */
1164static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165{
1166    uint64_t filter;
1167    bool e, p, u, nsk, nsu, nsh, m;
1168    bool enabled, prohibited = false, filtered;
1169    bool secure = arm_is_secure(env);
1170    int el = arm_current_el(env);
1171    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172    uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173
1174    if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175        return false;
1176    }
1177
1178    if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179            (counter < hpmn || counter == 31)) {
1180        e = env->cp15.c9_pmcr & PMCRE;
1181    } else {
1182        e = mdcr_el2 & MDCR_HPME;
1183    }
1184    enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185
1186    /* Is event counting prohibited? */
1187    if (el == 2 && (counter < hpmn || counter == 31)) {
1188        prohibited = mdcr_el2 & MDCR_HPMD;
1189    }
1190    if (secure) {
1191        prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192    }
1193
1194    if (counter == 31) {
1195        /*
1196         * The cycle counter defaults to running. PMCR.DP says "disable
1197         * the cycle counter when event counting is prohibited".
1198         * Some MDCR bits disable the cycle counter specifically.
1199         */
1200        prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201        if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202            if (secure) {
1203                prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204            }
1205            if (el == 2) {
1206                prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207            }
1208        }
1209    }
1210
1211    if (counter == 31) {
1212        filter = env->cp15.pmccfiltr_el0;
1213    } else {
1214        filter = env->cp15.c14_pmevtyper[counter];
1215    }
1216
1217    p   = filter & PMXEVTYPER_P;
1218    u   = filter & PMXEVTYPER_U;
1219    nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220    nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221    nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222    m   = arm_el_is_aa64(env, 1) &&
1223              arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224
1225    if (el == 0) {
1226        filtered = secure ? u : u != nsu;
1227    } else if (el == 1) {
1228        filtered = secure ? p : p != nsk;
1229    } else if (el == 2) {
1230        filtered = !nsh;
1231    } else { /* EL3 */
1232        filtered = m != p;
1233    }
1234
1235    if (counter != 31) {
1236        /*
1237         * If not checking PMCCNTR, ensure the counter is setup to an event we
1238         * support
1239         */
1240        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241        if (!event_supported(event)) {
1242            return false;
1243        }
1244    }
1245
1246    return enabled && !prohibited && !filtered;
1247}
1248
1249static void pmu_update_irq(CPUARMState *env)
1250{
1251    ARMCPU *cpu = env_archcpu(env);
1252    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254}
1255
1256static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257{
1258    /*
1259     * Return true if the clock divider is enabled and the cycle counter
1260     * is supposed to tick only once every 64 clock cycles. This is
1261     * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262     * (64-bit) cycle counter PMCR.D has no effect.
1263     */
1264    return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265}
1266
1267static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268{
1269    /* Return true if the specified event counter is configured to be 64 bit */
1270
1271    /* This isn't intended to be used with the cycle counter */
1272    assert(counter < 31);
1273
1274    if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275        return false;
1276    }
1277
1278    if (arm_feature(env, ARM_FEATURE_EL2)) {
1279        /*
1280         * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281         * current security state, so we don't use arm_mdcr_el2_eff() here.
1282         */
1283        bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284        int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285
1286        if (hpmn != 0 && counter >= hpmn) {
1287            return hlp;
1288        }
1289    }
1290    return env->cp15.c9_pmcr & PMCRLP;
1291}
1292
1293/*
1294 * Ensure c15_ccnt is the guest-visible count so that operations such as
1295 * enabling/disabling the counter or filtering, modifying the count itself,
1296 * etc. can be done logically. This is essentially a no-op if the counter is
1297 * not enabled at the time of the call.
1298 */
1299static void pmccntr_op_start(CPUARMState *env)
1300{
1301    uint64_t cycles = cycles_get_count(env);
1302
1303    if (pmu_counter_enabled(env, 31)) {
1304        uint64_t eff_cycles = cycles;
1305        if (pmccntr_clockdiv_enabled(env)) {
1306            eff_cycles /= 64;
1307        }
1308
1309        uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310
1311        uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                 1ull << 63 : 1ull << 31;
1313        if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314            env->cp15.c9_pmovsr |= (1ULL << 31);
1315            pmu_update_irq(env);
1316        }
1317
1318        env->cp15.c15_ccnt = new_pmccntr;
1319    }
1320    env->cp15.c15_ccnt_delta = cycles;
1321}
1322
1323/*
1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326 * pmccntr_op_start.
1327 */
1328static void pmccntr_op_finish(CPUARMState *env)
1329{
1330    if (pmu_counter_enabled(env, 31)) {
1331#ifndef CONFIG_USER_ONLY
1332        /* Calculate when the counter will next overflow */
1333        uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334        if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335            remaining_cycles = (uint32_t)remaining_cycles;
1336        }
1337        int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338
1339        if (overflow_in > 0) {
1340            int64_t overflow_at;
1341
1342            if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                 overflow_in, &overflow_at)) {
1344                ARMCPU *cpu = env_archcpu(env);
1345                timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346            }
1347        }
1348#endif
1349
1350        uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351        if (pmccntr_clockdiv_enabled(env)) {
1352            prev_cycles /= 64;
1353        }
1354        env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355    }
1356}
1357
1358static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359{
1360
1361    uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362    uint64_t count = 0;
1363    if (event_supported(event)) {
1364        uint16_t event_idx = supported_event_map[event];
1365        count = pm_events[event_idx].get_count(env);
1366    }
1367
1368    if (pmu_counter_enabled(env, counter)) {
1369        uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370        uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371            1ULL << 63 : 1ULL << 31;
1372
1373        if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374            env->cp15.c9_pmovsr |= (1 << counter);
1375            pmu_update_irq(env);
1376        }
1377        env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378    }
1379    env->cp15.c14_pmevcntr_delta[counter] = count;
1380}
1381
1382static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383{
1384    if (pmu_counter_enabled(env, counter)) {
1385#ifndef CONFIG_USER_ONLY
1386        uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387        uint16_t event_idx = supported_event_map[event];
1388        uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389        int64_t overflow_in;
1390
1391        if (!pmevcntr_is_64_bit(env, counter)) {
1392            delta = (uint32_t)delta;
1393        }
1394        overflow_in = pm_events[event_idx].ns_per_count(delta);
1395
1396        if (overflow_in > 0) {
1397            int64_t overflow_at;
1398
1399            if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                 overflow_in, &overflow_at)) {
1401                ARMCPU *cpu = env_archcpu(env);
1402                timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403            }
1404        }
1405#endif
1406
1407        env->cp15.c14_pmevcntr_delta[counter] -=
1408            env->cp15.c14_pmevcntr[counter];
1409    }
1410}
1411
1412void pmu_op_start(CPUARMState *env)
1413{
1414    unsigned int i;
1415    pmccntr_op_start(env);
1416    for (i = 0; i < pmu_num_counters(env); i++) {
1417        pmevcntr_op_start(env, i);
1418    }
1419}
1420
1421void pmu_op_finish(CPUARMState *env)
1422{
1423    unsigned int i;
1424    pmccntr_op_finish(env);
1425    for (i = 0; i < pmu_num_counters(env); i++) {
1426        pmevcntr_op_finish(env, i);
1427    }
1428}
1429
1430void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431{
1432    pmu_op_start(&cpu->env);
1433}
1434
1435void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436{
1437    pmu_op_finish(&cpu->env);
1438}
1439
1440void arm_pmu_timer_cb(void *opaque)
1441{
1442    ARMCPU *cpu = opaque;
1443
1444    /*
1445     * Update all the counter values based on the current underlying counts,
1446     * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447     * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448     * counter may expire.
1449     */
1450    pmu_op_start(&cpu->env);
1451    pmu_op_finish(&cpu->env);
1452}
1453
1454static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                       uint64_t value)
1456{
1457    pmu_op_start(env);
1458
1459    if (value & PMCRC) {
1460        /* The counter has been reset */
1461        env->cp15.c15_ccnt = 0;
1462    }
1463
1464    if (value & PMCRP) {
1465        unsigned int i;
1466        for (i = 0; i < pmu_num_counters(env); i++) {
1467            env->cp15.c14_pmevcntr[i] = 0;
1468        }
1469    }
1470
1471    env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472    env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473
1474    pmu_op_finish(env);
1475}
1476
1477static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                          uint64_t value)
1479{
1480    unsigned int i;
1481    uint64_t overflow_mask, new_pmswinc;
1482
1483    for (i = 0; i < pmu_num_counters(env); i++) {
1484        /* Increment a counter's count iff: */
1485        if ((value & (1 << i)) && /* counter's bit is set */
1486                /* counter is enabled and not filtered */
1487                pmu_counter_enabled(env, i) &&
1488                /* counter is SW_INCR */
1489                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490            pmevcntr_op_start(env, i);
1491
1492            /*
1493             * Detect if this write causes an overflow since we can't predict
1494             * PMSWINC overflows like we can for other events
1495             */
1496            new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497
1498            overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                1ULL << 63 : 1ULL << 31;
1500
1501            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                env->cp15.c9_pmovsr |= (1 << i);
1503                pmu_update_irq(env);
1504            }
1505
1506            env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507
1508            pmevcntr_op_finish(env, i);
1509        }
1510    }
1511}
1512
1513static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514{
1515    uint64_t ret;
1516    pmccntr_op_start(env);
1517    ret = env->cp15.c15_ccnt;
1518    pmccntr_op_finish(env);
1519    return ret;
1520}
1521
1522static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                         uint64_t value)
1524{
1525    /*
1526     * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529     * accessed.
1530     */
1531    env->cp15.c9_pmselr = value & 0x1f;
1532}
1533
1534static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                        uint64_t value)
1536{
1537    pmccntr_op_start(env);
1538    env->cp15.c15_ccnt = value;
1539    pmccntr_op_finish(env);
1540}
1541
1542static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                            uint64_t value)
1544{
1545    uint64_t cur_val = pmccntr_read(env, NULL);
1546
1547    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548}
1549
1550static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                            uint64_t value)
1552{
1553    pmccntr_op_start(env);
1554    env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555    pmccntr_op_finish(env);
1556}
1557
1558static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                            uint64_t value)
1560{
1561    pmccntr_op_start(env);
1562    /* M is not accessible from AArch32 */
1563    env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564        (value & PMCCFILTR);
1565    pmccntr_op_finish(env);
1566}
1567
1568static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569{
1570    /* M is not visible in AArch32 */
1571    return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572}
1573
1574static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                            uint64_t value)
1576{
1577    pmu_op_start(env);
1578    value &= pmu_counter_mask(env);
1579    env->cp15.c9_pmcnten |= value;
1580    pmu_op_finish(env);
1581}
1582
1583static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                             uint64_t value)
1585{
1586    pmu_op_start(env);
1587    value &= pmu_counter_mask(env);
1588    env->cp15.c9_pmcnten &= ~value;
1589    pmu_op_finish(env);
1590}
1591
1592static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                         uint64_t value)
1594{
1595    value &= pmu_counter_mask(env);
1596    env->cp15.c9_pmovsr &= ~value;
1597    pmu_update_irq(env);
1598}
1599
1600static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                         uint64_t value)
1602{
1603    value &= pmu_counter_mask(env);
1604    env->cp15.c9_pmovsr |= value;
1605    pmu_update_irq(env);
1606}
1607
1608static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                             uint64_t value, const uint8_t counter)
1610{
1611    if (counter == 31) {
1612        pmccfiltr_write(env, ri, value);
1613    } else if (counter < pmu_num_counters(env)) {
1614        pmevcntr_op_start(env, counter);
1615
1616        /*
1617         * If this counter's event type is changing, store the current
1618         * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619         * pmevcntr_op_finish has the correct baseline when it converts back to
1620         * a delta.
1621         */
1622        uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623            PMXEVTYPER_EVTCOUNT;
1624        uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625        if (old_event != new_event) {
1626            uint64_t count = 0;
1627            if (event_supported(new_event)) {
1628                uint16_t event_idx = supported_event_map[new_event];
1629                count = pm_events[event_idx].get_count(env);
1630            }
1631            env->cp15.c14_pmevcntr_delta[counter] = count;
1632        }
1633
1634        env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635        pmevcntr_op_finish(env, counter);
1636    }
1637    /*
1638     * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639     * PMSELR value is equal to or greater than the number of implemented
1640     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641     */
1642}
1643
1644static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                               const uint8_t counter)
1646{
1647    if (counter == 31) {
1648        return env->cp15.pmccfiltr_el0;
1649    } else if (counter < pmu_num_counters(env)) {
1650        return env->cp15.c14_pmevtyper[counter];
1651    } else {
1652      /*
1653       * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654       * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655       */
1656        return 0;
1657    }
1658}
1659
1660static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                              uint64_t value)
1662{
1663    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664    pmevtyper_write(env, ri, value, counter);
1665}
1666
1667static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                               uint64_t value)
1669{
1670    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671    env->cp15.c14_pmevtyper[counter] = value;
1672
1673    /*
1674     * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675     * pmu_op_finish calls when loading saved state for a migration. Because
1676     * we're potentially updating the type of event here, the value written to
1677     * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678     * different counter type. Therefore, we need to set this value to the
1679     * current count for the counter type we're writing so that pmu_op_finish
1680     * has the correct count for its calculation.
1681     */
1682    uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683    if (event_supported(event)) {
1684        uint16_t event_idx = supported_event_map[event];
1685        env->cp15.c14_pmevcntr_delta[counter] =
1686            pm_events[event_idx].get_count(env);
1687    }
1688}
1689
1690static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691{
1692    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693    return pmevtyper_read(env, ri, counter);
1694}
1695
1696static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                             uint64_t value)
1698{
1699    pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700}
1701
1702static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703{
1704    return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705}
1706
1707static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                             uint64_t value, uint8_t counter)
1709{
1710    if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711        /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712        value &= MAKE_64BIT_MASK(0, 32);
1713    }
1714    if (counter < pmu_num_counters(env)) {
1715        pmevcntr_op_start(env, counter);
1716        env->cp15.c14_pmevcntr[counter] = value;
1717        pmevcntr_op_finish(env, counter);
1718    }
1719    /*
1720     * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721     * are CONSTRAINED UNPREDICTABLE.
1722     */
1723}
1724
1725static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                              uint8_t counter)
1727{
1728    if (counter < pmu_num_counters(env)) {
1729        uint64_t ret;
1730        pmevcntr_op_start(env, counter);
1731        ret = env->cp15.c14_pmevcntr[counter];
1732        pmevcntr_op_finish(env, counter);
1733        if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734            /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735            ret &= MAKE_64BIT_MASK(0, 32);
1736        }
1737        return ret;
1738    } else {
1739      /*
1740       * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741       * are CONSTRAINED UNPREDICTABLE.
1742       */
1743        return 0;
1744    }
1745}
1746
1747static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                             uint64_t value)
1749{
1750    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751    pmevcntr_write(env, ri, value, counter);
1752}
1753
1754static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755{
1756    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757    return pmevcntr_read(env, ri, counter);
1758}
1759
1760static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                             uint64_t value)
1762{
1763    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764    assert(counter < pmu_num_counters(env));
1765    env->cp15.c14_pmevcntr[counter] = value;
1766    pmevcntr_write(env, ri, value, counter);
1767}
1768
1769static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770{
1771    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772    assert(counter < pmu_num_counters(env));
1773    return env->cp15.c14_pmevcntr[counter];
1774}
1775
1776static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                             uint64_t value)
1778{
1779    pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780}
1781
1782static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783{
1784    return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785}
1786
1787static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                            uint64_t value)
1789{
1790    if (arm_feature(env, ARM_FEATURE_V8)) {
1791        env->cp15.c9_pmuserenr = value & 0xf;
1792    } else {
1793        env->cp15.c9_pmuserenr = value & 1;
1794    }
1795}
1796
1797static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                             uint64_t value)
1799{
1800    /* We have no event counters so only the C bit can be changed */
1801    value &= pmu_counter_mask(env);
1802    env->cp15.c9_pminten |= value;
1803    pmu_update_irq(env);
1804}
1805
1806static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                             uint64_t value)
1808{
1809    value &= pmu_counter_mask(env);
1810    env->cp15.c9_pminten &= ~value;
1811    pmu_update_irq(env);
1812}
1813
1814static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                       uint64_t value)
1816{
1817    /*
1818     * Note that even though the AArch64 view of this register has bits
1819     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820     * architectural requirements for bits which are RES0 only in some
1821     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823     */
1824    raw_write(env, ri, value & ~0x1FULL);
1825}
1826
1827static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828{
1829    /* Begin with base v8.0 state.  */
1830    uint64_t valid_mask = 0x3fff;
1831    ARMCPU *cpu = env_archcpu(env);
1832    uint64_t changed;
1833
1834    /*
1835     * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836     * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837     * Instead, choose the format based on the mode of EL3.
1838     */
1839    if (arm_el_is_aa64(env, 3)) {
1840        value |= SCR_FW | SCR_AW;      /* RES1 */
1841        valid_mask &= ~SCR_NET;        /* RES0 */
1842
1843        if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844            !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845            value |= SCR_RW;           /* RAO/WI */
1846        }
1847        if (cpu_isar_feature(aa64_ras, cpu)) {
1848            valid_mask |= SCR_TERR;
1849        }
1850        if (cpu_isar_feature(aa64_lor, cpu)) {
1851            valid_mask |= SCR_TLOR;
1852        }
1853        if (cpu_isar_feature(aa64_pauth, cpu)) {
1854            valid_mask |= SCR_API | SCR_APK;
1855        }
1856        if (cpu_isar_feature(aa64_sel2, cpu)) {
1857            valid_mask |= SCR_EEL2;
1858        }
1859        if (cpu_isar_feature(aa64_mte, cpu)) {
1860            valid_mask |= SCR_ATA;
1861        }
1862        if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1863            valid_mask |= SCR_ENSCXT;
1864        }
1865        if (cpu_isar_feature(aa64_doublefault, cpu)) {
1866            valid_mask |= SCR_EASE | SCR_NMEA;
1867        }
1868        if (cpu_isar_feature(aa64_sme, cpu)) {
1869            valid_mask |= SCR_ENTP2;
1870        }
1871        if (cpu_isar_feature(aa64_hcx, cpu)) {
1872            valid_mask |= SCR_HXEN;
1873        }
1874        if (cpu_isar_feature(aa64_fgt, cpu)) {
1875            valid_mask |= SCR_FGTEN;
1876        }
1877    } else {
1878        valid_mask &= ~(SCR_RW | SCR_ST);
1879        if (cpu_isar_feature(aa32_ras, cpu)) {
1880            valid_mask |= SCR_TERR;
1881        }
1882    }
1883
1884    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1885        valid_mask &= ~SCR_HCE;
1886
1887        /*
1888         * On ARMv7, SMD (or SCD as it is called in v7) is only
1889         * supported if EL2 exists. The bit is UNK/SBZP when
1890         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891         * when EL2 is unavailable.
1892         * On ARMv8, this bit is always available.
1893         */
1894        if (arm_feature(env, ARM_FEATURE_V7) &&
1895            !arm_feature(env, ARM_FEATURE_V8)) {
1896            valid_mask &= ~SCR_SMD;
1897        }
1898    }
1899
1900    /* Clear all-context RES0 bits.  */
1901    value &= valid_mask;
1902    changed = env->cp15.scr_el3 ^ value;
1903    env->cp15.scr_el3 = value;
1904
1905    /*
1906     * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1907     * we must invalidate all TLBs below EL3.
1908     */
1909    if (changed & SCR_NS) {
1910        tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1911                                           ARMMMUIdxBit_E20_0 |
1912                                           ARMMMUIdxBit_E10_1 |
1913                                           ARMMMUIdxBit_E20_2 |
1914                                           ARMMMUIdxBit_E10_1_PAN |
1915                                           ARMMMUIdxBit_E20_2_PAN |
1916                                           ARMMMUIdxBit_E2));
1917    }
1918}
1919
1920static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921{
1922    /*
1923     * scr_write will set the RES1 bits on an AArch64-only CPU.
1924     * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1925     */
1926    scr_write(env, ri, 0);
1927}
1928
1929static CPAccessResult access_tid4(CPUARMState *env,
1930                                  const ARMCPRegInfo *ri,
1931                                  bool isread)
1932{
1933    if (arm_current_el(env) == 1 &&
1934        (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1935        return CP_ACCESS_TRAP_EL2;
1936    }
1937
1938    return CP_ACCESS_OK;
1939}
1940
1941static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1942{
1943    ARMCPU *cpu = env_archcpu(env);
1944
1945    /*
1946     * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1947     * bank
1948     */
1949    uint32_t index = A32_BANKED_REG_GET(env, csselr,
1950                                        ri->secure & ARM_CP_SECSTATE_S);
1951
1952    return cpu->ccsidr[index];
1953}
1954
1955static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1956                         uint64_t value)
1957{
1958    raw_write(env, ri, value & 0xf);
1959}
1960
1961static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1962{
1963    CPUState *cs = env_cpu(env);
1964    bool el1 = arm_current_el(env) == 1;
1965    uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1966    uint64_t ret = 0;
1967
1968    if (hcr_el2 & HCR_IMO) {
1969        if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1970            ret |= CPSR_I;
1971        }
1972    } else {
1973        if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1974            ret |= CPSR_I;
1975        }
1976    }
1977
1978    if (hcr_el2 & HCR_FMO) {
1979        if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1980            ret |= CPSR_F;
1981        }
1982    } else {
1983        if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1984            ret |= CPSR_F;
1985        }
1986    }
1987
1988    if (hcr_el2 & HCR_AMO) {
1989        if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1990            ret |= CPSR_A;
1991        }
1992    }
1993
1994    return ret;
1995}
1996
1997static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1998                                       bool isread)
1999{
2000    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2001        return CP_ACCESS_TRAP_EL2;
2002    }
2003
2004    return CP_ACCESS_OK;
2005}
2006
2007static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2008                                       bool isread)
2009{
2010    if (arm_feature(env, ARM_FEATURE_V8)) {
2011        return access_aa64_tid1(env, ri, isread);
2012    }
2013
2014    return CP_ACCESS_OK;
2015}
2016
2017static const ARMCPRegInfo v7_cp_reginfo[] = {
2018    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2019    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2020      .access = PL1_W, .type = ARM_CP_NOP },
2021    /*
2022     * Performance monitors are implementation defined in v7,
2023     * but with an ARM recommended set of registers, which we
2024     * follow.
2025     *
2026     * Performance registers fall into three categories:
2027     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2028     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2029     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2030     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2031     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2032     */
2033    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2034      .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2035      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2036      .writefn = pmcntenset_write,
2037      .accessfn = pmreg_access,
2038      .fgt = FGT_PMCNTEN,
2039      .raw_writefn = raw_write },
2040    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2041      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2042      .access = PL0_RW, .accessfn = pmreg_access,
2043      .fgt = FGT_PMCNTEN,
2044      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2045      .writefn = pmcntenset_write, .raw_writefn = raw_write },
2046    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2047      .access = PL0_RW,
2048      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2049      .accessfn = pmreg_access,
2050      .fgt = FGT_PMCNTEN,
2051      .writefn = pmcntenclr_write,
2052      .type = ARM_CP_ALIAS | ARM_CP_IO },
2053    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2054      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2055      .access = PL0_RW, .accessfn = pmreg_access,
2056      .fgt = FGT_PMCNTEN,
2057      .type = ARM_CP_ALIAS | ARM_CP_IO,
2058      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2059      .writefn = pmcntenclr_write },
2060    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2061      .access = PL0_RW, .type = ARM_CP_IO,
2062      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2063      .accessfn = pmreg_access,
2064      .fgt = FGT_PMOVS,
2065      .writefn = pmovsr_write,
2066      .raw_writefn = raw_write },
2067    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2068      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2069      .access = PL0_RW, .accessfn = pmreg_access,
2070      .fgt = FGT_PMOVS,
2071      .type = ARM_CP_ALIAS | ARM_CP_IO,
2072      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2073      .writefn = pmovsr_write,
2074      .raw_writefn = raw_write },
2075    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2076      .access = PL0_W, .accessfn = pmreg_access_swinc,
2077      .fgt = FGT_PMSWINC_EL0,
2078      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2079      .writefn = pmswinc_write },
2080    { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2081      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2082      .access = PL0_W, .accessfn = pmreg_access_swinc,
2083      .fgt = FGT_PMSWINC_EL0,
2084      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085      .writefn = pmswinc_write },
2086    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2087      .access = PL0_RW, .type = ARM_CP_ALIAS,
2088      .fgt = FGT_PMSELR_EL0,
2089      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2090      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2091      .raw_writefn = raw_write},
2092    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2093      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2094      .access = PL0_RW, .accessfn = pmreg_access_selr,
2095      .fgt = FGT_PMSELR_EL0,
2096      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2097      .writefn = pmselr_write, .raw_writefn = raw_write, },
2098    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2099      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100      .fgt = FGT_PMCCNTR_EL0,
2101      .readfn = pmccntr_read, .writefn = pmccntr_write32,
2102      .accessfn = pmreg_access_ccntr },
2103    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2104      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2105      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2106      .fgt = FGT_PMCCNTR_EL0,
2107      .type = ARM_CP_IO,
2108      .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2109      .readfn = pmccntr_read, .writefn = pmccntr_write,
2110      .raw_readfn = raw_read, .raw_writefn = raw_write, },
2111    { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2112      .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2113      .access = PL0_RW, .accessfn = pmreg_access,
2114      .fgt = FGT_PMCCFILTR_EL0,
2115      .type = ARM_CP_ALIAS | ARM_CP_IO,
2116      .resetvalue = 0, },
2117    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2118      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2119      .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2120      .access = PL0_RW, .accessfn = pmreg_access,
2121      .fgt = FGT_PMCCFILTR_EL0,
2122      .type = ARM_CP_IO,
2123      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2124      .resetvalue = 0, },
2125    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2126      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2127      .accessfn = pmreg_access,
2128      .fgt = FGT_PMEVTYPERN_EL0,
2129      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2130    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2131      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2132      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133      .accessfn = pmreg_access,
2134      .fgt = FGT_PMEVTYPERN_EL0,
2135      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2137      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2138      .accessfn = pmreg_access_xevcntr,
2139      .fgt = FGT_PMEVCNTRN_EL0,
2140      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2141    { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2142      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2143      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144      .accessfn = pmreg_access_xevcntr,
2145      .fgt = FGT_PMEVCNTRN_EL0,
2146      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2148      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2149      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2150      .resetvalue = 0,
2151      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2152    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2153      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2154      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2155      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2156      .resetvalue = 0,
2157      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2159      .access = PL1_RW, .accessfn = access_tpm,
2160      .fgt = FGT_PMINTEN,
2161      .type = ARM_CP_ALIAS | ARM_CP_IO,
2162      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2163      .resetvalue = 0,
2164      .writefn = pmintenset_write, .raw_writefn = raw_write },
2165    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2166      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2167      .access = PL1_RW, .accessfn = access_tpm,
2168      .fgt = FGT_PMINTEN,
2169      .type = ARM_CP_IO,
2170      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2171      .writefn = pmintenset_write, .raw_writefn = raw_write,
2172      .resetvalue = 0x0 },
2173    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2174      .access = PL1_RW, .accessfn = access_tpm,
2175      .fgt = FGT_PMINTEN,
2176      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2177      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178      .writefn = pmintenclr_write, },
2179    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2180      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2181      .access = PL1_RW, .accessfn = access_tpm,
2182      .fgt = FGT_PMINTEN,
2183      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185      .writefn = pmintenclr_write },
2186    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2187      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2188      .access = PL1_R,
2189      .accessfn = access_tid4,
2190      .fgt = FGT_CCSIDR_EL1,
2191      .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2192    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2193      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2194      .access = PL1_RW,
2195      .accessfn = access_tid4,
2196      .fgt = FGT_CSSELR_EL1,
2197      .writefn = csselr_write, .resetvalue = 0,
2198      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2199                             offsetof(CPUARMState, cp15.csselr_ns) } },
2200    /*
2201     * Auxiliary ID register: this actually has an IMPDEF value but for now
2202     * just RAZ for all cores:
2203     */
2204    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2205      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2206      .access = PL1_R, .type = ARM_CP_CONST,
2207      .accessfn = access_aa64_tid1,
2208      .fgt = FGT_AIDR_EL1,
2209      .resetvalue = 0 },
2210    /*
2211     * Auxiliary fault status registers: these also are IMPDEF, and we
2212     * choose to RAZ/WI for all cores.
2213     */
2214    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2215      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2216      .access = PL1_RW, .accessfn = access_tvm_trvm,
2217      .fgt = FGT_AFSR0_EL1,
2218      .type = ARM_CP_CONST, .resetvalue = 0 },
2219    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2220      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2221      .access = PL1_RW, .accessfn = access_tvm_trvm,
2222      .fgt = FGT_AFSR1_EL1,
2223      .type = ARM_CP_CONST, .resetvalue = 0 },
2224    /*
2225     * MAIR can just read-as-written because we don't implement caches
2226     * and so don't need to care about memory attributes.
2227     */
2228    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2229      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2230      .access = PL1_RW, .accessfn = access_tvm_trvm,
2231      .fgt = FGT_MAIR_EL1,
2232      .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2233      .resetvalue = 0 },
2234    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2235      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2236      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2237      .resetvalue = 0 },
2238    /*
2239     * For non-long-descriptor page tables these are PRRR and NMRR;
2240     * regardless they still act as reads-as-written for QEMU.
2241     */
2242     /*
2243      * MAIR0/1 are defined separately from their 64-bit counterpart which
2244      * allows them to assign the correct fieldoffset based on the endianness
2245      * handled in the field definitions.
2246      */
2247    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2248      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2249      .access = PL1_RW, .accessfn = access_tvm_trvm,
2250      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2251                             offsetof(CPUARMState, cp15.mair0_ns) },
2252      .resetfn = arm_cp_reset_ignore },
2253    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2254      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2255      .access = PL1_RW, .accessfn = access_tvm_trvm,
2256      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2257                             offsetof(CPUARMState, cp15.mair1_ns) },
2258      .resetfn = arm_cp_reset_ignore },
2259    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2260      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2261      .fgt = FGT_ISR_EL1,
2262      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2263    /* 32 bit ITLB invalidates */
2264    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2265      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2266      .writefn = tlbiall_write },
2267    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2268      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2269      .writefn = tlbimva_write },
2270    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2271      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272      .writefn = tlbiasid_write },
2273    /* 32 bit DTLB invalidates */
2274    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2275      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276      .writefn = tlbiall_write },
2277    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2278      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279      .writefn = tlbimva_write },
2280    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2281      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282      .writefn = tlbiasid_write },
2283    /* 32 bit TLB invalidates */
2284    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2285      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286      .writefn = tlbiall_write },
2287    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2288      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289      .writefn = tlbimva_write },
2290    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2291      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292      .writefn = tlbiasid_write },
2293    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2294      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295      .writefn = tlbimvaa_write },
2296};
2297
2298static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2299    /* 32 bit TLB invalidates, Inner Shareable */
2300    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2301      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2302      .writefn = tlbiall_is_write },
2303    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2304      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2305      .writefn = tlbimva_is_write },
2306    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2307      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308      .writefn = tlbiasid_is_write },
2309    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2310      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311      .writefn = tlbimvaa_is_write },
2312};
2313
2314static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2315    /* PMOVSSET is not implemented in v7 before v7ve */
2316    { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2317      .access = PL0_RW, .accessfn = pmreg_access,
2318      .fgt = FGT_PMOVS,
2319      .type = ARM_CP_ALIAS | ARM_CP_IO,
2320      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2321      .writefn = pmovsset_write,
2322      .raw_writefn = raw_write },
2323    { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2324      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2325      .access = PL0_RW, .accessfn = pmreg_access,
2326      .fgt = FGT_PMOVS,
2327      .type = ARM_CP_ALIAS | ARM_CP_IO,
2328      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2329      .writefn = pmovsset_write,
2330      .raw_writefn = raw_write },
2331};
2332
2333static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2334                        uint64_t value)
2335{
2336    value &= 1;
2337    env->teecr = value;
2338}
2339
2340static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2341                                   bool isread)
2342{
2343    /*
2344     * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2345     * at all, so we don't need to check whether we're v8A.
2346     */
2347    if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2348        (env->cp15.hstr_el2 & HSTR_TTEE)) {
2349        return CP_ACCESS_TRAP_EL2;
2350    }
2351    return CP_ACCESS_OK;
2352}
2353
2354static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2355                                    bool isread)
2356{
2357    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2358        return CP_ACCESS_TRAP;
2359    }
2360    return teecr_access(env, ri, isread);
2361}
2362
2363static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2364    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2365      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2366      .resetvalue = 0,
2367      .writefn = teecr_write, .accessfn = teecr_access },
2368    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2369      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2370      .accessfn = teehbr_access, .resetvalue = 0 },
2371};
2372
2373static const ARMCPRegInfo v6k_cp_reginfo[] = {
2374    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2375      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2376      .access = PL0_RW,
2377      .fgt = FGT_TPIDR_EL0,
2378      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2379    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2380      .access = PL0_RW,
2381      .fgt = FGT_TPIDR_EL0,
2382      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2383                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2384      .resetfn = arm_cp_reset_ignore },
2385    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2386      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2387      .access = PL0_R | PL1_W,
2388      .fgt = FGT_TPIDRRO_EL0,
2389      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2390      .resetvalue = 0},
2391    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2392      .access = PL0_R | PL1_W,
2393      .fgt = FGT_TPIDRRO_EL0,
2394      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2395                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2396      .resetfn = arm_cp_reset_ignore },
2397    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2398      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2399      .access = PL1_RW,
2400      .fgt = FGT_TPIDR_EL1,
2401      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2402    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2403      .access = PL1_RW,
2404      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2405                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2406      .resetvalue = 0 },
2407};
2408
2409#ifndef CONFIG_USER_ONLY
2410
2411static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412                                       bool isread)
2413{
2414    /*
2415     * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2416     * Writable only at the highest implemented exception level.
2417     */
2418    int el = arm_current_el(env);
2419    uint64_t hcr;
2420    uint32_t cntkctl;
2421
2422    switch (el) {
2423    case 0:
2424        hcr = arm_hcr_el2_eff(env);
2425        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2426            cntkctl = env->cp15.cnthctl_el2;
2427        } else {
2428            cntkctl = env->cp15.c14_cntkctl;
2429        }
2430        if (!extract32(cntkctl, 0, 2)) {
2431            return CP_ACCESS_TRAP;
2432        }
2433        break;
2434    case 1:
2435        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2436            arm_is_secure_below_el3(env)) {
2437            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2438            return CP_ACCESS_TRAP_UNCATEGORIZED;
2439        }
2440        break;
2441    case 2:
2442    case 3:
2443        break;
2444    }
2445
2446    if (!isread && el < arm_highest_el(env)) {
2447        return CP_ACCESS_TRAP_UNCATEGORIZED;
2448    }
2449
2450    return CP_ACCESS_OK;
2451}
2452
2453static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2454                                        bool isread)
2455{
2456    unsigned int cur_el = arm_current_el(env);
2457    bool has_el2 = arm_is_el2_enabled(env);
2458    uint64_t hcr = arm_hcr_el2_eff(env);
2459
2460    switch (cur_el) {
2461    case 0:
2462        /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2463        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2464            return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2465                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2466        }
2467
2468        /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2469        if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2470            return CP_ACCESS_TRAP;
2471        }
2472
2473        /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2474        if (hcr & HCR_E2H) {
2475            if (timeridx == GTIMER_PHYS &&
2476                !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2477                return CP_ACCESS_TRAP_EL2;
2478            }
2479        } else {
2480            /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2481            if (has_el2 && timeridx == GTIMER_PHYS &&
2482                !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2483                return CP_ACCESS_TRAP_EL2;
2484            }
2485        }
2486        break;
2487
2488    case 1:
2489        /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2490        if (has_el2 && timeridx == GTIMER_PHYS &&
2491            (hcr & HCR_E2H
2492             ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2493             : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2494            return CP_ACCESS_TRAP_EL2;
2495        }
2496        break;
2497    }
2498    return CP_ACCESS_OK;
2499}
2500
2501static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2502                                      bool isread)
2503{
2504    unsigned int cur_el = arm_current_el(env);
2505    bool has_el2 = arm_is_el2_enabled(env);
2506    uint64_t hcr = arm_hcr_el2_eff(env);
2507
2508    switch (cur_el) {
2509    case 0:
2510        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2511            /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2512            return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2513                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2514        }
2515
2516        /*
2517         * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2518         * EL0 if EL0[PV]TEN is zero.
2519         */
2520        if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2521            return CP_ACCESS_TRAP;
2522        }
2523        /* fall through */
2524
2525    case 1:
2526        if (has_el2 && timeridx == GTIMER_PHYS) {
2527            if (hcr & HCR_E2H) {
2528                /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2529                if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2530                    return CP_ACCESS_TRAP_EL2;
2531                }
2532            } else {
2533                /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2534                if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2535                    return CP_ACCESS_TRAP_EL2;
2536                }
2537            }
2538        }
2539        break;
2540    }
2541    return CP_ACCESS_OK;
2542}
2543
2544static CPAccessResult gt_pct_access(CPUARMState *env,
2545                                    const ARMCPRegInfo *ri,
2546                                    bool isread)
2547{
2548    return gt_counter_access(env, GTIMER_PHYS, isread);
2549}
2550
2551static CPAccessResult gt_vct_access(CPUARMState *env,
2552                                    const ARMCPRegInfo *ri,
2553                                    bool isread)
2554{
2555    return gt_counter_access(env, GTIMER_VIRT, isread);
2556}
2557
2558static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2559                                       bool isread)
2560{
2561    return gt_timer_access(env, GTIMER_PHYS, isread);
2562}
2563
2564static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                       bool isread)
2566{
2567    return gt_timer_access(env, GTIMER_VIRT, isread);
2568}
2569
2570static CPAccessResult gt_stimer_access(CPUARMState *env,
2571                                       const ARMCPRegInfo *ri,
2572                                       bool isread)
2573{
2574    /*
2575     * The AArch64 register view of the secure physical timer is
2576     * always accessible from EL3, and configurably accessible from
2577     * Secure EL1.
2578     */
2579    switch (arm_current_el(env)) {
2580    case 1:
2581        if (!arm_is_secure(env)) {
2582            return CP_ACCESS_TRAP;
2583        }
2584        if (!(env->cp15.scr_el3 & SCR_ST)) {
2585            return CP_ACCESS_TRAP_EL3;
2586        }
2587        return CP_ACCESS_OK;
2588    case 0:
2589    case 2:
2590        return CP_ACCESS_TRAP;
2591    case 3:
2592        return CP_ACCESS_OK;
2593    default:
2594        g_assert_not_reached();
2595    }
2596}
2597
2598static uint64_t gt_get_countervalue(CPUARMState *env)
2599{
2600    ARMCPU *cpu = env_archcpu(env);
2601
2602    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2603}
2604
2605static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2606{
2607    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2608
2609    if (gt->ctl & 1) {
2610        /*
2611         * Timer enabled: calculate and set current ISTATUS, irq, and
2612         * reset timer to when ISTATUS next has to change
2613         */
2614        uint64_t offset = timeridx == GTIMER_VIRT ?
2615                                      cpu->env.cp15.cntvoff_el2 : 0;
2616        uint64_t count = gt_get_countervalue(&cpu->env);
2617        /* Note that this must be unsigned 64 bit arithmetic: */
2618        int istatus = count - offset >= gt->cval;
2619        uint64_t nexttick;
2620        int irqstate;
2621
2622        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2623
2624        irqstate = (istatus && !(gt->ctl & 2));
2625        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2626
2627        if (istatus) {
2628            /* Next transition is when count rolls back over to zero */
2629            nexttick = UINT64_MAX;
2630        } else {
2631            /* Next transition is when we hit cval */
2632            nexttick = gt->cval + offset;
2633        }
2634        /*
2635         * Note that the desired next expiry time might be beyond the
2636         * signed-64-bit range of a QEMUTimer -- in this case we just
2637         * set the timer for as far in the future as possible. When the
2638         * timer expires we will reset the timer for any remaining period.
2639         */
2640        if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2641            timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2642        } else {
2643            timer_mod(cpu->gt_timer[timeridx], nexttick);
2644        }
2645        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2646    } else {
2647        /* Timer disabled: ISTATUS and timer output always clear */
2648        gt->ctl &= ~4;
2649        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2650        timer_del(cpu->gt_timer[timeridx]);
2651        trace_arm_gt_recalc_disabled(timeridx);
2652    }
2653}
2654
2655static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2656                           int timeridx)
2657{
2658    ARMCPU *cpu = env_archcpu(env);
2659
2660    timer_del(cpu->gt_timer[timeridx]);
2661}
2662
2663static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2664{
2665    return gt_get_countervalue(env);
2666}
2667
2668static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2669{
2670    uint64_t hcr;
2671
2672    switch (arm_current_el(env)) {
2673    case 2:
2674        hcr = arm_hcr_el2_eff(env);
2675        if (hcr & HCR_E2H) {
2676            return 0;
2677        }
2678        break;
2679    case 0:
2680        hcr = arm_hcr_el2_eff(env);
2681        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2682            return 0;
2683        }
2684        break;
2685    }
2686
2687    return env->cp15.cntvoff_el2;
2688}
2689
2690static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2691{
2692    return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2693}
2694
2695static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696                          int timeridx,
2697                          uint64_t value)
2698{
2699    trace_arm_gt_cval_write(timeridx, value);
2700    env->cp15.c14_timer[timeridx].cval = value;
2701    gt_recalc_timer(env_archcpu(env), timeridx);
2702}
2703
2704static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2705                             int timeridx)
2706{
2707    uint64_t offset = 0;
2708
2709    switch (timeridx) {
2710    case GTIMER_VIRT:
2711    case GTIMER_HYPVIRT:
2712        offset = gt_virt_cnt_offset(env);
2713        break;
2714    }
2715
2716    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2717                      (gt_get_countervalue(env) - offset));
2718}
2719
2720static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                          int timeridx,
2722                          uint64_t value)
2723{
2724    uint64_t offset = 0;
2725
2726    switch (timeridx) {
2727    case GTIMER_VIRT:
2728    case GTIMER_HYPVIRT:
2729        offset = gt_virt_cnt_offset(env);
2730        break;
2731    }
2732
2733    trace_arm_gt_tval_write(timeridx, value);
2734    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2735                                         sextract64(value, 0, 32);
2736    gt_recalc_timer(env_archcpu(env), timeridx);
2737}
2738
2739static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2740                         int timeridx,
2741                         uint64_t value)
2742{
2743    ARMCPU *cpu = env_archcpu(env);
2744    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2745
2746    trace_arm_gt_ctl_write(timeridx, value);
2747    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2748    if ((oldval ^ value) & 1) {
2749        /* Enable toggled */
2750        gt_recalc_timer(cpu, timeridx);
2751    } else if ((oldval ^ value) & 2) {
2752        /*
2753         * IMASK toggled: don't need to recalculate,
2754         * just set the interrupt line based on ISTATUS
2755         */
2756        int irqstate = (oldval & 4) && !(value & 2);
2757
2758        trace_arm_gt_imask_toggle(timeridx, irqstate);
2759        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2760    }
2761}
2762
2763static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2764{
2765    gt_timer_reset(env, ri, GTIMER_PHYS);
2766}
2767
2768static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2769                               uint64_t value)
2770{
2771    gt_cval_write(env, ri, GTIMER_PHYS, value);
2772}
2773
2774static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2775{
2776    return gt_tval_read(env, ri, GTIMER_PHYS);
2777}
2778
2779static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2780                               uint64_t value)
2781{
2782    gt_tval_write(env, ri, GTIMER_PHYS, value);
2783}
2784
2785static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                              uint64_t value)
2787{
2788    gt_ctl_write(env, ri, GTIMER_PHYS, value);
2789}
2790
2791static int gt_phys_redir_timeridx(CPUARMState *env)
2792{
2793    switch (arm_mmu_idx(env)) {
2794    case ARMMMUIdx_E20_0:
2795    case ARMMMUIdx_E20_2:
2796    case ARMMMUIdx_E20_2_PAN:
2797        return GTIMER_HYP;
2798    default:
2799        return GTIMER_PHYS;
2800    }
2801}
2802
2803static int gt_virt_redir_timeridx(CPUARMState *env)
2804{
2805    switch (arm_mmu_idx(env)) {
2806    case ARMMMUIdx_E20_0:
2807    case ARMMMUIdx_E20_2:
2808    case ARMMMUIdx_E20_2_PAN:
2809        return GTIMER_HYPVIRT;
2810    default:
2811        return GTIMER_VIRT;
2812    }
2813}
2814
2815static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2816                                        const ARMCPRegInfo *ri)
2817{
2818    int timeridx = gt_phys_redir_timeridx(env);
2819    return env->cp15.c14_timer[timeridx].cval;
2820}
2821
2822static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                                     uint64_t value)
2824{
2825    int timeridx = gt_phys_redir_timeridx(env);
2826    gt_cval_write(env, ri, timeridx, value);
2827}
2828
2829static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2830                                        const ARMCPRegInfo *ri)
2831{
2832    int timeridx = gt_phys_redir_timeridx(env);
2833    return gt_tval_read(env, ri, timeridx);
2834}
2835
2836static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837                                     uint64_t value)
2838{
2839    int timeridx = gt_phys_redir_timeridx(env);
2840    gt_tval_write(env, ri, timeridx, value);
2841}
2842
2843static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2844                                       const ARMCPRegInfo *ri)
2845{
2846    int timeridx = gt_phys_redir_timeridx(env);
2847    return env->cp15.c14_timer[timeridx].ctl;
2848}
2849
2850static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                                    uint64_t value)
2852{
2853    int timeridx = gt_phys_redir_timeridx(env);
2854    gt_ctl_write(env, ri, timeridx, value);
2855}
2856
2857static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2858{
2859    gt_timer_reset(env, ri, GTIMER_VIRT);
2860}
2861
2862static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863                               uint64_t value)
2864{
2865    gt_cval_write(env, ri, GTIMER_VIRT, value);
2866}
2867
2868static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2869{
2870    return gt_tval_read(env, ri, GTIMER_VIRT);
2871}
2872
2873static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874                               uint64_t value)
2875{
2876    gt_tval_write(env, ri, GTIMER_VIRT, value);
2877}
2878
2879static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880                              uint64_t value)
2881{
2882    gt_ctl_write(env, ri, GTIMER_VIRT, value);
2883}
2884
2885static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886                              uint64_t value)
2887{
2888    ARMCPU *cpu = env_archcpu(env);
2889
2890    trace_arm_gt_cntvoff_write(value);
2891    raw_write(env, ri, value);
2892    gt_recalc_timer(cpu, GTIMER_VIRT);
2893}
2894
2895static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2896                                        const ARMCPRegInfo *ri)
2897{
2898    int timeridx = gt_virt_redir_timeridx(env);
2899    return env->cp15.c14_timer[timeridx].cval;
2900}
2901
2902static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903                                     uint64_t value)
2904{
2905    int timeridx = gt_virt_redir_timeridx(env);
2906    gt_cval_write(env, ri, timeridx, value);
2907}
2908
2909static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2910                                        const ARMCPRegInfo *ri)
2911{
2912    int timeridx = gt_virt_redir_timeridx(env);
2913    return gt_tval_read(env, ri, timeridx);
2914}
2915
2916static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917                                     uint64_t value)
2918{
2919    int timeridx = gt_virt_redir_timeridx(env);
2920    gt_tval_write(env, ri, timeridx, value);
2921}
2922
2923static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2924                                       const ARMCPRegInfo *ri)
2925{
2926    int timeridx = gt_virt_redir_timeridx(env);
2927    return env->cp15.c14_timer[timeridx].ctl;
2928}
2929
2930static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931                                    uint64_t value)
2932{
2933    int timeridx = gt_virt_redir_timeridx(env);
2934    gt_ctl_write(env, ri, timeridx, value);
2935}
2936
2937static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2938{
2939    gt_timer_reset(env, ri, GTIMER_HYP);
2940}
2941
2942static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943                              uint64_t value)
2944{
2945    gt_cval_write(env, ri, GTIMER_HYP, value);
2946}
2947
2948static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2949{
2950    return gt_tval_read(env, ri, GTIMER_HYP);
2951}
2952
2953static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954                              uint64_t value)
2955{
2956    gt_tval_write(env, ri, GTIMER_HYP, value);
2957}
2958
2959static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960                              uint64_t value)
2961{
2962    gt_ctl_write(env, ri, GTIMER_HYP, value);
2963}
2964
2965static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2966{
2967    gt_timer_reset(env, ri, GTIMER_SEC);
2968}
2969
2970static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2971                              uint64_t value)
2972{
2973    gt_cval_write(env, ri, GTIMER_SEC, value);
2974}
2975
2976static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977{
2978    return gt_tval_read(env, ri, GTIMER_SEC);
2979}
2980
2981static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982                              uint64_t value)
2983{
2984    gt_tval_write(env, ri, GTIMER_SEC, value);
2985}
2986
2987static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                              uint64_t value)
2989{
2990    gt_ctl_write(env, ri, GTIMER_SEC, value);
2991}
2992
2993static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2994{
2995    gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2996}
2997
2998static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999                             uint64_t value)
3000{
3001    gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3002}
3003
3004static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3005{
3006    return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3007}
3008
3009static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                             uint64_t value)
3011{
3012    gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3013}
3014
3015static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                            uint64_t value)
3017{
3018    gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3019}
3020
3021void arm_gt_ptimer_cb(void *opaque)
3022{
3023    ARMCPU *cpu = opaque;
3024
3025    gt_recalc_timer(cpu, GTIMER_PHYS);
3026}
3027
3028void arm_gt_vtimer_cb(void *opaque)
3029{
3030    ARMCPU *cpu = opaque;
3031
3032    gt_recalc_timer(cpu, GTIMER_VIRT);
3033}
3034
3035void arm_gt_htimer_cb(void *opaque)
3036{
3037    ARMCPU *cpu = opaque;
3038
3039    gt_recalc_timer(cpu, GTIMER_HYP);
3040}
3041
3042void arm_gt_stimer_cb(void *opaque)
3043{
3044    ARMCPU *cpu = opaque;
3045
3046    gt_recalc_timer(cpu, GTIMER_SEC);
3047}
3048
3049void arm_gt_hvtimer_cb(void *opaque)
3050{
3051    ARMCPU *cpu = opaque;
3052
3053    gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3054}
3055
3056static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3057{
3058    ARMCPU *cpu = env_archcpu(env);
3059
3060    cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3061}
3062
3063static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3064    /*
3065     * Note that CNTFRQ is purely reads-as-written for the benefit
3066     * of software; writing it doesn't actually change the timer frequency.
3067     * Our reset value matches the fixed frequency we implement the timer at.
3068     */
3069    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3070      .type = ARM_CP_ALIAS,
3071      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3072      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3073    },
3074    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3075      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3076      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3077      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3078      .resetfn = arm_gt_cntfrq_reset,
3079    },
3080    /* overall control: mostly access permissions */
3081    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3082      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3083      .access = PL1_RW,
3084      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3085      .resetvalue = 0,
3086    },
3087    /* per-timer control */
3088    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3089      .secure = ARM_CP_SECSTATE_NS,
3090      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3091      .accessfn = gt_ptimer_access,
3092      .fieldoffset = offsetoflow32(CPUARMState,
3093                                   cp15.c14_timer[GTIMER_PHYS].ctl),
3094      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3095      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3096    },
3097    { .name = "CNTP_CTL_S",
3098      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3099      .secure = ARM_CP_SECSTATE_S,
3100      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3101      .accessfn = gt_ptimer_access,
3102      .fieldoffset = offsetoflow32(CPUARMState,
3103                                   cp15.c14_timer[GTIMER_SEC].ctl),
3104      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3105    },
3106    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3107      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3108      .type = ARM_CP_IO, .access = PL0_RW,
3109      .accessfn = gt_ptimer_access,
3110      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3111      .resetvalue = 0,
3112      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3113      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3114    },
3115    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3116      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3117      .accessfn = gt_vtimer_access,
3118      .fieldoffset = offsetoflow32(CPUARMState,
3119                                   cp15.c14_timer[GTIMER_VIRT].ctl),
3120      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3121      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3122    },
3123    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3124      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3125      .type = ARM_CP_IO, .access = PL0_RW,
3126      .accessfn = gt_vtimer_access,
3127      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3128      .resetvalue = 0,
3129      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3130      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3131    },
3132    /* TimerValue views: a 32 bit downcounting view of the underlying state */
3133    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3134      .secure = ARM_CP_SECSTATE_NS,
3135      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3136      .accessfn = gt_ptimer_access,
3137      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3138    },
3139    { .name = "CNTP_TVAL_S",
3140      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3141      .secure = ARM_CP_SECSTATE_S,
3142      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3143      .accessfn = gt_ptimer_access,
3144      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3145    },
3146    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3147      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3148      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3150      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3151    },
3152    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3153      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3154      .accessfn = gt_vtimer_access,
3155      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3156    },
3157    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3158      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3159      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3161      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162    },
3163    /* The counter itself */
3164    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3165      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3166      .accessfn = gt_pct_access,
3167      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3168    },
3169    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3170      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3171      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3172      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3173    },
3174    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3175      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3176      .accessfn = gt_vct_access,
3177      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3178    },
3179    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3180      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3181      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3182      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3183    },
3184    /* Comparison value, indicating when the timer goes off */
3185    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3186      .secure = ARM_CP_SECSTATE_NS,
3187      .access = PL0_RW,
3188      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3189      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3190      .accessfn = gt_ptimer_access,
3191      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3192      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3193    },
3194    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3195      .secure = ARM_CP_SECSTATE_S,
3196      .access = PL0_RW,
3197      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3198      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3199      .accessfn = gt_ptimer_access,
3200      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3201    },
3202    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3203      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3204      .access = PL0_RW,
3205      .type = ARM_CP_IO,
3206      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3207      .resetvalue = 0, .accessfn = gt_ptimer_access,
3208      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3209      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3210    },
3211    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3212      .access = PL0_RW,
3213      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3214      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3215      .accessfn = gt_vtimer_access,
3216      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3217      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3218    },
3219    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3220      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3221      .access = PL0_RW,
3222      .type = ARM_CP_IO,
3223      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3224      .resetvalue = 0, .accessfn = gt_vtimer_access,
3225      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3226      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3227    },
3228    /*
3229     * Secure timer -- this is actually restricted to only EL3
3230     * and configurably Secure-EL1 via the accessfn.
3231     */
3232    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3233      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3234      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3235      .accessfn = gt_stimer_access,
3236      .readfn = gt_sec_tval_read,
3237      .writefn = gt_sec_tval_write,
3238      .resetfn = gt_sec_timer_reset,
3239    },
3240    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3241      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3242      .type = ARM_CP_IO, .access = PL1_RW,
3243      .accessfn = gt_stimer_access,
3244      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3245      .resetvalue = 0,
3246      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3247    },
3248    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3249      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3250      .type = ARM_CP_IO, .access = PL1_RW,
3251      .accessfn = gt_stimer_access,
3252      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3253      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3254    },
3255};
3256
3257static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258                                 bool isread)
3259{
3260    if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3261        return CP_ACCESS_TRAP;
3262    }
3263    return CP_ACCESS_OK;
3264}
3265
3266#else
3267
3268/*
3269 * In user-mode most of the generic timer registers are inaccessible
3270 * however modern kernels (4.12+) allow access to cntvct_el0
3271 */
3272
3273static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3274{
3275    ARMCPU *cpu = env_archcpu(env);
3276
3277    /*
3278     * Currently we have no support for QEMUTimer in linux-user so we
3279     * can't call gt_get_countervalue(env), instead we directly
3280     * call the lower level functions.
3281     */
3282    return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3283}
3284
3285static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3286    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3287      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3288      .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3289      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3290      .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3291    },
3292    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3293      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3294      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3295      .readfn = gt_virt_cnt_read,
3296    },
3297};
3298
3299#endif
3300
3301static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3302{
3303    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3304        raw_write(env, ri, value);
3305    } else if (arm_feature(env, ARM_FEATURE_V7)) {
3306        raw_write(env, ri, value & 0xfffff6ff);
3307    } else {
3308        raw_write(env, ri, value & 0xfffff1ff);
3309    }
3310}
3311
3312#ifndef CONFIG_USER_ONLY
3313/* get_phys_addr() isn't present for user-mode-only targets */
3314
3315static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3316                                 bool isread)
3317{
3318    if (ri->opc2 & 4) {
3319        /*
3320         * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3321         * Secure EL1 (which can only happen if EL3 is AArch64).
3322         * They are simply UNDEF if executed from NS EL1.
3323         * They function normally from EL2 or EL3.
3324         */
3325        if (arm_current_el(env) == 1) {
3326            if (arm_is_secure_below_el3(env)) {
3327                if (env->cp15.scr_el3 & SCR_EEL2) {
3328                    return CP_ACCESS_TRAP_EL2;
3329                }
3330                return CP_ACCESS_TRAP_EL3;
3331            }
3332            return CP_ACCESS_TRAP_UNCATEGORIZED;
3333        }
3334    }
3335    return CP_ACCESS_OK;
3336}
3337
3338#ifdef CONFIG_TCG
3339static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3340                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
3341                             bool is_secure)
3342{
3343    bool ret;
3344    uint64_t par64;
3345    bool format64 = false;
3346    ARMMMUFaultInfo fi = {};
3347    GetPhysAddrResult res = {};
3348
3349    ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3350                                    is_secure, &res, &fi);
3351
3352    /*
3353     * ATS operations only do S1 or S1+S2 translations, so we never
3354     * have to deal with the ARMCacheAttrs format for S2 only.
3355     */
3356    assert(!res.cacheattrs.is_s2_format);
3357
3358    if (ret) {
3359        /*
3360         * Some kinds of translation fault must cause exceptions rather
3361         * than being reported in the PAR.
3362         */
3363        int current_el = arm_current_el(env);
3364        int target_el;
3365        uint32_t syn, fsr, fsc;
3366        bool take_exc = false;
3367
3368        if (fi.s1ptw && current_el == 1
3369            && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3370            /*
3371             * Synchronous stage 2 fault on an access made as part of the
3372             * translation table walk for AT S1E0* or AT S1E1* insn
3373             * executed from NS EL1. If this is a synchronous external abort
3374             * and SCR_EL3.EA == 1, then we take a synchronous external abort
3375             * to EL3. Otherwise the fault is taken as an exception to EL2,
3376             * and HPFAR_EL2 holds the faulting IPA.
3377             */
3378            if (fi.type == ARMFault_SyncExternalOnWalk &&
3379                (env->cp15.scr_el3 & SCR_EA)) {
3380                target_el = 3;
3381            } else {
3382                env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3383                if (arm_is_secure_below_el3(env) && fi.s1ns) {
3384                    env->cp15.hpfar_el2 |= HPFAR_NS;
3385                }
3386                target_el = 2;
3387            }
3388            take_exc = true;
3389        } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3390            /*
3391             * Synchronous external aborts during a translation table walk
3392             * are taken as Data Abort exceptions.
3393             */
3394            if (fi.stage2) {
3395                if (current_el == 3) {
3396                    target_el = 3;
3397                } else {
3398                    target_el = 2;
3399                }
3400            } else {
3401                target_el = exception_target_el(env);
3402            }
3403            take_exc = true;
3404        }
3405
3406        if (take_exc) {
3407            /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3408            if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3409                arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3410                fsr = arm_fi_to_lfsc(&fi);
3411                fsc = extract32(fsr, 0, 6);
3412            } else {
3413                fsr = arm_fi_to_sfsc(&fi);
3414                fsc = 0x3f;
3415            }
3416            /*
3417             * Report exception with ESR indicating a fault due to a
3418             * translation table walk for a cache maintenance instruction.
3419             */
3420            syn = syn_data_abort_no_iss(current_el == target_el, 0,
3421                                        fi.ea, 1, fi.s1ptw, 1, fsc);
3422            env->exception.vaddress = value;
3423            env->exception.fsr = fsr;
3424            raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3425        }
3426    }
3427
3428    if (is_a64(env)) {
3429        format64 = true;
3430    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3431        /*
3432         * ATS1Cxx:
3433         * * TTBCR.EAE determines whether the result is returned using the
3434         *   32-bit or the 64-bit PAR format
3435         * * Instructions executed in Hyp mode always use the 64bit format
3436         *
3437         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3438         * * The Non-secure TTBCR.EAE bit is set to 1
3439         * * The implementation includes EL2, and the value of HCR.VM is 1
3440         *
3441         * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3442         *
3443         * ATS1Hx always uses the 64bit format.
3444         */
3445        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3446
3447        if (arm_feature(env, ARM_FEATURE_EL2)) {
3448            if (mmu_idx == ARMMMUIdx_E10_0 ||
3449                mmu_idx == ARMMMUIdx_E10_1 ||
3450                mmu_idx == ARMMMUIdx_E10_1_PAN) {
3451                format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3452            } else {
3453                format64 |= arm_current_el(env) == 2;
3454            }
3455        }
3456    }
3457
3458    if (format64) {
3459        /* Create a 64-bit PAR */
3460        par64 = (1 << 11); /* LPAE bit always set */
3461        if (!ret) {
3462            par64 |= res.f.phys_addr & ~0xfffULL;
3463            if (!res.f.attrs.secure) {
3464                par64 |= (1 << 9); /* NS */
3465            }
3466            par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3467            par64 |= res.cacheattrs.shareability << 7; /* SH */
3468        } else {
3469            uint32_t fsr = arm_fi_to_lfsc(&fi);
3470
3471            par64 |= 1; /* F */
3472            par64 |= (fsr & 0x3f) << 1; /* FS */
3473            if (fi.stage2) {
3474                par64 |= (1 << 9); /* S */
3475            }
3476            if (fi.s1ptw) {
3477                par64 |= (1 << 8); /* PTW */
3478            }
3479        }
3480    } else {
3481        /*
3482         * fsr is a DFSR/IFSR value for the short descriptor
3483         * translation table format (with WnR always clear).
3484         * Convert it to a 32-bit PAR.
3485         */
3486        if (!ret) {
3487            /* We do not set any attribute bits in the PAR */
3488            if (res.f.lg_page_size == 24
3489                && arm_feature(env, ARM_FEATURE_V7)) {
3490                par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3491            } else {
3492                par64 = res.f.phys_addr & 0xfffff000;
3493            }
3494            if (!res.f.attrs.secure) {
3495                par64 |= (1 << 9); /* NS */
3496            }
3497        } else {
3498            uint32_t fsr = arm_fi_to_sfsc(&fi);
3499
3500            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3501                    ((fsr & 0xf) << 1) | 1;
3502        }
3503    }
3504    return par64;
3505}
3506#endif /* CONFIG_TCG */
3507
3508static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3509{
3510#ifdef CONFIG_TCG
3511    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3512    uint64_t par64;
3513    ARMMMUIdx mmu_idx;
3514    int el = arm_current_el(env);
3515    bool secure = arm_is_secure_below_el3(env);
3516
3517    switch (ri->opc2 & 6) {
3518    case 0:
3519        /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3520        switch (el) {
3521        case 3:
3522            mmu_idx = ARMMMUIdx_E3;
3523            secure = true;
3524            break;
3525        case 2:
3526            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3527            /* fall through */
3528        case 1:
3529            if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3530                mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3531            } else {
3532                mmu_idx = ARMMMUIdx_Stage1_E1;
3533            }
3534            break;
3535        default:
3536            g_assert_not_reached();
3537        }
3538        break;
3539    case 2:
3540        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3541        switch (el) {
3542        case 3:
3543            mmu_idx = ARMMMUIdx_E10_0;
3544            secure = true;
3545            break;
3546        case 2:
3547            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3548            mmu_idx = ARMMMUIdx_Stage1_E0;
3549            break;
3550        case 1:
3551            mmu_idx = ARMMMUIdx_Stage1_E0;
3552            break;
3553        default:
3554            g_assert_not_reached();
3555        }
3556        break;
3557    case 4:
3558        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3559        mmu_idx = ARMMMUIdx_E10_1;
3560        secure = false;
3561        break;
3562    case 6:
3563        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3564        mmu_idx = ARMMMUIdx_E10_0;
3565        secure = false;
3566        break;
3567    default:
3568        g_assert_not_reached();
3569    }
3570
3571    par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3572
3573    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3574#else
3575    /* Handled by hardware accelerator. */
3576    g_assert_not_reached();
3577#endif /* CONFIG_TCG */
3578}
3579
3580static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581                        uint64_t value)
3582{
3583#ifdef CONFIG_TCG
3584    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3585    uint64_t par64;
3586
3587    /* There is no SecureEL2 for AArch32. */
3588    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3589
3590    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3591#else
3592    /* Handled by hardware accelerator. */
3593    g_assert_not_reached();
3594#endif /* CONFIG_TCG */
3595}
3596
3597static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3598                                     bool isread)
3599{
3600    if (arm_current_el(env) == 3 &&
3601        !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3602        return CP_ACCESS_TRAP;
3603    }
3604    return CP_ACCESS_OK;
3605}
3606
3607static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3608                        uint64_t value)
3609{
3610#ifdef CONFIG_TCG
3611    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612    ARMMMUIdx mmu_idx;
3613    int secure = arm_is_secure_below_el3(env);
3614    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3615    bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3616
3617    switch (ri->opc2 & 6) {
3618    case 0:
3619        switch (ri->opc1) {
3620        case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3621            if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3622                mmu_idx = regime_e20 ?
3623                          ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3624            } else {
3625                mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3626            }
3627            break;
3628        case 4: /* AT S1E2R, AT S1E2W */
3629            mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3630            break;
3631        case 6: /* AT S1E3R, AT S1E3W */
3632            mmu_idx = ARMMMUIdx_E3;
3633            secure = true;
3634            break;
3635        default:
3636            g_assert_not_reached();
3637        }
3638        break;
3639    case 2: /* AT S1E0R, AT S1E0W */
3640        mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3641        break;
3642    case 4: /* AT S12E1R, AT S12E1W */
3643        mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3644        break;
3645    case 6: /* AT S12E0R, AT S12E0W */
3646        mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3647        break;
3648    default:
3649        g_assert_not_reached();
3650    }
3651
3652    env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3653                                       mmu_idx, secure);
3654#else
3655    /* Handled by hardware accelerator. */
3656    g_assert_not_reached();
3657#endif /* CONFIG_TCG */
3658}
3659#endif
3660
3661static const ARMCPRegInfo vapa_cp_reginfo[] = {
3662    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3663      .access = PL1_RW, .resetvalue = 0,
3664      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3665                             offsetoflow32(CPUARMState, cp15.par_ns) },
3666      .writefn = par_write },
3667#ifndef CONFIG_USER_ONLY
3668    /* This underdecoding is safe because the reginfo is NO_RAW. */
3669    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3670      .access = PL1_W, .accessfn = ats_access,
3671      .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3672#endif
3673};
3674
3675/* Return basic MPU access permission bits.  */
3676static uint32_t simple_mpu_ap_bits(uint32_t val)
3677{
3678    uint32_t ret;
3679    uint32_t mask;
3680    int i;
3681    ret = 0;
3682    mask = 3;
3683    for (i = 0; i < 16; i += 2) {
3684        ret |= (val >> i) & mask;
3685        mask <<= 2;
3686    }
3687    return ret;
3688}
3689
3690/* Pad basic MPU access permission bits to extended format.  */
3691static uint32_t extended_mpu_ap_bits(uint32_t val)
3692{
3693    uint32_t ret;
3694    uint32_t mask;
3695    int i;
3696    ret = 0;
3697    mask = 3;
3698    for (i = 0; i < 16; i += 2) {
3699        ret |= (val & mask) << i;
3700        mask <<= 2;
3701    }
3702    return ret;
3703}
3704
3705static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3706                                 uint64_t value)
3707{
3708    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3709}
3710
3711static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3712{
3713    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3714}
3715
3716static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717                                 uint64_t value)
3718{
3719    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3720}
3721
3722static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3723{
3724    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3725}
3726
3727static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3728{
3729    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3730
3731    if (!u32p) {
3732        return 0;
3733    }
3734
3735    u32p += env->pmsav7.rnr[M_REG_NS];
3736    return *u32p;
3737}
3738
3739static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740                         uint64_t value)
3741{
3742    ARMCPU *cpu = env_archcpu(env);
3743    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3744
3745    if (!u32p) {
3746        return;
3747    }
3748
3749    u32p += env->pmsav7.rnr[M_REG_NS];
3750    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3751    *u32p = value;
3752}
3753
3754static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755                              uint64_t value)
3756{
3757    ARMCPU *cpu = env_archcpu(env);
3758    uint32_t nrgs = cpu->pmsav7_dregion;
3759
3760    if (value >= nrgs) {
3761        qemu_log_mask(LOG_GUEST_ERROR,
3762                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3763                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3764        return;
3765    }
3766
3767    raw_write(env, ri, value);
3768}
3769
3770static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771                          uint64_t value)
3772{
3773    ARMCPU *cpu = env_archcpu(env);
3774
3775    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3776    env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3777}
3778
3779static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3780{
3781    return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3782}
3783
3784static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                          uint64_t value)
3786{
3787    ARMCPU *cpu = env_archcpu(env);
3788
3789    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3790    env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3791}
3792
3793static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3794{
3795    return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3796}
3797
3798static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799                           uint64_t value)
3800{
3801    ARMCPU *cpu = env_archcpu(env);
3802
3803    /*
3804     * Ignore writes that would select not implemented region.
3805     * This is architecturally UNPREDICTABLE.
3806     */
3807    if (value >= cpu->pmsav7_dregion) {
3808        return;
3809    }
3810
3811    env->pmsav7.rnr[M_REG_NS] = value;
3812}
3813
3814static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815                          uint64_t value)
3816{
3817    ARMCPU *cpu = env_archcpu(env);
3818
3819    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3820    env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3821}
3822
3823static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3824{
3825    return env->pmsav8.hprbar[env->pmsav8.hprselr];
3826}
3827
3828static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829                          uint64_t value)
3830{
3831    ARMCPU *cpu = env_archcpu(env);
3832
3833    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3834    env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3835}
3836
3837static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3838{
3839    return env->pmsav8.hprlar[env->pmsav8.hprselr];
3840}
3841
3842static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843                          uint64_t value)
3844{
3845    uint32_t n;
3846    uint32_t bit;
3847    ARMCPU *cpu = env_archcpu(env);
3848
3849    /* Ignore writes to unimplemented regions */
3850    int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3851    value &= MAKE_64BIT_MASK(0, rmax);
3852
3853    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854
3855    /* Register alias is only valid for first 32 indexes */
3856    for (n = 0; n < rmax; ++n) {
3857        bit = extract32(value, n, 1);
3858        env->pmsav8.hprlar[n] = deposit32(
3859                    env->pmsav8.hprlar[n], 0, 1, bit);
3860    }
3861}
3862
3863static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3864{
3865    uint32_t n;
3866    uint32_t result = 0x0;
3867    ARMCPU *cpu = env_archcpu(env);
3868
3869    /* Register alias is only valid for first 32 indexes */
3870    for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3871        if (env->pmsav8.hprlar[n] & 0x1) {
3872            result |= (0x1 << n);
3873        }
3874    }
3875    return result;
3876}
3877
3878static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879                           uint64_t value)
3880{
3881    ARMCPU *cpu = env_archcpu(env);
3882
3883    /*
3884     * Ignore writes that would select not implemented region.
3885     * This is architecturally UNPREDICTABLE.
3886     */
3887    if (value >= cpu->pmsav8r_hdregion) {
3888        return;
3889    }
3890
3891    env->pmsav8.hprselr = value;
3892}
3893
3894static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895                          uint64_t value)
3896{
3897    ARMCPU *cpu = env_archcpu(env);
3898    uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3899                    (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3900
3901    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3902
3903    if (ri->opc1 & 4) {
3904        if (index >= cpu->pmsav8r_hdregion) {
3905            return;
3906        }
3907        if (ri->opc2 & 0x1) {
3908            env->pmsav8.hprlar[index] = value;
3909        } else {
3910            env->pmsav8.hprbar[index] = value;
3911        }
3912    } else {
3913        if (index >= cpu->pmsav7_dregion) {
3914            return;
3915        }
3916        if (ri->opc2 & 0x1) {
3917            env->pmsav8.rlar[M_REG_NS][index] = value;
3918        } else {
3919            env->pmsav8.rbar[M_REG_NS][index] = value;
3920        }
3921    }
3922}
3923
3924static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3925{
3926    ARMCPU *cpu = env_archcpu(env);
3927    uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3928                    (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3929
3930    if (ri->opc1 & 4) {
3931        if (index >= cpu->pmsav8r_hdregion) {
3932            return 0x0;
3933        }
3934        if (ri->opc2 & 0x1) {
3935            return env->pmsav8.hprlar[index];
3936        } else {
3937            return env->pmsav8.hprbar[index];
3938        }
3939    } else {
3940        if (index >= cpu->pmsav7_dregion) {
3941            return 0x0;
3942        }
3943        if (ri->opc2 & 0x1) {
3944            return env->pmsav8.rlar[M_REG_NS][index];
3945        } else {
3946            return env->pmsav8.rbar[M_REG_NS][index];
3947        }
3948    }
3949}
3950
3951static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3952    { .name = "PRBAR",
3953      .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3954      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3955      .accessfn = access_tvm_trvm,
3956      .readfn = prbar_read, .writefn = prbar_write },
3957    { .name = "PRLAR",
3958      .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3959      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3960      .accessfn = access_tvm_trvm,
3961      .readfn = prlar_read, .writefn = prlar_write },
3962    { .name = "PRSELR", .resetvalue = 0,
3963      .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3964      .access = PL1_RW, .accessfn = access_tvm_trvm,
3965      .writefn = prselr_write,
3966      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3967    { .name = "HPRBAR", .resetvalue = 0,
3968      .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3969      .access = PL2_RW, .type = ARM_CP_NO_RAW,
3970      .readfn = hprbar_read, .writefn = hprbar_write },
3971    { .name = "HPRLAR",
3972      .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3973      .access = PL2_RW, .type = ARM_CP_NO_RAW,
3974      .readfn = hprlar_read, .writefn = hprlar_write },
3975    { .name = "HPRSELR", .resetvalue = 0,
3976      .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3977      .access = PL2_RW,
3978      .writefn = hprselr_write,
3979      .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3980    { .name = "HPRENR",
3981      .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3982      .access = PL2_RW, .type = ARM_CP_NO_RAW,
3983      .readfn = hprenr_read, .writefn = hprenr_write },
3984};
3985
3986static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3987    /*
3988     * Reset for all these registers is handled in arm_cpu_reset(),
3989     * because the PMSAv7 is also used by M-profile CPUs, which do
3990     * not register cpregs but still need the state to be reset.
3991     */
3992    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3993      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3994      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3995      .readfn = pmsav7_read, .writefn = pmsav7_write,
3996      .resetfn = arm_cp_reset_ignore },
3997    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3998      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3999      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4000      .readfn = pmsav7_read, .writefn = pmsav7_write,
4001      .resetfn = arm_cp_reset_ignore },
4002    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4003      .access = PL1_RW, .type = ARM_CP_NO_RAW,
4004      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4005      .readfn = pmsav7_read, .writefn = pmsav7_write,
4006      .resetfn = arm_cp_reset_ignore },
4007    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4008      .access = PL1_RW,
4009      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4010      .writefn = pmsav7_rgnr_write,
4011      .resetfn = arm_cp_reset_ignore },
4012};
4013
4014static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4015    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4016      .access = PL1_RW, .type = ARM_CP_ALIAS,
4017      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4018      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4019    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4020      .access = PL1_RW, .type = ARM_CP_ALIAS,
4021      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4022      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4023    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4024      .access = PL1_RW,
4025      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4026      .resetvalue = 0, },
4027    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4028      .access = PL1_RW,
4029      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4030      .resetvalue = 0, },
4031    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4032      .access = PL1_RW,
4033      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4034    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4035      .access = PL1_RW,
4036      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4037    /* Protection region base and size registers */
4038    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4039      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4040      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4041    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4042      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4043      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4044    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4045      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4047    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4048      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4050    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4051      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4053    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4054      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4056    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4057      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4059    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4060      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4062};
4063
4064static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065                             uint64_t value)
4066{
4067    ARMCPU *cpu = env_archcpu(env);
4068
4069    if (!arm_feature(env, ARM_FEATURE_V8)) {
4070        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4071            /*
4072             * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4073             * using Long-descriptor translation table format
4074             */
4075            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4076        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4077            /*
4078             * In an implementation that includes the Security Extensions
4079             * TTBCR has additional fields PD0 [4] and PD1 [5] for
4080             * Short-descriptor translation table format.
4081             */
4082            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4083        } else {
4084            value &= TTBCR_N;
4085        }
4086    }
4087
4088    if (arm_feature(env, ARM_FEATURE_LPAE)) {
4089        /*
4090         * With LPAE the TTBCR could result in a change of ASID
4091         * via the TTBCR.A1 bit, so do a TLB flush.
4092         */
4093        tlb_flush(CPU(cpu));
4094    }
4095    raw_write(env, ri, value);
4096}
4097
4098static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4099                               uint64_t value)
4100{
4101    ARMCPU *cpu = env_archcpu(env);
4102
4103    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4104    tlb_flush(CPU(cpu));
4105    raw_write(env, ri, value);
4106}
4107
4108static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109                            uint64_t value)
4110{
4111    /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4112    if (cpreg_field_is_64bit(ri) &&
4113        extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4114        ARMCPU *cpu = env_archcpu(env);
4115        tlb_flush(CPU(cpu));
4116    }
4117    raw_write(env, ri, value);
4118}
4119
4120static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121                                    uint64_t value)
4122{
4123    /*
4124     * If we are running with E2&0 regime, then an ASID is active.
4125     * Flush if that might be changing.  Note we're not checking
4126     * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4127     * holds the active ASID, only checking the field that might.
4128     */
4129    if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4130        (arm_hcr_el2_eff(env) & HCR_E2H)) {
4131        uint16_t mask = ARMMMUIdxBit_E20_2 |
4132                        ARMMMUIdxBit_E20_2_PAN |
4133                        ARMMMUIdxBit_E20_0;
4134        tlb_flush_by_mmuidx(env_cpu(env), mask);
4135    }
4136    raw_write(env, ri, value);
4137}
4138
4139static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140                        uint64_t value)
4141{
4142    ARMCPU *cpu = env_archcpu(env);
4143    CPUState *cs = CPU(cpu);
4144
4145    /*
4146     * A change in VMID to the stage2 page table (Stage2) invalidates
4147     * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4148     */
4149    if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4150        tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4151    }
4152    raw_write(env, ri, value);
4153}
4154
4155static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4156    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4157      .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4158      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4159                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4160    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4161      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4162      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4163                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4164    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4165      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4166      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4167                             offsetof(CPUARMState, cp15.dfar_ns) } },
4168    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4169      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4170      .access = PL1_RW, .accessfn = access_tvm_trvm,
4171      .fgt = FGT_FAR_EL1,
4172      .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4173      .resetvalue = 0, },
4174};
4175
4176static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4177    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4178      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4179      .access = PL1_RW, .accessfn = access_tvm_trvm,
4180      .fgt = FGT_ESR_EL1,
4181      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4182    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4183      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4184      .access = PL1_RW, .accessfn = access_tvm_trvm,
4185      .fgt = FGT_TTBR0_EL1,
4186      .writefn = vmsa_ttbr_write, .resetvalue = 0,
4187      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4188                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
4189    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4190      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4191      .access = PL1_RW, .accessfn = access_tvm_trvm,
4192      .fgt = FGT_TTBR1_EL1,
4193      .writefn = vmsa_ttbr_write, .resetvalue = 0,
4194      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4195                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
4196    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4197      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4198      .access = PL1_RW, .accessfn = access_tvm_trvm,
4199      .fgt = FGT_TCR_EL1,
4200      .writefn = vmsa_tcr_el12_write,
4201      .raw_writefn = raw_write,
4202      .resetvalue = 0,
4203      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4204    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4205      .access = PL1_RW, .accessfn = access_tvm_trvm,
4206      .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4207      .raw_writefn = raw_write,
4208      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4209                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4210};
4211
4212/*
4213 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4214 * qemu tlbs nor adjusting cached masks.
4215 */
4216static const ARMCPRegInfo ttbcr2_reginfo = {
4217    .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4218    .access = PL1_RW, .accessfn = access_tvm_trvm,
4219    .type = ARM_CP_ALIAS,
4220    .bank_fieldoffsets = {
4221        offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4222        offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4223    },
4224};
4225
4226static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227                                uint64_t value)
4228{
4229    env->cp15.c15_ticonfig = value & 0xe7;
4230    /* The OS_TYPE bit in this register changes the reported CPUID! */
4231    env->cp15.c0_cpuid = (value & (1 << 5)) ?
4232        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4233}
4234
4235static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4236                                uint64_t value)
4237{
4238    env->cp15.c15_threadid = value & 0xffff;
4239}
4240
4241static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                           uint64_t value)
4243{
4244    /* Wait-for-interrupt (deprecated) */
4245    cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4246}
4247
4248static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4249                                  uint64_t value)
4250{
4251    /*
4252     * On OMAP there are registers indicating the max/min index of dcache lines
4253     * containing a dirty line; cache flush operations have to reset these.
4254     */
4255    env->cp15.c15_i_max = 0x000;
4256    env->cp15.c15_i_min = 0xff0;
4257}
4258
4259static const ARMCPRegInfo omap_cp_reginfo[] = {
4260    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4261      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4262      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4263      .resetvalue = 0, },
4264    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4265      .access = PL1_RW, .type = ARM_CP_NOP },
4266    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4267      .access = PL1_RW,
4268      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4269      .writefn = omap_ticonfig_write },
4270    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4271      .access = PL1_RW,
4272      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4273    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4274      .access = PL1_RW, .resetvalue = 0xff0,
4275      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4276    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4277      .access = PL1_RW,
4278      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4279      .writefn = omap_threadid_write },
4280    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4281      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4282      .type = ARM_CP_NO_RAW,
4283      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4284    /*
4285     * TODO: Peripheral port remap register:
4286     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4287     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4288     * when MMU is off.
4289     */
4290    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4291      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4292      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4293      .writefn = omap_cachemaint_write },
4294    { .name = "C9", .cp = 15, .crn = 9,
4295      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4296      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4297};
4298
4299static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300                              uint64_t value)
4301{
4302    env->cp15.c15_cpar = value & 0x3fff;
4303}
4304
4305static const ARMCPRegInfo xscale_cp_reginfo[] = {
4306    { .name = "XSCALE_CPAR",
4307      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4308      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4309      .writefn = xscale_cpar_write, },
4310    { .name = "XSCALE_AUXCR",
4311      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4312      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4313      .resetvalue = 0, },
4314    /*
4315     * XScale specific cache-lockdown: since we have no cache we NOP these
4316     * and hope the guest does not really rely on cache behaviour.
4317     */
4318    { .name = "XSCALE_LOCK_ICACHE_LINE",
4319      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4320      .access = PL1_W, .type = ARM_CP_NOP },
4321    { .name = "XSCALE_UNLOCK_ICACHE",
4322      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4323      .access = PL1_W, .type = ARM_CP_NOP },
4324    { .name = "XSCALE_DCACHE_LOCK",
4325      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4326      .access = PL1_RW, .type = ARM_CP_NOP },
4327    { .name = "XSCALE_UNLOCK_DCACHE",
4328      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4329      .access = PL1_W, .type = ARM_CP_NOP },
4330};
4331
4332static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4333    /*
4334     * RAZ/WI the whole crn=15 space, when we don't have a more specific
4335     * implementation of this implementation-defined space.
4336     * Ideally this should eventually disappear in favour of actually
4337     * implementing the correct behaviour for all cores.
4338     */
4339    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4340      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4341      .access = PL1_RW,
4342      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4343      .resetvalue = 0 },
4344};
4345
4346static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4347    /* Cache status: RAZ because we have no cache so it's always clean */
4348    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4349      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4350      .resetvalue = 0 },
4351};
4352
4353static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4354    /* We never have a block transfer operation in progress */
4355    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4356      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4357      .resetvalue = 0 },
4358    /* The cache ops themselves: these all NOP for QEMU */
4359    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4360      .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4361    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4362      .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4363    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4364      .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4365    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4366      .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4368      .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4370      .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371};
4372
4373static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4374    /*
4375     * The cache test-and-clean instructions always return (1 << 30)
4376     * to indicate that there are no dirty cache lines.
4377     */
4378    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4379      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4380      .resetvalue = (1 << 30) },
4381    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4382      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4383      .resetvalue = (1 << 30) },
4384};
4385
4386static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4387    /* Ignore ReadBuffer accesses */
4388    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4389      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4390      .access = PL1_RW, .resetvalue = 0,
4391      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4392};
4393
4394static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4395{
4396    unsigned int cur_el = arm_current_el(env);
4397
4398    if (arm_is_el2_enabled(env) && cur_el == 1) {
4399        return env->cp15.vpidr_el2;
4400    }
4401    return raw_read(env, ri);
4402}
4403
4404static uint64_t mpidr_read_val(CPUARMState *env)
4405{
4406    ARMCPU *cpu = env_archcpu(env);
4407    uint64_t mpidr = cpu->mp_affinity;
4408
4409    if (arm_feature(env, ARM_FEATURE_V7MP)) {
4410        mpidr |= (1U << 31);
4411        /*
4412         * Cores which are uniprocessor (non-coherent)
4413         * but still implement the MP extensions set
4414         * bit 30. (For instance, Cortex-R5).
4415         */
4416        if (cpu->mp_is_up) {
4417            mpidr |= (1u << 30);
4418        }
4419    }
4420    return mpidr;
4421}
4422
4423static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4424{
4425    unsigned int cur_el = arm_current_el(env);
4426
4427    if (arm_is_el2_enabled(env) && cur_el == 1) {
4428        return env->cp15.vmpidr_el2;
4429    }
4430    return mpidr_read_val(env);
4431}
4432
4433static const ARMCPRegInfo lpae_cp_reginfo[] = {
4434    /* NOP AMAIR0/1 */
4435    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4436      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4437      .access = PL1_RW, .accessfn = access_tvm_trvm,
4438      .fgt = FGT_AMAIR_EL1,
4439      .type = ARM_CP_CONST, .resetvalue = 0 },
4440    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4441    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4442      .access = PL1_RW, .accessfn = access_tvm_trvm,
4443      .type = ARM_CP_CONST, .resetvalue = 0 },
4444    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4445      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4446      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4447                             offsetof(CPUARMState, cp15.par_ns)} },
4448    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4449      .access = PL1_RW, .accessfn = access_tvm_trvm,
4450      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4451      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4452                             offsetof(CPUARMState, cp15.ttbr0_ns) },
4453      .writefn = vmsa_ttbr_write, },
4454    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4455      .access = PL1_RW, .accessfn = access_tvm_trvm,
4456      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4458                             offsetof(CPUARMState, cp15.ttbr1_ns) },
4459      .writefn = vmsa_ttbr_write, },
4460};
4461
4462static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4463{
4464    return vfp_get_fpcr(env);
4465}
4466
4467static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468                            uint64_t value)
4469{
4470    vfp_set_fpcr(env, value);
4471}
4472
4473static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4474{
4475    return vfp_get_fpsr(env);
4476}
4477
4478static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479                            uint64_t value)
4480{
4481    vfp_set_fpsr(env, value);
4482}
4483
4484static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4485                                       bool isread)
4486{
4487    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4488        return CP_ACCESS_TRAP;
4489    }
4490    return CP_ACCESS_OK;
4491}
4492
4493static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4494                            uint64_t value)
4495{
4496    env->daif = value & PSTATE_DAIF;
4497}
4498
4499static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4500{
4501    return env->pstate & PSTATE_PAN;
4502}
4503
4504static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4505                           uint64_t value)
4506{
4507    env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4508}
4509
4510static const ARMCPRegInfo pan_reginfo = {
4511    .name = "PAN", .state = ARM_CP_STATE_AA64,
4512    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4513    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4514    .readfn = aa64_pan_read, .writefn = aa64_pan_write
4515};
4516
4517static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518{
4519    return env->pstate & PSTATE_UAO;
4520}
4521
4522static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523                           uint64_t value)
4524{
4525    env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4526}
4527
4528static const ARMCPRegInfo uao_reginfo = {
4529    .name = "UAO", .state = ARM_CP_STATE_AA64,
4530    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4531    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4532    .readfn = aa64_uao_read, .writefn = aa64_uao_write
4533};
4534
4535static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4536{
4537    return env->pstate & PSTATE_DIT;
4538}
4539
4540static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4541                           uint64_t value)
4542{
4543    env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4544}
4545
4546static const ARMCPRegInfo dit_reginfo = {
4547    .name = "DIT", .state = ARM_CP_STATE_AA64,
4548    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4549    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4550    .readfn = aa64_dit_read, .writefn = aa64_dit_write
4551};
4552
4553static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4554{
4555    return env->pstate & PSTATE_SSBS;
4556}
4557
4558static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4559                           uint64_t value)
4560{
4561    env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4562}
4563
4564static const ARMCPRegInfo ssbs_reginfo = {
4565    .name = "SSBS", .state = ARM_CP_STATE_AA64,
4566    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4567    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4568    .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4569};
4570
4571static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4572                                              const ARMCPRegInfo *ri,
4573                                              bool isread)
4574{
4575    /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4576    switch (arm_current_el(env)) {
4577    case 0:
4578        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4579        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4580            return CP_ACCESS_TRAP;
4581        }
4582        /* fall through */
4583    case 1:
4584        /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4585        if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4586            return CP_ACCESS_TRAP_EL2;
4587        }
4588        break;
4589    }
4590    return CP_ACCESS_OK;
4591}
4592
4593static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4594{
4595    /* Cache invalidate/clean to Point of Unification... */
4596    switch (arm_current_el(env)) {
4597    case 0:
4598        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4599        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4600            return CP_ACCESS_TRAP;
4601        }
4602        /* fall through */
4603    case 1:
4604        /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4605        if (arm_hcr_el2_eff(env) & hcrflags) {
4606            return CP_ACCESS_TRAP_EL2;
4607        }
4608        break;
4609    }
4610    return CP_ACCESS_OK;
4611}
4612
4613static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4614                                   bool isread)
4615{
4616    return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4617}
4618
4619static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4620                                  bool isread)
4621{
4622    return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4623}
4624
4625/*
4626 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4627 * Page D4-1736 (DDI0487A.b)
4628 */
4629
4630static int vae1_tlbmask(CPUARMState *env)
4631{
4632    uint64_t hcr = arm_hcr_el2_eff(env);
4633    uint16_t mask;
4634
4635    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4636        mask = ARMMMUIdxBit_E20_2 |
4637               ARMMMUIdxBit_E20_2_PAN |
4638               ARMMMUIdxBit_E20_0;
4639    } else {
4640        mask = ARMMMUIdxBit_E10_1 |
4641               ARMMMUIdxBit_E10_1_PAN |
4642               ARMMMUIdxBit_E10_0;
4643    }
4644    return mask;
4645}
4646
4647/* Return 56 if TBI is enabled, 64 otherwise. */
4648static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4649                              uint64_t addr)
4650{
4651    uint64_t tcr = regime_tcr(env, mmu_idx);
4652    int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4653    int select = extract64(addr, 55, 1);
4654
4655    return (tbi >> select) & 1 ? 56 : 64;
4656}
4657
4658static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4659{
4660    uint64_t hcr = arm_hcr_el2_eff(env);
4661    ARMMMUIdx mmu_idx;
4662
4663    /* Only the regime of the mmu_idx below is significant. */
4664    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4665        mmu_idx = ARMMMUIdx_E20_0;
4666    } else {
4667        mmu_idx = ARMMMUIdx_E10_0;
4668    }
4669
4670    return tlbbits_for_regime(env, mmu_idx, addr);
4671}
4672
4673static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4674                                      uint64_t value)
4675{
4676    CPUState *cs = env_cpu(env);
4677    int mask = vae1_tlbmask(env);
4678
4679    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4680}
4681
4682static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                    uint64_t value)
4684{
4685    CPUState *cs = env_cpu(env);
4686    int mask = vae1_tlbmask(env);
4687
4688    if (tlb_force_broadcast(env)) {
4689        tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4690    } else {
4691        tlb_flush_by_mmuidx(cs, mask);
4692    }
4693}
4694
4695static int e2_tlbmask(CPUARMState *env)
4696{
4697    return (ARMMMUIdxBit_E20_0 |
4698            ARMMMUIdxBit_E20_2 |
4699            ARMMMUIdxBit_E20_2_PAN |
4700            ARMMMUIdxBit_E2);
4701}
4702
4703static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4704                                  uint64_t value)
4705{
4706    CPUState *cs = env_cpu(env);
4707    int mask = alle1_tlbmask(env);
4708
4709    tlb_flush_by_mmuidx(cs, mask);
4710}
4711
4712static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4713                                  uint64_t value)
4714{
4715    CPUState *cs = env_cpu(env);
4716    int mask = e2_tlbmask(env);
4717
4718    tlb_flush_by_mmuidx(cs, mask);
4719}
4720
4721static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                  uint64_t value)
4723{
4724    ARMCPU *cpu = env_archcpu(env);
4725    CPUState *cs = CPU(cpu);
4726
4727    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4728}
4729
4730static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4731                                    uint64_t value)
4732{
4733    CPUState *cs = env_cpu(env);
4734    int mask = alle1_tlbmask(env);
4735
4736    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4737}
4738
4739static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                                    uint64_t value)
4741{
4742    CPUState *cs = env_cpu(env);
4743    int mask = e2_tlbmask(env);
4744
4745    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4746}
4747
4748static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4749                                    uint64_t value)
4750{
4751    CPUState *cs = env_cpu(env);
4752
4753    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4754}
4755
4756static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757                                 uint64_t value)
4758{
4759    /*
4760     * Invalidate by VA, EL2
4761     * Currently handles both VAE2 and VALE2, since we don't support
4762     * flush-last-level-only.
4763     */
4764    CPUState *cs = env_cpu(env);
4765    int mask = e2_tlbmask(env);
4766    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4767
4768    tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4769}
4770
4771static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4772                                 uint64_t value)
4773{
4774    /*
4775     * Invalidate by VA, EL3
4776     * Currently handles both VAE3 and VALE3, since we don't support
4777     * flush-last-level-only.
4778     */
4779    ARMCPU *cpu = env_archcpu(env);
4780    CPUState *cs = CPU(cpu);
4781    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4782
4783    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4784}
4785
4786static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4787                                   uint64_t value)
4788{
4789    CPUState *cs = env_cpu(env);
4790    int mask = vae1_tlbmask(env);
4791    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4792    int bits = vae1_tlbbits(env, pageaddr);
4793
4794    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4795}
4796
4797static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798                                 uint64_t value)
4799{
4800    /*
4801     * Invalidate by VA, EL1&0 (AArch64 version).
4802     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4803     * since we don't support flush-for-specific-ASID-only or
4804     * flush-last-level-only.
4805     */
4806    CPUState *cs = env_cpu(env);
4807    int mask = vae1_tlbmask(env);
4808    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4809    int bits = vae1_tlbbits(env, pageaddr);
4810
4811    if (tlb_force_broadcast(env)) {
4812        tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4813    } else {
4814        tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4815    }
4816}
4817
4818static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4819                                   uint64_t value)
4820{
4821    CPUState *cs = env_cpu(env);
4822    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4823    int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4824
4825    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4826                                                  ARMMMUIdxBit_E2, bits);
4827}
4828
4829static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830                                   uint64_t value)
4831{
4832    CPUState *cs = env_cpu(env);
4833    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4834    int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4835
4836    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4837                                                  ARMMMUIdxBit_E3, bits);
4838}
4839
4840static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4841{
4842    /*
4843     * The MSB of value is the NS field, which only applies if SEL2
4844     * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4845     */
4846    return (value >= 0
4847            && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4848            && arm_is_secure_below_el3(env)
4849            ? ARMMMUIdxBit_Stage2_S
4850            : ARMMMUIdxBit_Stage2);
4851}
4852
4853static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4854                                    uint64_t value)
4855{
4856    CPUState *cs = env_cpu(env);
4857    int mask = ipas2e1_tlbmask(env, value);
4858    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4859
4860    if (tlb_force_broadcast(env)) {
4861        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4862    } else {
4863        tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4864    }
4865}
4866
4867static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4868                                      uint64_t value)
4869{
4870    CPUState *cs = env_cpu(env);
4871    int mask = ipas2e1_tlbmask(env, value);
4872    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4873
4874    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4875}
4876
4877#ifdef TARGET_AARCH64
4878typedef struct {
4879    uint64_t base;
4880    uint64_t length;
4881} TLBIRange;
4882
4883static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4884{
4885    /*
4886     * Note that the TLBI range TG field encoding differs from both
4887     * TG0 and TG1 encodings.
4888     */
4889    switch (tg) {
4890    case 1:
4891        return Gran4K;
4892    case 2:
4893        return Gran16K;
4894    case 3:
4895        return Gran64K;
4896    default:
4897        return GranInvalid;
4898    }
4899}
4900
4901static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4902                                     uint64_t value)
4903{
4904    unsigned int page_size_granule, page_shift, num, scale, exponent;
4905    /* Extract one bit to represent the va selector in use. */
4906    uint64_t select = sextract64(value, 36, 1);
4907    ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4908    TLBIRange ret = { };
4909    ARMGranuleSize gran;
4910
4911    page_size_granule = extract64(value, 46, 2);
4912    gran = tlbi_range_tg_to_gran_size(page_size_granule);
4913
4914    /* The granule encoded in value must match the granule in use. */
4915    if (gran != param.gran) {
4916        qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4917                      page_size_granule);
4918        return ret;
4919    }
4920
4921    page_shift = arm_granule_bits(gran);
4922    num = extract64(value, 39, 5);
4923    scale = extract64(value, 44, 2);
4924    exponent = (5 * scale) + 1;
4925
4926    ret.length = (num + 1) << (exponent + page_shift);
4927
4928    if (param.select) {
4929        ret.base = sextract64(value, 0, 37);
4930    } else {
4931        ret.base = extract64(value, 0, 37);
4932    }
4933    if (param.ds) {
4934        /*
4935         * With DS=1, BaseADDR is always shifted 16 so that it is able
4936         * to address all 52 va bits.  The input address is perforce
4937         * aligned on a 64k boundary regardless of translation granule.
4938         */
4939        page_shift = 16;
4940    }
4941    ret.base <<= page_shift;
4942
4943    return ret;
4944}
4945
4946static void do_rvae_write(CPUARMState *env, uint64_t value,
4947                          int idxmap, bool synced)
4948{
4949    ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4950    TLBIRange range;
4951    int bits;
4952
4953    range = tlbi_aa64_get_range(env, one_idx, value);
4954    bits = tlbbits_for_regime(env, one_idx, range.base);
4955
4956    if (synced) {
4957        tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4958                                                  range.base,
4959                                                  range.length,
4960                                                  idxmap,
4961                                                  bits);
4962    } else {
4963        tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4964                                  range.length, idxmap, bits);
4965    }
4966}
4967
4968static void tlbi_aa64_rvae1_write(CPUARMState *env,
4969                                  const ARMCPRegInfo *ri,
4970                                  uint64_t value)
4971{
4972    /*
4973     * Invalidate by VA range, EL1&0.
4974     * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4975     * since we don't support flush-for-specific-ASID-only or
4976     * flush-last-level-only.
4977     */
4978
4979    do_rvae_write(env, value, vae1_tlbmask(env),
4980                  tlb_force_broadcast(env));
4981}
4982
4983static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4984                                    const ARMCPRegInfo *ri,
4985                                    uint64_t value)
4986{
4987    /*
4988     * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4989     * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4990     * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4991     * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4992     * shareable specific flushes.
4993     */
4994
4995    do_rvae_write(env, value, vae1_tlbmask(env), true);
4996}
4997
4998static int vae2_tlbmask(CPUARMState *env)
4999{
5000    return ARMMMUIdxBit_E2;
5001}
5002
5003static void tlbi_aa64_rvae2_write(CPUARMState *env,
5004                                  const ARMCPRegInfo *ri,
5005                                  uint64_t value)
5006{
5007    /*
5008     * Invalidate by VA range, EL2.
5009     * Currently handles all of RVAE2 and RVALE2,
5010     * since we don't support flush-for-specific-ASID-only or
5011     * flush-last-level-only.
5012     */
5013
5014    do_rvae_write(env, value, vae2_tlbmask(env),
5015                  tlb_force_broadcast(env));
5016
5017
5018}
5019
5020static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5021                                    const ARMCPRegInfo *ri,
5022                                    uint64_t value)
5023{
5024    /*
5025     * Invalidate by VA range, Inner/Outer Shareable, EL2.
5026     * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5027     * since we don't support flush-for-specific-ASID-only,
5028     * flush-last-level-only or inner/outer shareable specific flushes.
5029     */
5030
5031    do_rvae_write(env, value, vae2_tlbmask(env), true);
5032
5033}
5034
5035static void tlbi_aa64_rvae3_write(CPUARMState *env,
5036                                  const ARMCPRegInfo *ri,
5037                                  uint64_t value)
5038{
5039    /*
5040     * Invalidate by VA range, EL3.
5041     * Currently handles all of RVAE3 and RVALE3,
5042     * since we don't support flush-for-specific-ASID-only or
5043     * flush-last-level-only.
5044     */
5045
5046    do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5047}
5048
5049static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5050                                    const ARMCPRegInfo *ri,
5051                                    uint64_t value)
5052{
5053    /*
5054     * Invalidate by VA range, EL3, Inner/Outer Shareable.
5055     * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5056     * since we don't support flush-for-specific-ASID-only,
5057     * flush-last-level-only or inner/outer specific flushes.
5058     */
5059
5060    do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5061}
5062
5063static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064                                     uint64_t value)
5065{
5066    do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5067                  tlb_force_broadcast(env));
5068}
5069
5070static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5071                                       const ARMCPRegInfo *ri,
5072                                       uint64_t value)
5073{
5074    do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5075}
5076#endif
5077
5078static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5079                                      bool isread)
5080{
5081    int cur_el = arm_current_el(env);
5082
5083    if (cur_el < 2) {
5084        uint64_t hcr = arm_hcr_el2_eff(env);
5085
5086        if (cur_el == 0) {
5087            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5088                if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5089                    return CP_ACCESS_TRAP_EL2;
5090                }
5091            } else {
5092                if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5093                    return CP_ACCESS_TRAP;
5094                }
5095                if (hcr & HCR_TDZ) {
5096                    return CP_ACCESS_TRAP_EL2;
5097                }
5098            }
5099        } else if (hcr & HCR_TDZ) {
5100            return CP_ACCESS_TRAP_EL2;
5101        }
5102    }
5103    return CP_ACCESS_OK;
5104}
5105
5106static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5107{
5108    ARMCPU *cpu = env_archcpu(env);
5109    int dzp_bit = 1 << 4;
5110
5111    /* DZP indicates whether DC ZVA access is allowed */
5112    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5113        dzp_bit = 0;
5114    }
5115    return cpu->dcz_blocksize | dzp_bit;
5116}
5117
5118static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5119                                    bool isread)
5120{
5121    if (!(env->pstate & PSTATE_SP)) {
5122        /*
5123         * Access to SP_EL0 is undefined if it's being used as
5124         * the stack pointer.
5125         */
5126        return CP_ACCESS_TRAP_UNCATEGORIZED;
5127    }
5128    return CP_ACCESS_OK;
5129}
5130
5131static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5132{
5133    return env->pstate & PSTATE_SP;
5134}
5135
5136static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5137{
5138    update_spsel(env, val);
5139}
5140
5141static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5142                        uint64_t value)
5143{
5144    ARMCPU *cpu = env_archcpu(env);
5145
5146    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5147        /* M bit is RAZ/WI for PMSA with no MPU implemented */
5148        value &= ~SCTLR_M;
5149    }
5150
5151    /* ??? Lots of these bits are not implemented.  */
5152
5153    if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5154        if (ri->opc1 == 6) { /* SCTLR_EL3 */
5155            value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5156        } else {
5157            value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5158                       SCTLR_ATA0 | SCTLR_ATA);
5159        }
5160    }
5161
5162    if (raw_read(env, ri) == value) {
5163        /*
5164         * Skip the TLB flush if nothing actually changed; Linux likes
5165         * to do a lot of pointless SCTLR writes.
5166         */
5167        return;
5168    }
5169
5170    raw_write(env, ri, value);
5171
5172    /* This may enable/disable the MMU, so do a TLB flush.  */
5173    tlb_flush(CPU(cpu));
5174
5175    if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5176        /*
5177         * Normally we would always end the TB on an SCTLR write; see the
5178         * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5179         * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5180         * of hflags from the translator, so do it here.
5181         */
5182        arm_rebuild_hflags(env);
5183    }
5184}
5185
5186static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5187                           uint64_t value)
5188{
5189    /*
5190     * Some MDCR_EL3 bits affect whether PMU counters are running:
5191     * if we are trying to change any of those then we must
5192     * bracket this update with PMU start/finish calls.
5193     */
5194    bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5195
5196    if (pmu_op) {
5197        pmu_op_start(env);
5198    }
5199    env->cp15.mdcr_el3 = value;
5200    if (pmu_op) {
5201        pmu_op_finish(env);
5202    }
5203}
5204
5205static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5206                       uint64_t value)
5207{
5208    /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5209    mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5210}
5211
5212static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5213                           uint64_t value)
5214{
5215    /*
5216     * Some MDCR_EL2 bits affect whether PMU counters are running:
5217     * if we are trying to change any of those then we must
5218     * bracket this update with PMU start/finish calls.
5219     */
5220    bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5221
5222    if (pmu_op) {
5223        pmu_op_start(env);
5224    }
5225    env->cp15.mdcr_el2 = value;
5226    if (pmu_op) {
5227        pmu_op_finish(env);
5228    }
5229}
5230
5231static const ARMCPRegInfo v8_cp_reginfo[] = {
5232    /*
5233     * Minimal set of EL0-visible registers. This will need to be expanded
5234     * significantly for system emulation of AArch64 CPUs.
5235     */
5236    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5237      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5238      .access = PL0_RW, .type = ARM_CP_NZCV },
5239    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5240      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5241      .type = ARM_CP_NO_RAW,
5242      .access = PL0_RW, .accessfn = aa64_daif_access,
5243      .fieldoffset = offsetof(CPUARMState, daif),
5244      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5245    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5246      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5247      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5248      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5249    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5250      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5251      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5252      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5253    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5254      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5255      .access = PL0_R, .type = ARM_CP_NO_RAW,
5256      .fgt = FGT_DCZID_EL0,
5257      .readfn = aa64_dczid_read },
5258    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5259      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5260      .access = PL0_W, .type = ARM_CP_DC_ZVA,
5261#ifndef CONFIG_USER_ONLY
5262      /* Avoid overhead of an access check that always passes in user-mode */
5263      .accessfn = aa64_zva_access,
5264      .fgt = FGT_DCZVA,
5265#endif
5266    },
5267    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5268      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5269      .access = PL1_R, .type = ARM_CP_CURRENTEL },
5270    /* Cache ops: all NOPs since we don't emulate caches */
5271    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5272      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5273      .access = PL1_W, .type = ARM_CP_NOP,
5274      .fgt = FGT_ICIALLUIS,
5275      .accessfn = access_ticab },
5276    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5277      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5278      .access = PL1_W, .type = ARM_CP_NOP,
5279      .fgt = FGT_ICIALLU,
5280      .accessfn = access_tocu },
5281    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5282      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5283      .access = PL0_W, .type = ARM_CP_NOP,
5284      .fgt = FGT_ICIVAU,
5285      .accessfn = access_tocu },
5286    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5287      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5288      .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5289      .fgt = FGT_DCIVAC,
5290      .type = ARM_CP_NOP },
5291    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5292      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5293      .fgt = FGT_DCISW,
5294      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5295    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5296      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5297      .access = PL0_W, .type = ARM_CP_NOP,
5298      .fgt = FGT_DCCVAC,
5299      .accessfn = aa64_cacheop_poc_access },
5300    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5301      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5302      .fgt = FGT_DCCSW,
5303      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5304    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5305      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5306      .access = PL0_W, .type = ARM_CP_NOP,
5307      .fgt = FGT_DCCVAU,
5308      .accessfn = access_tocu },
5309    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5310      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5311      .access = PL0_W, .type = ARM_CP_NOP,
5312      .fgt = FGT_DCCIVAC,
5313      .accessfn = aa64_cacheop_poc_access },
5314    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5315      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5316      .fgt = FGT_DCCISW,
5317      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5318    /* TLBI operations */
5319    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5320      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5321      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5322      .fgt = FGT_TLBIVMALLE1IS,
5323      .writefn = tlbi_aa64_vmalle1is_write },
5324    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5325      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5326      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5327      .fgt = FGT_TLBIVAE1IS,
5328      .writefn = tlbi_aa64_vae1is_write },
5329    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5330      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5331      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5332      .fgt = FGT_TLBIASIDE1IS,
5333      .writefn = tlbi_aa64_vmalle1is_write },
5334    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5335      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5336      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5337      .fgt = FGT_TLBIVAAE1IS,
5338      .writefn = tlbi_aa64_vae1is_write },
5339    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5340      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5341      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5342      .fgt = FGT_TLBIVALE1IS,
5343      .writefn = tlbi_aa64_vae1is_write },
5344    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5345      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5346      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5347      .fgt = FGT_TLBIVAALE1IS,
5348      .writefn = tlbi_aa64_vae1is_write },
5349    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5350      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5351      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5352      .fgt = FGT_TLBIVMALLE1,
5353      .writefn = tlbi_aa64_vmalle1_write },
5354    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5355      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5356      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5357      .fgt = FGT_TLBIVAE1,
5358      .writefn = tlbi_aa64_vae1_write },
5359    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5360      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5361      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5362      .fgt = FGT_TLBIASIDE1,
5363      .writefn = tlbi_aa64_vmalle1_write },
5364    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5365      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5366      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5367      .fgt = FGT_TLBIVAAE1,
5368      .writefn = tlbi_aa64_vae1_write },
5369    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5370      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5371      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5372      .fgt = FGT_TLBIVALE1,
5373      .writefn = tlbi_aa64_vae1_write },
5374    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5375      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5376      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5377      .fgt = FGT_TLBIVAALE1,
5378      .writefn = tlbi_aa64_vae1_write },
5379    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5380      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5381      .access = PL2_W, .type = ARM_CP_NO_RAW,
5382      .writefn = tlbi_aa64_ipas2e1is_write },
5383    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5384      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5385      .access = PL2_W, .type = ARM_CP_NO_RAW,
5386      .writefn = tlbi_aa64_ipas2e1is_write },
5387    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5388      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5389      .access = PL2_W, .type = ARM_CP_NO_RAW,
5390      .writefn = tlbi_aa64_alle1is_write },
5391    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5392      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5393      .access = PL2_W, .type = ARM_CP_NO_RAW,
5394      .writefn = tlbi_aa64_alle1is_write },
5395    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5396      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5397      .access = PL2_W, .type = ARM_CP_NO_RAW,
5398      .writefn = tlbi_aa64_ipas2e1_write },
5399    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5400      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5401      .access = PL2_W, .type = ARM_CP_NO_RAW,
5402      .writefn = tlbi_aa64_ipas2e1_write },
5403    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5404      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5405      .access = PL2_W, .type = ARM_CP_NO_RAW,
5406      .writefn = tlbi_aa64_alle1_write },
5407    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5408      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5409      .access = PL2_W, .type = ARM_CP_NO_RAW,
5410      .writefn = tlbi_aa64_alle1is_write },
5411#ifndef CONFIG_USER_ONLY
5412    /* 64 bit address translation operations */
5413    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5414      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5415      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5416      .fgt = FGT_ATS1E1R,
5417      .writefn = ats_write64 },
5418    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5419      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5420      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5421      .fgt = FGT_ATS1E1W,
5422      .writefn = ats_write64 },
5423    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5424      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5425      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5426      .fgt = FGT_ATS1E0R,
5427      .writefn = ats_write64 },
5428    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5429      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5430      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5431      .fgt = FGT_ATS1E0W,
5432      .writefn = ats_write64 },
5433    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5434      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5435      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5436      .writefn = ats_write64 },
5437    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5438      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5439      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5440      .writefn = ats_write64 },
5441    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5442      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5443      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5444      .writefn = ats_write64 },
5445    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5446      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5447      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5448      .writefn = ats_write64 },
5449    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5450    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5451      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5452      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5453      .writefn = ats_write64 },
5454    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5455      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5456      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5457      .writefn = ats_write64 },
5458    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5459      .type = ARM_CP_ALIAS,
5460      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5461      .access = PL1_RW, .resetvalue = 0,
5462      .fgt = FGT_PAR_EL1,
5463      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5464      .writefn = par_write },
5465#endif
5466    /* TLB invalidate last level of translation table walk */
5467    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5468      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5469      .writefn = tlbimva_is_write },
5470    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5471      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5472      .writefn = tlbimvaa_is_write },
5473    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5474      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5475      .writefn = tlbimva_write },
5476    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5477      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5478      .writefn = tlbimvaa_write },
5479    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5480      .type = ARM_CP_NO_RAW, .access = PL2_W,
5481      .writefn = tlbimva_hyp_write },
5482    { .name = "TLBIMVALHIS",
5483      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5484      .type = ARM_CP_NO_RAW, .access = PL2_W,
5485      .writefn = tlbimva_hyp_is_write },
5486    { .name = "TLBIIPAS2",
5487      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5488      .type = ARM_CP_NO_RAW, .access = PL2_W,
5489      .writefn = tlbiipas2_hyp_write },
5490    { .name = "TLBIIPAS2IS",
5491      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5492      .type = ARM_CP_NO_RAW, .access = PL2_W,
5493      .writefn = tlbiipas2is_hyp_write },
5494    { .name = "TLBIIPAS2L",
5495      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5496      .type = ARM_CP_NO_RAW, .access = PL2_W,
5497      .writefn = tlbiipas2_hyp_write },
5498    { .name = "TLBIIPAS2LIS",
5499      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5500      .type = ARM_CP_NO_RAW, .access = PL2_W,
5501      .writefn = tlbiipas2is_hyp_write },
5502    /* 32 bit cache operations */
5503    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5504      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5505    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5506      .type = ARM_CP_NOP, .access = PL1_W },
5507    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5508      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5509    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5510      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5511    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5512      .type = ARM_CP_NOP, .access = PL1_W },
5513    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5514      .type = ARM_CP_NOP, .access = PL1_W },
5515    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5516      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5517    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5518      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5519    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5520      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5521    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5522      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5523    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5524      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5525    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5526      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5528      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529    /* MMU Domain access control / MPU write buffer control */
5530    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5531      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5532      .writefn = dacr_write, .raw_writefn = raw_write,
5533      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5534                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5535    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5536      .type = ARM_CP_ALIAS,
5537      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5538      .access = PL1_RW,
5539      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5540    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5541      .type = ARM_CP_ALIAS,
5542      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5543      .access = PL1_RW,
5544      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5545    /*
5546     * We rely on the access checks not allowing the guest to write to the
5547     * state field when SPSel indicates that it's being used as the stack
5548     * pointer.
5549     */
5550    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5551      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5552      .access = PL1_RW, .accessfn = sp_el0_access,
5553      .type = ARM_CP_ALIAS,
5554      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5555    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5556      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5557      .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5558      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5559    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5560      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5561      .type = ARM_CP_NO_RAW,
5562      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5563    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5564      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5565      .access = PL2_RW,
5566      .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5567      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5568    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5569      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5570      .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5571      .writefn = dacr_write, .raw_writefn = raw_write,
5572      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5573    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5574      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5575      .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5576      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5577    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5578      .type = ARM_CP_ALIAS,
5579      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5580      .access = PL2_RW,
5581      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5582    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5583      .type = ARM_CP_ALIAS,
5584      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5585      .access = PL2_RW,
5586      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5587    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5588      .type = ARM_CP_ALIAS,
5589      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5590      .access = PL2_RW,
5591      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5592    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5593      .type = ARM_CP_ALIAS,
5594      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5595      .access = PL2_RW,
5596      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5597    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5598      .type = ARM_CP_IO,
5599      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5600      .resetvalue = 0,
5601      .access = PL3_RW,
5602      .writefn = mdcr_el3_write,
5603      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5604    { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5605      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5606      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5607      .writefn = sdcr_write,
5608      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5609};
5610
5611static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5612{
5613    ARMCPU *cpu = env_archcpu(env);
5614
5615    if (arm_feature(env, ARM_FEATURE_V8)) {
5616        valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5617    } else {
5618        valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5619    }
5620
5621    if (arm_feature(env, ARM_FEATURE_EL3)) {
5622        valid_mask &= ~HCR_HCD;
5623    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5624        /*
5625         * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5626         * However, if we're using the SMC PSCI conduit then QEMU is
5627         * effectively acting like EL3 firmware and so the guest at
5628         * EL2 should retain the ability to prevent EL1 from being
5629         * able to make SMC calls into the ersatz firmware, so in
5630         * that case HCR.TSC should be read/write.
5631         */
5632        valid_mask &= ~HCR_TSC;
5633    }
5634
5635    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5636        if (cpu_isar_feature(aa64_vh, cpu)) {
5637            valid_mask |= HCR_E2H;
5638        }
5639        if (cpu_isar_feature(aa64_ras, cpu)) {
5640            valid_mask |= HCR_TERR | HCR_TEA;
5641        }
5642        if (cpu_isar_feature(aa64_lor, cpu)) {
5643            valid_mask |= HCR_TLOR;
5644        }
5645        if (cpu_isar_feature(aa64_pauth, cpu)) {
5646            valid_mask |= HCR_API | HCR_APK;
5647        }
5648        if (cpu_isar_feature(aa64_mte, cpu)) {
5649            valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5650        }
5651        if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5652            valid_mask |= HCR_ENSCXT;
5653        }
5654        if (cpu_isar_feature(aa64_fwb, cpu)) {
5655            valid_mask |= HCR_FWB;
5656        }
5657    }
5658
5659    if (cpu_isar_feature(any_evt, cpu)) {
5660        valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5661    } else if (cpu_isar_feature(any_half_evt, cpu)) {
5662        valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5663    }
5664
5665    /* Clear RES0 bits.  */
5666    value &= valid_mask;
5667
5668    /*
5669     * These bits change the MMU setup:
5670     * HCR_VM enables stage 2 translation
5671     * HCR_PTW forbids certain page-table setups
5672     * HCR_DC disables stage1 and enables stage2 translation
5673     * HCR_DCT enables tagging on (disabled) stage1 translation
5674     * HCR_FWB changes the interpretation of stage2 descriptor bits
5675     */
5676    if ((env->cp15.hcr_el2 ^ value) &
5677        (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5678        tlb_flush(CPU(cpu));
5679    }
5680    env->cp15.hcr_el2 = value;
5681
5682    /*
5683     * Updates to VI and VF require us to update the status of
5684     * virtual interrupts, which are the logical OR of these bits
5685     * and the state of the input lines from the GIC. (This requires
5686     * that we have the iothread lock, which is done by marking the
5687     * reginfo structs as ARM_CP_IO.)
5688     * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5689     * possible for it to be taken immediately, because VIRQ and
5690     * VFIQ are masked unless running at EL0 or EL1, and HCR
5691     * can only be written at EL2.
5692     */
5693    g_assert(qemu_mutex_iothread_locked());
5694    arm_cpu_update_virq(cpu);
5695    arm_cpu_update_vfiq(cpu);
5696    arm_cpu_update_vserr(cpu);
5697}
5698
5699static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5700{
5701    do_hcr_write(env, value, 0);
5702}
5703
5704static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5705                          uint64_t value)
5706{
5707    /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5708    value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5709    do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5710}
5711
5712static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5713                         uint64_t value)
5714{
5715    /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5716    value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5717    do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5718}
5719
5720/*
5721 * Return the effective value of HCR_EL2, at the given security state.
5722 * Bits that are not included here:
5723 * RW       (read from SCR_EL3.RW as needed)
5724 */
5725uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5726{
5727    uint64_t ret = env->cp15.hcr_el2;
5728
5729    if (!arm_is_el2_enabled_secstate(env, secure)) {
5730        /*
5731         * "This register has no effect if EL2 is not enabled in the
5732         * current Security state".  This is ARMv8.4-SecEL2 speak for
5733         * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5734         *
5735         * Prior to that, the language was "In an implementation that
5736         * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5737         * as if this field is 0 for all purposes other than a direct
5738         * read or write access of HCR_EL2".  With lots of enumeration
5739         * on a per-field basis.  In current QEMU, this is condition
5740         * is arm_is_secure_below_el3.
5741         *
5742         * Since the v8.4 language applies to the entire register, and
5743         * appears to be backward compatible, use that.
5744         */
5745        return 0;
5746    }
5747
5748    /*
5749     * For a cpu that supports both aarch64 and aarch32, we can set bits
5750     * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5751     * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5752     */
5753    if (!arm_el_is_aa64(env, 2)) {
5754        uint64_t aa32_valid;
5755
5756        /*
5757         * These bits are up-to-date as of ARMv8.6.
5758         * For HCR, it's easiest to list just the 2 bits that are invalid.
5759         * For HCR2, list those that are valid.
5760         */
5761        aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5762        aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5763                       HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5764        ret &= aa32_valid;
5765    }
5766
5767    if (ret & HCR_TGE) {
5768        /* These bits are up-to-date as of ARMv8.6.  */
5769        if (ret & HCR_E2H) {
5770            ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5771                     HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5772                     HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5773                     HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5774                     HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5775                     HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5776        } else {
5777            ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5778        }
5779        ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5780                 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5781                 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5782                 HCR_TLOR);
5783    }
5784
5785    return ret;
5786}
5787
5788uint64_t arm_hcr_el2_eff(CPUARMState *env)
5789{
5790    if (arm_feature(env, ARM_FEATURE_M)) {
5791        return 0;
5792    }
5793    return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5794}
5795
5796/*
5797 * Corresponds to ARM pseudocode function ELIsInHost().
5798 */
5799bool el_is_in_host(CPUARMState *env, int el)
5800{
5801    uint64_t mask;
5802
5803    /*
5804     * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5805     * Perform the simplest bit tests first, and validate EL2 afterward.
5806     */
5807    if (el & 1) {
5808        return false; /* EL1 or EL3 */
5809    }
5810
5811    /*
5812     * Note that hcr_write() checks isar_feature_aa64_vh(),
5813     * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5814     */
5815    mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5816    if ((env->cp15.hcr_el2 & mask) != mask) {
5817        return false;
5818    }
5819
5820    /* TGE and/or E2H set: double check those bits are currently legal. */
5821    return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5822}
5823
5824static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5825                       uint64_t value)
5826{
5827    uint64_t valid_mask = 0;
5828
5829    /* No features adding bits to HCRX are implemented. */
5830
5831    /* Clear RES0 bits.  */
5832    env->cp15.hcrx_el2 = value & valid_mask;
5833}
5834
5835static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5836                                  bool isread)
5837{
5838    if (arm_current_el(env) < 3
5839        && arm_feature(env, ARM_FEATURE_EL3)
5840        && !(env->cp15.scr_el3 & SCR_HXEN)) {
5841        return CP_ACCESS_TRAP_EL3;
5842    }
5843    return CP_ACCESS_OK;
5844}
5845
5846static const ARMCPRegInfo hcrx_el2_reginfo = {
5847    .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5848    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5849    .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5850    .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5851};
5852
5853/* Return the effective value of HCRX_EL2.  */
5854uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5855{
5856    /*
5857     * The bits in this register behave as 0 for all purposes other than
5858     * direct reads of the register if:
5859     *   - EL2 is not enabled in the current security state,
5860     *   - SCR_EL3.HXEn is 0.
5861     */
5862    if (!arm_is_el2_enabled(env)
5863        || (arm_feature(env, ARM_FEATURE_EL3)
5864            && !(env->cp15.scr_el3 & SCR_HXEN))) {
5865        return 0;
5866    }
5867    return env->cp15.hcrx_el2;
5868}
5869
5870static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5871                           uint64_t value)
5872{
5873    /*
5874     * For A-profile AArch32 EL3, if NSACR.CP10
5875     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5876     */
5877    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5878        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5879        uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5880        value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5881    }
5882    env->cp15.cptr_el[2] = value;
5883}
5884
5885static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5886{
5887    /*
5888     * For A-profile AArch32 EL3, if NSACR.CP10
5889     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5890     */
5891    uint64_t value = env->cp15.cptr_el[2];
5892
5893    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5894        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5895        value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5896    }
5897    return value;
5898}
5899
5900static const ARMCPRegInfo el2_cp_reginfo[] = {
5901    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5902      .type = ARM_CP_IO,
5903      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5904      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5905      .writefn = hcr_write },
5906    { .name = "HCR", .state = ARM_CP_STATE_AA32,
5907      .type = ARM_CP_ALIAS | ARM_CP_IO,
5908      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5909      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5910      .writefn = hcr_writelow },
5911    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5912      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5913      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5914    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5915      .type = ARM_CP_ALIAS,
5916      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5917      .access = PL2_RW,
5918      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5919    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5920      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5921      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5922    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5923      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5924      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5925    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5926      .type = ARM_CP_ALIAS,
5927      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5928      .access = PL2_RW,
5929      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5930    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5931      .type = ARM_CP_ALIAS,
5932      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5933      .access = PL2_RW,
5934      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5935    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5936      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5937      .access = PL2_RW, .writefn = vbar_write,
5938      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5939      .resetvalue = 0 },
5940    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5941      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5942      .access = PL3_RW, .type = ARM_CP_ALIAS,
5943      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5944    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5945      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5946      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5947      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5948      .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5949    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5950      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5951      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5952      .resetvalue = 0 },
5953    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5954      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5955      .access = PL2_RW, .type = ARM_CP_ALIAS,
5956      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5957    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5958      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5959      .access = PL2_RW, .type = ARM_CP_CONST,
5960      .resetvalue = 0 },
5961    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5962    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5963      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5964      .access = PL2_RW, .type = ARM_CP_CONST,
5965      .resetvalue = 0 },
5966    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5967      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5968      .access = PL2_RW, .type = ARM_CP_CONST,
5969      .resetvalue = 0 },
5970    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5971      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5972      .access = PL2_RW, .type = ARM_CP_CONST,
5973      .resetvalue = 0 },
5974    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5975      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5976      .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5977      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5978    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5979      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5980      .type = ARM_CP_ALIAS,
5981      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5982      .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5983    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5984      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5985      .access = PL2_RW,
5986      /* no .writefn needed as this can't cause an ASID change */
5987      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5988    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5989      .cp = 15, .opc1 = 6, .crm = 2,
5990      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5991      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5992      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5993      .writefn = vttbr_write },
5994    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5995      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5996      .access = PL2_RW, .writefn = vttbr_write,
5997      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5998    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5999      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6000      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6001      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6002    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6003      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6004      .access = PL2_RW, .resetvalue = 0,
6005      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6006    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6007      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6008      .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6009      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6010    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6011      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6012      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6013    { .name = "TLBIALLNSNH",
6014      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6015      .type = ARM_CP_NO_RAW, .access = PL2_W,
6016      .writefn = tlbiall_nsnh_write },
6017    { .name = "TLBIALLNSNHIS",
6018      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6019      .type = ARM_CP_NO_RAW, .access = PL2_W,
6020      .writefn = tlbiall_nsnh_is_write },
6021    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6022      .type = ARM_CP_NO_RAW, .access = PL2_W,
6023      .writefn = tlbiall_hyp_write },
6024    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6025      .type = ARM_CP_NO_RAW, .access = PL2_W,
6026      .writefn = tlbiall_hyp_is_write },
6027    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6028      .type = ARM_CP_NO_RAW, .access = PL2_W,
6029      .writefn = tlbimva_hyp_write },
6030    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6031      .type = ARM_CP_NO_RAW, .access = PL2_W,
6032      .writefn = tlbimva_hyp_is_write },
6033    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6034      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6035      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6036      .writefn = tlbi_aa64_alle2_write },
6037    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6038      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6039      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6040      .writefn = tlbi_aa64_vae2_write },
6041    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6042      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6043      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6044      .writefn = tlbi_aa64_vae2_write },
6045    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6046      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6047      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6048      .writefn = tlbi_aa64_alle2is_write },
6049    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6050      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6051      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6052      .writefn = tlbi_aa64_vae2is_write },
6053    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6054      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6055      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6056      .writefn = tlbi_aa64_vae2is_write },
6057#ifndef CONFIG_USER_ONLY
6058    /*
6059     * Unlike the other EL2-related AT operations, these must
6060     * UNDEF from EL3 if EL2 is not implemented, which is why we
6061     * define them here rather than with the rest of the AT ops.
6062     */
6063    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6064      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6065      .access = PL2_W, .accessfn = at_s1e2_access,
6066      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6067      .writefn = ats_write64 },
6068    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6069      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6070      .access = PL2_W, .accessfn = at_s1e2_access,
6071      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6072      .writefn = ats_write64 },
6073    /*
6074     * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6075     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6076     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6077     * to behave as if SCR.NS was 1.
6078     */
6079    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6080      .access = PL2_W,
6081      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6082    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6083      .access = PL2_W,
6084      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6085    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6086      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6087      /*
6088       * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6089       * reset values as IMPDEF. We choose to reset to 3 to comply with
6090       * both ARMv7 and ARMv8.
6091       */
6092      .access = PL2_RW, .resetvalue = 3,
6093      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6094    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6095      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6096      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6097      .writefn = gt_cntvoff_write,
6098      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6099    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6100      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6101      .writefn = gt_cntvoff_write,
6102      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6103    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6104      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6105      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6106      .type = ARM_CP_IO, .access = PL2_RW,
6107      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6108    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6109      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6110      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6111      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6112    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6113      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6114      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6115      .resetfn = gt_hyp_timer_reset,
6116      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6117    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6118      .type = ARM_CP_IO,
6119      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6120      .access = PL2_RW,
6121      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6122      .resetvalue = 0,
6123      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6124#endif
6125    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6126      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6127      .access = PL2_RW, .accessfn = access_el3_aa32ns,
6128      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6129    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6130      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6131      .access = PL2_RW,
6132      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6133    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6134      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6135      .access = PL2_RW,
6136      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6137};
6138
6139static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6140    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6141      .type = ARM_CP_ALIAS | ARM_CP_IO,
6142      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6143      .access = PL2_RW,
6144      .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6145      .writefn = hcr_writehigh },
6146};
6147
6148static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6149                                  bool isread)
6150{
6151    if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6152        return CP_ACCESS_OK;
6153    }
6154    return CP_ACCESS_TRAP_UNCATEGORIZED;
6155}
6156
6157static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6158    { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6159      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6160      .access = PL2_RW, .accessfn = sel2_access,
6161      .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6162    { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6163      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6164      .access = PL2_RW, .accessfn = sel2_access,
6165      .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6166};
6167
6168static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6169                                   bool isread)
6170{
6171    /*
6172     * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6173     * At Secure EL1 it traps to EL3 or EL2.
6174     */
6175    if (arm_current_el(env) == 3) {
6176        return CP_ACCESS_OK;
6177    }
6178    if (arm_is_secure_below_el3(env)) {
6179        if (env->cp15.scr_el3 & SCR_EEL2) {
6180            return CP_ACCESS_TRAP_EL2;
6181        }
6182        return CP_ACCESS_TRAP_EL3;
6183    }
6184    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6185    if (isread) {
6186        return CP_ACCESS_OK;
6187    }
6188    return CP_ACCESS_TRAP_UNCATEGORIZED;
6189}
6190
6191static const ARMCPRegInfo el3_cp_reginfo[] = {
6192    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6193      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6194      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6195      .resetfn = scr_reset, .writefn = scr_write },
6196    { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6197      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6198      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6199      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6200      .writefn = scr_write },
6201    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6202      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6203      .access = PL3_RW, .resetvalue = 0,
6204      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6205    { .name = "SDER",
6206      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6207      .access = PL3_RW, .resetvalue = 0,
6208      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6209    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6210      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6211      .writefn = vbar_write, .resetvalue = 0,
6212      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6213    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6214      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6215      .access = PL3_RW, .resetvalue = 0,
6216      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6217    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6218      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6219      .access = PL3_RW,
6220      /* no .writefn needed as this can't cause an ASID change */
6221      .resetvalue = 0,
6222      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6223    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6224      .type = ARM_CP_ALIAS,
6225      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6226      .access = PL3_RW,
6227      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6228    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6229      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6230      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6231    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6232      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6233      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6234    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6235      .type = ARM_CP_ALIAS,
6236      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6237      .access = PL3_RW,
6238      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6239    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6240      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6241      .access = PL3_RW, .writefn = vbar_write,
6242      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6243      .resetvalue = 0 },
6244    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6245      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6246      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6247      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6248    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6249      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6250      .access = PL3_RW, .resetvalue = 0,
6251      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6252    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6253      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6254      .access = PL3_RW, .type = ARM_CP_CONST,
6255      .resetvalue = 0 },
6256    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6257      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6258      .access = PL3_RW, .type = ARM_CP_CONST,
6259      .resetvalue = 0 },
6260    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6261      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6262      .access = PL3_RW, .type = ARM_CP_CONST,
6263      .resetvalue = 0 },
6264    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6265      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6266      .access = PL3_W, .type = ARM_CP_NO_RAW,
6267      .writefn = tlbi_aa64_alle3is_write },
6268    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6269      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6270      .access = PL3_W, .type = ARM_CP_NO_RAW,
6271      .writefn = tlbi_aa64_vae3is_write },
6272    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6273      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6274      .access = PL3_W, .type = ARM_CP_NO_RAW,
6275      .writefn = tlbi_aa64_vae3is_write },
6276    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6277      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6278      .access = PL3_W, .type = ARM_CP_NO_RAW,
6279      .writefn = tlbi_aa64_alle3_write },
6280    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6281      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6282      .access = PL3_W, .type = ARM_CP_NO_RAW,
6283      .writefn = tlbi_aa64_vae3_write },
6284    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6285      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6286      .access = PL3_W, .type = ARM_CP_NO_RAW,
6287      .writefn = tlbi_aa64_vae3_write },
6288};
6289
6290#ifndef CONFIG_USER_ONLY
6291/* Test if system register redirection is to occur in the current state.  */
6292static bool redirect_for_e2h(CPUARMState *env)
6293{
6294    return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6295}
6296
6297static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6298{
6299    CPReadFn *readfn;
6300
6301    if (redirect_for_e2h(env)) {
6302        /* Switch to the saved EL2 version of the register.  */
6303        ri = ri->opaque;
6304        readfn = ri->readfn;
6305    } else {
6306        readfn = ri->orig_readfn;
6307    }
6308    if (readfn == NULL) {
6309        readfn = raw_read;
6310    }
6311    return readfn(env, ri);
6312}
6313
6314static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6315                          uint64_t value)
6316{
6317    CPWriteFn *writefn;
6318
6319    if (redirect_for_e2h(env)) {
6320        /* Switch to the saved EL2 version of the register.  */
6321        ri = ri->opaque;
6322        writefn = ri->writefn;
6323    } else {
6324        writefn = ri->orig_writefn;
6325    }
6326    if (writefn == NULL) {
6327        writefn = raw_write;
6328    }
6329    writefn(env, ri, value);
6330}
6331
6332static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6333{
6334    struct E2HAlias {
6335        uint32_t src_key, dst_key, new_key;
6336        const char *src_name, *dst_name, *new_name;
6337        bool (*feature)(const ARMISARegisters *id);
6338    };
6339
6340#define K(op0, op1, crn, crm, op2) \
6341    ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6342
6343    static const struct E2HAlias aliases[] = {
6344        { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6345          "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6346        { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6347          "CPACR", "CPTR_EL2", "CPACR_EL12" },
6348        { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6349          "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6350        { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6351          "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6352        { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6353          "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6354        { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6355          "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6356        { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6357          "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6358        { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6359          "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6360        { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6361          "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6362        { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6363          "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6364        { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6365          "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6366        { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6367          "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6368        { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6369          "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6370        { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6371          "VBAR", "VBAR_EL2", "VBAR_EL12" },
6372        { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6373          "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6374        { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6375          "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6376
6377        /*
6378         * Note that redirection of ZCR is mentioned in the description
6379         * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6380         * not in the summary table.
6381         */
6382        { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6383          "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6384        { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6385          "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6386
6387        { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6388          "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6389
6390        { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6391          "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6392          isar_feature_aa64_scxtnum },
6393
6394        /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6395        /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6396    };
6397#undef K
6398
6399    size_t i;
6400
6401    for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6402        const struct E2HAlias *a = &aliases[i];
6403        ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6404        bool ok;
6405
6406        if (a->feature && !a->feature(&cpu->isar)) {
6407            continue;
6408        }
6409
6410        src_reg = g_hash_table_lookup(cpu->cp_regs,
6411                                      (gpointer)(uintptr_t)a->src_key);
6412        dst_reg = g_hash_table_lookup(cpu->cp_regs,
6413                                      (gpointer)(uintptr_t)a->dst_key);
6414        g_assert(src_reg != NULL);
6415        g_assert(dst_reg != NULL);
6416
6417        /* Cross-compare names to detect typos in the keys.  */
6418        g_assert(strcmp(src_reg->name, a->src_name) == 0);
6419        g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6420
6421        /* None of the core system registers use opaque; we will.  */
6422        g_assert(src_reg->opaque == NULL);
6423
6424        /* Create alias before redirection so we dup the right data. */
6425        new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6426
6427        new_reg->name = a->new_name;
6428        new_reg->type |= ARM_CP_ALIAS;
6429        /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6430        new_reg->access &= PL2_RW | PL3_RW;
6431
6432        ok = g_hash_table_insert(cpu->cp_regs,
6433                                 (gpointer)(uintptr_t)a->new_key, new_reg);
6434        g_assert(ok);
6435
6436        src_reg->opaque = dst_reg;
6437        src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6438        src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6439        if (!src_reg->raw_readfn) {
6440            src_reg->raw_readfn = raw_read;
6441        }
6442        if (!src_reg->raw_writefn) {
6443            src_reg->raw_writefn = raw_write;
6444        }
6445        src_reg->readfn = el2_e2h_read;
6446        src_reg->writefn = el2_e2h_write;
6447    }
6448}
6449#endif
6450
6451static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6452                                     bool isread)
6453{
6454    int cur_el = arm_current_el(env);
6455
6456    if (cur_el < 2) {
6457        uint64_t hcr = arm_hcr_el2_eff(env);
6458
6459        if (cur_el == 0) {
6460            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6461                if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6462                    return CP_ACCESS_TRAP_EL2;
6463                }
6464            } else {
6465                if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6466                    return CP_ACCESS_TRAP;
6467                }
6468                if (hcr & HCR_TID2) {
6469                    return CP_ACCESS_TRAP_EL2;
6470                }
6471            }
6472        } else if (hcr & HCR_TID2) {
6473            return CP_ACCESS_TRAP_EL2;
6474        }
6475    }
6476
6477    if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6478        return CP_ACCESS_TRAP_EL2;
6479    }
6480
6481    return CP_ACCESS_OK;
6482}
6483
6484/*
6485 * Check for traps to RAS registers, which are controlled
6486 * by HCR_EL2.TERR and SCR_EL3.TERR.
6487 */
6488static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6489                                  bool isread)
6490{
6491    int el = arm_current_el(env);
6492
6493    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6494        return CP_ACCESS_TRAP_EL2;
6495    }
6496    if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6497        return CP_ACCESS_TRAP_EL3;
6498    }
6499    return CP_ACCESS_OK;
6500}
6501
6502static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6503{
6504    int el = arm_current_el(env);
6505
6506    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6507        return env->cp15.vdisr_el2;
6508    }
6509    if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6510        return 0; /* RAZ/WI */
6511    }
6512    return env->cp15.disr_el1;
6513}
6514
6515static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6516{
6517    int el = arm_current_el(env);
6518
6519    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6520        env->cp15.vdisr_el2 = val;
6521        return;
6522    }
6523    if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6524        return; /* RAZ/WI */
6525    }
6526    env->cp15.disr_el1 = val;
6527}
6528
6529/*
6530 * Minimal RAS implementation with no Error Records.
6531 * Which means that all of the Error Record registers:
6532 *   ERXADDR_EL1
6533 *   ERXCTLR_EL1
6534 *   ERXFR_EL1
6535 *   ERXMISC0_EL1
6536 *   ERXMISC1_EL1
6537 *   ERXMISC2_EL1
6538 *   ERXMISC3_EL1
6539 *   ERXPFGCDN_EL1  (RASv1p1)
6540 *   ERXPFGCTL_EL1  (RASv1p1)
6541 *   ERXPFGF_EL1    (RASv1p1)
6542 *   ERXSTATUS_EL1
6543 * and
6544 *   ERRSELR_EL1
6545 * may generate UNDEFINED, which is the effect we get by not
6546 * listing them at all.
6547 *
6548 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6549 * is higher priority than FGT-to-EL2 so we do not need to list them
6550 * in order to check for an FGT.
6551 */
6552static const ARMCPRegInfo minimal_ras_reginfo[] = {
6553    { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6554      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6555      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6556      .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6557    { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6558      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6559      .access = PL1_R, .accessfn = access_terr,
6560      .fgt = FGT_ERRIDR_EL1,
6561      .type = ARM_CP_CONST, .resetvalue = 0 },
6562    { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6563      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6564      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6565    { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6566      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6567      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6568};
6569
6570/*
6571 * Return the exception level to which exceptions should be taken
6572 * via SVEAccessTrap.  This excludes the check for whether the exception
6573 * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6574 * be found by testing 0 < fp_exception_el < sve_exception_el.
6575 *
6576 * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6577 * pseudocode does *not* separate out the FP trap checks, but has them
6578 * all in one function.
6579 */
6580int sve_exception_el(CPUARMState *env, int el)
6581{
6582#ifndef CONFIG_USER_ONLY
6583    if (el <= 1 && !el_is_in_host(env, el)) {
6584        switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6585        case 1:
6586            if (el != 0) {
6587                break;
6588            }
6589            /* fall through */
6590        case 0:
6591        case 2:
6592            return 1;
6593        }
6594    }
6595
6596    if (el <= 2 && arm_is_el2_enabled(env)) {
6597        /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6598        if (env->cp15.hcr_el2 & HCR_E2H) {
6599            switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6600            case 1:
6601                if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6602                    break;
6603                }
6604                /* fall through */
6605            case 0:
6606            case 2:
6607                return 2;
6608            }
6609        } else {
6610            if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6611                return 2;
6612            }
6613        }
6614    }
6615
6616    /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6617    if (arm_feature(env, ARM_FEATURE_EL3)
6618        && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6619        return 3;
6620    }
6621#endif
6622    return 0;
6623}
6624
6625/*
6626 * Return the exception level to which exceptions should be taken for SME.
6627 * C.f. the ARM pseudocode function CheckSMEAccess.
6628 */
6629int sme_exception_el(CPUARMState *env, int el)
6630{
6631#ifndef CONFIG_USER_ONLY
6632    if (el <= 1 && !el_is_in_host(env, el)) {
6633        switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6634        case 1:
6635            if (el != 0) {
6636                break;
6637            }
6638            /* fall through */
6639        case 0:
6640        case 2:
6641            return 1;
6642        }
6643    }
6644
6645    if (el <= 2 && arm_is_el2_enabled(env)) {
6646        /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6647        if (env->cp15.hcr_el2 & HCR_E2H) {
6648            switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6649            case 1:
6650                if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6651                    break;
6652                }
6653                /* fall through */
6654            case 0:
6655            case 2:
6656                return 2;
6657            }
6658        } else {
6659            if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6660                return 2;
6661            }
6662        }
6663    }
6664
6665    /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6666    if (arm_feature(env, ARM_FEATURE_EL3)
6667        && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6668        return 3;
6669    }
6670#endif
6671    return 0;
6672}
6673
6674/*
6675 * Given that SVE is enabled, return the vector length for EL.
6676 */
6677uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6678{
6679    ARMCPU *cpu = env_archcpu(env);
6680    uint64_t *cr = env->vfp.zcr_el;
6681    uint32_t map = cpu->sve_vq.map;
6682    uint32_t len = ARM_MAX_VQ - 1;
6683
6684    if (sm) {
6685        cr = env->vfp.smcr_el;
6686        map = cpu->sme_vq.map;
6687    }
6688
6689    if (el <= 1 && !el_is_in_host(env, el)) {
6690        len = MIN(len, 0xf & (uint32_t)cr[1]);
6691    }
6692    if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6693        len = MIN(len, 0xf & (uint32_t)cr[2]);
6694    }
6695    if (arm_feature(env, ARM_FEATURE_EL3)) {
6696        len = MIN(len, 0xf & (uint32_t)cr[3]);
6697    }
6698
6699    map &= MAKE_64BIT_MASK(0, len + 1);
6700    if (map != 0) {
6701        return 31 - clz32(map);
6702    }
6703
6704    /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6705    assert(sm);
6706    return ctz32(cpu->sme_vq.map);
6707}
6708
6709uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6710{
6711    return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6712}
6713
6714static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6715                      uint64_t value)
6716{
6717    int cur_el = arm_current_el(env);
6718    int old_len = sve_vqm1_for_el(env, cur_el);
6719    int new_len;
6720
6721    /* Bits other than [3:0] are RAZ/WI.  */
6722    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6723    raw_write(env, ri, value & 0xf);
6724
6725    /*
6726     * Because we arrived here, we know both FP and SVE are enabled;
6727     * otherwise we would have trapped access to the ZCR_ELn register.
6728     */
6729    new_len = sve_vqm1_for_el(env, cur_el);
6730    if (new_len < old_len) {
6731        aarch64_sve_narrow_vq(env, new_len + 1);
6732    }
6733}
6734
6735static const ARMCPRegInfo zcr_reginfo[] = {
6736    { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6737      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6738      .access = PL1_RW, .type = ARM_CP_SVE,
6739      .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6740      .writefn = zcr_write, .raw_writefn = raw_write },
6741    { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6742      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6743      .access = PL2_RW, .type = ARM_CP_SVE,
6744      .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6745      .writefn = zcr_write, .raw_writefn = raw_write },
6746    { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6747      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6748      .access = PL3_RW, .type = ARM_CP_SVE,
6749      .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6750      .writefn = zcr_write, .raw_writefn = raw_write },
6751};
6752
6753#ifdef TARGET_AARCH64
6754static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6755                                    bool isread)
6756{
6757    int el = arm_current_el(env);
6758
6759    if (el == 0) {
6760        uint64_t sctlr = arm_sctlr(env, el);
6761        if (!(sctlr & SCTLR_EnTP2)) {
6762            return CP_ACCESS_TRAP;
6763        }
6764    }
6765    /* TODO: FEAT_FGT */
6766    if (el < 3
6767        && arm_feature(env, ARM_FEATURE_EL3)
6768        && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6769        return CP_ACCESS_TRAP_EL3;
6770    }
6771    return CP_ACCESS_OK;
6772}
6773
6774static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6775                                 bool isread)
6776{
6777    /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6778    if (arm_current_el(env) < 3
6779        && arm_feature(env, ARM_FEATURE_EL3)
6780        && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6781        return CP_ACCESS_TRAP_EL3;
6782    }
6783    return CP_ACCESS_OK;
6784}
6785
6786/* ResetSVEState */
6787static void arm_reset_sve_state(CPUARMState *env)
6788{
6789    memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6790    /* Recall that FFR is stored as pregs[16]. */
6791    memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6792    vfp_set_fpcr(env, 0x0800009f);
6793}
6794
6795void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6796{
6797    uint64_t change = (env->svcr ^ new) & mask;
6798
6799    if (change == 0) {
6800        return;
6801    }
6802    env->svcr ^= change;
6803
6804    if (change & R_SVCR_SM_MASK) {
6805        arm_reset_sve_state(env);
6806    }
6807
6808    /*
6809     * ResetSMEState.
6810     *
6811     * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6812     * on enable: while disabled, the storage is inaccessible and the
6813     * value does not matter.  We're not saving the storage in vmstate
6814     * when disabled either.
6815     */
6816    if (change & new & R_SVCR_ZA_MASK) {
6817        memset(env->zarray, 0, sizeof(env->zarray));
6818    }
6819
6820    if (tcg_enabled()) {
6821        arm_rebuild_hflags(env);
6822    }
6823}
6824
6825static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6826                       uint64_t value)
6827{
6828    aarch64_set_svcr(env, value, -1);
6829}
6830
6831static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6832                       uint64_t value)
6833{
6834    int cur_el = arm_current_el(env);
6835    int old_len = sve_vqm1_for_el(env, cur_el);
6836    int new_len;
6837
6838    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6839    value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6840    raw_write(env, ri, value);
6841
6842    /*
6843     * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6844     * when SVL is widened (old values kept, or zeros).  Choose to keep the
6845     * current values for simplicity.  But for QEMU internals, we must still
6846     * apply the narrower SVL to the Zregs and Pregs -- see the comment
6847     * above aarch64_sve_narrow_vq.
6848     */
6849    new_len = sve_vqm1_for_el(env, cur_el);
6850    if (new_len < old_len) {
6851        aarch64_sve_narrow_vq(env, new_len + 1);
6852    }
6853}
6854
6855static const ARMCPRegInfo sme_reginfo[] = {
6856    { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6857      .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6858      .access = PL0_RW, .accessfn = access_tpidr2,
6859      .fgt = FGT_NTPIDR2_EL0,
6860      .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6861    { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6862      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6863      .access = PL0_RW, .type = ARM_CP_SME,
6864      .fieldoffset = offsetof(CPUARMState, svcr),
6865      .writefn = svcr_write, .raw_writefn = raw_write },
6866    { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6867      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6868      .access = PL1_RW, .type = ARM_CP_SME,
6869      .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6870      .writefn = smcr_write, .raw_writefn = raw_write },
6871    { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6872      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6873      .access = PL2_RW, .type = ARM_CP_SME,
6874      .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6875      .writefn = smcr_write, .raw_writefn = raw_write },
6876    { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6877      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6878      .access = PL3_RW, .type = ARM_CP_SME,
6879      .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6880      .writefn = smcr_write, .raw_writefn = raw_write },
6881    { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6882      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6883      .access = PL1_R, .accessfn = access_aa64_tid1,
6884      /*
6885       * IMPLEMENTOR = 0 (software)
6886       * REVISION    = 0 (implementation defined)
6887       * SMPS        = 0 (no streaming execution priority in QEMU)
6888       * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6889       */
6890      .type = ARM_CP_CONST, .resetvalue = 0, },
6891    /*
6892     * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6893     */
6894    { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6895      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6896      .access = PL1_RW, .accessfn = access_esm,
6897      .fgt = FGT_NSMPRI_EL1,
6898      .type = ARM_CP_CONST, .resetvalue = 0 },
6899    { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6900      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6901      .access = PL2_RW, .accessfn = access_esm,
6902      .type = ARM_CP_CONST, .resetvalue = 0 },
6903};
6904#endif /* TARGET_AARCH64 */
6905
6906static void define_pmu_regs(ARMCPU *cpu)
6907{
6908    /*
6909     * v7 performance monitor control register: same implementor
6910     * field as main ID register, and we implement four counters in
6911     * addition to the cycle count register.
6912     */
6913    unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6914    ARMCPRegInfo pmcr = {
6915        .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6916        .access = PL0_RW,
6917        .fgt = FGT_PMCR_EL0,
6918        .type = ARM_CP_IO | ARM_CP_ALIAS,
6919        .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6920        .accessfn = pmreg_access, .writefn = pmcr_write,
6921        .raw_writefn = raw_write,
6922    };
6923    ARMCPRegInfo pmcr64 = {
6924        .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6925        .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6926        .access = PL0_RW, .accessfn = pmreg_access,
6927        .fgt = FGT_PMCR_EL0,
6928        .type = ARM_CP_IO,
6929        .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6930        .resetvalue = cpu->isar.reset_pmcr_el0,
6931        .writefn = pmcr_write, .raw_writefn = raw_write,
6932    };
6933
6934    define_one_arm_cp_reg(cpu, &pmcr);
6935    define_one_arm_cp_reg(cpu, &pmcr64);
6936    for (i = 0; i < pmcrn; i++) {
6937        char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6938        char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6939        char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6940        char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6941        ARMCPRegInfo pmev_regs[] = {
6942            { .name = pmevcntr_name, .cp = 15, .crn = 14,
6943              .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6944              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6945              .fgt = FGT_PMEVCNTRN_EL0,
6946              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6947              .accessfn = pmreg_access_xevcntr },
6948            { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6949              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6950              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6951              .type = ARM_CP_IO,
6952              .fgt = FGT_PMEVCNTRN_EL0,
6953              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6954              .raw_readfn = pmevcntr_rawread,
6955              .raw_writefn = pmevcntr_rawwrite },
6956            { .name = pmevtyper_name, .cp = 15, .crn = 14,
6957              .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6958              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6959              .fgt = FGT_PMEVTYPERN_EL0,
6960              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6961              .accessfn = pmreg_access },
6962            { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6963              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6964              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6965              .fgt = FGT_PMEVTYPERN_EL0,
6966              .type = ARM_CP_IO,
6967              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6968              .raw_writefn = pmevtyper_rawwrite },
6969        };
6970        define_arm_cp_regs(cpu, pmev_regs);
6971        g_free(pmevcntr_name);
6972        g_free(pmevcntr_el0_name);
6973        g_free(pmevtyper_name);
6974        g_free(pmevtyper_el0_name);
6975    }
6976    if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6977        ARMCPRegInfo v81_pmu_regs[] = {
6978            { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6979              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6980              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6981              .fgt = FGT_PMCEIDN_EL0,
6982              .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6983            { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6984              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6985              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6986              .fgt = FGT_PMCEIDN_EL0,
6987              .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6988        };
6989        define_arm_cp_regs(cpu, v81_pmu_regs);
6990    }
6991    if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6992        static const ARMCPRegInfo v84_pmmir = {
6993            .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6994            .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6995            .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6996            .fgt = FGT_PMMIR_EL1,
6997            .resetvalue = 0
6998        };
6999        define_one_arm_cp_reg(cpu, &v84_pmmir);
7000    }
7001}
7002
7003#ifndef CONFIG_USER_ONLY
7004/*
7005 * We don't know until after realize whether there's a GICv3
7006 * attached, and that is what registers the gicv3 sysregs.
7007 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7008 * at runtime.
7009 */
7010static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7011{
7012    ARMCPU *cpu = env_archcpu(env);
7013    uint64_t pfr1 = cpu->isar.id_pfr1;
7014
7015    if (env->gicv3state) {
7016        pfr1 |= 1 << 28;
7017    }
7018    return pfr1;
7019}
7020
7021static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7022{
7023    ARMCPU *cpu = env_archcpu(env);
7024    uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7025
7026    if (env->gicv3state) {
7027        pfr0 |= 1 << 24;
7028    }
7029    return pfr0;
7030}
7031#endif
7032
7033/*
7034 * Shared logic between LORID and the rest of the LOR* registers.
7035 * Secure state exclusion has already been dealt with.
7036 */
7037static CPAccessResult access_lor_ns(CPUARMState *env,
7038                                    const ARMCPRegInfo *ri, bool isread)
7039{
7040    int el = arm_current_el(env);
7041
7042    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7043        return CP_ACCESS_TRAP_EL2;
7044    }
7045    if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7046        return CP_ACCESS_TRAP_EL3;
7047    }
7048    return CP_ACCESS_OK;
7049}
7050
7051static CPAccessResult access_lor_other(CPUARMState *env,
7052                                       const ARMCPRegInfo *ri, bool isread)
7053{
7054    if (arm_is_secure_below_el3(env)) {
7055        /* Access denied in secure mode.  */
7056        return CP_ACCESS_TRAP;
7057    }
7058    return access_lor_ns(env, ri, isread);
7059}
7060
7061/*
7062 * A trivial implementation of ARMv8.1-LOR leaves all of these
7063 * registers fixed at 0, which indicates that there are zero
7064 * supported Limited Ordering regions.
7065 */
7066static const ARMCPRegInfo lor_reginfo[] = {
7067    { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7068      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7069      .access = PL1_RW, .accessfn = access_lor_other,
7070      .fgt = FGT_LORSA_EL1,
7071      .type = ARM_CP_CONST, .resetvalue = 0 },
7072    { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7073      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7074      .access = PL1_RW, .accessfn = access_lor_other,
7075      .fgt = FGT_LOREA_EL1,
7076      .type = ARM_CP_CONST, .resetvalue = 0 },
7077    { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7078      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7079      .access = PL1_RW, .accessfn = access_lor_other,
7080      .fgt = FGT_LORN_EL1,
7081      .type = ARM_CP_CONST, .resetvalue = 0 },
7082    { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7083      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7084      .access = PL1_RW, .accessfn = access_lor_other,
7085      .fgt = FGT_LORC_EL1,
7086      .type = ARM_CP_CONST, .resetvalue = 0 },
7087    { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7088      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7089      .access = PL1_R, .accessfn = access_lor_ns,
7090      .fgt = FGT_LORID_EL1,
7091      .type = ARM_CP_CONST, .resetvalue = 0 },
7092};
7093
7094#ifdef TARGET_AARCH64
7095static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7096                                   bool isread)
7097{
7098    int el = arm_current_el(env);
7099
7100    if (el < 2 &&
7101        arm_is_el2_enabled(env) &&
7102        !(arm_hcr_el2_eff(env) & HCR_APK)) {
7103        return CP_ACCESS_TRAP_EL2;
7104    }
7105    if (el < 3 &&
7106        arm_feature(env, ARM_FEATURE_EL3) &&
7107        !(env->cp15.scr_el3 & SCR_APK)) {
7108        return CP_ACCESS_TRAP_EL3;
7109    }
7110    return CP_ACCESS_OK;
7111}
7112
7113static const ARMCPRegInfo pauth_reginfo[] = {
7114    { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7115      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7116      .access = PL1_RW, .accessfn = access_pauth,
7117      .fgt = FGT_APDAKEY,
7118      .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7119    { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7120      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7121      .access = PL1_RW, .accessfn = access_pauth,
7122      .fgt = FGT_APDAKEY,
7123      .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7124    { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7125      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7126      .access = PL1_RW, .accessfn = access_pauth,
7127      .fgt = FGT_APDBKEY,
7128      .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7129    { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7130      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7131      .access = PL1_RW, .accessfn = access_pauth,
7132      .fgt = FGT_APDBKEY,
7133      .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7134    { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7135      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7136      .access = PL1_RW, .accessfn = access_pauth,
7137      .fgt = FGT_APGAKEY,
7138      .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7139    { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7140      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7141      .access = PL1_RW, .accessfn = access_pauth,
7142      .fgt = FGT_APGAKEY,
7143      .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7144    { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7145      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7146      .access = PL1_RW, .accessfn = access_pauth,
7147      .fgt = FGT_APIAKEY,
7148      .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7149    { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7150      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7151      .access = PL1_RW, .accessfn = access_pauth,
7152      .fgt = FGT_APIAKEY,
7153      .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7154    { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7155      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7156      .access = PL1_RW, .accessfn = access_pauth,
7157      .fgt = FGT_APIBKEY,
7158      .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7159    { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7160      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7161      .access = PL1_RW, .accessfn = access_pauth,
7162      .fgt = FGT_APIBKEY,
7163      .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7164};
7165
7166static const ARMCPRegInfo tlbirange_reginfo[] = {
7167    { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7168      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7169      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7170      .fgt = FGT_TLBIRVAE1IS,
7171      .writefn = tlbi_aa64_rvae1is_write },
7172    { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7173      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7174      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7175      .fgt = FGT_TLBIRVAAE1IS,
7176      .writefn = tlbi_aa64_rvae1is_write },
7177   { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7178      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7179      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7180      .fgt = FGT_TLBIRVALE1IS,
7181      .writefn = tlbi_aa64_rvae1is_write },
7182    { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7183      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7184      .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7185      .fgt = FGT_TLBIRVAALE1IS,
7186      .writefn = tlbi_aa64_rvae1is_write },
7187    { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7188      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7189      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7190      .fgt = FGT_TLBIRVAE1OS,
7191      .writefn = tlbi_aa64_rvae1is_write },
7192    { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7193      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7194      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7195      .fgt = FGT_TLBIRVAAE1OS,
7196      .writefn = tlbi_aa64_rvae1is_write },
7197   { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7198      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7199      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7200      .fgt = FGT_TLBIRVALE1OS,
7201      .writefn = tlbi_aa64_rvae1is_write },
7202    { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7203      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7204      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7205      .fgt = FGT_TLBIRVAALE1OS,
7206      .writefn = tlbi_aa64_rvae1is_write },
7207    { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7208      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7209      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7210      .fgt = FGT_TLBIRVAE1,
7211      .writefn = tlbi_aa64_rvae1_write },
7212    { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7213      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7214      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7215      .fgt = FGT_TLBIRVAAE1,
7216      .writefn = tlbi_aa64_rvae1_write },
7217   { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7218      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7219      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7220      .fgt = FGT_TLBIRVALE1,
7221      .writefn = tlbi_aa64_rvae1_write },
7222    { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7223      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7224      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7225      .fgt = FGT_TLBIRVAALE1,
7226      .writefn = tlbi_aa64_rvae1_write },
7227    { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7228      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7229      .access = PL2_W, .type = ARM_CP_NO_RAW,
7230      .writefn = tlbi_aa64_ripas2e1is_write },
7231    { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7232      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7233      .access = PL2_W, .type = ARM_CP_NO_RAW,
7234      .writefn = tlbi_aa64_ripas2e1is_write },
7235    { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7236      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7237      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7238      .writefn = tlbi_aa64_rvae2is_write },
7239   { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7240      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7241      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7242      .writefn = tlbi_aa64_rvae2is_write },
7243    { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7244      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7245      .access = PL2_W, .type = ARM_CP_NO_RAW,
7246      .writefn = tlbi_aa64_ripas2e1_write },
7247    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7248      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7249      .access = PL2_W, .type = ARM_CP_NO_RAW,
7250      .writefn = tlbi_aa64_ripas2e1_write },
7251   { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7252      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7253      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7254      .writefn = tlbi_aa64_rvae2is_write },
7255   { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7256      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7257      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7258      .writefn = tlbi_aa64_rvae2is_write },
7259    { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7260      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7261      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7262      .writefn = tlbi_aa64_rvae2_write },
7263   { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7264      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7265      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7266      .writefn = tlbi_aa64_rvae2_write },
7267   { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7268      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7269      .access = PL3_W, .type = ARM_CP_NO_RAW,
7270      .writefn = tlbi_aa64_rvae3is_write },
7271   { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7272      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7273      .access = PL3_W, .type = ARM_CP_NO_RAW,
7274      .writefn = tlbi_aa64_rvae3is_write },
7275   { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7276      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7277      .access = PL3_W, .type = ARM_CP_NO_RAW,
7278      .writefn = tlbi_aa64_rvae3is_write },
7279   { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7280      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7281      .access = PL3_W, .type = ARM_CP_NO_RAW,
7282      .writefn = tlbi_aa64_rvae3is_write },
7283   { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7284      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7285      .access = PL3_W, .type = ARM_CP_NO_RAW,
7286      .writefn = tlbi_aa64_rvae3_write },
7287   { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7288      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7289      .access = PL3_W, .type = ARM_CP_NO_RAW,
7290      .writefn = tlbi_aa64_rvae3_write },
7291};
7292
7293static const ARMCPRegInfo tlbios_reginfo[] = {
7294    { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7295      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7296      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7297      .fgt = FGT_TLBIVMALLE1OS,
7298      .writefn = tlbi_aa64_vmalle1is_write },
7299    { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7300      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7301      .fgt = FGT_TLBIVAE1OS,
7302      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7303      .writefn = tlbi_aa64_vae1is_write },
7304    { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7305      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7306      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7307      .fgt = FGT_TLBIASIDE1OS,
7308      .writefn = tlbi_aa64_vmalle1is_write },
7309    { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7310      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7311      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7312      .fgt = FGT_TLBIVAAE1OS,
7313      .writefn = tlbi_aa64_vae1is_write },
7314    { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7315      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7316      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7317      .fgt = FGT_TLBIVALE1OS,
7318      .writefn = tlbi_aa64_vae1is_write },
7319    { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7320      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7321      .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7322      .fgt = FGT_TLBIVAALE1OS,
7323      .writefn = tlbi_aa64_vae1is_write },
7324    { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7325      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7326      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7327      .writefn = tlbi_aa64_alle2is_write },
7328    { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7329      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7330      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7331      .writefn = tlbi_aa64_vae2is_write },
7332   { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7333      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7334      .access = PL2_W, .type = ARM_CP_NO_RAW,
7335      .writefn = tlbi_aa64_alle1is_write },
7336    { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7337      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7338      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7339      .writefn = tlbi_aa64_vae2is_write },
7340    { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7341      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7342      .access = PL2_W, .type = ARM_CP_NO_RAW,
7343      .writefn = tlbi_aa64_alle1is_write },
7344    { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7345      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7346      .access = PL2_W, .type = ARM_CP_NOP },
7347    { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7348      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7349      .access = PL2_W, .type = ARM_CP_NOP },
7350    { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7351      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7352      .access = PL2_W, .type = ARM_CP_NOP },
7353    { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7354      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7355      .access = PL2_W, .type = ARM_CP_NOP },
7356    { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7357      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7358      .access = PL3_W, .type = ARM_CP_NO_RAW,
7359      .writefn = tlbi_aa64_alle3is_write },
7360    { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7361      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7362      .access = PL3_W, .type = ARM_CP_NO_RAW,
7363      .writefn = tlbi_aa64_vae3is_write },
7364    { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7365      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7366      .access = PL3_W, .type = ARM_CP_NO_RAW,
7367      .writefn = tlbi_aa64_vae3is_write },
7368};
7369
7370static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7371{
7372    Error *err = NULL;
7373    uint64_t ret;
7374
7375    /* Success sets NZCV = 0000.  */
7376    env->NF = env->CF = env->VF = 0, env->ZF = 1;
7377
7378    if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7379        /*
7380         * ??? Failed, for unknown reasons in the crypto subsystem.
7381         * The best we can do is log the reason and return the
7382         * timed-out indication to the guest.  There is no reason
7383         * we know to expect this failure to be transitory, so the
7384         * guest may well hang retrying the operation.
7385         */
7386        qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7387                      ri->name, error_get_pretty(err));
7388        error_free(err);
7389
7390        env->ZF = 0; /* NZCF = 0100 */
7391        return 0;
7392    }
7393    return ret;
7394}
7395
7396/* We do not support re-seeding, so the two registers operate the same.  */
7397static const ARMCPRegInfo rndr_reginfo[] = {
7398    { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7399      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7400      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7401      .access = PL0_R, .readfn = rndr_readfn },
7402    { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7403      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7404      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7405      .access = PL0_R, .readfn = rndr_readfn },
7406};
7407
7408#ifndef CONFIG_USER_ONLY
7409static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7410                          uint64_t value)
7411{
7412    ARMCPU *cpu = env_archcpu(env);
7413    /* CTR_EL0 System register -> DminLine, bits [19:16] */
7414    uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7415    uint64_t vaddr_in = (uint64_t) value;
7416    uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7417    void *haddr;
7418    int mem_idx = cpu_mmu_index(env, false);
7419
7420    /* This won't be crossing page boundaries */
7421    haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7422    if (haddr) {
7423
7424        ram_addr_t offset;
7425        MemoryRegion *mr;
7426
7427        /* RCU lock is already being held */
7428        mr = memory_region_from_host(haddr, &offset);
7429
7430        if (mr) {
7431            memory_region_writeback(mr, offset, dline_size);
7432        }
7433    }
7434}
7435
7436static const ARMCPRegInfo dcpop_reg[] = {
7437    { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7438      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7439      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7440      .fgt = FGT_DCCVAP,
7441      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7442};
7443
7444static const ARMCPRegInfo dcpodp_reg[] = {
7445    { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7446      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7447      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7448      .fgt = FGT_DCCVADP,
7449      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7450};
7451#endif /*CONFIG_USER_ONLY*/
7452
7453static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7454                                       bool isread)
7455{
7456    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7457        return CP_ACCESS_TRAP_EL2;
7458    }
7459
7460    return CP_ACCESS_OK;
7461}
7462
7463static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7464                                 bool isread)
7465{
7466    int el = arm_current_el(env);
7467
7468    if (el < 2 && arm_is_el2_enabled(env)) {
7469        uint64_t hcr = arm_hcr_el2_eff(env);
7470        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7471            return CP_ACCESS_TRAP_EL2;
7472        }
7473    }
7474    if (el < 3 &&
7475        arm_feature(env, ARM_FEATURE_EL3) &&
7476        !(env->cp15.scr_el3 & SCR_ATA)) {
7477        return CP_ACCESS_TRAP_EL3;
7478    }
7479    return CP_ACCESS_OK;
7480}
7481
7482static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7483{
7484    return env->pstate & PSTATE_TCO;
7485}
7486
7487static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7488{
7489    env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7490}
7491
7492static const ARMCPRegInfo mte_reginfo[] = {
7493    { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7494      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7495      .access = PL1_RW, .accessfn = access_mte,
7496      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7497    { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7498      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7499      .access = PL1_RW, .accessfn = access_mte,
7500      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7501    { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7502      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7503      .access = PL2_RW, .accessfn = access_mte,
7504      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7505    { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7506      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7507      .access = PL3_RW,
7508      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7509    { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7510      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7511      .access = PL1_RW, .accessfn = access_mte,
7512      .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7513    { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7514      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7515      .access = PL1_RW, .accessfn = access_mte,
7516      .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7517    { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7518      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7519      .access = PL1_R, .accessfn = access_aa64_tid5,
7520      .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7521    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7522      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7523      .type = ARM_CP_NO_RAW,
7524      .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7525    { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7526      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7527      .type = ARM_CP_NOP, .access = PL1_W,
7528      .fgt = FGT_DCIVAC,
7529      .accessfn = aa64_cacheop_poc_access },
7530    { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7531      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7532      .fgt = FGT_DCISW,
7533      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7534    { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7535      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7536      .type = ARM_CP_NOP, .access = PL1_W,
7537      .fgt = FGT_DCIVAC,
7538      .accessfn = aa64_cacheop_poc_access },
7539    { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7540      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7541      .fgt = FGT_DCISW,
7542      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7543    { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7544      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7545      .fgt = FGT_DCCSW,
7546      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7547    { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7548      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7549      .fgt = FGT_DCCSW,
7550      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7551    { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7552      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7553      .fgt = FGT_DCCISW,
7554      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7555    { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7556      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7557      .fgt = FGT_DCCISW,
7558      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7559};
7560
7561static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7562    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7563      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7564      .type = ARM_CP_CONST, .access = PL0_RW, },
7565};
7566
7567static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7568    { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7569      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7570      .type = ARM_CP_NOP, .access = PL0_W,
7571      .fgt = FGT_DCCVAC,
7572      .accessfn = aa64_cacheop_poc_access },
7573    { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7574      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7575      .type = ARM_CP_NOP, .access = PL0_W,
7576      .fgt = FGT_DCCVAC,
7577      .accessfn = aa64_cacheop_poc_access },
7578    { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7579      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7580      .type = ARM_CP_NOP, .access = PL0_W,
7581      .fgt = FGT_DCCVAP,
7582      .accessfn = aa64_cacheop_poc_access },
7583    { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7584      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7585      .type = ARM_CP_NOP, .access = PL0_W,
7586      .fgt = FGT_DCCVAP,
7587      .accessfn = aa64_cacheop_poc_access },
7588    { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7589      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7590      .type = ARM_CP_NOP, .access = PL0_W,
7591      .fgt = FGT_DCCVADP,
7592      .accessfn = aa64_cacheop_poc_access },
7593    { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7594      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7595      .type = ARM_CP_NOP, .access = PL0_W,
7596      .fgt = FGT_DCCVADP,
7597      .accessfn = aa64_cacheop_poc_access },
7598    { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7599      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7600      .type = ARM_CP_NOP, .access = PL0_W,
7601      .fgt = FGT_DCCIVAC,
7602      .accessfn = aa64_cacheop_poc_access },
7603    { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7604      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7605      .type = ARM_CP_NOP, .access = PL0_W,
7606      .fgt = FGT_DCCIVAC,
7607      .accessfn = aa64_cacheop_poc_access },
7608    { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7609      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7610      .access = PL0_W, .type = ARM_CP_DC_GVA,
7611#ifndef CONFIG_USER_ONLY
7612      /* Avoid overhead of an access check that always passes in user-mode */
7613      .accessfn = aa64_zva_access,
7614      .fgt = FGT_DCZVA,
7615#endif
7616    },
7617    { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7618      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7619      .access = PL0_W, .type = ARM_CP_DC_GZVA,
7620#ifndef CONFIG_USER_ONLY
7621      /* Avoid overhead of an access check that always passes in user-mode */
7622      .accessfn = aa64_zva_access,
7623      .fgt = FGT_DCZVA,
7624#endif
7625    },
7626};
7627
7628static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7629                                     bool isread)
7630{
7631    uint64_t hcr = arm_hcr_el2_eff(env);
7632    int el = arm_current_el(env);
7633
7634    if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7635        if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7636            if (hcr & HCR_TGE) {
7637                return CP_ACCESS_TRAP_EL2;
7638            }
7639            return CP_ACCESS_TRAP;
7640        }
7641    } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7642        return CP_ACCESS_TRAP_EL2;
7643    }
7644    if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7645        return CP_ACCESS_TRAP_EL2;
7646    }
7647    if (el < 3
7648        && arm_feature(env, ARM_FEATURE_EL3)
7649        && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7650        return CP_ACCESS_TRAP_EL3;
7651    }
7652    return CP_ACCESS_OK;
7653}
7654
7655static const ARMCPRegInfo scxtnum_reginfo[] = {
7656    { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7657      .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7658      .access = PL0_RW, .accessfn = access_scxtnum,
7659      .fgt = FGT_SCXTNUM_EL0,
7660      .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7661    { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7662      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7663      .access = PL1_RW, .accessfn = access_scxtnum,
7664      .fgt = FGT_SCXTNUM_EL1,
7665      .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7666    { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7667      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7668      .access = PL2_RW, .accessfn = access_scxtnum,
7669      .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7670    { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7671      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7672      .access = PL3_RW,
7673      .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7674};
7675
7676static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7677                                 bool isread)
7678{
7679    if (arm_current_el(env) == 2 &&
7680        arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7681        return CP_ACCESS_TRAP_EL3;
7682    }
7683    return CP_ACCESS_OK;
7684}
7685
7686static const ARMCPRegInfo fgt_reginfo[] = {
7687    { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7688      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7689      .access = PL2_RW, .accessfn = access_fgt,
7690      .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7691    { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7692      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7693      .access = PL2_RW, .accessfn = access_fgt,
7694      .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7695    { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7696      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7697      .access = PL2_RW, .accessfn = access_fgt,
7698      .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7699    { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7700      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7701      .access = PL2_RW, .accessfn = access_fgt,
7702      .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7703    { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7704      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7705      .access = PL2_RW, .accessfn = access_fgt,
7706      .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7707};
7708#endif /* TARGET_AARCH64 */
7709
7710static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7711                                     bool isread)
7712{
7713    int el = arm_current_el(env);
7714
7715    if (el == 0) {
7716        uint64_t sctlr = arm_sctlr(env, el);
7717        if (!(sctlr & SCTLR_EnRCTX)) {
7718            return CP_ACCESS_TRAP;
7719        }
7720    } else if (el == 1) {
7721        uint64_t hcr = arm_hcr_el2_eff(env);
7722        if (hcr & HCR_NV) {
7723            return CP_ACCESS_TRAP_EL2;
7724        }
7725    }
7726    return CP_ACCESS_OK;
7727}
7728
7729static const ARMCPRegInfo predinv_reginfo[] = {
7730    { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7731      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7732      .fgt = FGT_CFPRCTX,
7733      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7734    { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7735      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7736      .fgt = FGT_DVPRCTX,
7737      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7738    { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7739      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7740      .fgt = FGT_CPPRCTX,
7741      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7742    /*
7743     * Note the AArch32 opcodes have a different OPC1.
7744     */
7745    { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7746      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7747      .fgt = FGT_CFPRCTX,
7748      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7749    { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7750      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7751      .fgt = FGT_DVPRCTX,
7752      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7753    { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7754      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7755      .fgt = FGT_CPPRCTX,
7756      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7757};
7758
7759static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7760{
7761    /* Read the high 32 bits of the current CCSIDR */
7762    return extract64(ccsidr_read(env, ri), 32, 32);
7763}
7764
7765static const ARMCPRegInfo ccsidr2_reginfo[] = {
7766    { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7767      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7768      .access = PL1_R,
7769      .accessfn = access_tid4,
7770      .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7771};
7772
7773static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7774                                       bool isread)
7775{
7776    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7777        return CP_ACCESS_TRAP_EL2;
7778    }
7779
7780    return CP_ACCESS_OK;
7781}
7782
7783static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7784                                       bool isread)
7785{
7786    if (arm_feature(env, ARM_FEATURE_V8)) {
7787        return access_aa64_tid3(env, ri, isread);
7788    }
7789
7790    return CP_ACCESS_OK;
7791}
7792
7793static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7794                                     bool isread)
7795{
7796    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7797        return CP_ACCESS_TRAP_EL2;
7798    }
7799
7800    return CP_ACCESS_OK;
7801}
7802
7803static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7804                                        const ARMCPRegInfo *ri, bool isread)
7805{
7806    /*
7807     * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7808     * in v7A, not in v8A.
7809     */
7810    if (!arm_feature(env, ARM_FEATURE_V8) &&
7811        arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7812        (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7813        return CP_ACCESS_TRAP_EL2;
7814    }
7815    return CP_ACCESS_OK;
7816}
7817
7818static const ARMCPRegInfo jazelle_regs[] = {
7819    { .name = "JIDR",
7820      .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7821      .access = PL1_R, .accessfn = access_jazelle,
7822      .type = ARM_CP_CONST, .resetvalue = 0 },
7823    { .name = "JOSCR",
7824      .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7825      .accessfn = access_joscr_jmcr,
7826      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7827    { .name = "JMCR",
7828      .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7829      .accessfn = access_joscr_jmcr,
7830      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7831};
7832
7833static const ARMCPRegInfo contextidr_el2 = {
7834    .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7835    .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7836    .access = PL2_RW,
7837    .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7838};
7839
7840static const ARMCPRegInfo vhe_reginfo[] = {
7841    { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7842      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7843      .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7844      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7845#ifndef CONFIG_USER_ONLY
7846    { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7847      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7848      .fieldoffset =
7849        offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7850      .type = ARM_CP_IO, .access = PL2_RW,
7851      .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7852    { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7853      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7854      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7855      .resetfn = gt_hv_timer_reset,
7856      .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7857    { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7858      .type = ARM_CP_IO,
7859      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7860      .access = PL2_RW,
7861      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7862      .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7863    { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7864      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7865      .type = ARM_CP_IO | ARM_CP_ALIAS,
7866      .access = PL2_RW, .accessfn = e2h_access,
7867      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7868      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7869    { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7870      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7871      .type = ARM_CP_IO | ARM_CP_ALIAS,
7872      .access = PL2_RW, .accessfn = e2h_access,
7873      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7874      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7875    { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7876      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7877      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7878      .access = PL2_RW, .accessfn = e2h_access,
7879      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7880    { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7881      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7882      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7883      .access = PL2_RW, .accessfn = e2h_access,
7884      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7885    { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7886      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7887      .type = ARM_CP_IO | ARM_CP_ALIAS,
7888      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7889      .access = PL2_RW, .accessfn = e2h_access,
7890      .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7891    { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7892      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7893      .type = ARM_CP_IO | ARM_CP_ALIAS,
7894      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7895      .access = PL2_RW, .accessfn = e2h_access,
7896      .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7897#endif
7898};
7899
7900#ifndef CONFIG_USER_ONLY
7901static const ARMCPRegInfo ats1e1_reginfo[] = {
7902    { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7903      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7904      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7905      .fgt = FGT_ATS1E1RP,
7906      .writefn = ats_write64 },
7907    { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7908      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7909      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7910      .fgt = FGT_ATS1E1WP,
7911      .writefn = ats_write64 },
7912};
7913
7914static const ARMCPRegInfo ats1cp_reginfo[] = {
7915    { .name = "ATS1CPRP",
7916      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7917      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7918      .writefn = ats_write },
7919    { .name = "ATS1CPWP",
7920      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7921      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7922      .writefn = ats_write },
7923};
7924#endif
7925
7926/*
7927 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7928 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7929 * is non-zero, which is never for ARMv7, optionally in ARMv8
7930 * and mandatorily for ARMv8.2 and up.
7931 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7932 * implementation is RAZ/WI we can ignore this detail, as we
7933 * do for ACTLR.
7934 */
7935static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7936    { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7937      .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7938      .access = PL1_RW, .accessfn = access_tacr,
7939      .type = ARM_CP_CONST, .resetvalue = 0 },
7940    { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7941      .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7942      .access = PL2_RW, .type = ARM_CP_CONST,
7943      .resetvalue = 0 },
7944};
7945
7946void register_cp_regs_for_features(ARMCPU *cpu)
7947{
7948    /* Register all the coprocessor registers based on feature bits */
7949    CPUARMState *env = &cpu->env;
7950    if (arm_feature(env, ARM_FEATURE_M)) {
7951        /* M profile has no coprocessor registers */
7952        return;
7953    }
7954
7955    define_arm_cp_regs(cpu, cp_reginfo);
7956    if (!arm_feature(env, ARM_FEATURE_V8)) {
7957        /*
7958         * Must go early as it is full of wildcards that may be
7959         * overridden by later definitions.
7960         */
7961        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7962    }
7963
7964    if (arm_feature(env, ARM_FEATURE_V6)) {
7965        /* The ID registers all have impdef reset values */
7966        ARMCPRegInfo v6_idregs[] = {
7967            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7968              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7969              .access = PL1_R, .type = ARM_CP_CONST,
7970              .accessfn = access_aa32_tid3,
7971              .resetvalue = cpu->isar.id_pfr0 },
7972            /*
7973             * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7974             * the value of the GIC field until after we define these regs.
7975             */
7976            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7977              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7978              .access = PL1_R, .type = ARM_CP_NO_RAW,
7979              .accessfn = access_aa32_tid3,
7980#ifdef CONFIG_USER_ONLY
7981              .type = ARM_CP_CONST,
7982              .resetvalue = cpu->isar.id_pfr1,
7983#else
7984              .type = ARM_CP_NO_RAW,
7985              .accessfn = access_aa32_tid3,
7986              .readfn = id_pfr1_read,
7987              .writefn = arm_cp_write_ignore
7988#endif
7989            },
7990            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7991              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7992              .access = PL1_R, .type = ARM_CP_CONST,
7993              .accessfn = access_aa32_tid3,
7994              .resetvalue = cpu->isar.id_dfr0 },
7995            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7996              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7997              .access = PL1_R, .type = ARM_CP_CONST,
7998              .accessfn = access_aa32_tid3,
7999              .resetvalue = cpu->id_afr0 },
8000            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8001              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8002              .access = PL1_R, .type = ARM_CP_CONST,
8003              .accessfn = access_aa32_tid3,
8004              .resetvalue = cpu->isar.id_mmfr0 },
8005            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8006              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8007              .access = PL1_R, .type = ARM_CP_CONST,
8008              .accessfn = access_aa32_tid3,
8009              .resetvalue = cpu->isar.id_mmfr1 },
8010            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8011              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8012              .access = PL1_R, .type = ARM_CP_CONST,
8013              .accessfn = access_aa32_tid3,
8014              .resetvalue = cpu->isar.id_mmfr2 },
8015            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8016              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8017              .access = PL1_R, .type = ARM_CP_CONST,
8018              .accessfn = access_aa32_tid3,
8019              .resetvalue = cpu->isar.id_mmfr3 },
8020            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8021              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8022              .access = PL1_R, .type = ARM_CP_CONST,
8023              .accessfn = access_aa32_tid3,
8024              .resetvalue = cpu->isar.id_isar0 },
8025            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8026              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8027              .access = PL1_R, .type = ARM_CP_CONST,
8028              .accessfn = access_aa32_tid3,
8029              .resetvalue = cpu->isar.id_isar1 },
8030            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8031              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8032              .access = PL1_R, .type = ARM_CP_CONST,
8033              .accessfn = access_aa32_tid3,
8034              .resetvalue = cpu->isar.id_isar2 },
8035            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8036              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8037              .access = PL1_R, .type = ARM_CP_CONST,
8038              .accessfn = access_aa32_tid3,
8039              .resetvalue = cpu->isar.id_isar3 },
8040            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8041              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8042              .access = PL1_R, .type = ARM_CP_CONST,
8043              .accessfn = access_aa32_tid3,
8044              .resetvalue = cpu->isar.id_isar4 },
8045            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8046              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8047              .access = PL1_R, .type = ARM_CP_CONST,
8048              .accessfn = access_aa32_tid3,
8049              .resetvalue = cpu->isar.id_isar5 },
8050            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8051              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8052              .access = PL1_R, .type = ARM_CP_CONST,
8053              .accessfn = access_aa32_tid3,
8054              .resetvalue = cpu->isar.id_mmfr4 },
8055            { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8056              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8057              .access = PL1_R, .type = ARM_CP_CONST,
8058              .accessfn = access_aa32_tid3,
8059              .resetvalue = cpu->isar.id_isar6 },
8060        };
8061        define_arm_cp_regs(cpu, v6_idregs);
8062        define_arm_cp_regs(cpu, v6_cp_reginfo);
8063    } else {
8064        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8065    }
8066    if (arm_feature(env, ARM_FEATURE_V6K)) {
8067        define_arm_cp_regs(cpu, v6k_cp_reginfo);
8068    }
8069    if (arm_feature(env, ARM_FEATURE_V7MP) &&
8070        !arm_feature(env, ARM_FEATURE_PMSA)) {
8071        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8072    }
8073    if (arm_feature(env, ARM_FEATURE_V7VE)) {
8074        define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8075    }
8076    if (arm_feature(env, ARM_FEATURE_V7)) {
8077        ARMCPRegInfo clidr = {
8078            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8079            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8080            .access = PL1_R, .type = ARM_CP_CONST,
8081            .accessfn = access_tid4,
8082            .fgt = FGT_CLIDR_EL1,
8083            .resetvalue = cpu->clidr
8084        };
8085        define_one_arm_cp_reg(cpu, &clidr);
8086        define_arm_cp_regs(cpu, v7_cp_reginfo);
8087        define_debug_regs(cpu);
8088        define_pmu_regs(cpu);
8089    } else {
8090        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8091    }
8092    if (arm_feature(env, ARM_FEATURE_V8)) {
8093        /*
8094         * v8 ID registers, which all have impdef reset values.
8095         * Note that within the ID register ranges the unused slots
8096         * must all RAZ, not UNDEF; future architecture versions may
8097         * define new registers here.
8098         * ID registers which are AArch64 views of the AArch32 ID registers
8099         * which already existed in v6 and v7 are handled elsewhere,
8100         * in v6_idregs[].
8101         */
8102        int i;
8103        ARMCPRegInfo v8_idregs[] = {
8104            /*
8105             * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8106             * emulation because we don't know the right value for the
8107             * GIC field until after we define these regs.
8108             */
8109            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8110              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8111              .access = PL1_R,
8112#ifdef CONFIG_USER_ONLY
8113              .type = ARM_CP_CONST,
8114              .resetvalue = cpu->isar.id_aa64pfr0
8115#else
8116              .type = ARM_CP_NO_RAW,
8117              .accessfn = access_aa64_tid3,
8118              .readfn = id_aa64pfr0_read,
8119              .writefn = arm_cp_write_ignore
8120#endif
8121            },
8122            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8123              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8124              .access = PL1_R, .type = ARM_CP_CONST,
8125              .accessfn = access_aa64_tid3,
8126              .resetvalue = cpu->isar.id_aa64pfr1},
8127            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8128              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8129              .access = PL1_R, .type = ARM_CP_CONST,
8130              .accessfn = access_aa64_tid3,
8131              .resetvalue = 0 },
8132            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8133              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8134              .access = PL1_R, .type = ARM_CP_CONST,
8135              .accessfn = access_aa64_tid3,
8136              .resetvalue = 0 },
8137            { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8138              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8139              .access = PL1_R, .type = ARM_CP_CONST,
8140              .accessfn = access_aa64_tid3,
8141              .resetvalue = cpu->isar.id_aa64zfr0 },
8142            { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8143              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8144              .access = PL1_R, .type = ARM_CP_CONST,
8145              .accessfn = access_aa64_tid3,
8146              .resetvalue = cpu->isar.id_aa64smfr0 },
8147            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8148              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8149              .access = PL1_R, .type = ARM_CP_CONST,
8150              .accessfn = access_aa64_tid3,
8151              .resetvalue = 0 },
8152            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8153              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8154              .access = PL1_R, .type = ARM_CP_CONST,
8155              .accessfn = access_aa64_tid3,
8156              .resetvalue = 0 },
8157            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8158              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8159              .access = PL1_R, .type = ARM_CP_CONST,
8160              .accessfn = access_aa64_tid3,
8161              .resetvalue = cpu->isar.id_aa64dfr0 },
8162            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8163              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8164              .access = PL1_R, .type = ARM_CP_CONST,
8165              .accessfn = access_aa64_tid3,
8166              .resetvalue = cpu->isar.id_aa64dfr1 },
8167            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8168              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8169              .access = PL1_R, .type = ARM_CP_CONST,
8170              .accessfn = access_aa64_tid3,
8171              .resetvalue = 0 },
8172            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8173              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8174              .access = PL1_R, .type = ARM_CP_CONST,
8175              .accessfn = access_aa64_tid3,
8176              .resetvalue = 0 },
8177            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8178              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8179              .access = PL1_R, .type = ARM_CP_CONST,
8180              .accessfn = access_aa64_tid3,
8181              .resetvalue = cpu->id_aa64afr0 },
8182            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8183              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8184              .access = PL1_R, .type = ARM_CP_CONST,
8185              .accessfn = access_aa64_tid3,
8186              .resetvalue = cpu->id_aa64afr1 },
8187            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8188              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8189              .access = PL1_R, .type = ARM_CP_CONST,
8190              .accessfn = access_aa64_tid3,
8191              .resetvalue = 0 },
8192            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8193              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8194              .access = PL1_R, .type = ARM_CP_CONST,
8195              .accessfn = access_aa64_tid3,
8196              .resetvalue = 0 },
8197            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8198              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8199              .access = PL1_R, .type = ARM_CP_CONST,
8200              .accessfn = access_aa64_tid3,
8201              .resetvalue = cpu->isar.id_aa64isar0 },
8202            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8203              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8204              .access = PL1_R, .type = ARM_CP_CONST,
8205              .accessfn = access_aa64_tid3,
8206              .resetvalue = cpu->isar.id_aa64isar1 },
8207            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8208              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8209              .access = PL1_R, .type = ARM_CP_CONST,
8210              .accessfn = access_aa64_tid3,
8211              .resetvalue = 0 },
8212            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8213              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8214              .access = PL1_R, .type = ARM_CP_CONST,
8215              .accessfn = access_aa64_tid3,
8216              .resetvalue = 0 },
8217            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8218              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8219              .access = PL1_R, .type = ARM_CP_CONST,
8220              .accessfn = access_aa64_tid3,
8221              .resetvalue = 0 },
8222            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8223              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8224              .access = PL1_R, .type = ARM_CP_CONST,
8225              .accessfn = access_aa64_tid3,
8226              .resetvalue = 0 },
8227            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8228              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8229              .access = PL1_R, .type = ARM_CP_CONST,
8230              .accessfn = access_aa64_tid3,
8231              .resetvalue = 0 },
8232            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8233              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8234              .access = PL1_R, .type = ARM_CP_CONST,
8235              .accessfn = access_aa64_tid3,
8236              .resetvalue = 0 },
8237            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8238              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8239              .access = PL1_R, .type = ARM_CP_CONST,
8240              .accessfn = access_aa64_tid3,
8241              .resetvalue = cpu->isar.id_aa64mmfr0 },
8242            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8243              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8244              .access = PL1_R, .type = ARM_CP_CONST,
8245              .accessfn = access_aa64_tid3,
8246              .resetvalue = cpu->isar.id_aa64mmfr1 },
8247            { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8248              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8249              .access = PL1_R, .type = ARM_CP_CONST,
8250              .accessfn = access_aa64_tid3,
8251              .resetvalue = cpu->isar.id_aa64mmfr2 },
8252            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8253              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8254              .access = PL1_R, .type = ARM_CP_CONST,
8255              .accessfn = access_aa64_tid3,
8256              .resetvalue = 0 },
8257            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8258              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8259              .access = PL1_R, .type = ARM_CP_CONST,
8260              .accessfn = access_aa64_tid3,
8261              .resetvalue = 0 },
8262            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8263              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8264              .access = PL1_R, .type = ARM_CP_CONST,
8265              .accessfn = access_aa64_tid3,
8266              .resetvalue = 0 },
8267            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8268              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8269              .access = PL1_R, .type = ARM_CP_CONST,
8270              .accessfn = access_aa64_tid3,
8271              .resetvalue = 0 },
8272            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8273              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8274              .access = PL1_R, .type = ARM_CP_CONST,
8275              .accessfn = access_aa64_tid3,
8276              .resetvalue = 0 },
8277            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8278              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8279              .access = PL1_R, .type = ARM_CP_CONST,
8280              .accessfn = access_aa64_tid3,
8281              .resetvalue = cpu->isar.mvfr0 },
8282            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8283              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8284              .access = PL1_R, .type = ARM_CP_CONST,
8285              .accessfn = access_aa64_tid3,
8286              .resetvalue = cpu->isar.mvfr1 },
8287            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8288              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8289              .access = PL1_R, .type = ARM_CP_CONST,
8290              .accessfn = access_aa64_tid3,
8291              .resetvalue = cpu->isar.mvfr2 },
8292            /*
8293             * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8294             * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8295             * as RAZ, since it is in the "reserved for future ID
8296             * registers, RAZ" part of the AArch32 encoding space.
8297             */
8298            { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8299              .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8300              .access = PL1_R, .type = ARM_CP_CONST,
8301              .accessfn = access_aa64_tid3,
8302              .resetvalue = 0 },
8303            { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8304              .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8305              .access = PL1_R, .type = ARM_CP_CONST,
8306              .accessfn = access_aa64_tid3,
8307              .resetvalue = 0 },
8308            { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8309              .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8310              .access = PL1_R, .type = ARM_CP_CONST,
8311              .accessfn = access_aa64_tid3,
8312              .resetvalue = 0 },
8313            /*
8314             * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8315             * they're also RAZ for AArch64, and in v8 are gradually
8316             * being filled with AArch64-view-of-AArch32-ID-register
8317             * for new ID registers.
8318             */
8319            { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8320              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8321              .access = PL1_R, .type = ARM_CP_CONST,
8322              .accessfn = access_aa64_tid3,
8323              .resetvalue = 0 },
8324            { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8325              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8326              .access = PL1_R, .type = ARM_CP_CONST,
8327              .accessfn = access_aa64_tid3,
8328              .resetvalue = cpu->isar.id_pfr2 },
8329            { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8330              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8331              .access = PL1_R, .type = ARM_CP_CONST,
8332              .accessfn = access_aa64_tid3,
8333              .resetvalue = cpu->isar.id_dfr1 },
8334            { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8335              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8336              .access = PL1_R, .type = ARM_CP_CONST,
8337              .accessfn = access_aa64_tid3,
8338              .resetvalue = cpu->isar.id_mmfr5 },
8339            { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8340              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8341              .access = PL1_R, .type = ARM_CP_CONST,
8342              .accessfn = access_aa64_tid3,
8343              .resetvalue = 0 },
8344            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8345              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8346              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8347              .fgt = FGT_PMCEIDN_EL0,
8348              .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8349            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8350              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8351              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8352              .fgt = FGT_PMCEIDN_EL0,
8353              .resetvalue = cpu->pmceid0 },
8354            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8355              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8356              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8357              .fgt = FGT_PMCEIDN_EL0,
8358              .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8359            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8360              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8361              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8362              .fgt = FGT_PMCEIDN_EL0,
8363              .resetvalue = cpu->pmceid1 },
8364        };
8365#ifdef CONFIG_USER_ONLY
8366        static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8367            { .name = "ID_AA64PFR0_EL1",
8368              .exported_bits = R_ID_AA64PFR0_FP_MASK |
8369                               R_ID_AA64PFR0_ADVSIMD_MASK |
8370                               R_ID_AA64PFR0_SVE_MASK |
8371                               R_ID_AA64PFR0_DIT_MASK,
8372              .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8373                            (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8374            { .name = "ID_AA64PFR1_EL1",
8375              .exported_bits = R_ID_AA64PFR1_BT_MASK |
8376                               R_ID_AA64PFR1_SSBS_MASK |
8377                               R_ID_AA64PFR1_MTE_MASK |
8378                               R_ID_AA64PFR1_SME_MASK },
8379            { .name = "ID_AA64PFR*_EL1_RESERVED",
8380              .is_glob = true },
8381            { .name = "ID_AA64ZFR0_EL1",
8382              .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8383                               R_ID_AA64ZFR0_AES_MASK |
8384                               R_ID_AA64ZFR0_BITPERM_MASK |
8385                               R_ID_AA64ZFR0_BFLOAT16_MASK |
8386                               R_ID_AA64ZFR0_SHA3_MASK |
8387                               R_ID_AA64ZFR0_SM4_MASK |
8388                               R_ID_AA64ZFR0_I8MM_MASK |
8389                               R_ID_AA64ZFR0_F32MM_MASK |
8390                               R_ID_AA64ZFR0_F64MM_MASK },
8391            { .name = "ID_AA64SMFR0_EL1",
8392              .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8393                               R_ID_AA64SMFR0_B16F32_MASK |
8394                               R_ID_AA64SMFR0_F16F32_MASK |
8395                               R_ID_AA64SMFR0_I8I32_MASK |
8396                               R_ID_AA64SMFR0_F64F64_MASK |
8397                               R_ID_AA64SMFR0_I16I64_MASK |
8398                               R_ID_AA64SMFR0_FA64_MASK },
8399            { .name = "ID_AA64MMFR0_EL1",
8400              .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8401              .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8402                            (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8403            { .name = "ID_AA64MMFR1_EL1",
8404              .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8405            { .name = "ID_AA64MMFR2_EL1",
8406              .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8407            { .name = "ID_AA64MMFR*_EL1_RESERVED",
8408              .is_glob = true },
8409            { .name = "ID_AA64DFR0_EL1",
8410              .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8411            { .name = "ID_AA64DFR1_EL1" },
8412            { .name = "ID_AA64DFR*_EL1_RESERVED",
8413              .is_glob = true },
8414            { .name = "ID_AA64AFR*",
8415              .is_glob = true },
8416            { .name = "ID_AA64ISAR0_EL1",
8417              .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8418                               R_ID_AA64ISAR0_SHA1_MASK |
8419                               R_ID_AA64ISAR0_SHA2_MASK |
8420                               R_ID_AA64ISAR0_CRC32_MASK |
8421                               R_ID_AA64ISAR0_ATOMIC_MASK |
8422                               R_ID_AA64ISAR0_RDM_MASK |
8423                               R_ID_AA64ISAR0_SHA3_MASK |
8424                               R_ID_AA64ISAR0_SM3_MASK |
8425                               R_ID_AA64ISAR0_SM4_MASK |
8426                               R_ID_AA64ISAR0_DP_MASK |
8427                               R_ID_AA64ISAR0_FHM_MASK |
8428                               R_ID_AA64ISAR0_TS_MASK |
8429                               R_ID_AA64ISAR0_RNDR_MASK },
8430            { .name = "ID_AA64ISAR1_EL1",
8431              .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8432                               R_ID_AA64ISAR1_APA_MASK |
8433                               R_ID_AA64ISAR1_API_MASK |
8434                               R_ID_AA64ISAR1_JSCVT_MASK |
8435                               R_ID_AA64ISAR1_FCMA_MASK |
8436                               R_ID_AA64ISAR1_LRCPC_MASK |
8437                               R_ID_AA64ISAR1_GPA_MASK |
8438                               R_ID_AA64ISAR1_GPI_MASK |
8439                               R_ID_AA64ISAR1_FRINTTS_MASK |
8440                               R_ID_AA64ISAR1_SB_MASK |
8441                               R_ID_AA64ISAR1_BF16_MASK |
8442                               R_ID_AA64ISAR1_DGH_MASK |
8443                               R_ID_AA64ISAR1_I8MM_MASK },
8444            { .name = "ID_AA64ISAR2_EL1",
8445              .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8446                               R_ID_AA64ISAR2_RPRES_MASK |
8447                               R_ID_AA64ISAR2_GPA3_MASK |
8448                               R_ID_AA64ISAR2_APA3_MASK },
8449            { .name = "ID_AA64ISAR*_EL1_RESERVED",
8450              .is_glob = true },
8451        };
8452        modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8453#endif
8454        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8455        if (!arm_feature(env, ARM_FEATURE_EL3) &&
8456            !arm_feature(env, ARM_FEATURE_EL2)) {
8457            ARMCPRegInfo rvbar = {
8458                .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8459                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8460                .access = PL1_R,
8461                .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8462            };
8463            define_one_arm_cp_reg(cpu, &rvbar);
8464        }
8465        define_arm_cp_regs(cpu, v8_idregs);
8466        define_arm_cp_regs(cpu, v8_cp_reginfo);
8467
8468        for (i = 4; i < 16; i++) {
8469            /*
8470             * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8471             * For pre-v8 cores there are RAZ patterns for these in
8472             * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8473             * v8 extends the "must RAZ" part of the ID register space
8474             * to also cover c0, 0, c{8-15}, {0-7}.
8475             * These are STATE_AA32 because in the AArch64 sysreg space
8476             * c4-c7 is where the AArch64 ID registers live (and we've
8477             * already defined those in v8_idregs[]), and c8-c15 are not
8478             * "must RAZ" for AArch64.
8479             */
8480            g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8481            ARMCPRegInfo v8_aa32_raz_idregs = {
8482                .name = name,
8483                .state = ARM_CP_STATE_AA32,
8484                .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8485                .access = PL1_R, .type = ARM_CP_CONST,
8486                .accessfn = access_aa64_tid3,
8487                .resetvalue = 0 };
8488            define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8489        }
8490    }
8491
8492    /*
8493     * Register the base EL2 cpregs.
8494     * Pre v8, these registers are implemented only as part of the
8495     * Virtualization Extensions (EL2 present).  Beginning with v8,
8496     * if EL2 is missing but EL3 is enabled, mostly these become
8497     * RES0 from EL3, with some specific exceptions.
8498     */
8499    if (arm_feature(env, ARM_FEATURE_EL2)
8500        || (arm_feature(env, ARM_FEATURE_EL3)
8501            && arm_feature(env, ARM_FEATURE_V8))) {
8502        uint64_t vmpidr_def = mpidr_read_val(env);
8503        ARMCPRegInfo vpidr_regs[] = {
8504            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8505              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8506              .access = PL2_RW, .accessfn = access_el3_aa32ns,
8507              .resetvalue = cpu->midr,
8508              .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8509              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8510            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8511              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8512              .access = PL2_RW, .resetvalue = cpu->midr,
8513              .type = ARM_CP_EL3_NO_EL2_C_NZ,
8514              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8515            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8516              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8517              .access = PL2_RW, .accessfn = access_el3_aa32ns,
8518              .resetvalue = vmpidr_def,
8519              .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8520              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8521            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8522              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8523              .access = PL2_RW, .resetvalue = vmpidr_def,
8524              .type = ARM_CP_EL3_NO_EL2_C_NZ,
8525              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8526        };
8527        /*
8528         * The only field of MDCR_EL2 that has a defined architectural reset
8529         * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8530         */
8531        ARMCPRegInfo mdcr_el2 = {
8532            .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8533            .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8534            .writefn = mdcr_el2_write,
8535            .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8536            .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8537        };
8538        define_one_arm_cp_reg(cpu, &mdcr_el2);
8539        define_arm_cp_regs(cpu, vpidr_regs);
8540        define_arm_cp_regs(cpu, el2_cp_reginfo);
8541        if (arm_feature(env, ARM_FEATURE_V8)) {
8542            define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8543        }
8544        if (cpu_isar_feature(aa64_sel2, cpu)) {
8545            define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8546        }
8547        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8548        if (!arm_feature(env, ARM_FEATURE_EL3)) {
8549            ARMCPRegInfo rvbar[] = {
8550                {
8551                    .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8552                    .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8553                    .access = PL2_R,
8554                    .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8555                },
8556                {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8557                    .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8558                    .access = PL2_R,
8559                    .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8560                },
8561            };
8562            define_arm_cp_regs(cpu, rvbar);
8563        }
8564    }
8565
8566    /* Register the base EL3 cpregs. */
8567    if (arm_feature(env, ARM_FEATURE_EL3)) {
8568        define_arm_cp_regs(cpu, el3_cp_reginfo);
8569        ARMCPRegInfo el3_regs[] = {
8570            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8571              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8572              .access = PL3_R,
8573              .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8574            },
8575            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8576              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8577              .access = PL3_RW,
8578              .raw_writefn = raw_write, .writefn = sctlr_write,
8579              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8580              .resetvalue = cpu->reset_sctlr },
8581        };
8582
8583        define_arm_cp_regs(cpu, el3_regs);
8584    }
8585    /*
8586     * The behaviour of NSACR is sufficiently various that we don't
8587     * try to describe it in a single reginfo:
8588     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8589     *     reads as constant 0xc00 from NS EL1 and NS EL2
8590     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8591     *  if v7 without EL3, register doesn't exist
8592     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8593     */
8594    if (arm_feature(env, ARM_FEATURE_EL3)) {
8595        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8596            static const ARMCPRegInfo nsacr = {
8597                .name = "NSACR", .type = ARM_CP_CONST,
8598                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8599                .access = PL1_RW, .accessfn = nsacr_access,
8600                .resetvalue = 0xc00
8601            };
8602            define_one_arm_cp_reg(cpu, &nsacr);
8603        } else {
8604            static const ARMCPRegInfo nsacr = {
8605                .name = "NSACR",
8606                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8607                .access = PL3_RW | PL1_R,
8608                .resetvalue = 0,
8609                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8610            };
8611            define_one_arm_cp_reg(cpu, &nsacr);
8612        }
8613    } else {
8614        if (arm_feature(env, ARM_FEATURE_V8)) {
8615            static const ARMCPRegInfo nsacr = {
8616                .name = "NSACR", .type = ARM_CP_CONST,
8617                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8618                .access = PL1_R,
8619                .resetvalue = 0xc00
8620            };
8621            define_one_arm_cp_reg(cpu, &nsacr);
8622        }
8623    }
8624
8625    if (arm_feature(env, ARM_FEATURE_PMSA)) {
8626        if (arm_feature(env, ARM_FEATURE_V6)) {
8627            /* PMSAv6 not implemented */
8628            assert(arm_feature(env, ARM_FEATURE_V7));
8629            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8630            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8631        } else {
8632            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8633        }
8634    } else {
8635        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8636        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8637        /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8638        if (cpu_isar_feature(aa32_hpd, cpu)) {
8639            define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8640        }
8641    }
8642    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8643        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8644    }
8645    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8646        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8647    }
8648    if (arm_feature(env, ARM_FEATURE_VAPA)) {
8649        define_arm_cp_regs(cpu, vapa_cp_reginfo);
8650    }
8651    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8652        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8653    }
8654    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8655        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8656    }
8657    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8658        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8659    }
8660    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8661        define_arm_cp_regs(cpu, omap_cp_reginfo);
8662    }
8663    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8664        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8665    }
8666    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8667        define_arm_cp_regs(cpu, xscale_cp_reginfo);
8668    }
8669    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8670        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8671    }
8672    if (arm_feature(env, ARM_FEATURE_LPAE)) {
8673        define_arm_cp_regs(cpu, lpae_cp_reginfo);
8674    }
8675    if (cpu_isar_feature(aa32_jazelle, cpu)) {
8676        define_arm_cp_regs(cpu, jazelle_regs);
8677    }
8678    /*
8679     * Slightly awkwardly, the OMAP and StrongARM cores need all of
8680     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8681     * be read-only (ie write causes UNDEF exception).
8682     */
8683    {
8684        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8685            /*
8686             * Pre-v8 MIDR space.
8687             * Note that the MIDR isn't a simple constant register because
8688             * of the TI925 behaviour where writes to another register can
8689             * cause the MIDR value to change.
8690             *
8691             * Unimplemented registers in the c15 0 0 0 space default to
8692             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8693             * and friends override accordingly.
8694             */
8695            { .name = "MIDR",
8696              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8697              .access = PL1_R, .resetvalue = cpu->midr,
8698              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8699              .readfn = midr_read,
8700              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8701              .type = ARM_CP_OVERRIDE },
8702            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8703            { .name = "DUMMY",
8704              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8705              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8706            { .name = "DUMMY",
8707              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8708              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8709            { .name = "DUMMY",
8710              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8711              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8712            { .name = "DUMMY",
8713              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8714              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8715            { .name = "DUMMY",
8716              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8717              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8718        };
8719        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8720            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8721              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8722              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8723              .fgt = FGT_MIDR_EL1,
8724              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8725              .readfn = midr_read },
8726            /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8727            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8728              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8729              .access = PL1_R, .resetvalue = cpu->midr },
8730            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8731              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8732              .access = PL1_R,
8733              .accessfn = access_aa64_tid1,
8734              .fgt = FGT_REVIDR_EL1,
8735              .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8736        };
8737        ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8738            .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8739            .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8740            .access = PL1_R, .resetvalue = cpu->midr
8741        };
8742        ARMCPRegInfo id_cp_reginfo[] = {
8743            /* These are common to v8 and pre-v8 */
8744            { .name = "CTR",
8745              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8746              .access = PL1_R, .accessfn = ctr_el0_access,
8747              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8748            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8749              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8750              .access = PL0_R, .accessfn = ctr_el0_access,
8751              .fgt = FGT_CTR_EL0,
8752              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8753            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8754            { .name = "TCMTR",
8755              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8756              .access = PL1_R,
8757              .accessfn = access_aa32_tid1,
8758              .type = ARM_CP_CONST, .resetvalue = 0 },
8759        };
8760        /* TLBTR is specific to VMSA */
8761        ARMCPRegInfo id_tlbtr_reginfo = {
8762              .name = "TLBTR",
8763              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8764              .access = PL1_R,
8765              .accessfn = access_aa32_tid1,
8766              .type = ARM_CP_CONST, .resetvalue = 0,
8767        };
8768        /* MPUIR is specific to PMSA V6+ */
8769        ARMCPRegInfo id_mpuir_reginfo = {
8770              .name = "MPUIR",
8771              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8772              .access = PL1_R, .type = ARM_CP_CONST,
8773              .resetvalue = cpu->pmsav7_dregion << 8
8774        };
8775        /* HMPUIR is specific to PMSA V8 */
8776        ARMCPRegInfo id_hmpuir_reginfo = {
8777            .name = "HMPUIR",
8778            .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8779            .access = PL2_R, .type = ARM_CP_CONST,
8780            .resetvalue = cpu->pmsav8r_hdregion
8781        };
8782        static const ARMCPRegInfo crn0_wi_reginfo = {
8783            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8784            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8785            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8786        };
8787#ifdef CONFIG_USER_ONLY
8788        static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8789            { .name = "MIDR_EL1",
8790              .exported_bits = R_MIDR_EL1_REVISION_MASK |
8791                               R_MIDR_EL1_PARTNUM_MASK |
8792                               R_MIDR_EL1_ARCHITECTURE_MASK |
8793                               R_MIDR_EL1_VARIANT_MASK |
8794                               R_MIDR_EL1_IMPLEMENTER_MASK },
8795            { .name = "REVIDR_EL1" },
8796        };
8797        modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8798#endif
8799        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8800            arm_feature(env, ARM_FEATURE_STRONGARM)) {
8801            size_t i;
8802            /*
8803             * Register the blanket "writes ignored" value first to cover the
8804             * whole space. Then update the specific ID registers to allow write
8805             * access, so that they ignore writes rather than causing them to
8806             * UNDEF.
8807             */
8808            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8809            for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8810                id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8811            }
8812            for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8813                id_cp_reginfo[i].access = PL1_RW;
8814            }
8815            id_mpuir_reginfo.access = PL1_RW;
8816            id_tlbtr_reginfo.access = PL1_RW;
8817        }
8818        if (arm_feature(env, ARM_FEATURE_V8)) {
8819            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8820            if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8821                define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8822            }
8823        } else {
8824            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8825        }
8826        define_arm_cp_regs(cpu, id_cp_reginfo);
8827        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8828            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8829        } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8830                   arm_feature(env, ARM_FEATURE_V8)) {
8831            uint32_t i = 0;
8832            char *tmp_string;
8833
8834            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8835            define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8836            define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8837
8838            /* Register alias is only valid for first 32 indexes */
8839            for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8840                uint8_t crm = 0b1000 | extract32(i, 1, 3);
8841                uint8_t opc1 = extract32(i, 4, 1);
8842                uint8_t opc2 = extract32(i, 0, 1) << 2;
8843
8844                tmp_string = g_strdup_printf("PRBAR%u", i);
8845                ARMCPRegInfo tmp_prbarn_reginfo = {
8846                    .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8847                    .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8848                    .access = PL1_RW, .resetvalue = 0,
8849                    .accessfn = access_tvm_trvm,
8850                    .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8851                };
8852                define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8853                g_free(tmp_string);
8854
8855                opc2 = extract32(i, 0, 1) << 2 | 0x1;
8856                tmp_string = g_strdup_printf("PRLAR%u", i);
8857                ARMCPRegInfo tmp_prlarn_reginfo = {
8858                    .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8859                    .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8860                    .access = PL1_RW, .resetvalue = 0,
8861                    .accessfn = access_tvm_trvm,
8862                    .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8863                };
8864                define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8865                g_free(tmp_string);
8866            }
8867
8868            /* Register alias is only valid for first 32 indexes */
8869            for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8870                uint8_t crm = 0b1000 | extract32(i, 1, 3);
8871                uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8872                uint8_t opc2 = extract32(i, 0, 1) << 2;
8873
8874                tmp_string = g_strdup_printf("HPRBAR%u", i);
8875                ARMCPRegInfo tmp_hprbarn_reginfo = {
8876                    .name = tmp_string,
8877                    .type = ARM_CP_NO_RAW,
8878                    .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8879                    .access = PL2_RW, .resetvalue = 0,
8880                    .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8881                };
8882                define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8883                g_free(tmp_string);
8884
8885                opc2 = extract32(i, 0, 1) << 2 | 0x1;
8886                tmp_string = g_strdup_printf("HPRLAR%u", i);
8887                ARMCPRegInfo tmp_hprlarn_reginfo = {
8888                    .name = tmp_string,
8889                    .type = ARM_CP_NO_RAW,
8890                    .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8891                    .access = PL2_RW, .resetvalue = 0,
8892                    .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8893                };
8894                define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8895                g_free(tmp_string);
8896            }
8897        } else if (arm_feature(env, ARM_FEATURE_V7)) {
8898            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8899        }
8900    }
8901
8902    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8903        ARMCPRegInfo mpidr_cp_reginfo[] = {
8904            { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8905              .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8906              .fgt = FGT_MPIDR_EL1,
8907              .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8908        };
8909#ifdef CONFIG_USER_ONLY
8910        static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8911            { .name = "MPIDR_EL1",
8912              .fixed_bits = 0x0000000080000000 },
8913        };
8914        modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8915#endif
8916        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8917    }
8918
8919    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8920        ARMCPRegInfo auxcr_reginfo[] = {
8921            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8922              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8923              .access = PL1_RW, .accessfn = access_tacr,
8924              .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8925            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8926              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8927              .access = PL2_RW, .type = ARM_CP_CONST,
8928              .resetvalue = 0 },
8929            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8930              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8931              .access = PL3_RW, .type = ARM_CP_CONST,
8932              .resetvalue = 0 },
8933        };
8934        define_arm_cp_regs(cpu, auxcr_reginfo);
8935        if (cpu_isar_feature(aa32_ac2, cpu)) {
8936            define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8937        }
8938    }
8939
8940    if (arm_feature(env, ARM_FEATURE_CBAR)) {
8941        /*
8942         * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8943         * There are two flavours:
8944         *  (1) older 32-bit only cores have a simple 32-bit CBAR
8945         *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8946         *      32-bit register visible to AArch32 at a different encoding
8947         *      to the "flavour 1" register and with the bits rearranged to
8948         *      be able to squash a 64-bit address into the 32-bit view.
8949         * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8950         * in future if we support AArch32-only configs of some of the
8951         * AArch64 cores we might need to add a specific feature flag
8952         * to indicate cores with "flavour 2" CBAR.
8953         */
8954        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8955            /* 32 bit view is [31:18] 0...0 [43:32]. */
8956            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8957                | extract64(cpu->reset_cbar, 32, 12);
8958            ARMCPRegInfo cbar_reginfo[] = {
8959                { .name = "CBAR",
8960                  .type = ARM_CP_CONST,
8961                  .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8962                  .access = PL1_R, .resetvalue = cbar32 },
8963                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8964                  .type = ARM_CP_CONST,
8965                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8966                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
8967            };
8968            /* We don't implement a r/w 64 bit CBAR currently */
8969            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8970            define_arm_cp_regs(cpu, cbar_reginfo);
8971        } else {
8972            ARMCPRegInfo cbar = {
8973                .name = "CBAR",
8974                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8975                .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8976                .fieldoffset = offsetof(CPUARMState,
8977                                        cp15.c15_config_base_address)
8978            };
8979            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8980                cbar.access = PL1_R;
8981                cbar.fieldoffset = 0;
8982                cbar.type = ARM_CP_CONST;
8983            }
8984            define_one_arm_cp_reg(cpu, &cbar);
8985        }
8986    }
8987
8988    if (arm_feature(env, ARM_FEATURE_VBAR)) {
8989        static const ARMCPRegInfo vbar_cp_reginfo[] = {
8990            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8991              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8992              .access = PL1_RW, .writefn = vbar_write,
8993              .fgt = FGT_VBAR_EL1,
8994              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8995                                     offsetof(CPUARMState, cp15.vbar_ns) },
8996              .resetvalue = 0 },
8997        };
8998        define_arm_cp_regs(cpu, vbar_cp_reginfo);
8999    }
9000
9001    /* Generic registers whose values depend on the implementation */
9002    {
9003        ARMCPRegInfo sctlr = {
9004            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9005            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9006            .access = PL1_RW, .accessfn = access_tvm_trvm,
9007            .fgt = FGT_SCTLR_EL1,
9008            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9009                                   offsetof(CPUARMState, cp15.sctlr_ns) },
9010            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9011            .raw_writefn = raw_write,
9012        };
9013        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9014            /*
9015             * Normally we would always end the TB on an SCTLR write, but Linux
9016             * arch/arm/mach-pxa/sleep.S expects two instructions following
9017             * an MMU enable to execute from cache.  Imitate this behaviour.
9018             */
9019            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9020        }
9021        define_one_arm_cp_reg(cpu, &sctlr);
9022
9023        if (arm_feature(env, ARM_FEATURE_PMSA) &&
9024            arm_feature(env, ARM_FEATURE_V8)) {
9025            ARMCPRegInfo vsctlr = {
9026                .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9027                .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9028                .access = PL2_RW, .resetvalue = 0x0,
9029                .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9030            };
9031            define_one_arm_cp_reg(cpu, &vsctlr);
9032        }
9033    }
9034
9035    if (cpu_isar_feature(aa64_lor, cpu)) {
9036        define_arm_cp_regs(cpu, lor_reginfo);
9037    }
9038    if (cpu_isar_feature(aa64_pan, cpu)) {
9039        define_one_arm_cp_reg(cpu, &pan_reginfo);
9040    }
9041#ifndef CONFIG_USER_ONLY
9042    if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9043        define_arm_cp_regs(cpu, ats1e1_reginfo);
9044    }
9045    if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9046        define_arm_cp_regs(cpu, ats1cp_reginfo);
9047    }
9048#endif
9049    if (cpu_isar_feature(aa64_uao, cpu)) {
9050        define_one_arm_cp_reg(cpu, &uao_reginfo);
9051    }
9052
9053    if (cpu_isar_feature(aa64_dit, cpu)) {
9054        define_one_arm_cp_reg(cpu, &dit_reginfo);
9055    }
9056    if (cpu_isar_feature(aa64_ssbs, cpu)) {
9057        define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9058    }
9059    if (cpu_isar_feature(any_ras, cpu)) {
9060        define_arm_cp_regs(cpu, minimal_ras_reginfo);
9061    }
9062
9063    if (cpu_isar_feature(aa64_vh, cpu) ||
9064        cpu_isar_feature(aa64_debugv8p2, cpu)) {
9065        define_one_arm_cp_reg(cpu, &contextidr_el2);
9066    }
9067    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9068        define_arm_cp_regs(cpu, vhe_reginfo);
9069    }
9070
9071    if (cpu_isar_feature(aa64_sve, cpu)) {
9072        define_arm_cp_regs(cpu, zcr_reginfo);
9073    }
9074
9075    if (cpu_isar_feature(aa64_hcx, cpu)) {
9076        define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9077    }
9078
9079#ifdef TARGET_AARCH64
9080    if (cpu_isar_feature(aa64_sme, cpu)) {
9081        define_arm_cp_regs(cpu, sme_reginfo);
9082    }
9083    if (cpu_isar_feature(aa64_pauth, cpu)) {
9084        define_arm_cp_regs(cpu, pauth_reginfo);
9085    }
9086    if (cpu_isar_feature(aa64_rndr, cpu)) {
9087        define_arm_cp_regs(cpu, rndr_reginfo);
9088    }
9089    if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9090        define_arm_cp_regs(cpu, tlbirange_reginfo);
9091    }
9092    if (cpu_isar_feature(aa64_tlbios, cpu)) {
9093        define_arm_cp_regs(cpu, tlbios_reginfo);
9094    }
9095#ifndef CONFIG_USER_ONLY
9096    /* Data Cache clean instructions up to PoP */
9097    if (cpu_isar_feature(aa64_dcpop, cpu)) {
9098        define_one_arm_cp_reg(cpu, dcpop_reg);
9099
9100        if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9101            define_one_arm_cp_reg(cpu, dcpodp_reg);
9102        }
9103    }
9104#endif /*CONFIG_USER_ONLY*/
9105
9106    /*
9107     * If full MTE is enabled, add all of the system registers.
9108     * If only "instructions available at EL0" are enabled,
9109     * then define only a RAZ/WI version of PSTATE.TCO.
9110     */
9111    if (cpu_isar_feature(aa64_mte, cpu)) {
9112        define_arm_cp_regs(cpu, mte_reginfo);
9113        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9114    } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9115        define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9116        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9117    }
9118
9119    if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9120        define_arm_cp_regs(cpu, scxtnum_reginfo);
9121    }
9122
9123    if (cpu_isar_feature(aa64_fgt, cpu)) {
9124        define_arm_cp_regs(cpu, fgt_reginfo);
9125    }
9126#endif
9127
9128    if (cpu_isar_feature(any_predinv, cpu)) {
9129        define_arm_cp_regs(cpu, predinv_reginfo);
9130    }
9131
9132    if (cpu_isar_feature(any_ccidx, cpu)) {
9133        define_arm_cp_regs(cpu, ccsidr2_reginfo);
9134    }
9135
9136#ifndef CONFIG_USER_ONLY
9137    /*
9138     * Register redirections and aliases must be done last,
9139     * after the registers from the other extensions have been defined.
9140     */
9141    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9142        define_arm_vh_e2h_redirects_aliases(cpu);
9143    }
9144#endif
9145}
9146
9147/* Sort alphabetically by type name, except for "any". */
9148static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9149{
9150    ObjectClass *class_a = (ObjectClass *)a;
9151    ObjectClass *class_b = (ObjectClass *)b;
9152    const char *name_a, *name_b;
9153
9154    name_a = object_class_get_name(class_a);
9155    name_b = object_class_get_name(class_b);
9156    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9157        return 1;
9158    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9159        return -1;
9160    } else {
9161        return strcmp(name_a, name_b);
9162    }
9163}
9164
9165static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9166{
9167    ObjectClass *oc = data;
9168    CPUClass *cc = CPU_CLASS(oc);
9169    const char *typename;
9170    char *name;
9171
9172    typename = object_class_get_name(oc);
9173    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9174    if (cc->deprecation_note) {
9175        qemu_printf("  %s (deprecated)\n", name);
9176    } else {
9177        qemu_printf("  %s\n", name);
9178    }
9179    g_free(name);
9180}
9181
9182void arm_cpu_list(void)
9183{
9184    GSList *list;
9185
9186    list = object_class_get_list(TYPE_ARM_CPU, false);
9187    list = g_slist_sort(list, arm_cpu_list_compare);
9188    qemu_printf("Available CPUs:\n");
9189    g_slist_foreach(list, arm_cpu_list_entry, NULL);
9190    g_slist_free(list);
9191}
9192
9193/*
9194 * Private utility function for define_one_arm_cp_reg_with_opaque():
9195 * add a single reginfo struct to the hash table.
9196 */
9197static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9198                                   void *opaque, CPState state,
9199                                   CPSecureState secstate,
9200                                   int crm, int opc1, int opc2,
9201                                   const char *name)
9202{
9203    CPUARMState *env = &cpu->env;
9204    uint32_t key;
9205    ARMCPRegInfo *r2;
9206    bool is64 = r->type & ARM_CP_64BIT;
9207    bool ns = secstate & ARM_CP_SECSTATE_NS;
9208    int cp = r->cp;
9209    size_t name_len;
9210    bool make_const;
9211
9212    switch (state) {
9213    case ARM_CP_STATE_AA32:
9214        /* We assume it is a cp15 register if the .cp field is left unset. */
9215        if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9216            cp = 15;
9217        }
9218        key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9219        break;
9220    case ARM_CP_STATE_AA64:
9221        /*
9222         * To allow abbreviation of ARMCPRegInfo definitions, we treat
9223         * cp == 0 as equivalent to the value for "standard guest-visible
9224         * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9225         * in their AArch64 view (the .cp value may be non-zero for the
9226         * benefit of the AArch32 view).
9227         */
9228        if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9229            cp = CP_REG_ARM64_SYSREG_CP;
9230        }
9231        key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9232        break;
9233    default:
9234        g_assert_not_reached();
9235    }
9236
9237    /* Overriding of an existing definition must be explicitly requested. */
9238    if (!(r->type & ARM_CP_OVERRIDE)) {
9239        const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9240        if (oldreg) {
9241            assert(oldreg->type & ARM_CP_OVERRIDE);
9242        }
9243    }
9244
9245    /*
9246     * Eliminate registers that are not present because the EL is missing.
9247     * Doing this here makes it easier to put all registers for a given
9248     * feature into the same ARMCPRegInfo array and define them all at once.
9249     */
9250    make_const = false;
9251    if (arm_feature(env, ARM_FEATURE_EL3)) {
9252        /*
9253         * An EL2 register without EL2 but with EL3 is (usually) RES0.
9254         * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9255         */
9256        int min_el = ctz32(r->access) / 2;
9257        if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9258            if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9259                return;
9260            }
9261            make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9262        }
9263    } else {
9264        CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9265                                 ? PL2_RW : PL1_RW);
9266        if ((r->access & max_el) == 0) {
9267            return;
9268        }
9269    }
9270
9271    /* Combine cpreg and name into one allocation. */
9272    name_len = strlen(name) + 1;
9273    r2 = g_malloc(sizeof(*r2) + name_len);
9274    *r2 = *r;
9275    r2->name = memcpy(r2 + 1, name, name_len);
9276
9277    /*
9278     * Update fields to match the instantiation, overwiting wildcards
9279     * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9280     */
9281    r2->cp = cp;
9282    r2->crm = crm;
9283    r2->opc1 = opc1;
9284    r2->opc2 = opc2;
9285    r2->state = state;
9286    r2->secure = secstate;
9287    if (opaque) {
9288        r2->opaque = opaque;
9289    }
9290
9291    if (make_const) {
9292        /* This should not have been a very special register to begin. */
9293        int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9294        assert(old_special == 0 || old_special == ARM_CP_NOP);
9295        /*
9296         * Set the special function to CONST, retaining the other flags.
9297         * This is important for e.g. ARM_CP_SVE so that we still
9298         * take the SVE trap if CPTR_EL3.EZ == 0.
9299         */
9300        r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9301        /*
9302         * Usually, these registers become RES0, but there are a few
9303         * special cases like VPIDR_EL2 which have a constant non-zero
9304         * value with writes ignored.
9305         */
9306        if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9307            r2->resetvalue = 0;
9308        }
9309        /*
9310         * ARM_CP_CONST has precedence, so removing the callbacks and
9311         * offsets are not strictly necessary, but it is potentially
9312         * less confusing to debug later.
9313         */
9314        r2->readfn = NULL;
9315        r2->writefn = NULL;
9316        r2->raw_readfn = NULL;
9317        r2->raw_writefn = NULL;
9318        r2->resetfn = NULL;
9319        r2->fieldoffset = 0;
9320        r2->bank_fieldoffsets[0] = 0;
9321        r2->bank_fieldoffsets[1] = 0;
9322    } else {
9323        bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9324
9325        if (isbanked) {
9326            /*
9327             * Register is banked (using both entries in array).
9328             * Overwriting fieldoffset as the array is only used to define
9329             * banked registers but later only fieldoffset is used.
9330             */
9331            r2->fieldoffset = r->bank_fieldoffsets[ns];
9332        }
9333        if (state == ARM_CP_STATE_AA32) {
9334            if (isbanked) {
9335                /*
9336                 * If the register is banked then we don't need to migrate or
9337                 * reset the 32-bit instance in certain cases:
9338                 *
9339                 * 1) If the register has both 32-bit and 64-bit instances
9340                 *    then we can count on the 64-bit instance taking care
9341                 *    of the non-secure bank.
9342                 * 2) If ARMv8 is enabled then we can count on a 64-bit
9343                 *    version taking care of the secure bank.  This requires
9344                 *    that separate 32 and 64-bit definitions are provided.
9345                 */
9346                if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9347                    (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9348                    r2->type |= ARM_CP_ALIAS;
9349                }
9350            } else if ((secstate != r->secure) && !ns) {
9351                /*
9352                 * The register is not banked so we only want to allow
9353                 * migration of the non-secure instance.
9354                 */
9355                r2->type |= ARM_CP_ALIAS;
9356            }
9357
9358            if (HOST_BIG_ENDIAN &&
9359                r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9360                r2->fieldoffset += sizeof(uint32_t);
9361            }
9362        }
9363    }
9364
9365    /*
9366     * By convention, for wildcarded registers only the first
9367     * entry is used for migration; the others are marked as
9368     * ALIAS so we don't try to transfer the register
9369     * multiple times. Special registers (ie NOP/WFI) are
9370     * never migratable and not even raw-accessible.
9371     */
9372    if (r2->type & ARM_CP_SPECIAL_MASK) {
9373        r2->type |= ARM_CP_NO_RAW;
9374    }
9375    if (((r->crm == CP_ANY) && crm != 0) ||
9376        ((r->opc1 == CP_ANY) && opc1 != 0) ||
9377        ((r->opc2 == CP_ANY) && opc2 != 0)) {
9378        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9379    }
9380
9381    /*
9382     * Check that raw accesses are either forbidden or handled. Note that
9383     * we can't assert this earlier because the setup of fieldoffset for
9384     * banked registers has to be done first.
9385     */
9386    if (!(r2->type & ARM_CP_NO_RAW)) {
9387        assert(!raw_accessors_invalid(r2));
9388    }
9389
9390    g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9391}
9392
9393
9394void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9395                                       const ARMCPRegInfo *r, void *opaque)
9396{
9397    /*
9398     * Define implementations of coprocessor registers.
9399     * We store these in a hashtable because typically
9400     * there are less than 150 registers in a space which
9401     * is 16*16*16*8*8 = 262144 in size.
9402     * Wildcarding is supported for the crm, opc1 and opc2 fields.
9403     * If a register is defined twice then the second definition is
9404     * used, so this can be used to define some generic registers and
9405     * then override them with implementation specific variations.
9406     * At least one of the original and the second definition should
9407     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9408     * against accidental use.
9409     *
9410     * The state field defines whether the register is to be
9411     * visible in the AArch32 or AArch64 execution state. If the
9412     * state is set to ARM_CP_STATE_BOTH then we synthesise a
9413     * reginfo structure for the AArch32 view, which sees the lower
9414     * 32 bits of the 64 bit register.
9415     *
9416     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9417     * be wildcarded. AArch64 registers are always considered to be 64
9418     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9419     * the register, if any.
9420     */
9421    int crm, opc1, opc2;
9422    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9423    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9424    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9425    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9426    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9427    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9428    CPState state;
9429
9430    /* 64 bit registers have only CRm and Opc1 fields */
9431    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9432    /* op0 only exists in the AArch64 encodings */
9433    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9434    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9435    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9436    /*
9437     * This API is only for Arm's system coprocessors (14 and 15) or
9438     * (M-profile or v7A-and-earlier only) for implementation defined
9439     * coprocessors in the range 0..7.  Our decode assumes this, since
9440     * 8..13 can be used for other insns including VFP and Neon. See
9441     * valid_cp() in translate.c.  Assert here that we haven't tried
9442     * to use an invalid coprocessor number.
9443     */
9444    switch (r->state) {
9445    case ARM_CP_STATE_BOTH:
9446        /* 0 has a special meaning, but otherwise the same rules as AA32. */
9447        if (r->cp == 0) {
9448            break;
9449        }
9450        /* fall through */
9451    case ARM_CP_STATE_AA32:
9452        if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9453            !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9454            assert(r->cp >= 14 && r->cp <= 15);
9455        } else {
9456            assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9457        }
9458        break;
9459    case ARM_CP_STATE_AA64:
9460        assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9461        break;
9462    default:
9463        g_assert_not_reached();
9464    }
9465    /*
9466     * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9467     * encodes a minimum access level for the register. We roll this
9468     * runtime check into our general permission check code, so check
9469     * here that the reginfo's specified permissions are strict enough
9470     * to encompass the generic architectural permission check.
9471     */
9472    if (r->state != ARM_CP_STATE_AA32) {
9473        CPAccessRights mask;
9474        switch (r->opc1) {
9475        case 0:
9476            /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9477            mask = PL0U_R | PL1_RW;
9478            break;
9479        case 1: case 2:
9480            /* min_EL EL1 */
9481            mask = PL1_RW;
9482            break;
9483        case 3:
9484            /* min_EL EL0 */
9485            mask = PL0_RW;
9486            break;
9487        case 4:
9488        case 5:
9489            /* min_EL EL2 */
9490            mask = PL2_RW;
9491            break;
9492        case 6:
9493            /* min_EL EL3 */
9494            mask = PL3_RW;
9495            break;
9496        case 7:
9497            /* min_EL EL1, secure mode only (we don't check the latter) */
9498            mask = PL1_RW;
9499            break;
9500        default:
9501            /* broken reginfo with out-of-range opc1 */
9502            g_assert_not_reached();
9503        }
9504        /* assert our permissions are not too lax (stricter is fine) */
9505        assert((r->access & ~mask) == 0);
9506    }
9507
9508    /*
9509     * Check that the register definition has enough info to handle
9510     * reads and writes if they are permitted.
9511     */
9512    if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9513        if (r->access & PL3_R) {
9514            assert((r->fieldoffset ||
9515                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9516                   r->readfn);
9517        }
9518        if (r->access & PL3_W) {
9519            assert((r->fieldoffset ||
9520                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9521                   r->writefn);
9522        }
9523    }
9524
9525    for (crm = crmmin; crm <= crmmax; crm++) {
9526        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9527            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9528                for (state = ARM_CP_STATE_AA32;
9529                     state <= ARM_CP_STATE_AA64; state++) {
9530                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9531                        continue;
9532                    }
9533                    if (state == ARM_CP_STATE_AA32) {
9534                        /*
9535                         * Under AArch32 CP registers can be common
9536                         * (same for secure and non-secure world) or banked.
9537                         */
9538                        char *name;
9539
9540                        switch (r->secure) {
9541                        case ARM_CP_SECSTATE_S:
9542                        case ARM_CP_SECSTATE_NS:
9543                            add_cpreg_to_hashtable(cpu, r, opaque, state,
9544                                                   r->secure, crm, opc1, opc2,
9545                                                   r->name);
9546                            break;
9547                        case ARM_CP_SECSTATE_BOTH:
9548                            name = g_strdup_printf("%s_S", r->name);
9549                            add_cpreg_to_hashtable(cpu, r, opaque, state,
9550                                                   ARM_CP_SECSTATE_S,
9551                                                   crm, opc1, opc2, name);
9552                            g_free(name);
9553                            add_cpreg_to_hashtable(cpu, r, opaque, state,
9554                                                   ARM_CP_SECSTATE_NS,
9555                                                   crm, opc1, opc2, r->name);
9556                            break;
9557                        default:
9558                            g_assert_not_reached();
9559                        }
9560                    } else {
9561                        /*
9562                         * AArch64 registers get mapped to non-secure instance
9563                         * of AArch32
9564                         */
9565                        add_cpreg_to_hashtable(cpu, r, opaque, state,
9566                                               ARM_CP_SECSTATE_NS,
9567                                               crm, opc1, opc2, r->name);
9568                    }
9569                }
9570            }
9571        }
9572    }
9573}
9574
9575/* Define a whole list of registers */
9576void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9577                                        void *opaque, size_t len)
9578{
9579    size_t i;
9580    for (i = 0; i < len; ++i) {
9581        define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9582    }
9583}
9584
9585/*
9586 * Modify ARMCPRegInfo for access from userspace.
9587 *
9588 * This is a data driven modification directed by
9589 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9590 * user-space cannot alter any values and dynamic values pertaining to
9591 * execution state are hidden from user space view anyway.
9592 */
9593void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9594                                 const ARMCPRegUserSpaceInfo *mods,
9595                                 size_t mods_len)
9596{
9597    for (size_t mi = 0; mi < mods_len; ++mi) {
9598        const ARMCPRegUserSpaceInfo *m = mods + mi;
9599        GPatternSpec *pat = NULL;
9600
9601        if (m->is_glob) {
9602            pat = g_pattern_spec_new(m->name);
9603        }
9604        for (size_t ri = 0; ri < regs_len; ++ri) {
9605            ARMCPRegInfo *r = regs + ri;
9606
9607            if (pat && g_pattern_match_string(pat, r->name)) {
9608                r->type = ARM_CP_CONST;
9609                r->access = PL0U_R;
9610                r->resetvalue = 0;
9611                /* continue */
9612            } else if (strcmp(r->name, m->name) == 0) {
9613                r->type = ARM_CP_CONST;
9614                r->access = PL0U_R;
9615                r->resetvalue &= m->exported_bits;
9616                r->resetvalue |= m->fixed_bits;
9617                break;
9618            }
9619        }
9620        if (pat) {
9621            g_pattern_spec_free(pat);
9622        }
9623    }
9624}
9625
9626const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9627{
9628    return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9629}
9630
9631void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9632                         uint64_t value)
9633{
9634    /* Helper coprocessor write function for write-ignore registers */
9635}
9636
9637uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9638{
9639    /* Helper coprocessor write function for read-as-zero registers */
9640    return 0;
9641}
9642
9643void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9644{
9645    /* Helper coprocessor reset function for do-nothing-on-reset registers */
9646}
9647
9648static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9649{
9650    /*
9651     * Return true if it is not valid for us to switch to
9652     * this CPU mode (ie all the UNPREDICTABLE cases in
9653     * the ARM ARM CPSRWriteByInstr pseudocode).
9654     */
9655
9656    /* Changes to or from Hyp via MSR and CPS are illegal. */
9657    if (write_type == CPSRWriteByInstr &&
9658        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9659         mode == ARM_CPU_MODE_HYP)) {
9660        return 1;
9661    }
9662
9663    switch (mode) {
9664    case ARM_CPU_MODE_USR:
9665        return 0;
9666    case ARM_CPU_MODE_SYS:
9667    case ARM_CPU_MODE_SVC:
9668    case ARM_CPU_MODE_ABT:
9669    case ARM_CPU_MODE_UND:
9670    case ARM_CPU_MODE_IRQ:
9671    case ARM_CPU_MODE_FIQ:
9672        /*
9673         * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9674         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9675         */
9676        /*
9677         * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9678         * and CPS are treated as illegal mode changes.
9679         */
9680        if (write_type == CPSRWriteByInstr &&
9681            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9682            (arm_hcr_el2_eff(env) & HCR_TGE)) {
9683            return 1;
9684        }
9685        return 0;
9686    case ARM_CPU_MODE_HYP:
9687        return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9688    case ARM_CPU_MODE_MON:
9689        return arm_current_el(env) < 3;
9690    default:
9691        return 1;
9692    }
9693}
9694
9695uint32_t cpsr_read(CPUARMState *env)
9696{
9697    int ZF;
9698    ZF = (env->ZF == 0);
9699    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9700        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9701        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9702        | ((env->condexec_bits & 0xfc) << 8)
9703        | (env->GE << 16) | (env->daif & CPSR_AIF);
9704}
9705
9706void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9707                CPSRWriteType write_type)
9708{
9709    uint32_t changed_daif;
9710    bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9711        (mask & (CPSR_M | CPSR_E | CPSR_IL));
9712
9713    if (mask & CPSR_NZCV) {
9714        env->ZF = (~val) & CPSR_Z;
9715        env->NF = val;
9716        env->CF = (val >> 29) & 1;
9717        env->VF = (val << 3) & 0x80000000;
9718    }
9719    if (mask & CPSR_Q) {
9720        env->QF = ((val & CPSR_Q) != 0);
9721    }
9722    if (mask & CPSR_T) {
9723        env->thumb = ((val & CPSR_T) != 0);
9724    }
9725    if (mask & CPSR_IT_0_1) {
9726        env->condexec_bits &= ~3;
9727        env->condexec_bits |= (val >> 25) & 3;
9728    }
9729    if (mask & CPSR_IT_2_7) {
9730        env->condexec_bits &= 3;
9731        env->condexec_bits |= (val >> 8) & 0xfc;
9732    }
9733    if (mask & CPSR_GE) {
9734        env->GE = (val >> 16) & 0xf;
9735    }
9736
9737    /*
9738     * In a V7 implementation that includes the security extensions but does
9739     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9740     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9741     * bits respectively.
9742     *
9743     * In a V8 implementation, it is permitted for privileged software to
9744     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9745     */
9746    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9747        arm_feature(env, ARM_FEATURE_EL3) &&
9748        !arm_feature(env, ARM_FEATURE_EL2) &&
9749        !arm_is_secure(env)) {
9750
9751        changed_daif = (env->daif ^ val) & mask;
9752
9753        if (changed_daif & CPSR_A) {
9754            /*
9755             * Check to see if we are allowed to change the masking of async
9756             * abort exceptions from a non-secure state.
9757             */
9758            if (!(env->cp15.scr_el3 & SCR_AW)) {
9759                qemu_log_mask(LOG_GUEST_ERROR,
9760                              "Ignoring attempt to switch CPSR_A flag from "
9761                              "non-secure world with SCR.AW bit clear\n");
9762                mask &= ~CPSR_A;
9763            }
9764        }
9765
9766        if (changed_daif & CPSR_F) {
9767            /*
9768             * Check to see if we are allowed to change the masking of FIQ
9769             * exceptions from a non-secure state.
9770             */
9771            if (!(env->cp15.scr_el3 & SCR_FW)) {
9772                qemu_log_mask(LOG_GUEST_ERROR,
9773                              "Ignoring attempt to switch CPSR_F flag from "
9774                              "non-secure world with SCR.FW bit clear\n");
9775                mask &= ~CPSR_F;
9776            }
9777
9778            /*
9779             * Check whether non-maskable FIQ (NMFI) support is enabled.
9780             * If this bit is set software is not allowed to mask
9781             * FIQs, but is allowed to set CPSR_F to 0.
9782             */
9783            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9784                (val & CPSR_F)) {
9785                qemu_log_mask(LOG_GUEST_ERROR,
9786                              "Ignoring attempt to enable CPSR_F flag "
9787                              "(non-maskable FIQ [NMFI] support enabled)\n");
9788                mask &= ~CPSR_F;
9789            }
9790        }
9791    }
9792
9793    env->daif &= ~(CPSR_AIF & mask);
9794    env->daif |= val & CPSR_AIF & mask;
9795
9796    if (write_type != CPSRWriteRaw &&
9797        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9798        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9799            /*
9800             * Note that we can only get here in USR mode if this is a
9801             * gdb stub write; for this case we follow the architectural
9802             * behaviour for guest writes in USR mode of ignoring an attempt
9803             * to switch mode. (Those are caught by translate.c for writes
9804             * triggered by guest instructions.)
9805             */
9806            mask &= ~CPSR_M;
9807        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9808            /*
9809             * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9810             * v7, and has defined behaviour in v8:
9811             *  + leave CPSR.M untouched
9812             *  + allow changes to the other CPSR fields
9813             *  + set PSTATE.IL
9814             * For user changes via the GDB stub, we don't set PSTATE.IL,
9815             * as this would be unnecessarily harsh for a user error.
9816             */
9817            mask &= ~CPSR_M;
9818            if (write_type != CPSRWriteByGDBStub &&
9819                arm_feature(env, ARM_FEATURE_V8)) {
9820                mask |= CPSR_IL;
9821                val |= CPSR_IL;
9822            }
9823            qemu_log_mask(LOG_GUEST_ERROR,
9824                          "Illegal AArch32 mode switch attempt from %s to %s\n",
9825                          aarch32_mode_name(env->uncached_cpsr),
9826                          aarch32_mode_name(val));
9827        } else {
9828            qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9829                          write_type == CPSRWriteExceptionReturn ?
9830                          "Exception return from AArch32" :
9831                          "AArch32 mode switch from",
9832                          aarch32_mode_name(env->uncached_cpsr),
9833                          aarch32_mode_name(val), env->regs[15]);
9834            switch_mode(env, val & CPSR_M);
9835        }
9836    }
9837    mask &= ~CACHED_CPSR_BITS;
9838    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9839    if (tcg_enabled() && rebuild_hflags) {
9840        arm_rebuild_hflags(env);
9841    }
9842}
9843
9844/* Sign/zero extend */
9845uint32_t HELPER(sxtb16)(uint32_t x)
9846{
9847    uint32_t res;
9848    res = (uint16_t)(int8_t)x;
9849    res |= (uint32_t)(int8_t)(x >> 16) << 16;
9850    return res;
9851}
9852
9853static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9854{
9855    /*
9856     * Take a division-by-zero exception if necessary; otherwise return
9857     * to get the usual non-trapping division behaviour (result of 0)
9858     */
9859    if (arm_feature(env, ARM_FEATURE_M)
9860        && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9861        raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9862    }
9863}
9864
9865uint32_t HELPER(uxtb16)(uint32_t x)
9866{
9867    uint32_t res;
9868    res = (uint16_t)(uint8_t)x;
9869    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9870    return res;
9871}
9872
9873int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9874{
9875    if (den == 0) {
9876        handle_possible_div0_trap(env, GETPC());
9877        return 0;
9878    }
9879    if (num == INT_MIN && den == -1) {
9880        return INT_MIN;
9881    }
9882    return num / den;
9883}
9884
9885uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9886{
9887    if (den == 0) {
9888        handle_possible_div0_trap(env, GETPC());
9889        return 0;
9890    }
9891    return num / den;
9892}
9893
9894uint32_t HELPER(rbit)(uint32_t x)
9895{
9896    return revbit32(x);
9897}
9898
9899#ifdef CONFIG_USER_ONLY
9900
9901static void switch_mode(CPUARMState *env, int mode)
9902{
9903    ARMCPU *cpu = env_archcpu(env);
9904
9905    if (mode != ARM_CPU_MODE_USR) {
9906        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9907    }
9908}
9909
9910uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9911                                 uint32_t cur_el, bool secure)
9912{
9913    return 1;
9914}
9915
9916void aarch64_sync_64_to_32(CPUARMState *env)
9917{
9918    g_assert_not_reached();
9919}
9920
9921#else
9922
9923static void switch_mode(CPUARMState *env, int mode)
9924{
9925    int old_mode;
9926    int i;
9927
9928    old_mode = env->uncached_cpsr & CPSR_M;
9929    if (mode == old_mode) {
9930        return;
9931    }
9932
9933    if (old_mode == ARM_CPU_MODE_FIQ) {
9934        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9935        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9936    } else if (mode == ARM_CPU_MODE_FIQ) {
9937        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9938        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9939    }
9940
9941    i = bank_number(old_mode);
9942    env->banked_r13[i] = env->regs[13];
9943    env->banked_spsr[i] = env->spsr;
9944
9945    i = bank_number(mode);
9946    env->regs[13] = env->banked_r13[i];
9947    env->spsr = env->banked_spsr[i];
9948
9949    env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9950    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9951}
9952
9953/*
9954 * Physical Interrupt Target EL Lookup Table
9955 *
9956 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9957 *
9958 * The below multi-dimensional table is used for looking up the target
9959 * exception level given numerous condition criteria.  Specifically, the
9960 * target EL is based on SCR and HCR routing controls as well as the
9961 * currently executing EL and secure state.
9962 *
9963 *    Dimensions:
9964 *    target_el_table[2][2][2][2][2][4]
9965 *                    |  |  |  |  |  +--- Current EL
9966 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9967 *                    |  |  |  +--------- HCR mask override
9968 *                    |  |  +------------ SCR exec state control
9969 *                    |  +--------------- SCR mask override
9970 *                    +------------------ 32-bit(0)/64-bit(1) EL3
9971 *
9972 *    The table values are as such:
9973 *    0-3 = EL0-EL3
9974 *     -1 = Cannot occur
9975 *
9976 * The ARM ARM target EL table includes entries indicating that an "exception
9977 * is not taken".  The two cases where this is applicable are:
9978 *    1) An exception is taken from EL3 but the SCR does not have the exception
9979 *    routed to EL3.
9980 *    2) An exception is taken from EL2 but the HCR does not have the exception
9981 *    routed to EL2.
9982 * In these two cases, the below table contain a target of EL1.  This value is
9983 * returned as it is expected that the consumer of the table data will check
9984 * for "target EL >= current EL" to ensure the exception is not taken.
9985 *
9986 *            SCR     HCR
9987 *         64  EA     AMO                 From
9988 *        BIT IRQ     IMO      Non-secure         Secure
9989 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9990 */
9991static const int8_t target_el_table[2][2][2][2][2][4] = {
9992    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9993       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9994      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9995       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9996     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9997       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9998      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9999       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10000    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10001       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10002      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10003       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10004     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10005       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10006      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10007       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10008};
10009
10010/*
10011 * Determine the target EL for physical exceptions
10012 */
10013uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10014                                 uint32_t cur_el, bool secure)
10015{
10016    CPUARMState *env = cs->env_ptr;
10017    bool rw;
10018    bool scr;
10019    bool hcr;
10020    int target_el;
10021    /* Is the highest EL AArch64? */
10022    bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10023    uint64_t hcr_el2;
10024
10025    if (arm_feature(env, ARM_FEATURE_EL3)) {
10026        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10027    } else {
10028        /*
10029         * Either EL2 is the highest EL (and so the EL2 register width
10030         * is given by is64); or there is no EL2 or EL3, in which case
10031         * the value of 'rw' does not affect the table lookup anyway.
10032         */
10033        rw = is64;
10034    }
10035
10036    hcr_el2 = arm_hcr_el2_eff(env);
10037    switch (excp_idx) {
10038    case EXCP_IRQ:
10039        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10040        hcr = hcr_el2 & HCR_IMO;
10041        break;
10042    case EXCP_FIQ:
10043        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10044        hcr = hcr_el2 & HCR_FMO;
10045        break;
10046    default:
10047        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10048        hcr = hcr_el2 & HCR_AMO;
10049        break;
10050    };
10051
10052    /*
10053     * For these purposes, TGE and AMO/IMO/FMO both force the
10054     * interrupt to EL2.  Fold TGE into the bit extracted above.
10055     */
10056    hcr |= (hcr_el2 & HCR_TGE) != 0;
10057
10058    /* Perform a table-lookup for the target EL given the current state */
10059    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10060
10061    assert(target_el > 0);
10062
10063    return target_el;
10064}
10065
10066void arm_log_exception(CPUState *cs)
10067{
10068    int idx = cs->exception_index;
10069
10070    if (qemu_loglevel_mask(CPU_LOG_INT)) {
10071        const char *exc = NULL;
10072        static const char * const excnames[] = {
10073            [EXCP_UDEF] = "Undefined Instruction",
10074            [EXCP_SWI] = "SVC",
10075            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10076            [EXCP_DATA_ABORT] = "Data Abort",
10077            [EXCP_IRQ] = "IRQ",
10078            [EXCP_FIQ] = "FIQ",
10079            [EXCP_BKPT] = "Breakpoint",
10080            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10081            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10082            [EXCP_HVC] = "Hypervisor Call",
10083            [EXCP_HYP_TRAP] = "Hypervisor Trap",
10084            [EXCP_SMC] = "Secure Monitor Call",
10085            [EXCP_VIRQ] = "Virtual IRQ",
10086            [EXCP_VFIQ] = "Virtual FIQ",
10087            [EXCP_SEMIHOST] = "Semihosting call",
10088            [EXCP_NOCP] = "v7M NOCP UsageFault",
10089            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10090            [EXCP_STKOF] = "v8M STKOF UsageFault",
10091            [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10092            [EXCP_LSERR] = "v8M LSERR UsageFault",
10093            [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10094            [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10095            [EXCP_VSERR] = "Virtual SERR",
10096        };
10097
10098        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10099            exc = excnames[idx];
10100        }
10101        if (!exc) {
10102            exc = "unknown";
10103        }
10104        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10105                      idx, exc, cs->cpu_index);
10106    }
10107}
10108
10109/*
10110 * Function used to synchronize QEMU's AArch64 register set with AArch32
10111 * register set.  This is necessary when switching between AArch32 and AArch64
10112 * execution state.
10113 */
10114void aarch64_sync_32_to_64(CPUARMState *env)
10115{
10116    int i;
10117    uint32_t mode = env->uncached_cpsr & CPSR_M;
10118
10119    /* We can blanket copy R[0:7] to X[0:7] */
10120    for (i = 0; i < 8; i++) {
10121        env->xregs[i] = env->regs[i];
10122    }
10123
10124    /*
10125     * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10126     * Otherwise, they come from the banked user regs.
10127     */
10128    if (mode == ARM_CPU_MODE_FIQ) {
10129        for (i = 8; i < 13; i++) {
10130            env->xregs[i] = env->usr_regs[i - 8];
10131        }
10132    } else {
10133        for (i = 8; i < 13; i++) {
10134            env->xregs[i] = env->regs[i];
10135        }
10136    }
10137
10138    /*
10139     * Registers x13-x23 are the various mode SP and FP registers. Registers
10140     * r13 and r14 are only copied if we are in that mode, otherwise we copy
10141     * from the mode banked register.
10142     */
10143    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10144        env->xregs[13] = env->regs[13];
10145        env->xregs[14] = env->regs[14];
10146    } else {
10147        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10148        /* HYP is an exception in that it is copied from r14 */
10149        if (mode == ARM_CPU_MODE_HYP) {
10150            env->xregs[14] = env->regs[14];
10151        } else {
10152            env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10153        }
10154    }
10155
10156    if (mode == ARM_CPU_MODE_HYP) {
10157        env->xregs[15] = env->regs[13];
10158    } else {
10159        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10160    }
10161
10162    if (mode == ARM_CPU_MODE_IRQ) {
10163        env->xregs[16] = env->regs[14];
10164        env->xregs[17] = env->regs[13];
10165    } else {
10166        env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10167        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10168    }
10169
10170    if (mode == ARM_CPU_MODE_SVC) {
10171        env->xregs[18] = env->regs[14];
10172        env->xregs[19] = env->regs[13];
10173    } else {
10174        env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10175        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10176    }
10177
10178    if (mode == ARM_CPU_MODE_ABT) {
10179        env->xregs[20] = env->regs[14];
10180        env->xregs[21] = env->regs[13];
10181    } else {
10182        env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10183        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10184    }
10185
10186    if (mode == ARM_CPU_MODE_UND) {
10187        env->xregs[22] = env->regs[14];
10188        env->xregs[23] = env->regs[13];
10189    } else {
10190        env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10191        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10192    }
10193
10194    /*
10195     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10196     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10197     * FIQ bank for r8-r14.
10198     */
10199    if (mode == ARM_CPU_MODE_FIQ) {
10200        for (i = 24; i < 31; i++) {
10201            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10202        }
10203    } else {
10204        for (i = 24; i < 29; i++) {
10205            env->xregs[i] = env->fiq_regs[i - 24];
10206        }
10207        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10208        env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10209    }
10210
10211    env->pc = env->regs[15];
10212}
10213
10214/*
10215 * Function used to synchronize QEMU's AArch32 register set with AArch64
10216 * register set.  This is necessary when switching between AArch32 and AArch64
10217 * execution state.
10218 */
10219void aarch64_sync_64_to_32(CPUARMState *env)
10220{
10221    int i;
10222    uint32_t mode = env->uncached_cpsr & CPSR_M;
10223
10224    /* We can blanket copy X[0:7] to R[0:7] */
10225    for (i = 0; i < 8; i++) {
10226        env->regs[i] = env->xregs[i];
10227    }
10228
10229    /*
10230     * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10231     * Otherwise, we copy x8-x12 into the banked user regs.
10232     */
10233    if (mode == ARM_CPU_MODE_FIQ) {
10234        for (i = 8; i < 13; i++) {
10235            env->usr_regs[i - 8] = env->xregs[i];
10236        }
10237    } else {
10238        for (i = 8; i < 13; i++) {
10239            env->regs[i] = env->xregs[i];
10240        }
10241    }
10242
10243    /*
10244     * Registers r13 & r14 depend on the current mode.
10245     * If we are in a given mode, we copy the corresponding x registers to r13
10246     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10247     * for the mode.
10248     */
10249    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10250        env->regs[13] = env->xregs[13];
10251        env->regs[14] = env->xregs[14];
10252    } else {
10253        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10254
10255        /*
10256         * HYP is an exception in that it does not have its own banked r14 but
10257         * shares the USR r14
10258         */
10259        if (mode == ARM_CPU_MODE_HYP) {
10260            env->regs[14] = env->xregs[14];
10261        } else {
10262            env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10263        }
10264    }
10265
10266    if (mode == ARM_CPU_MODE_HYP) {
10267        env->regs[13] = env->xregs[15];
10268    } else {
10269        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10270    }
10271
10272    if (mode == ARM_CPU_MODE_IRQ) {
10273        env->regs[14] = env->xregs[16];
10274        env->regs[13] = env->xregs[17];
10275    } else {
10276        env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10277        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10278    }
10279
10280    if (mode == ARM_CPU_MODE_SVC) {
10281        env->regs[14] = env->xregs[18];
10282        env->regs[13] = env->xregs[19];
10283    } else {
10284        env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10285        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10286    }
10287
10288    if (mode == ARM_CPU_MODE_ABT) {
10289        env->regs[14] = env->xregs[20];
10290        env->regs[13] = env->xregs[21];
10291    } else {
10292        env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10293        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10294    }
10295
10296    if (mode == ARM_CPU_MODE_UND) {
10297        env->regs[14] = env->xregs[22];
10298        env->regs[13] = env->xregs[23];
10299    } else {
10300        env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10301        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10302    }
10303
10304    /*
10305     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10306     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10307     * FIQ bank for r8-r14.
10308     */
10309    if (mode == ARM_CPU_MODE_FIQ) {
10310        for (i = 24; i < 31; i++) {
10311            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10312        }
10313    } else {
10314        for (i = 24; i < 29; i++) {
10315            env->fiq_regs[i - 24] = env->xregs[i];
10316        }
10317        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10318        env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10319    }
10320
10321    env->regs[15] = env->pc;
10322}
10323
10324static void take_aarch32_exception(CPUARMState *env, int new_mode,
10325                                   uint32_t mask, uint32_t offset,
10326                                   uint32_t newpc)
10327{
10328    int new_el;
10329
10330    /* Change the CPU state so as to actually take the exception. */
10331    switch_mode(env, new_mode);
10332
10333    /*
10334     * For exceptions taken to AArch32 we must clear the SS bit in both
10335     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10336     */
10337    env->pstate &= ~PSTATE_SS;
10338    env->spsr = cpsr_read(env);
10339    /* Clear IT bits.  */
10340    env->condexec_bits = 0;
10341    /* Switch to the new mode, and to the correct instruction set.  */
10342    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10343
10344    /* This must be after mode switching. */
10345    new_el = arm_current_el(env);
10346
10347    /* Set new mode endianness */
10348    env->uncached_cpsr &= ~CPSR_E;
10349    if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10350        env->uncached_cpsr |= CPSR_E;
10351    }
10352    /* J and IL must always be cleared for exception entry */
10353    env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10354    env->daif |= mask;
10355
10356    if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10357        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10358            env->uncached_cpsr |= CPSR_SSBS;
10359        } else {
10360            env->uncached_cpsr &= ~CPSR_SSBS;
10361        }
10362    }
10363
10364    if (new_mode == ARM_CPU_MODE_HYP) {
10365        env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10366        env->elr_el[2] = env->regs[15];
10367    } else {
10368        /* CPSR.PAN is normally preserved preserved unless...  */
10369        if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10370            switch (new_el) {
10371            case 3:
10372                if (!arm_is_secure_below_el3(env)) {
10373                    /* ... the target is EL3, from non-secure state.  */
10374                    env->uncached_cpsr &= ~CPSR_PAN;
10375                    break;
10376                }
10377                /* ... the target is EL3, from secure state ... */
10378                /* fall through */
10379            case 1:
10380                /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10381                if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10382                    env->uncached_cpsr |= CPSR_PAN;
10383                }
10384                break;
10385            }
10386        }
10387        /*
10388         * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10389         * and we should just guard the thumb mode on V4
10390         */
10391        if (arm_feature(env, ARM_FEATURE_V4T)) {
10392            env->thumb =
10393                (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10394        }
10395        env->regs[14] = env->regs[15] + offset;
10396    }
10397    env->regs[15] = newpc;
10398
10399    if (tcg_enabled()) {
10400        arm_rebuild_hflags(env);
10401    }
10402}
10403
10404static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10405{
10406    /*
10407     * Handle exception entry to Hyp mode; this is sufficiently
10408     * different to entry to other AArch32 modes that we handle it
10409     * separately here.
10410     *
10411     * The vector table entry used is always the 0x14 Hyp mode entry point,
10412     * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10413     * The offset applied to the preferred return address is always zero
10414     * (see DDI0487C.a section G1.12.3).
10415     * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10416     */
10417    uint32_t addr, mask;
10418    ARMCPU *cpu = ARM_CPU(cs);
10419    CPUARMState *env = &cpu->env;
10420
10421    switch (cs->exception_index) {
10422    case EXCP_UDEF:
10423        addr = 0x04;
10424        break;
10425    case EXCP_SWI:
10426        addr = 0x08;
10427        break;
10428    case EXCP_BKPT:
10429        /* Fall through to prefetch abort.  */
10430    case EXCP_PREFETCH_ABORT:
10431        env->cp15.ifar_s = env->exception.vaddress;
10432        qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10433                      (uint32_t)env->exception.vaddress);
10434        addr = 0x0c;
10435        break;
10436    case EXCP_DATA_ABORT:
10437        env->cp15.dfar_s = env->exception.vaddress;
10438        qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10439                      (uint32_t)env->exception.vaddress);
10440        addr = 0x10;
10441        break;
10442    case EXCP_IRQ:
10443        addr = 0x18;
10444        break;
10445    case EXCP_FIQ:
10446        addr = 0x1c;
10447        break;
10448    case EXCP_HVC:
10449        addr = 0x08;
10450        break;
10451    case EXCP_HYP_TRAP:
10452        addr = 0x14;
10453        break;
10454    default:
10455        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10456    }
10457
10458    if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10459        if (!arm_feature(env, ARM_FEATURE_V8)) {
10460            /*
10461             * QEMU syndrome values are v8-style. v7 has the IL bit
10462             * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10463             * If this is a v7 CPU, squash the IL bit in those cases.
10464             */
10465            if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10466                (cs->exception_index == EXCP_DATA_ABORT &&
10467                 !(env->exception.syndrome & ARM_EL_ISV)) ||
10468                syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10469                env->exception.syndrome &= ~ARM_EL_IL;
10470            }
10471        }
10472        env->cp15.esr_el[2] = env->exception.syndrome;
10473    }
10474
10475    if (arm_current_el(env) != 2 && addr < 0x14) {
10476        addr = 0x14;
10477    }
10478
10479    mask = 0;
10480    if (!(env->cp15.scr_el3 & SCR_EA)) {
10481        mask |= CPSR_A;
10482    }
10483    if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10484        mask |= CPSR_I;
10485    }
10486    if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10487        mask |= CPSR_F;
10488    }
10489
10490    addr += env->cp15.hvbar;
10491
10492    take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10493}
10494
10495static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10496{
10497    ARMCPU *cpu = ARM_CPU(cs);
10498    CPUARMState *env = &cpu->env;
10499    uint32_t addr;
10500    uint32_t mask;
10501    int new_mode;
10502    uint32_t offset;
10503    uint32_t moe;
10504
10505    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10506    switch (syn_get_ec(env->exception.syndrome)) {
10507    case EC_BREAKPOINT:
10508    case EC_BREAKPOINT_SAME_EL:
10509        moe = 1;
10510        break;
10511    case EC_WATCHPOINT:
10512    case EC_WATCHPOINT_SAME_EL:
10513        moe = 10;
10514        break;
10515    case EC_AA32_BKPT:
10516        moe = 3;
10517        break;
10518    case EC_VECTORCATCH:
10519        moe = 5;
10520        break;
10521    default:
10522        moe = 0;
10523        break;
10524    }
10525
10526    if (moe) {
10527        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10528    }
10529
10530    if (env->exception.target_el == 2) {
10531        arm_cpu_do_interrupt_aarch32_hyp(cs);
10532        return;
10533    }
10534
10535    switch (cs->exception_index) {
10536    case EXCP_UDEF:
10537        new_mode = ARM_CPU_MODE_UND;
10538        addr = 0x04;
10539        mask = CPSR_I;
10540        if (env->thumb) {
10541            offset = 2;
10542        } else {
10543            offset = 4;
10544        }
10545        break;
10546    case EXCP_SWI:
10547        new_mode = ARM_CPU_MODE_SVC;
10548        addr = 0x08;
10549        mask = CPSR_I;
10550        /* The PC already points to the next instruction.  */
10551        offset = 0;
10552        break;
10553    case EXCP_BKPT:
10554        /* Fall through to prefetch abort.  */
10555    case EXCP_PREFETCH_ABORT:
10556        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10557        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10558        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10559                      env->exception.fsr, (uint32_t)env->exception.vaddress);
10560        new_mode = ARM_CPU_MODE_ABT;
10561        addr = 0x0c;
10562        mask = CPSR_A | CPSR_I;
10563        offset = 4;
10564        break;
10565    case EXCP_DATA_ABORT:
10566        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10567        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10568        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10569                      env->exception.fsr,
10570                      (uint32_t)env->exception.vaddress);
10571        new_mode = ARM_CPU_MODE_ABT;
10572        addr = 0x10;
10573        mask = CPSR_A | CPSR_I;
10574        offset = 8;
10575        break;
10576    case EXCP_IRQ:
10577        new_mode = ARM_CPU_MODE_IRQ;
10578        addr = 0x18;
10579        /* Disable IRQ and imprecise data aborts.  */
10580        mask = CPSR_A | CPSR_I;
10581        offset = 4;
10582        if (env->cp15.scr_el3 & SCR_IRQ) {
10583            /* IRQ routed to monitor mode */
10584            new_mode = ARM_CPU_MODE_MON;
10585            mask |= CPSR_F;
10586        }
10587        break;
10588    case EXCP_FIQ:
10589        new_mode = ARM_CPU_MODE_FIQ;
10590        addr = 0x1c;
10591        /* Disable FIQ, IRQ and imprecise data aborts.  */
10592        mask = CPSR_A | CPSR_I | CPSR_F;
10593        if (env->cp15.scr_el3 & SCR_FIQ) {
10594            /* FIQ routed to monitor mode */
10595            new_mode = ARM_CPU_MODE_MON;
10596        }
10597        offset = 4;
10598        break;
10599    case EXCP_VIRQ:
10600        new_mode = ARM_CPU_MODE_IRQ;
10601        addr = 0x18;
10602        /* Disable IRQ and imprecise data aborts.  */
10603        mask = CPSR_A | CPSR_I;
10604        offset = 4;
10605        break;
10606    case EXCP_VFIQ:
10607        new_mode = ARM_CPU_MODE_FIQ;
10608        addr = 0x1c;
10609        /* Disable FIQ, IRQ and imprecise data aborts.  */
10610        mask = CPSR_A | CPSR_I | CPSR_F;
10611        offset = 4;
10612        break;
10613    case EXCP_VSERR:
10614        {
10615            /*
10616             * Note that this is reported as a data abort, but the DFAR
10617             * has an UNKNOWN value.  Construct the SError syndrome from
10618             * AET and ExT fields.
10619             */
10620            ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10621
10622            if (extended_addresses_enabled(env)) {
10623                env->exception.fsr = arm_fi_to_lfsc(&fi);
10624            } else {
10625                env->exception.fsr = arm_fi_to_sfsc(&fi);
10626            }
10627            env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10628            A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10629            qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10630                          env->exception.fsr);
10631
10632            new_mode = ARM_CPU_MODE_ABT;
10633            addr = 0x10;
10634            mask = CPSR_A | CPSR_I;
10635            offset = 8;
10636        }
10637        break;
10638    case EXCP_SMC:
10639        new_mode = ARM_CPU_MODE_MON;
10640        addr = 0x08;
10641        mask = CPSR_A | CPSR_I | CPSR_F;
10642        offset = 0;
10643        break;
10644    default:
10645        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10646        return; /* Never happens.  Keep compiler happy.  */
10647    }
10648
10649    if (new_mode == ARM_CPU_MODE_MON) {
10650        addr += env->cp15.mvbar;
10651    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10652        /* High vectors. When enabled, base address cannot be remapped. */
10653        addr += 0xffff0000;
10654    } else {
10655        /*
10656         * ARM v7 architectures provide a vector base address register to remap
10657         * the interrupt vector table.
10658         * This register is only followed in non-monitor mode, and is banked.
10659         * Note: only bits 31:5 are valid.
10660         */
10661        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10662    }
10663
10664    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10665        env->cp15.scr_el3 &= ~SCR_NS;
10666    }
10667
10668    take_aarch32_exception(env, new_mode, mask, offset, addr);
10669}
10670
10671static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10672{
10673    /*
10674     * Return the register number of the AArch64 view of the AArch32
10675     * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10676     * be that of the AArch32 mode the exception came from.
10677     */
10678    int mode = env->uncached_cpsr & CPSR_M;
10679
10680    switch (aarch32_reg) {
10681    case 0 ... 7:
10682        return aarch32_reg;
10683    case 8 ... 12:
10684        return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10685    case 13:
10686        switch (mode) {
10687        case ARM_CPU_MODE_USR:
10688        case ARM_CPU_MODE_SYS:
10689            return 13;
10690        case ARM_CPU_MODE_HYP:
10691            return 15;
10692        case ARM_CPU_MODE_IRQ:
10693            return 17;
10694        case ARM_CPU_MODE_SVC:
10695            return 19;
10696        case ARM_CPU_MODE_ABT:
10697            return 21;
10698        case ARM_CPU_MODE_UND:
10699            return 23;
10700        case ARM_CPU_MODE_FIQ:
10701            return 29;
10702        default:
10703            g_assert_not_reached();
10704        }
10705    case 14:
10706        switch (mode) {
10707        case ARM_CPU_MODE_USR:
10708        case ARM_CPU_MODE_SYS:
10709        case ARM_CPU_MODE_HYP:
10710            return 14;
10711        case ARM_CPU_MODE_IRQ:
10712            return 16;
10713        case ARM_CPU_MODE_SVC:
10714            return 18;
10715        case ARM_CPU_MODE_ABT:
10716            return 20;
10717        case ARM_CPU_MODE_UND:
10718            return 22;
10719        case ARM_CPU_MODE_FIQ:
10720            return 30;
10721        default:
10722            g_assert_not_reached();
10723        }
10724    case 15:
10725        return 31;
10726    default:
10727        g_assert_not_reached();
10728    }
10729}
10730
10731static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10732{
10733    uint32_t ret = cpsr_read(env);
10734
10735    /* Move DIT to the correct location for SPSR_ELx */
10736    if (ret & CPSR_DIT) {
10737        ret &= ~CPSR_DIT;
10738        ret |= PSTATE_DIT;
10739    }
10740    /* Merge PSTATE.SS into SPSR_ELx */
10741    ret |= env->pstate & PSTATE_SS;
10742
10743    return ret;
10744}
10745
10746static bool syndrome_is_sync_extabt(uint32_t syndrome)
10747{
10748    /* Return true if this syndrome value is a synchronous external abort */
10749    switch (syn_get_ec(syndrome)) {
10750    case EC_INSNABORT:
10751    case EC_INSNABORT_SAME_EL:
10752    case EC_DATAABORT:
10753    case EC_DATAABORT_SAME_EL:
10754        /* Look at fault status code for all the synchronous ext abort cases */
10755        switch (syndrome & 0x3f) {
10756        case 0x10:
10757        case 0x13:
10758        case 0x14:
10759        case 0x15:
10760        case 0x16:
10761        case 0x17:
10762            return true;
10763        default:
10764            return false;
10765        }
10766    default:
10767        return false;
10768    }
10769}
10770
10771/* Handle exception entry to a target EL which is using AArch64 */
10772static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10773{
10774    ARMCPU *cpu = ARM_CPU(cs);
10775    CPUARMState *env = &cpu->env;
10776    unsigned int new_el = env->exception.target_el;
10777    target_ulong addr = env->cp15.vbar_el[new_el];
10778    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10779    unsigned int old_mode;
10780    unsigned int cur_el = arm_current_el(env);
10781    int rt;
10782
10783    if (tcg_enabled()) {
10784        /*
10785         * Note that new_el can never be 0.  If cur_el is 0, then
10786         * el0_a64 is is_a64(), else el0_a64 is ignored.
10787         */
10788        aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10789    }
10790
10791    if (cur_el < new_el) {
10792        /*
10793         * Entry vector offset depends on whether the implemented EL
10794         * immediately lower than the target level is using AArch32 or AArch64
10795         */
10796        bool is_aa64;
10797        uint64_t hcr;
10798
10799        switch (new_el) {
10800        case 3:
10801            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10802            break;
10803        case 2:
10804            hcr = arm_hcr_el2_eff(env);
10805            if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10806                is_aa64 = (hcr & HCR_RW) != 0;
10807                break;
10808            }
10809            /* fall through */
10810        case 1:
10811            is_aa64 = is_a64(env);
10812            break;
10813        default:
10814            g_assert_not_reached();
10815        }
10816
10817        if (is_aa64) {
10818            addr += 0x400;
10819        } else {
10820            addr += 0x600;
10821        }
10822    } else if (pstate_read(env) & PSTATE_SP) {
10823        addr += 0x200;
10824    }
10825
10826    switch (cs->exception_index) {
10827    case EXCP_PREFETCH_ABORT:
10828    case EXCP_DATA_ABORT:
10829        /*
10830         * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10831         * to be taken to the SError vector entrypoint.
10832         */
10833        if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10834            syndrome_is_sync_extabt(env->exception.syndrome)) {
10835            addr += 0x180;
10836        }
10837        env->cp15.far_el[new_el] = env->exception.vaddress;
10838        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10839                      env->cp15.far_el[new_el]);
10840        /* fall through */
10841    case EXCP_BKPT:
10842    case EXCP_UDEF:
10843    case EXCP_SWI:
10844    case EXCP_HVC:
10845    case EXCP_HYP_TRAP:
10846    case EXCP_SMC:
10847        switch (syn_get_ec(env->exception.syndrome)) {
10848        case EC_ADVSIMDFPACCESSTRAP:
10849            /*
10850             * QEMU internal FP/SIMD syndromes from AArch32 include the
10851             * TA and coproc fields which are only exposed if the exception
10852             * is taken to AArch32 Hyp mode. Mask them out to get a valid
10853             * AArch64 format syndrome.
10854             */
10855            env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10856            break;
10857        case EC_CP14RTTRAP:
10858        case EC_CP15RTTRAP:
10859        case EC_CP14DTTRAP:
10860            /*
10861             * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10862             * the raw register field from the insn; when taking this to
10863             * AArch64 we must convert it to the AArch64 view of the register
10864             * number. Notice that we read a 4-bit AArch32 register number and
10865             * write back a 5-bit AArch64 one.
10866             */
10867            rt = extract32(env->exception.syndrome, 5, 4);
10868            rt = aarch64_regnum(env, rt);
10869            env->exception.syndrome = deposit32(env->exception.syndrome,
10870                                                5, 5, rt);
10871            break;
10872        case EC_CP15RRTTRAP:
10873        case EC_CP14RRTTRAP:
10874            /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10875            rt = extract32(env->exception.syndrome, 5, 4);
10876            rt = aarch64_regnum(env, rt);
10877            env->exception.syndrome = deposit32(env->exception.syndrome,
10878                                                5, 5, rt);
10879            rt = extract32(env->exception.syndrome, 10, 4);
10880            rt = aarch64_regnum(env, rt);
10881            env->exception.syndrome = deposit32(env->exception.syndrome,
10882                                                10, 5, rt);
10883            break;
10884        }
10885        env->cp15.esr_el[new_el] = env->exception.syndrome;
10886        break;
10887    case EXCP_IRQ:
10888    case EXCP_VIRQ:
10889        addr += 0x80;
10890        break;
10891    case EXCP_FIQ:
10892    case EXCP_VFIQ:
10893        addr += 0x100;
10894        break;
10895    case EXCP_VSERR:
10896        addr += 0x180;
10897        /* Construct the SError syndrome from IDS and ISS fields. */
10898        env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10899        env->cp15.esr_el[new_el] = env->exception.syndrome;
10900        break;
10901    default:
10902        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10903    }
10904
10905    if (is_a64(env)) {
10906        old_mode = pstate_read(env);
10907        aarch64_save_sp(env, arm_current_el(env));
10908        env->elr_el[new_el] = env->pc;
10909    } else {
10910        old_mode = cpsr_read_for_spsr_elx(env);
10911        env->elr_el[new_el] = env->regs[15];
10912
10913        aarch64_sync_32_to_64(env);
10914
10915        env->condexec_bits = 0;
10916    }
10917    env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10918
10919    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10920                  env->elr_el[new_el]);
10921
10922    if (cpu_isar_feature(aa64_pan, cpu)) {
10923        /* The value of PSTATE.PAN is normally preserved, except when ... */
10924        new_mode |= old_mode & PSTATE_PAN;
10925        switch (new_el) {
10926        case 2:
10927            /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10928            if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10929                != (HCR_E2H | HCR_TGE)) {
10930                break;
10931            }
10932            /* fall through */
10933        case 1:
10934            /* ... the target is EL1 ... */
10935            /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10936            if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10937                new_mode |= PSTATE_PAN;
10938            }
10939            break;
10940        }
10941    }
10942    if (cpu_isar_feature(aa64_mte, cpu)) {
10943        new_mode |= PSTATE_TCO;
10944    }
10945
10946    if (cpu_isar_feature(aa64_ssbs, cpu)) {
10947        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10948            new_mode |= PSTATE_SSBS;
10949        } else {
10950            new_mode &= ~PSTATE_SSBS;
10951        }
10952    }
10953
10954    pstate_write(env, PSTATE_DAIF | new_mode);
10955    env->aarch64 = true;
10956    aarch64_restore_sp(env, new_el);
10957
10958    if (tcg_enabled()) {
10959        helper_rebuild_hflags_a64(env, new_el);
10960    }
10961
10962    env->pc = addr;
10963
10964    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10965                  new_el, env->pc, pstate_read(env));
10966}
10967
10968/*
10969 * Do semihosting call and set the appropriate return value. All the
10970 * permission and validity checks have been done at translate time.
10971 *
10972 * We only see semihosting exceptions in TCG only as they are not
10973 * trapped to the hypervisor in KVM.
10974 */
10975#ifdef CONFIG_TCG
10976static void tcg_handle_semihosting(CPUState *cs)
10977{
10978    ARMCPU *cpu = ARM_CPU(cs);
10979    CPUARMState *env = &cpu->env;
10980
10981    if (is_a64(env)) {
10982        qemu_log_mask(CPU_LOG_INT,
10983                      "...handling as semihosting call 0x%" PRIx64 "\n",
10984                      env->xregs[0]);
10985        do_common_semihosting(cs);
10986        env->pc += 4;
10987    } else {
10988        qemu_log_mask(CPU_LOG_INT,
10989                      "...handling as semihosting call 0x%x\n",
10990                      env->regs[0]);
10991        do_common_semihosting(cs);
10992        env->regs[15] += env->thumb ? 2 : 4;
10993    }
10994}
10995#endif
10996
10997/*
10998 * Handle a CPU exception for A and R profile CPUs.
10999 * Do any appropriate logging, handle PSCI calls, and then hand off
11000 * to the AArch64-entry or AArch32-entry function depending on the
11001 * target exception level's register width.
11002 *
11003 * Note: this is used for both TCG (as the do_interrupt tcg op),
11004 *       and KVM to re-inject guest debug exceptions, and to
11005 *       inject a Synchronous-External-Abort.
11006 */
11007void arm_cpu_do_interrupt(CPUState *cs)
11008{
11009    ARMCPU *cpu = ARM_CPU(cs);
11010    CPUARMState *env = &cpu->env;
11011    unsigned int new_el = env->exception.target_el;
11012
11013    assert(!arm_feature(env, ARM_FEATURE_M));
11014
11015    arm_log_exception(cs);
11016    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11017                  new_el);
11018    if (qemu_loglevel_mask(CPU_LOG_INT)
11019        && !excp_is_internal(cs->exception_index)) {
11020        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11021                      syn_get_ec(env->exception.syndrome),
11022                      env->exception.syndrome);
11023    }
11024
11025    if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11026        arm_handle_psci_call(cpu);
11027        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11028        return;
11029    }
11030
11031    /*
11032     * Semihosting semantics depend on the register width of the code
11033     * that caused the exception, not the target exception level, so
11034     * must be handled here.
11035     */
11036#ifdef CONFIG_TCG
11037    if (cs->exception_index == EXCP_SEMIHOST) {
11038        tcg_handle_semihosting(cs);
11039        return;
11040    }
11041#endif
11042
11043    /*
11044     * Hooks may change global state so BQL should be held, also the
11045     * BQL needs to be held for any modification of
11046     * cs->interrupt_request.
11047     */
11048    g_assert(qemu_mutex_iothread_locked());
11049
11050    arm_call_pre_el_change_hook(cpu);
11051
11052    assert(!excp_is_internal(cs->exception_index));
11053    if (arm_el_is_aa64(env, new_el)) {
11054        arm_cpu_do_interrupt_aarch64(cs);
11055    } else {
11056        arm_cpu_do_interrupt_aarch32(cs);
11057    }
11058
11059    arm_call_el_change_hook(cpu);
11060
11061    if (!kvm_enabled()) {
11062        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11063    }
11064}
11065#endif /* !CONFIG_USER_ONLY */
11066
11067uint64_t arm_sctlr(CPUARMState *env, int el)
11068{
11069    /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11070    if (el == 0) {
11071        ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11072        el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11073    }
11074    return env->cp15.sctlr_el[el];
11075}
11076
11077int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11078{
11079    if (regime_has_2_ranges(mmu_idx)) {
11080        return extract64(tcr, 37, 2);
11081    } else if (regime_is_stage2(mmu_idx)) {
11082        return 0; /* VTCR_EL2 */
11083    } else {
11084        /* Replicate the single TBI bit so we always have 2 bits.  */
11085        return extract32(tcr, 20, 1) * 3;
11086    }
11087}
11088
11089int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11090{
11091    if (regime_has_2_ranges(mmu_idx)) {
11092        return extract64(tcr, 51, 2);
11093    } else if (regime_is_stage2(mmu_idx)) {
11094        return 0; /* VTCR_EL2 */
11095    } else {
11096        /* Replicate the single TBID bit so we always have 2 bits.  */
11097        return extract32(tcr, 29, 1) * 3;
11098    }
11099}
11100
11101int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11102{
11103    if (regime_has_2_ranges(mmu_idx)) {
11104        return extract64(tcr, 57, 2);
11105    } else {
11106        /* Replicate the single TCMA bit so we always have 2 bits.  */
11107        return extract32(tcr, 30, 1) * 3;
11108    }
11109}
11110
11111static ARMGranuleSize tg0_to_gran_size(int tg)
11112{
11113    switch (tg) {
11114    case 0:
11115        return Gran4K;
11116    case 1:
11117        return Gran64K;
11118    case 2:
11119        return Gran16K;
11120    default:
11121        return GranInvalid;
11122    }
11123}
11124
11125static ARMGranuleSize tg1_to_gran_size(int tg)
11126{
11127    switch (tg) {
11128    case 1:
11129        return Gran16K;
11130    case 2:
11131        return Gran4K;
11132    case 3:
11133        return Gran64K;
11134    default:
11135        return GranInvalid;
11136    }
11137}
11138
11139static inline bool have4k(ARMCPU *cpu, bool stage2)
11140{
11141    return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11142        : cpu_isar_feature(aa64_tgran4, cpu);
11143}
11144
11145static inline bool have16k(ARMCPU *cpu, bool stage2)
11146{
11147    return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11148        : cpu_isar_feature(aa64_tgran16, cpu);
11149}
11150
11151static inline bool have64k(ARMCPU *cpu, bool stage2)
11152{
11153    return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11154        : cpu_isar_feature(aa64_tgran64, cpu);
11155}
11156
11157static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11158                                         bool stage2)
11159{
11160    switch (gran) {
11161    case Gran4K:
11162        if (have4k(cpu, stage2)) {
11163            return gran;
11164        }
11165        break;
11166    case Gran16K:
11167        if (have16k(cpu, stage2)) {
11168            return gran;
11169        }
11170        break;
11171    case Gran64K:
11172        if (have64k(cpu, stage2)) {
11173            return gran;
11174        }
11175        break;
11176    case GranInvalid:
11177        break;
11178    }
11179    /*
11180     * If the guest selects a granule size that isn't implemented,
11181     * the architecture requires that we behave as if it selected one
11182     * that is (with an IMPDEF choice of which one to pick). We choose
11183     * to implement the smallest supported granule size.
11184     */
11185    if (have4k(cpu, stage2)) {
11186        return Gran4K;
11187    }
11188    if (have16k(cpu, stage2)) {
11189        return Gran16K;
11190    }
11191    assert(have64k(cpu, stage2));
11192    return Gran64K;
11193}
11194
11195ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11196                                   ARMMMUIdx mmu_idx, bool data,
11197                                   bool el1_is_aa32)
11198{
11199    uint64_t tcr = regime_tcr(env, mmu_idx);
11200    bool epd, hpd, tsz_oob, ds, ha, hd;
11201    int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11202    ARMGranuleSize gran;
11203    ARMCPU *cpu = env_archcpu(env);
11204    bool stage2 = regime_is_stage2(mmu_idx);
11205
11206    if (!regime_has_2_ranges(mmu_idx)) {
11207        select = 0;
11208        tsz = extract32(tcr, 0, 6);
11209        gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11210        if (stage2) {
11211            /* VTCR_EL2 */
11212            hpd = false;
11213        } else {
11214            hpd = extract32(tcr, 24, 1);
11215        }
11216        epd = false;
11217        sh = extract32(tcr, 12, 2);
11218        ps = extract32(tcr, 16, 3);
11219        ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11220        hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11221        ds = extract64(tcr, 32, 1);
11222    } else {
11223        bool e0pd;
11224
11225        /*
11226         * Bit 55 is always between the two regions, and is canonical for
11227         * determining if address tagging is enabled.
11228         */
11229        select = extract64(va, 55, 1);
11230        if (!select) {
11231            tsz = extract32(tcr, 0, 6);
11232            gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11233            epd = extract32(tcr, 7, 1);
11234            sh = extract32(tcr, 12, 2);
11235            hpd = extract64(tcr, 41, 1);
11236            e0pd = extract64(tcr, 55, 1);
11237        } else {
11238            tsz = extract32(tcr, 16, 6);
11239            gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11240            epd = extract32(tcr, 23, 1);
11241            sh = extract32(tcr, 28, 2);
11242            hpd = extract64(tcr, 42, 1);
11243            e0pd = extract64(tcr, 56, 1);
11244        }
11245        ps = extract64(tcr, 32, 3);
11246        ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11247        hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11248        ds = extract64(tcr, 59, 1);
11249
11250        if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11251            regime_is_user(env, mmu_idx)) {
11252            epd = true;
11253        }
11254    }
11255
11256    gran = sanitize_gran_size(cpu, gran, stage2);
11257
11258    if (cpu_isar_feature(aa64_st, cpu)) {
11259        max_tsz = 48 - (gran == Gran64K);
11260    } else {
11261        max_tsz = 39;
11262    }
11263
11264    /*
11265     * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11266     * adjust the effective value of DS, as documented.
11267     */
11268    min_tsz = 16;
11269    if (gran == Gran64K) {
11270        if (cpu_isar_feature(aa64_lva, cpu)) {
11271            min_tsz = 12;
11272        }
11273        ds = false;
11274    } else if (ds) {
11275        if (regime_is_stage2(mmu_idx)) {
11276            if (gran == Gran16K) {
11277                ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11278            } else {
11279                ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11280            }
11281        } else {
11282            if (gran == Gran16K) {
11283                ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11284            } else {
11285                ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11286            }
11287        }
11288        if (ds) {
11289            min_tsz = 12;
11290        }
11291    }
11292
11293    if (stage2 && el1_is_aa32) {
11294        /*
11295         * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11296         * are loosened: a configured IPA of 40 bits is permitted even if
11297         * the implemented PA is less than that (and so a 40 bit IPA would
11298         * fault for an AArch64 EL1). See R_DTLMN.
11299         */
11300        min_tsz = MIN(min_tsz, 24);
11301    }
11302
11303    if (tsz > max_tsz) {
11304        tsz = max_tsz;
11305        tsz_oob = true;
11306    } else if (tsz < min_tsz) {
11307        tsz = min_tsz;
11308        tsz_oob = true;
11309    } else {
11310        tsz_oob = false;
11311    }
11312
11313    /* Present TBI as a composite with TBID.  */
11314    tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11315    if (!data) {
11316        tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11317    }
11318    tbi = (tbi >> select) & 1;
11319
11320    return (ARMVAParameters) {
11321        .tsz = tsz,
11322        .ps = ps,
11323        .sh = sh,
11324        .select = select,
11325        .tbi = tbi,
11326        .epd = epd,
11327        .hpd = hpd,
11328        .tsz_oob = tsz_oob,
11329        .ds = ds,
11330        .ha = ha,
11331        .hd = ha && hd,
11332        .gran = gran,
11333    };
11334}
11335
11336/*
11337 * Note that signed overflow is undefined in C.  The following routines are
11338 * careful to use unsigned types where modulo arithmetic is required.
11339 * Failure to do so _will_ break on newer gcc.
11340 */
11341
11342/* Signed saturating arithmetic.  */
11343
11344/* Perform 16-bit signed saturating addition.  */
11345static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11346{
11347    uint16_t res;
11348
11349    res = a + b;
11350    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11351        if (a & 0x8000) {
11352            res = 0x8000;
11353        } else {
11354            res = 0x7fff;
11355        }
11356    }
11357    return res;
11358}
11359
11360/* Perform 8-bit signed saturating addition.  */
11361static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11362{
11363    uint8_t res;
11364
11365    res = a + b;
11366    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11367        if (a & 0x80) {
11368            res = 0x80;
11369        } else {
11370            res = 0x7f;
11371        }
11372    }
11373    return res;
11374}
11375
11376/* Perform 16-bit signed saturating subtraction.  */
11377static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11378{
11379    uint16_t res;
11380
11381    res = a - b;
11382    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11383        if (a & 0x8000) {
11384            res = 0x8000;
11385        } else {
11386            res = 0x7fff;
11387        }
11388    }
11389    return res;
11390}
11391
11392/* Perform 8-bit signed saturating subtraction.  */
11393static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11394{
11395    uint8_t res;
11396
11397    res = a - b;
11398    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11399        if (a & 0x80) {
11400            res = 0x80;
11401        } else {
11402            res = 0x7f;
11403        }
11404    }
11405    return res;
11406}
11407
11408#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11409#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11410#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11411#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11412#define PFX q
11413
11414#include "op_addsub.h"
11415
11416/* Unsigned saturating arithmetic.  */
11417static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11418{
11419    uint16_t res;
11420    res = a + b;
11421    if (res < a) {
11422        res = 0xffff;
11423    }
11424    return res;
11425}
11426
11427static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11428{
11429    if (a > b) {
11430        return a - b;
11431    } else {
11432        return 0;
11433    }
11434}
11435
11436static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11437{
11438    uint8_t res;
11439    res = a + b;
11440    if (res < a) {
11441        res = 0xff;
11442    }
11443    return res;
11444}
11445
11446static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11447{
11448    if (a > b) {
11449        return a - b;
11450    } else {
11451        return 0;
11452    }
11453}
11454
11455#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11456#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11457#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11458#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11459#define PFX uq
11460
11461#include "op_addsub.h"
11462
11463/* Signed modulo arithmetic.  */
11464#define SARITH16(a, b, n, op) do { \
11465    int32_t sum; \
11466    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11467    RESULT(sum, n, 16); \
11468    if (sum >= 0) \
11469        ge |= 3 << (n * 2); \
11470    } while (0)
11471
11472#define SARITH8(a, b, n, op) do { \
11473    int32_t sum; \
11474    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11475    RESULT(sum, n, 8); \
11476    if (sum >= 0) \
11477        ge |= 1 << n; \
11478    } while (0)
11479
11480
11481#define ADD16(a, b, n) SARITH16(a, b, n, +)
11482#define SUB16(a, b, n) SARITH16(a, b, n, -)
11483#define ADD8(a, b, n)  SARITH8(a, b, n, +)
11484#define SUB8(a, b, n)  SARITH8(a, b, n, -)
11485#define PFX s
11486#define ARITH_GE
11487
11488#include "op_addsub.h"
11489
11490/* Unsigned modulo arithmetic.  */
11491#define ADD16(a, b, n) do { \
11492    uint32_t sum; \
11493    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11494    RESULT(sum, n, 16); \
11495    if ((sum >> 16) == 1) \
11496        ge |= 3 << (n * 2); \
11497    } while (0)
11498
11499#define ADD8(a, b, n) do { \
11500    uint32_t sum; \
11501    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11502    RESULT(sum, n, 8); \
11503    if ((sum >> 8) == 1) \
11504        ge |= 1 << n; \
11505    } while (0)
11506
11507#define SUB16(a, b, n) do { \
11508    uint32_t sum; \
11509    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11510    RESULT(sum, n, 16); \
11511    if ((sum >> 16) == 0) \
11512        ge |= 3 << (n * 2); \
11513    } while (0)
11514
11515#define SUB8(a, b, n) do { \
11516    uint32_t sum; \
11517    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11518    RESULT(sum, n, 8); \
11519    if ((sum >> 8) == 0) \
11520        ge |= 1 << n; \
11521    } while (0)
11522
11523#define PFX u
11524#define ARITH_GE
11525
11526#include "op_addsub.h"
11527
11528/* Halved signed arithmetic.  */
11529#define ADD16(a, b, n) \
11530  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11531#define SUB16(a, b, n) \
11532  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11533#define ADD8(a, b, n) \
11534  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11535#define SUB8(a, b, n) \
11536  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11537#define PFX sh
11538
11539#include "op_addsub.h"
11540
11541/* Halved unsigned arithmetic.  */
11542#define ADD16(a, b, n) \
11543  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11544#define SUB16(a, b, n) \
11545  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11546#define ADD8(a, b, n) \
11547  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11548#define SUB8(a, b, n) \
11549  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11550#define PFX uh
11551
11552#include "op_addsub.h"
11553
11554static inline uint8_t do_usad(uint8_t a, uint8_t b)
11555{
11556    if (a > b) {
11557        return a - b;
11558    } else {
11559        return b - a;
11560    }
11561}
11562
11563/* Unsigned sum of absolute byte differences.  */
11564uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11565{
11566    uint32_t sum;
11567    sum = do_usad(a, b);
11568    sum += do_usad(a >> 8, b >> 8);
11569    sum += do_usad(a >> 16, b >> 16);
11570    sum += do_usad(a >> 24, b >> 24);
11571    return sum;
11572}
11573
11574/* For ARMv6 SEL instruction.  */
11575uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11576{
11577    uint32_t mask;
11578
11579    mask = 0;
11580    if (flags & 1) {
11581        mask |= 0xff;
11582    }
11583    if (flags & 2) {
11584        mask |= 0xff00;
11585    }
11586    if (flags & 4) {
11587        mask |= 0xff0000;
11588    }
11589    if (flags & 8) {
11590        mask |= 0xff000000;
11591    }
11592    return (a & mask) | (b & ~mask);
11593}
11594
11595/*
11596 * CRC helpers.
11597 * The upper bytes of val (above the number specified by 'bytes') must have
11598 * been zeroed out by the caller.
11599 */
11600uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11601{
11602    uint8_t buf[4];
11603
11604    stl_le_p(buf, val);
11605
11606    /* zlib crc32 converts the accumulator and output to one's complement.  */
11607    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11608}
11609
11610uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11611{
11612    uint8_t buf[4];
11613
11614    stl_le_p(buf, val);
11615
11616    /* Linux crc32c converts the output to one's complement.  */
11617    return crc32c(acc, buf, bytes) ^ 0xffffffff;
11618}
11619
11620/*
11621 * Return the exception level to which FP-disabled exceptions should
11622 * be taken, or 0 if FP is enabled.
11623 */
11624int fp_exception_el(CPUARMState *env, int cur_el)
11625{
11626#ifndef CONFIG_USER_ONLY
11627    uint64_t hcr_el2;
11628
11629    /*
11630     * CPACR and the CPTR registers don't exist before v6, so FP is
11631     * always accessible
11632     */
11633    if (!arm_feature(env, ARM_FEATURE_V6)) {
11634        return 0;
11635    }
11636
11637    if (arm_feature(env, ARM_FEATURE_M)) {
11638        /* CPACR can cause a NOCP UsageFault taken to current security state */
11639        if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11640            return 1;
11641        }
11642
11643        if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11644            if (!extract32(env->v7m.nsacr, 10, 1)) {
11645                /* FP insns cause a NOCP UsageFault taken to Secure */
11646                return 3;
11647            }
11648        }
11649
11650        return 0;
11651    }
11652
11653    hcr_el2 = arm_hcr_el2_eff(env);
11654
11655    /*
11656     * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11657     * 0, 2 : trap EL0 and EL1/PL1 accesses
11658     * 1    : trap only EL0 accesses
11659     * 3    : trap no accesses
11660     * This register is ignored if E2H+TGE are both set.
11661     */
11662    if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11663        int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11664
11665        switch (fpen) {
11666        case 1:
11667            if (cur_el != 0) {
11668                break;
11669            }
11670            /* fall through */
11671        case 0:
11672        case 2:
11673            /* Trap from Secure PL0 or PL1 to Secure PL1. */
11674            if (!arm_el_is_aa64(env, 3)
11675                && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11676                return 3;
11677            }
11678            if (cur_el <= 1) {
11679                return 1;
11680            }
11681            break;
11682        }
11683    }
11684
11685    /*
11686     * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11687     * to control non-secure access to the FPU. It doesn't have any
11688     * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11689     */
11690    if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11691         cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11692        if (!extract32(env->cp15.nsacr, 10, 1)) {
11693            /* FP insns act as UNDEF */
11694            return cur_el == 2 ? 2 : 1;
11695        }
11696    }
11697
11698    /*
11699     * CPTR_EL2 is present in v7VE or v8, and changes format
11700     * with HCR_EL2.E2H (regardless of TGE).
11701     */
11702    if (cur_el <= 2) {
11703        if (hcr_el2 & HCR_E2H) {
11704            switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11705            case 1:
11706                if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11707                    break;
11708                }
11709                /* fall through */
11710            case 0:
11711            case 2:
11712                return 2;
11713            }
11714        } else if (arm_is_el2_enabled(env)) {
11715            if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11716                return 2;
11717            }
11718        }
11719    }
11720
11721    /* CPTR_EL3 : present in v8 */
11722    if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11723        /* Trap all FP ops to EL3 */
11724        return 3;
11725    }
11726#endif
11727    return 0;
11728}
11729
11730/* Return the exception level we're running at if this is our mmu_idx */
11731int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11732{
11733    if (mmu_idx & ARM_MMU_IDX_M) {
11734        return mmu_idx & ARM_MMU_IDX_M_PRIV;
11735    }
11736
11737    switch (mmu_idx) {
11738    case ARMMMUIdx_E10_0:
11739    case ARMMMUIdx_E20_0:
11740        return 0;
11741    case ARMMMUIdx_E10_1:
11742    case ARMMMUIdx_E10_1_PAN:
11743        return 1;
11744    case ARMMMUIdx_E2:
11745    case ARMMMUIdx_E20_2:
11746    case ARMMMUIdx_E20_2_PAN:
11747        return 2;
11748    case ARMMMUIdx_E3:
11749        return 3;
11750    default:
11751        g_assert_not_reached();
11752    }
11753}
11754
11755#ifndef CONFIG_TCG
11756ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11757{
11758    g_assert_not_reached();
11759}
11760#endif
11761
11762static bool arm_pan_enabled(CPUARMState *env)
11763{
11764    if (is_a64(env)) {
11765        return env->pstate & PSTATE_PAN;
11766    } else {
11767        return env->uncached_cpsr & CPSR_PAN;
11768    }
11769}
11770
11771ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11772{
11773    ARMMMUIdx idx;
11774    uint64_t hcr;
11775
11776    if (arm_feature(env, ARM_FEATURE_M)) {
11777        return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11778    }
11779
11780    /* See ARM pseudo-function ELIsInHost.  */
11781    switch (el) {
11782    case 0:
11783        hcr = arm_hcr_el2_eff(env);
11784        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11785            idx = ARMMMUIdx_E20_0;
11786        } else {
11787            idx = ARMMMUIdx_E10_0;
11788        }
11789        break;
11790    case 1:
11791        if (arm_pan_enabled(env)) {
11792            idx = ARMMMUIdx_E10_1_PAN;
11793        } else {
11794            idx = ARMMMUIdx_E10_1;
11795        }
11796        break;
11797    case 2:
11798        /* Note that TGE does not apply at EL2.  */
11799        if (arm_hcr_el2_eff(env) & HCR_E2H) {
11800            if (arm_pan_enabled(env)) {
11801                idx = ARMMMUIdx_E20_2_PAN;
11802            } else {
11803                idx = ARMMMUIdx_E20_2;
11804            }
11805        } else {
11806            idx = ARMMMUIdx_E2;
11807        }
11808        break;
11809    case 3:
11810        return ARMMMUIdx_E3;
11811    default:
11812        g_assert_not_reached();
11813    }
11814
11815    return idx;
11816}
11817
11818ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11819{
11820    return arm_mmu_idx_el(env, arm_current_el(env));
11821}
11822
11823static bool mve_no_pred(CPUARMState *env)
11824{
11825    /*
11826     * Return true if there is definitely no predication of MVE
11827     * instructions by VPR or LTPSIZE. (Returning false even if there
11828     * isn't any predication is OK; generated code will just be
11829     * a little worse.)
11830     * If the CPU does not implement MVE then this TB flag is always 0.
11831     *
11832     * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11833     * logic in gen_update_fp_context() needs to be updated to match.
11834     *
11835     * We do not include the effect of the ECI bits here -- they are
11836     * tracked in other TB flags. This simplifies the logic for
11837     * "when did we emit code that changes the MVE_NO_PRED TB flag
11838     * and thus need to end the TB?".
11839     */
11840    if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11841        return false;
11842    }
11843    if (env->v7m.vpr) {
11844        return false;
11845    }
11846    if (env->v7m.ltpsize < 4) {
11847        return false;
11848    }
11849    return true;
11850}
11851
11852void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11853                          target_ulong *cs_base, uint32_t *pflags)
11854{
11855    CPUARMTBFlags flags;
11856
11857    assert_hflags_rebuild_correctly(env);
11858    flags = env->hflags;
11859
11860    if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11861        *pc = env->pc;
11862        if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11863            DP_TBFLAG_A64(flags, BTYPE, env->btype);
11864        }
11865    } else {
11866        *pc = env->regs[15];
11867
11868        if (arm_feature(env, ARM_FEATURE_M)) {
11869            if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11870                FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11871                != env->v7m.secure) {
11872                DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11873            }
11874
11875            if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11876                (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11877                 (env->v7m.secure &&
11878                  !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11879                /*
11880                 * ASPEN is set, but FPCA/SFPA indicate that there is no
11881                 * active FP context; we must create a new FP context before
11882                 * executing any FP insn.
11883                 */
11884                DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11885            }
11886
11887            bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11888            if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11889                DP_TBFLAG_M32(flags, LSPACT, 1);
11890            }
11891
11892            if (mve_no_pred(env)) {
11893                DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11894            }
11895        } else {
11896            /*
11897             * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11898             * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11899             */
11900            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11901                DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11902            } else {
11903                DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11904                DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11905            }
11906            if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11907                DP_TBFLAG_A32(flags, VFPEN, 1);
11908            }
11909        }
11910
11911        DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11912        DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11913    }
11914
11915    /*
11916     * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11917     * states defined in the ARM ARM for software singlestep:
11918     *  SS_ACTIVE   PSTATE.SS   State
11919     *     0            x       Inactive (the TB flag for SS is always 0)
11920     *     1            0       Active-pending
11921     *     1            1       Active-not-pending
11922     * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11923     */
11924    if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11925        DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11926    }
11927
11928    *pflags = flags.flags;
11929    *cs_base = flags.flags2;
11930}
11931
11932#ifdef TARGET_AARCH64
11933/*
11934 * The manual says that when SVE is enabled and VQ is widened the
11935 * implementation is allowed to zero the previously inaccessible
11936 * portion of the registers.  The corollary to that is that when
11937 * SVE is enabled and VQ is narrowed we are also allowed to zero
11938 * the now inaccessible portion of the registers.
11939 *
11940 * The intent of this is that no predicate bit beyond VQ is ever set.
11941 * Which means that some operations on predicate registers themselves
11942 * may operate on full uint64_t or even unrolled across the maximum
11943 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11944 * may well be cheaper than conditionals to restrict the operation
11945 * to the relevant portion of a uint16_t[16].
11946 */
11947void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11948{
11949    int i, j;
11950    uint64_t pmask;
11951
11952    assert(vq >= 1 && vq <= ARM_MAX_VQ);
11953    assert(vq <= env_archcpu(env)->sve_max_vq);
11954
11955    /* Zap the high bits of the zregs.  */
11956    for (i = 0; i < 32; i++) {
11957        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11958    }
11959
11960    /* Zap the high bits of the pregs and ffr.  */
11961    pmask = 0;
11962    if (vq & 3) {
11963        pmask = ~(-1ULL << (16 * (vq & 3)));
11964    }
11965    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11966        for (i = 0; i < 17; ++i) {
11967            env->vfp.pregs[i].p[j] &= pmask;
11968        }
11969        pmask = 0;
11970    }
11971}
11972
11973static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11974{
11975    int exc_el;
11976
11977    if (sm) {
11978        exc_el = sme_exception_el(env, el);
11979    } else {
11980        exc_el = sve_exception_el(env, el);
11981    }
11982    if (exc_el) {
11983        return 0; /* disabled */
11984    }
11985    return sve_vqm1_for_el_sm(env, el, sm);
11986}
11987
11988/*
11989 * Notice a change in SVE vector size when changing EL.
11990 */
11991void aarch64_sve_change_el(CPUARMState *env, int old_el,
11992                           int new_el, bool el0_a64)
11993{
11994    ARMCPU *cpu = env_archcpu(env);
11995    int old_len, new_len;
11996    bool old_a64, new_a64, sm;
11997
11998    /* Nothing to do if no SVE.  */
11999    if (!cpu_isar_feature(aa64_sve, cpu)) {
12000        return;
12001    }
12002
12003    /* Nothing to do if FP is disabled in either EL.  */
12004    if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12005        return;
12006    }
12007
12008    old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12009    new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12010
12011    /*
12012     * Both AArch64.TakeException and AArch64.ExceptionReturn
12013     * invoke ResetSVEState when taking an exception from, or
12014     * returning to, AArch32 state when PSTATE.SM is enabled.
12015     */
12016    sm = FIELD_EX64(env->svcr, SVCR, SM);
12017    if (old_a64 != new_a64 && sm) {
12018        arm_reset_sve_state(env);
12019        return;
12020    }
12021
12022    /*
12023     * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12024     * at ELx, or not available because the EL is in AArch32 state, then
12025     * for all purposes other than a direct read, the ZCR_ELx.LEN field
12026     * has an effective value of 0".
12027     *
12028     * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12029     * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12030     * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12031     * we already have the correct register contents when encountering the
12032     * vq0->vq0 transition between EL0->EL1.
12033     */
12034    old_len = new_len = 0;
12035    if (old_a64) {
12036        old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12037    }
12038    if (new_a64) {
12039        new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12040    }
12041
12042    /* When changing vector length, clear inaccessible state.  */
12043    if (new_len < old_len) {
12044        aarch64_sve_narrow_vq(env, new_len + 1);
12045    }
12046}
12047#endif
12048