1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28#include "qemu/osdep.h"
29#include "hw/net/mii.h"
30#include "hw/pci/pci_device.h"
31#include "hw/qdev-properties.h"
32#include "migration/vmstate.h"
33#include "net/eth.h"
34#include "net/net.h"
35#include "net/checksum.h"
36#include "sysemu/sysemu.h"
37#include "sysemu/dma.h"
38#include "qemu/iov.h"
39#include "qemu/module.h"
40#include "qemu/range.h"
41
42#include "e1000_common.h"
43#include "e1000x_common.h"
44#include "trace.h"
45#include "qom/object.h"
46
47
48
49#ifdef E1000_DEBUG
50enum {
51 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
52 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
53 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
54 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
55};
56#define DBGBIT(x) (1<<DEBUG_##x)
57static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
58
59#define DBGOUT(what, fmt, ...) do { \
60 if (debugflags & DBGBIT(what)) \
61 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
62 } while (0)
63#else
64#define DBGOUT(what, fmt, ...) do {} while (0)
65#endif
66
67#define IOPORT_SIZE 0x40
68#define PNPMMIO_SIZE 0x20000
69
70#define MAXIMUM_ETHERNET_HDR_LEN (ETH_HLEN + 4)
71
72
73
74
75
76
77
78
79
80struct E1000State_st {
81
82 PCIDevice parent_obj;
83
84
85 NICState *nic;
86 NICConf conf;
87 MemoryRegion mmio;
88 MemoryRegion io;
89
90 uint32_t mac_reg[0x8000];
91 uint16_t phy_reg[0x20];
92 uint16_t eeprom_data[64];
93
94 uint32_t rxbuf_size;
95 uint32_t rxbuf_min_shift;
96 struct e1000_tx {
97 unsigned char header[256];
98 unsigned char vlan_header[4];
99
100 unsigned char vlan[4];
101 unsigned char data[0x10000];
102 uint16_t size;
103 unsigned char vlan_needed;
104 unsigned char sum_needed;
105 bool cptse;
106 e1000x_txd_props props;
107 e1000x_txd_props tso_props;
108 uint16_t tso_frames;
109 bool busy;
110 } tx;
111
112 struct {
113 uint32_t val_in;
114 uint16_t bitnum_in;
115 uint16_t bitnum_out;
116 uint16_t reading;
117 uint32_t old_eecd;
118 } eecd_state;
119
120 QEMUTimer *autoneg_timer;
121
122 QEMUTimer *mit_timer;
123 bool mit_timer_on;
124 bool mit_irq_level;
125 uint32_t mit_ide;
126
127 QEMUTimer *flush_queue_timer;
128
129
130#define E1000_FLAG_AUTONEG_BIT 0
131#define E1000_FLAG_MIT_BIT 1
132#define E1000_FLAG_MAC_BIT 2
133#define E1000_FLAG_TSO_BIT 3
134#define E1000_FLAG_VET_BIT 4
135#define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
136#define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
137#define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
138#define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
139#define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT)
140
141 uint32_t compat_flags;
142 bool received_tx_tso;
143 bool use_tso_for_migration;
144 e1000x_txd_props mig_props;
145};
146typedef struct E1000State_st E1000State;
147
148#define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
149
150struct E1000BaseClass {
151 PCIDeviceClass parent_class;
152 uint16_t phy_id2;
153};
154typedef struct E1000BaseClass E1000BaseClass;
155
156#define TYPE_E1000_BASE "e1000-base"
157
158DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass,
159 E1000, TYPE_E1000_BASE)
160
161
162static void
163e1000_link_up(E1000State *s)
164{
165 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
166
167
168 qemu_flush_queued_packets(qemu_get_queue(s->nic));
169}
170
171static void
172e1000_autoneg_done(E1000State *s)
173{
174 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
175
176
177 qemu_flush_queued_packets(qemu_get_queue(s->nic));
178}
179
180static bool
181have_autoneg(E1000State *s)
182{
183 return chkflag(AUTONEG) && (s->phy_reg[MII_BMCR] & MII_BMCR_AUTOEN);
184}
185
186static void
187set_phy_ctrl(E1000State *s, int index, uint16_t val)
188{
189
190 s->phy_reg[MII_BMCR] = val & ~(0x3f |
191 MII_BMCR_RESET |
192 MII_BMCR_ANRESTART);
193
194
195
196
197
198
199 if (have_autoneg(s) && (val & MII_BMCR_ANRESTART)) {
200 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
201 }
202}
203
204static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
205 [MII_BMCR] = set_phy_ctrl,
206};
207
208enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
209
210enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
211static const char phy_regcap[0x20] = {
212 [MII_BMSR] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
213 [MII_PHYID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
214 [MII_BMCR] = PHY_RW, [MII_CTRL1000] = PHY_RW,
215 [MII_ANLPAR] = PHY_R, [MII_STAT1000] = PHY_R,
216 [MII_ANAR] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
217 [MII_PHYID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R,
218 [MII_ANER] = PHY_R,
219};
220
221
222static const uint16_t phy_reg_init[] = {
223 [MII_BMCR] = MII_BMCR_SPEED1000 |
224 MII_BMCR_FD |
225 MII_BMCR_AUTOEN,
226
227 [MII_BMSR] = MII_BMSR_EXTCAP |
228 MII_BMSR_LINK_ST |
229 MII_BMSR_AUTONEG |
230
231 MII_BMSR_MFPS |
232 MII_BMSR_EXTSTAT |
233 MII_BMSR_10T_HD |
234 MII_BMSR_10T_FD |
235 MII_BMSR_100TX_HD |
236 MII_BMSR_100TX_FD,
237
238 [MII_PHYID1] = 0x141,
239
240 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
241 MII_ANAR_10FD | MII_ANAR_TX |
242 MII_ANAR_TXFD | MII_ANAR_PAUSE |
243 MII_ANAR_PAUSE_ASYM,
244 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
245 MII_ANLPAR_TX | MII_ANLPAR_TXFD,
246 [MII_CTRL1000] = MII_CTRL1000_FULL | MII_CTRL1000_PORT |
247 MII_CTRL1000_MASTER,
248 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
249 MII_STAT1000_ROK | MII_STAT1000_LOK,
250 [M88E1000_PHY_SPEC_CTRL] = 0x360,
251 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
252 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
253};
254
255static const uint32_t mac_reg_init[] = {
256 [PBA] = 0x00100030,
257 [LEDCTL] = 0x602,
258 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
259 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
260 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
261 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
262 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
263 E1000_STATUS_LU,
264 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
265 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
266 E1000_MANC_RMCP_EN,
267};
268
269
270static inline void
271mit_update_delay(uint32_t *curr, uint32_t value)
272{
273 if (value && (*curr == 0 || value < *curr)) {
274 *curr = value;
275 }
276}
277
278static void
279set_interrupt_cause(E1000State *s, int index, uint32_t val)
280{
281 PCIDevice *d = PCI_DEVICE(s);
282 uint32_t pending_ints;
283 uint32_t mit_delay;
284
285 s->mac_reg[ICR] = val;
286
287
288
289
290
291
292
293
294
295 s->mac_reg[ICS] = val;
296
297 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
298 if (!s->mit_irq_level && pending_ints) {
299
300
301
302
303
304
305
306
307
308 if (s->mit_timer_on) {
309 return;
310 }
311 if (chkflag(MIT)) {
312
313
314
315
316
317 mit_delay = 0;
318 if (s->mit_ide &&
319 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
320 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
321 }
322 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
323 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
324 }
325 mit_update_delay(&mit_delay, s->mac_reg[ITR]);
326
327
328
329
330
331
332
333 mit_delay = (mit_delay < 500) ? 500 : mit_delay;
334
335 s->mit_timer_on = 1;
336 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
337 mit_delay * 256);
338 s->mit_ide = 0;
339 }
340 }
341
342 s->mit_irq_level = (pending_ints != 0);
343 pci_set_irq(d, s->mit_irq_level);
344}
345
346static void
347e1000_mit_timer(void *opaque)
348{
349 E1000State *s = opaque;
350
351 s->mit_timer_on = 0;
352
353 set_interrupt_cause(s, 0, s->mac_reg[ICR]);
354}
355
356static void
357set_ics(E1000State *s, int index, uint32_t val)
358{
359 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
360 s->mac_reg[IMS]);
361 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
362}
363
364static void
365e1000_autoneg_timer(void *opaque)
366{
367 E1000State *s = opaque;
368 if (!qemu_get_queue(s->nic)->link_down) {
369 e1000_autoneg_done(s);
370 set_ics(s, 0, E1000_ICS_LSC);
371 }
372}
373
374static bool e1000_vet_init_need(void *opaque)
375{
376 E1000State *s = opaque;
377
378 return chkflag(VET);
379}
380
381static void e1000_reset_hold(Object *obj)
382{
383 E1000State *d = E1000(obj);
384 E1000BaseClass *edc = E1000_GET_CLASS(d);
385 uint8_t *macaddr = d->conf.macaddr.a;
386
387 timer_del(d->autoneg_timer);
388 timer_del(d->mit_timer);
389 timer_del(d->flush_queue_timer);
390 d->mit_timer_on = 0;
391 d->mit_irq_level = 0;
392 d->mit_ide = 0;
393 memset(d->phy_reg, 0, sizeof d->phy_reg);
394 memcpy(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
395 d->phy_reg[MII_PHYID2] = edc->phy_id2;
396 memset(d->mac_reg, 0, sizeof d->mac_reg);
397 memcpy(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
398 d->rxbuf_min_shift = 1;
399 memset(&d->tx, 0, sizeof d->tx);
400
401 if (qemu_get_queue(d->nic)->link_down) {
402 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
403 }
404
405 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
406
407 if (e1000_vet_init_need(d)) {
408 d->mac_reg[VET] = ETH_P_VLAN;
409 }
410}
411
412static void
413set_ctrl(E1000State *s, int index, uint32_t val)
414{
415
416 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
417}
418
419static void
420e1000_flush_queue_timer(void *opaque)
421{
422 E1000State *s = opaque;
423
424 qemu_flush_queued_packets(qemu_get_queue(s->nic));
425}
426
427static void
428set_rx_control(E1000State *s, int index, uint32_t val)
429{
430 s->mac_reg[RCTL] = val;
431 s->rxbuf_size = e1000x_rxbufsize(val);
432 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
433 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
434 s->mac_reg[RCTL]);
435 timer_mod(s->flush_queue_timer,
436 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000);
437}
438
439static void
440set_mdic(E1000State *s, int index, uint32_t val)
441{
442 uint32_t data = val & E1000_MDIC_DATA_MASK;
443 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
444
445 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1)
446 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
447 else if (val & E1000_MDIC_OP_READ) {
448 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
449 if (!(phy_regcap[addr] & PHY_R)) {
450 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
451 val |= E1000_MDIC_ERROR;
452 } else
453 val = (val ^ data) | s->phy_reg[addr];
454 } else if (val & E1000_MDIC_OP_WRITE) {
455 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
456 if (!(phy_regcap[addr] & PHY_W)) {
457 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
458 val |= E1000_MDIC_ERROR;
459 } else {
460 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
461 phyreg_writeops[addr](s, index, data);
462 } else {
463 s->phy_reg[addr] = data;
464 }
465 }
466 }
467 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
468
469 if (val & E1000_MDIC_INT_EN) {
470 set_ics(s, 0, E1000_ICR_MDAC);
471 }
472}
473
474static uint32_t
475get_eecd(E1000State *s, int index)
476{
477 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
478
479 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
480 s->eecd_state.bitnum_out, s->eecd_state.reading);
481 if (!s->eecd_state.reading ||
482 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
483 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
484 ret |= E1000_EECD_DO;
485 return ret;
486}
487
488static void
489set_eecd(E1000State *s, int index, uint32_t val)
490{
491 uint32_t oldval = s->eecd_state.old_eecd;
492
493 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
494 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
495 if (!(E1000_EECD_CS & val)) {
496 return;
497 }
498 if (E1000_EECD_CS & (val ^ oldval)) {
499 s->eecd_state.val_in = 0;
500 s->eecd_state.bitnum_in = 0;
501 s->eecd_state.bitnum_out = 0;
502 s->eecd_state.reading = 0;
503 }
504 if (!(E1000_EECD_SK & (val ^ oldval))) {
505 return;
506 }
507 if (!(E1000_EECD_SK & val)) {
508 s->eecd_state.bitnum_out++;
509 return;
510 }
511 s->eecd_state.val_in <<= 1;
512 if (val & E1000_EECD_DI)
513 s->eecd_state.val_in |= 1;
514 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
515 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
516 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
517 EEPROM_READ_OPCODE_MICROWIRE);
518 }
519 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
520 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
521 s->eecd_state.reading);
522}
523
524static uint32_t
525flash_eerd_read(E1000State *s, int x)
526{
527 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
528
529 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
530 return (s->mac_reg[EERD]);
531
532 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
533 return (E1000_EEPROM_RW_REG_DONE | r);
534
535 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
536 E1000_EEPROM_RW_REG_DONE | r);
537}
538
539static void
540putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
541{
542 uint32_t sum;
543
544 if (cse && cse < n)
545 n = cse + 1;
546 if (sloc < n-1) {
547 sum = net_checksum_add(n-css, data+css);
548 stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
549 }
550}
551
552static inline void
553inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
554{
555 if (is_broadcast_ether_addr(arr)) {
556 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
557 } else if (is_multicast_ether_addr(arr)) {
558 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
559 }
560}
561
562static void
563e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
564{
565 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
566 PTC1023, PTC1522 };
567
568 NetClientState *nc = qemu_get_queue(s->nic);
569 if (s->phy_reg[MII_BMCR] & MII_BMCR_LOOPBACK) {
570 qemu_receive_packet(nc, buf, size);
571 } else {
572 qemu_send_packet(nc, buf, size);
573 }
574 inc_tx_bcast_or_mcast_count(s, buf);
575 e1000x_increase_size_stats(s->mac_reg, PTCregs, size + 4);
576}
577
578static void
579xmit_seg(E1000State *s)
580{
581 uint16_t len;
582 unsigned int frames = s->tx.tso_frames, css, sofar;
583 struct e1000_tx *tp = &s->tx;
584 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
585
586 if (tp->cptse) {
587 css = props->ipcss;
588 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
589 frames, tp->size, css);
590 if (props->ip) {
591 stw_be_p(tp->data+css+2, tp->size - css);
592 stw_be_p(tp->data+css+4,
593 lduw_be_p(tp->data + css + 4) + frames);
594 } else {
595 stw_be_p(tp->data+css+4, tp->size - css);
596 }
597 css = props->tucss;
598 len = tp->size - css;
599 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
600 if (props->tcp) {
601 sofar = frames * props->mss;
602 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar);
603 if (props->paylen - sofar > props->mss) {
604 tp->data[css + 13] &= ~9;
605 } else if (frames) {
606 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
607 }
608 } else {
609 stw_be_p(tp->data+css+4, len);
610 }
611 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
612 unsigned int phsum;
613
614 void *sp = tp->data + props->tucso;
615
616 phsum = lduw_be_p(sp) + len;
617 phsum = (phsum >> 16) + (phsum & 0xffff);
618 stw_be_p(sp, phsum);
619 }
620 tp->tso_frames++;
621 }
622
623 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
624 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
625 }
626 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
627 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
628 }
629 if (tp->vlan_needed) {
630 memmove(tp->vlan, tp->data, 4);
631 memmove(tp->data, tp->data + 4, 8);
632 memcpy(tp->data + 8, tp->vlan_header, 4);
633 e1000_send_packet(s, tp->vlan, tp->size + 4);
634 } else {
635 e1000_send_packet(s, tp->data, tp->size);
636 }
637
638 e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
639 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size + 4);
640 e1000x_inc_reg_if_not_full(s->mac_reg, GPTC);
641 e1000x_grow_8reg_if_not_full(s->mac_reg, GOTCL, s->tx.size + 4);
642}
643
644static void
645process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
646{
647 PCIDevice *d = PCI_DEVICE(s);
648 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
649 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
650 unsigned int split_size = txd_lower & 0xffff, bytes, sz;
651 unsigned int msh = 0xfffff;
652 uint64_t addr;
653 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
654 struct e1000_tx *tp = &s->tx;
655
656 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
657 if (dtype == E1000_TXD_CMD_DEXT) {
658 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
659 e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
660 s->use_tso_for_migration = 1;
661 tp->tso_frames = 0;
662 } else {
663 e1000x_read_tx_ctx_descr(xp, &tp->props);
664 s->use_tso_for_migration = 0;
665 }
666 return;
667 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
668
669 if (tp->size == 0) {
670 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
671 }
672 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
673 } else {
674
675 tp->cptse = 0;
676 }
677
678 if (e1000x_vlan_enabled(s->mac_reg) &&
679 e1000x_is_vlan_txd(txd_lower) &&
680 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
681 tp->vlan_needed = 1;
682 stw_be_p(tp->vlan_header,
683 le16_to_cpu(s->mac_reg[VET]));
684 stw_be_p(tp->vlan_header + 2,
685 le16_to_cpu(dp->upper.fields.special));
686 }
687
688 addr = le64_to_cpu(dp->buffer_addr);
689 if (tp->cptse) {
690 msh = tp->tso_props.hdr_len + tp->tso_props.mss;
691 do {
692 bytes = split_size;
693 if (tp->size >= msh) {
694 goto eop;
695 }
696 if (tp->size + bytes > msh)
697 bytes = msh - tp->size;
698
699 bytes = MIN(sizeof(tp->data) - tp->size, bytes);
700 pci_dma_read(d, addr, tp->data + tp->size, bytes);
701 sz = tp->size + bytes;
702 if (sz >= tp->tso_props.hdr_len
703 && tp->size < tp->tso_props.hdr_len) {
704 memmove(tp->header, tp->data, tp->tso_props.hdr_len);
705 }
706 tp->size = sz;
707 addr += bytes;
708 if (sz == msh) {
709 xmit_seg(s);
710 memmove(tp->data, tp->header, tp->tso_props.hdr_len);
711 tp->size = tp->tso_props.hdr_len;
712 }
713 split_size -= bytes;
714 } while (bytes && split_size);
715 } else {
716 split_size = MIN(sizeof(tp->data) - tp->size, split_size);
717 pci_dma_read(d, addr, tp->data + tp->size, split_size);
718 tp->size += split_size;
719 }
720
721eop:
722 if (!(txd_lower & E1000_TXD_CMD_EOP))
723 return;
724 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
725 xmit_seg(s);
726 }
727 tp->tso_frames = 0;
728 tp->sum_needed = 0;
729 tp->vlan_needed = 0;
730 tp->size = 0;
731 tp->cptse = 0;
732}
733
734static uint32_t
735txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
736{
737 PCIDevice *d = PCI_DEVICE(s);
738 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
739
740 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
741 return 0;
742 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
743 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
744 dp->upper.data = cpu_to_le32(txd_upper);
745 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
746 &dp->upper, sizeof(dp->upper));
747 return E1000_ICR_TXDW;
748}
749
750static uint64_t tx_desc_base(E1000State *s)
751{
752 uint64_t bah = s->mac_reg[TDBAH];
753 uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
754
755 return (bah << 32) + bal;
756}
757
758static void
759start_xmit(E1000State *s)
760{
761 PCIDevice *d = PCI_DEVICE(s);
762 dma_addr_t base;
763 struct e1000_tx_desc desc;
764 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
765
766 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
767 DBGOUT(TX, "tx disabled\n");
768 return;
769 }
770
771 if (s->tx.busy) {
772 return;
773 }
774 s->tx.busy = true;
775
776 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
777 base = tx_desc_base(s) +
778 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
779 pci_dma_read(d, base, &desc, sizeof(desc));
780
781 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
782 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
783 desc.upper.data);
784
785 process_tx_desc(s, &desc);
786 cause |= txdesc_writeback(s, base, &desc);
787
788 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
789 s->mac_reg[TDH] = 0;
790
791
792
793
794
795 if (s->mac_reg[TDH] == tdh_start ||
796 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
797 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
798 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
799 break;
800 }
801 }
802 s->tx.busy = false;
803 set_ics(s, 0, cause);
804}
805
806static int
807receive_filter(E1000State *s, const uint8_t *buf, int size)
808{
809 uint32_t rctl = s->mac_reg[RCTL];
810 int isbcast = is_broadcast_ether_addr(buf);
811 int ismcast = is_multicast_ether_addr(buf);
812
813 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
814 e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
815 uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(buf)->h_tci);
816 uint32_t vfta =
817 ldl_le_p((uint32_t *)(s->mac_reg + VFTA) +
818 ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
819 if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
820 return 0;
821 }
822 }
823
824 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) {
825 return 1;
826 }
827
828 if (ismcast && (rctl & E1000_RCTL_MPE)) {
829 return 1;
830 }
831
832 if (isbcast && (rctl & E1000_RCTL_BAM)) {
833 return 1;
834 }
835
836 return e1000x_rx_group_filter(s->mac_reg, buf);
837}
838
839static void
840e1000_set_link_status(NetClientState *nc)
841{
842 E1000State *s = qemu_get_nic_opaque(nc);
843 uint32_t old_status = s->mac_reg[STATUS];
844
845 if (nc->link_down) {
846 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
847 } else {
848 if (have_autoneg(s) &&
849 !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) {
850 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
851 } else {
852 e1000_link_up(s);
853 }
854 }
855
856 if (s->mac_reg[STATUS] != old_status)
857 set_ics(s, 0, E1000_ICR_LSC);
858}
859
860static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
861{
862 int bufs;
863
864 if (total_size <= s->rxbuf_size) {
865 return s->mac_reg[RDH] != s->mac_reg[RDT];
866 }
867 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
868 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
869 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
870 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
871 s->mac_reg[RDT] - s->mac_reg[RDH];
872 } else {
873 return false;
874 }
875 return total_size <= bufs * s->rxbuf_size;
876}
877
878static bool
879e1000_can_receive(NetClientState *nc)
880{
881 E1000State *s = qemu_get_nic_opaque(nc);
882
883 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
884 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer);
885}
886
887static uint64_t rx_desc_base(E1000State *s)
888{
889 uint64_t bah = s->mac_reg[RDBAH];
890 uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
891
892 return (bah << 32) + bal;
893}
894
895static void
896e1000_receiver_overrun(E1000State *s, size_t size)
897{
898 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]);
899 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC);
900 e1000x_inc_reg_if_not_full(s->mac_reg, MPC);
901 set_ics(s, 0, E1000_ICS_RXO);
902}
903
904static ssize_t
905e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
906{
907 E1000State *s = qemu_get_nic_opaque(nc);
908 PCIDevice *d = PCI_DEVICE(s);
909 struct e1000_rx_desc desc;
910 dma_addr_t base;
911 unsigned int n, rdt;
912 uint32_t rdh_start;
913 uint16_t vlan_special = 0;
914 uint8_t vlan_status = 0;
915 uint8_t min_buf[ETH_ZLEN];
916 struct iovec min_iov;
917 uint8_t *filter_buf = iov->iov_base;
918 size_t size = iov_size(iov, iovcnt);
919 size_t iov_ofs = 0;
920 size_t desc_offset;
921 size_t desc_size;
922 size_t total_size;
923 eth_pkt_types_e pkt_type;
924
925 if (!e1000x_hw_rx_enabled(s->mac_reg)) {
926 return -1;
927 }
928
929 if (timer_pending(s->flush_queue_timer)) {
930 return 0;
931 }
932
933
934 if (size < sizeof(min_buf)) {
935 iov_to_buf(iov, iovcnt, 0, min_buf, size);
936 memset(&min_buf[size], 0, sizeof(min_buf) - size);
937 min_iov.iov_base = filter_buf = min_buf;
938 min_iov.iov_len = size = sizeof(min_buf);
939 iovcnt = 1;
940 iov = &min_iov;
941 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
942
943 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
944 filter_buf = min_buf;
945 }
946
947
948 if (e1000x_is_oversized(s->mac_reg, size)) {
949 return size;
950 }
951
952 if (!receive_filter(s, filter_buf, size)) {
953 return size;
954 }
955
956 if (e1000x_vlan_enabled(s->mac_reg) &&
957 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
958 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
959 iov_ofs = 4;
960 if (filter_buf == iov->iov_base) {
961 memmove(filter_buf + 4, filter_buf, 12);
962 } else {
963 iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
964 while (iov->iov_len <= iov_ofs) {
965 iov_ofs -= iov->iov_len;
966 iov++;
967 }
968 }
969 vlan_status = E1000_RXD_STAT_VP;
970 size -= 4;
971 }
972
973 pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf));
974 rdh_start = s->mac_reg[RDH];
975 desc_offset = 0;
976 total_size = size + e1000x_fcs_len(s->mac_reg);
977 if (!e1000_has_rxbufs(s, total_size)) {
978 e1000_receiver_overrun(s, total_size);
979 return -1;
980 }
981 do {
982 desc_size = total_size - desc_offset;
983 if (desc_size > s->rxbuf_size) {
984 desc_size = s->rxbuf_size;
985 }
986 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
987 pci_dma_read(d, base, &desc, sizeof(desc));
988 desc.special = vlan_special;
989 desc.status &= ~E1000_RXD_STAT_DD;
990 if (desc.buffer_addr) {
991 if (desc_offset < size) {
992 size_t iov_copy;
993 hwaddr ba = le64_to_cpu(desc.buffer_addr);
994 size_t copy_size = size - desc_offset;
995 if (copy_size > s->rxbuf_size) {
996 copy_size = s->rxbuf_size;
997 }
998 do {
999 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1000 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
1001 copy_size -= iov_copy;
1002 ba += iov_copy;
1003 iov_ofs += iov_copy;
1004 if (iov_ofs == iov->iov_len) {
1005 iov++;
1006 iov_ofs = 0;
1007 }
1008 } while (copy_size);
1009 }
1010 desc_offset += desc_size;
1011 desc.length = cpu_to_le16(desc_size);
1012 if (desc_offset >= total_size) {
1013 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
1014 } else {
1015
1016
1017 desc.status &= ~E1000_RXD_STAT_EOP;
1018 }
1019 } else {
1020 DBGOUT(RX, "Null RX descriptor!!\n");
1021 }
1022 pci_dma_write(d, base, &desc, sizeof(desc));
1023 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
1024 pci_dma_write(d, base + offsetof(struct e1000_rx_desc, status),
1025 &desc.status, sizeof(desc.status));
1026
1027 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
1028 s->mac_reg[RDH] = 0;
1029
1030 if (s->mac_reg[RDH] == rdh_start ||
1031 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
1032 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
1033 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
1034 e1000_receiver_overrun(s, total_size);
1035 return -1;
1036 }
1037 } while (desc_offset < total_size);
1038
1039 e1000x_update_rx_total_stats(s->mac_reg, pkt_type, size, total_size);
1040
1041 n = E1000_ICS_RXT0;
1042 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
1043 rdt += s->mac_reg[RDLEN] / sizeof(desc);
1044 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
1045 s->rxbuf_min_shift)
1046 n |= E1000_ICS_RXDMT0;
1047
1048 set_ics(s, 0, n);
1049
1050 return size;
1051}
1052
1053static ssize_t
1054e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1055{
1056 const struct iovec iov = {
1057 .iov_base = (uint8_t *)buf,
1058 .iov_len = size
1059 };
1060
1061 return e1000_receive_iov(nc, &iov, 1);
1062}
1063
1064static uint32_t
1065mac_readreg(E1000State *s, int index)
1066{
1067 return s->mac_reg[index];
1068}
1069
1070static uint32_t
1071mac_icr_read(E1000State *s, int index)
1072{
1073 uint32_t ret = s->mac_reg[ICR];
1074
1075 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1076 set_interrupt_cause(s, 0, 0);
1077 return ret;
1078}
1079
1080static uint32_t
1081mac_read_clr4(E1000State *s, int index)
1082{
1083 uint32_t ret = s->mac_reg[index];
1084
1085 s->mac_reg[index] = 0;
1086 return ret;
1087}
1088
1089static uint32_t
1090mac_read_clr8(E1000State *s, int index)
1091{
1092 uint32_t ret = s->mac_reg[index];
1093
1094 s->mac_reg[index] = 0;
1095 s->mac_reg[index-1] = 0;
1096 return ret;
1097}
1098
1099static void
1100mac_writereg(E1000State *s, int index, uint32_t val)
1101{
1102 uint32_t macaddr[2];
1103
1104 s->mac_reg[index] = val;
1105
1106 if (index == RA + 1) {
1107 macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1108 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1109 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1110 }
1111}
1112
1113static void
1114set_rdt(E1000State *s, int index, uint32_t val)
1115{
1116 s->mac_reg[index] = val & 0xffff;
1117 if (e1000_has_rxbufs(s, 1)) {
1118 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1119 }
1120}
1121
1122#define LOW_BITS_SET_FUNC(num) \
1123 static void \
1124 set_##num##bit(E1000State *s, int index, uint32_t val) \
1125 { \
1126 s->mac_reg[index] = val & (BIT(num) - 1); \
1127 }
1128
1129LOW_BITS_SET_FUNC(4)
1130LOW_BITS_SET_FUNC(11)
1131LOW_BITS_SET_FUNC(13)
1132LOW_BITS_SET_FUNC(16)
1133
1134static void
1135set_dlen(E1000State *s, int index, uint32_t val)
1136{
1137 s->mac_reg[index] = val & 0xfff80;
1138}
1139
1140static void
1141set_tctl(E1000State *s, int index, uint32_t val)
1142{
1143 s->mac_reg[index] = val;
1144 s->mac_reg[TDT] &= 0xffff;
1145 start_xmit(s);
1146}
1147
1148static void
1149set_icr(E1000State *s, int index, uint32_t val)
1150{
1151 DBGOUT(INTERRUPT, "set_icr %x\n", val);
1152 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1153}
1154
1155static void
1156set_imc(E1000State *s, int index, uint32_t val)
1157{
1158 s->mac_reg[IMS] &= ~val;
1159 set_ics(s, 0, 0);
1160}
1161
1162static void
1163set_ims(E1000State *s, int index, uint32_t val)
1164{
1165 s->mac_reg[IMS] |= val;
1166 set_ics(s, 0, 0);
1167}
1168
1169#define getreg(x) [x] = mac_readreg
1170typedef uint32_t (*readops)(E1000State *, int);
1171static const readops macreg_readops[] = {
1172 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
1173 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
1174 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
1175 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
1176 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
1177 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
1178 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV),
1179 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV),
1180 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL),
1181 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC),
1182 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC),
1183 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC),
1184 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC),
1185 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL),
1186 getreg(GOTCL), getreg(RDFH), getreg(RDFT), getreg(RDFHS),
1187 getreg(RDFTS), getreg(RDFPC), getreg(TDFH), getreg(TDFT),
1188 getreg(TDFHS), getreg(TDFTS), getreg(TDFPC), getreg(AIT),
1189
1190 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8,
1191 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8,
1192 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4,
1193 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4,
1194 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4,
1195 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4,
1196 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4,
1197 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4,
1198 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4,
1199 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4,
1200 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4,
1201 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4,
1202 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4,
1203 [MPTC] = mac_read_clr4,
1204 [ICR] = mac_icr_read, [EECD] = get_eecd,
1205 [EERD] = flash_eerd_read,
1206
1207 [CRCERRS ... MPC] = &mac_readreg,
1208 [IP6AT ... IP6AT + 3] = &mac_readreg, [IP4AT ... IP4AT + 6] = &mac_readreg,
1209 [FFLT ... FFLT + 6] = &mac_readreg,
1210 [RA ... RA + 31] = &mac_readreg,
1211 [WUPM ... WUPM + 31] = &mac_readreg,
1212 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_readreg,
1213 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_readreg,
1214 [FFMT ... FFMT + 254] = &mac_readreg,
1215 [FFVT ... FFVT + 254] = &mac_readreg,
1216 [PBM ... PBM + 16383] = &mac_readreg,
1217};
1218enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1219
1220#define putreg(x) [x] = mac_writereg
1221typedef void (*writeops)(E1000State *, int, uint32_t);
1222static const writeops macreg_writeops[] = {
1223 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
1224 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
1225 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC),
1226 putreg(IPAV), putreg(WUC),
1227 putreg(WUS),
1228
1229 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
1230 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
1231 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
1232 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
1233 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
1234 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit,
1235 [ITR] = set_16bit, [TDFH] = set_11bit, [TDFT] = set_11bit,
1236 [TDFHS] = set_13bit, [TDFTS] = set_13bit, [TDFPC] = set_13bit,
1237 [RDFH] = set_13bit, [RDFT] = set_13bit, [RDFHS] = set_13bit,
1238 [RDFTS] = set_13bit, [RDFPC] = set_13bit, [AIT] = set_16bit,
1239
1240 [IP6AT ... IP6AT + 3] = &mac_writereg, [IP4AT ... IP4AT + 6] = &mac_writereg,
1241 [FFLT ... FFLT + 6] = &set_11bit,
1242 [RA ... RA + 31] = &mac_writereg,
1243 [WUPM ... WUPM + 31] = &mac_writereg,
1244 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_writereg,
1245 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_writereg,
1246 [FFMT ... FFMT + 254] = &set_4bit, [FFVT ... FFVT + 254] = &mac_writereg,
1247 [PBM ... PBM + 16383] = &mac_writereg,
1248};
1249
1250enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1251
1252enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1253
1254#define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1255
1256
1257
1258
1259static const uint8_t mac_reg_access[0x8000] = {
1260 [RDTR] = markflag(MIT), [TADV] = markflag(MIT),
1261 [RADV] = markflag(MIT), [ITR] = markflag(MIT),
1262
1263 [IPAV] = markflag(MAC), [WUC] = markflag(MAC),
1264 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC),
1265 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC),
1266 [ECOL] = markflag(MAC), [MCC] = markflag(MAC),
1267 [DC] = markflag(MAC), [TNCRS] = markflag(MAC),
1268 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC),
1269 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC),
1270 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC),
1271 [WUS] = markflag(MAC), [AIT] = markflag(MAC),
1272 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC),
1273 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC),
1274 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC),
1275 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC),
1276 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC),
1277 [RJC] = markflag(MAC), [RNBC] = markflag(MAC),
1278 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC),
1279 [RUC] = markflag(MAC), [ROC] = markflag(MAC),
1280 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC),
1281 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC),
1282 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC),
1283 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC),
1284 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC),
1285 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC),
1286 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC),
1287 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC),
1288 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC),
1289 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC),
1290 [BPTC] = markflag(MAC),
1291
1292 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1293 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1294 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1295 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1296 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1297 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1298 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1299 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1300 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1301 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1302 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1303};
1304
1305static void
1306e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1307 unsigned size)
1308{
1309 E1000State *s = opaque;
1310 unsigned int index = (addr & 0x1ffff) >> 2;
1311
1312 if (index < NWRITEOPS && macreg_writeops[index]) {
1313 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1314 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1315 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1316 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1317 "It is not fully implemented.\n", index<<2);
1318 }
1319 macreg_writeops[index](s, index, val);
1320 } else {
1321 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1322 index<<2);
1323 }
1324 } else if (index < NREADOPS && macreg_readops[index]) {
1325 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1326 index<<2, val);
1327 } else {
1328 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1329 index<<2, val);
1330 }
1331}
1332
1333static uint64_t
1334e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1335{
1336 E1000State *s = opaque;
1337 unsigned int index = (addr & 0x1ffff) >> 2;
1338
1339 if (index < NREADOPS && macreg_readops[index]) {
1340 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1341 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1342 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1343 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1344 "It is not fully implemented.\n", index<<2);
1345 }
1346 return macreg_readops[index](s, index);
1347 } else {
1348 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1349 index<<2);
1350 }
1351 } else {
1352 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1353 }
1354 return 0;
1355}
1356
1357static const MemoryRegionOps e1000_mmio_ops = {
1358 .read = e1000_mmio_read,
1359 .write = e1000_mmio_write,
1360 .endianness = DEVICE_LITTLE_ENDIAN,
1361 .impl = {
1362 .min_access_size = 4,
1363 .max_access_size = 4,
1364 },
1365};
1366
1367static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1368 unsigned size)
1369{
1370 E1000State *s = opaque;
1371
1372 (void)s;
1373 return 0;
1374}
1375
1376static void e1000_io_write(void *opaque, hwaddr addr,
1377 uint64_t val, unsigned size)
1378{
1379 E1000State *s = opaque;
1380
1381 (void)s;
1382}
1383
1384static const MemoryRegionOps e1000_io_ops = {
1385 .read = e1000_io_read,
1386 .write = e1000_io_write,
1387 .endianness = DEVICE_LITTLE_ENDIAN,
1388};
1389
1390static bool is_version_1(void *opaque, int version_id)
1391{
1392 return version_id == 1;
1393}
1394
1395static int e1000_pre_save(void *opaque)
1396{
1397 E1000State *s = opaque;
1398 NetClientState *nc = qemu_get_queue(s->nic);
1399
1400
1401
1402
1403
1404
1405 if (nc->link_down && have_autoneg(s)) {
1406 s->phy_reg[MII_BMSR] |= MII_BMSR_AN_COMP;
1407 }
1408
1409
1410 if (chkflag(TSO) || !s->use_tso_for_migration) {
1411
1412
1413
1414
1415
1416 s->mig_props = s->tx.props;
1417 } else {
1418
1419
1420
1421 s->mig_props = s->tx.tso_props;
1422 }
1423 return 0;
1424}
1425
1426static int e1000_post_load(void *opaque, int version_id)
1427{
1428 E1000State *s = opaque;
1429 NetClientState *nc = qemu_get_queue(s->nic);
1430
1431 if (!chkflag(MIT)) {
1432 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1433 s->mac_reg[TADV] = 0;
1434 s->mit_irq_level = false;
1435 }
1436 s->mit_ide = 0;
1437 s->mit_timer_on = true;
1438 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1);
1439
1440
1441
1442
1443 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1444
1445 if (have_autoneg(s) && !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) {
1446 nc->link_down = false;
1447 timer_mod(s->autoneg_timer,
1448 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1449 }
1450
1451 s->tx.props = s->mig_props;
1452 if (!s->received_tx_tso) {
1453
1454
1455
1456
1457 s->tx.tso_props = s->mig_props;
1458 }
1459 return 0;
1460}
1461
1462static int e1000_tx_tso_post_load(void *opaque, int version_id)
1463{
1464 E1000State *s = opaque;
1465 s->received_tx_tso = true;
1466 return 0;
1467}
1468
1469static bool e1000_mit_state_needed(void *opaque)
1470{
1471 E1000State *s = opaque;
1472
1473 return chkflag(MIT);
1474}
1475
1476static bool e1000_full_mac_needed(void *opaque)
1477{
1478 E1000State *s = opaque;
1479
1480 return chkflag(MAC);
1481}
1482
1483static bool e1000_tso_state_needed(void *opaque)
1484{
1485 E1000State *s = opaque;
1486
1487 return chkflag(TSO);
1488}
1489
1490static const VMStateDescription vmstate_e1000_mit_state = {
1491 .name = "e1000/mit_state",
1492 .version_id = 1,
1493 .minimum_version_id = 1,
1494 .needed = e1000_mit_state_needed,
1495 .fields = (VMStateField[]) {
1496 VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1497 VMSTATE_UINT32(mac_reg[RADV], E1000State),
1498 VMSTATE_UINT32(mac_reg[TADV], E1000State),
1499 VMSTATE_UINT32(mac_reg[ITR], E1000State),
1500 VMSTATE_BOOL(mit_irq_level, E1000State),
1501 VMSTATE_END_OF_LIST()
1502 }
1503};
1504
1505static const VMStateDescription vmstate_e1000_full_mac_state = {
1506 .name = "e1000/full_mac_state",
1507 .version_id = 1,
1508 .minimum_version_id = 1,
1509 .needed = e1000_full_mac_needed,
1510 .fields = (VMStateField[]) {
1511 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1512 VMSTATE_END_OF_LIST()
1513 }
1514};
1515
1516static const VMStateDescription vmstate_e1000_tx_tso_state = {
1517 .name = "e1000/tx_tso_state",
1518 .version_id = 1,
1519 .minimum_version_id = 1,
1520 .needed = e1000_tso_state_needed,
1521 .post_load = e1000_tx_tso_post_load,
1522 .fields = (VMStateField[]) {
1523 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State),
1524 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State),
1525 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State),
1526 VMSTATE_UINT8(tx.tso_props.tucss, E1000State),
1527 VMSTATE_UINT8(tx.tso_props.tucso, E1000State),
1528 VMSTATE_UINT16(tx.tso_props.tucse, E1000State),
1529 VMSTATE_UINT32(tx.tso_props.paylen, E1000State),
1530 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State),
1531 VMSTATE_UINT16(tx.tso_props.mss, E1000State),
1532 VMSTATE_INT8(tx.tso_props.ip, E1000State),
1533 VMSTATE_INT8(tx.tso_props.tcp, E1000State),
1534 VMSTATE_END_OF_LIST()
1535 }
1536};
1537
1538static const VMStateDescription vmstate_e1000 = {
1539 .name = "e1000",
1540 .version_id = 2,
1541 .minimum_version_id = 1,
1542 .pre_save = e1000_pre_save,
1543 .post_load = e1000_post_load,
1544 .fields = (VMStateField[]) {
1545 VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1546 VMSTATE_UNUSED_TEST(is_version_1, 4),
1547 VMSTATE_UNUSED(4),
1548 VMSTATE_UINT32(rxbuf_size, E1000State),
1549 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1550 VMSTATE_UINT32(eecd_state.val_in, E1000State),
1551 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1552 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1553 VMSTATE_UINT16(eecd_state.reading, E1000State),
1554 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1555 VMSTATE_UINT8(mig_props.ipcss, E1000State),
1556 VMSTATE_UINT8(mig_props.ipcso, E1000State),
1557 VMSTATE_UINT16(mig_props.ipcse, E1000State),
1558 VMSTATE_UINT8(mig_props.tucss, E1000State),
1559 VMSTATE_UINT8(mig_props.tucso, E1000State),
1560 VMSTATE_UINT16(mig_props.tucse, E1000State),
1561 VMSTATE_UINT32(mig_props.paylen, E1000State),
1562 VMSTATE_UINT8(mig_props.hdr_len, E1000State),
1563 VMSTATE_UINT16(mig_props.mss, E1000State),
1564 VMSTATE_UINT16(tx.size, E1000State),
1565 VMSTATE_UINT16(tx.tso_frames, E1000State),
1566 VMSTATE_UINT8(tx.sum_needed, E1000State),
1567 VMSTATE_INT8(mig_props.ip, E1000State),
1568 VMSTATE_INT8(mig_props.tcp, E1000State),
1569 VMSTATE_BUFFER(tx.header, E1000State),
1570 VMSTATE_BUFFER(tx.data, E1000State),
1571 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1572 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1573 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1574 VMSTATE_UINT32(mac_reg[EECD], E1000State),
1575 VMSTATE_UINT32(mac_reg[EERD], E1000State),
1576 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1577 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1578 VMSTATE_UINT32(mac_reg[ICR], E1000State),
1579 VMSTATE_UINT32(mac_reg[ICS], E1000State),
1580 VMSTATE_UINT32(mac_reg[IMC], E1000State),
1581 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1582 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1583 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1584 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1585 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1586 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1587 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1588 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1589 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1590 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1591 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1592 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1593 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1594 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1595 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1596 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1597 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1598 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1599 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1600 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1601 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1602 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1603 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1604 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1605 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1606 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1607 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1608 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1609 VMSTATE_UINT32(mac_reg[VET], E1000State),
1610 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1611 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, E1000_MC_TBL_SIZE),
1612 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA,
1613 E1000_VLAN_FILTER_TBL_SIZE),
1614 VMSTATE_END_OF_LIST()
1615 },
1616 .subsections = (const VMStateDescription*[]) {
1617 &vmstate_e1000_mit_state,
1618 &vmstate_e1000_full_mac_state,
1619 &vmstate_e1000_tx_tso_state,
1620 NULL
1621 }
1622};
1623
1624
1625
1626
1627
1628static const uint16_t e1000_eeprom_template[64] = {
1629 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1630 0x3000, 0x1000, 0x6403, 0 , 0x8086, 0 , 0x8086, 0x3040,
1631 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1632 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1633 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1634 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1635 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1636 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1637};
1638
1639
1640
1641static void
1642e1000_mmio_setup(E1000State *d)
1643{
1644 int i;
1645 const uint32_t excluded_regs[] = {
1646 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1647 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1648 };
1649
1650 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1651 "e1000-mmio", PNPMMIO_SIZE);
1652 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1653 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1654 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1655 excluded_regs[i+1] - excluded_regs[i] - 4);
1656 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1657}
1658
1659static void
1660pci_e1000_uninit(PCIDevice *dev)
1661{
1662 E1000State *d = E1000(dev);
1663
1664 timer_free(d->autoneg_timer);
1665 timer_free(d->mit_timer);
1666 timer_free(d->flush_queue_timer);
1667 qemu_del_nic(d->nic);
1668}
1669
1670static NetClientInfo net_e1000_info = {
1671 .type = NET_CLIENT_DRIVER_NIC,
1672 .size = sizeof(NICState),
1673 .can_receive = e1000_can_receive,
1674 .receive = e1000_receive,
1675 .receive_iov = e1000_receive_iov,
1676 .link_status_changed = e1000_set_link_status,
1677};
1678
1679static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1680 uint32_t val, int len)
1681{
1682 E1000State *s = E1000(pci_dev);
1683
1684 pci_default_write_config(pci_dev, address, val, len);
1685
1686 if (range_covers_byte(address, len, PCI_COMMAND) &&
1687 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1688 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1689 }
1690}
1691
1692static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1693{
1694 DeviceState *dev = DEVICE(pci_dev);
1695 E1000State *d = E1000(pci_dev);
1696 uint8_t *pci_conf;
1697 uint8_t *macaddr;
1698
1699 pci_dev->config_write = e1000_write_config;
1700
1701 pci_conf = pci_dev->config;
1702
1703
1704 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1705
1706 pci_conf[PCI_INTERRUPT_PIN] = 1;
1707
1708 e1000_mmio_setup(d);
1709
1710 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1711
1712 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1713
1714 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1715 macaddr = d->conf.macaddr.a;
1716
1717 e1000x_core_prepare_eeprom(d->eeprom_data,
1718 e1000_eeprom_template,
1719 sizeof(e1000_eeprom_template),
1720 PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1721 macaddr);
1722
1723 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1724 object_get_typename(OBJECT(d)), dev->id, d);
1725
1726 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1727
1728 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1729 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1730 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
1731 e1000_flush_queue_timer, d);
1732}
1733
1734static Property e1000_properties[] = {
1735 DEFINE_NIC_PROPERTIES(E1000State, conf),
1736 DEFINE_PROP_BIT("autonegotiation", E1000State,
1737 compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1738 DEFINE_PROP_BIT("mitigation", E1000State,
1739 compat_flags, E1000_FLAG_MIT_BIT, true),
1740 DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1741 compat_flags, E1000_FLAG_MAC_BIT, true),
1742 DEFINE_PROP_BIT("migrate_tso_props", E1000State,
1743 compat_flags, E1000_FLAG_TSO_BIT, true),
1744 DEFINE_PROP_BIT("init-vet", E1000State,
1745 compat_flags, E1000_FLAG_VET_BIT, true),
1746 DEFINE_PROP_END_OF_LIST(),
1747};
1748
1749typedef struct E1000Info {
1750 const char *name;
1751 uint16_t device_id;
1752 uint8_t revision;
1753 uint16_t phy_id2;
1754} E1000Info;
1755
1756static void e1000_class_init(ObjectClass *klass, void *data)
1757{
1758 DeviceClass *dc = DEVICE_CLASS(klass);
1759 ResettableClass *rc = RESETTABLE_CLASS(klass);
1760 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1761 E1000BaseClass *e = E1000_CLASS(klass);
1762 const E1000Info *info = data;
1763
1764 k->realize = pci_e1000_realize;
1765 k->exit = pci_e1000_uninit;
1766 k->romfile = "efi-e1000.rom";
1767 k->vendor_id = PCI_VENDOR_ID_INTEL;
1768 k->device_id = info->device_id;
1769 k->revision = info->revision;
1770 e->phy_id2 = info->phy_id2;
1771 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1772 rc->phases.hold = e1000_reset_hold;
1773 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1774 dc->desc = "Intel Gigabit Ethernet";
1775 dc->vmsd = &vmstate_e1000;
1776 device_class_set_props(dc, e1000_properties);
1777}
1778
1779static void e1000_instance_init(Object *obj)
1780{
1781 E1000State *n = E1000(obj);
1782 device_add_bootindex_property(obj, &n->conf.bootindex,
1783 "bootindex", "/ethernet-phy@0",
1784 DEVICE(n));
1785}
1786
1787static const TypeInfo e1000_base_info = {
1788 .name = TYPE_E1000_BASE,
1789 .parent = TYPE_PCI_DEVICE,
1790 .instance_size = sizeof(E1000State),
1791 .instance_init = e1000_instance_init,
1792 .class_size = sizeof(E1000BaseClass),
1793 .abstract = true,
1794 .interfaces = (InterfaceInfo[]) {
1795 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1796 { },
1797 },
1798};
1799
1800static const E1000Info e1000_devices[] = {
1801 {
1802 .name = "e1000",
1803 .device_id = E1000_DEV_ID_82540EM,
1804 .revision = 0x03,
1805 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1806 },
1807 {
1808 .name = "e1000-82544gc",
1809 .device_id = E1000_DEV_ID_82544GC_COPPER,
1810 .revision = 0x03,
1811 .phy_id2 = E1000_PHY_ID2_82544x,
1812 },
1813 {
1814 .name = "e1000-82545em",
1815 .device_id = E1000_DEV_ID_82545EM_COPPER,
1816 .revision = 0x03,
1817 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1818 },
1819};
1820
1821static void e1000_register_types(void)
1822{
1823 int i;
1824
1825 type_register_static(&e1000_base_info);
1826 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1827 const E1000Info *info = &e1000_devices[i];
1828 TypeInfo type_info = {};
1829
1830 type_info.name = info->name;
1831 type_info.parent = TYPE_E1000_BASE;
1832 type_info.class_data = (void *)info;
1833 type_info.class_init = e1000_class_init;
1834
1835 type_register(&type_info);
1836 }
1837}
1838
1839type_init(e1000_register_types)
1840