qemu/target/arm/tcg/mte_helper.c
<<
>>
Prefs
   1/*
   2 * ARM v8.5-MemTag Operations
   3 *
   4 * Copyright (c) 2020 Linaro, Ltd.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "cpu.h"
  23#include "internals.h"
  24#include "exec/exec-all.h"
  25#include "exec/ram_addr.h"
  26#include "exec/cpu_ldst.h"
  27#include "exec/helper-proto.h"
  28#include "hw/core/tcg-cpu-ops.h"
  29#include "qapi/error.h"
  30#include "qemu/guest-random.h"
  31
  32
  33static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
  34{
  35    if (exclude == 0xffff) {
  36        return 0;
  37    }
  38    if (offset == 0) {
  39        while (exclude & (1 << tag)) {
  40            tag = (tag + 1) & 15;
  41        }
  42    } else {
  43        do {
  44            do {
  45                tag = (tag + 1) & 15;
  46            } while (exclude & (1 << tag));
  47        } while (--offset > 0);
  48    }
  49    return tag;
  50}
  51
  52/**
  53 * allocation_tag_mem:
  54 * @env: the cpu environment
  55 * @ptr_mmu_idx: the addressing regime to use for the virtual address
  56 * @ptr: the virtual address for which to look up tag memory
  57 * @ptr_access: the access to use for the virtual address
  58 * @ptr_size: the number of bytes in the normal memory access
  59 * @tag_access: the access to use for the tag memory
  60 * @tag_size: the number of bytes in the tag memory access
  61 * @ra: the return address for exception handling
  62 *
  63 * Our tag memory is formatted as a sequence of little-endian nibbles.
  64 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
  65 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
  66 * for the higher addr.
  67 *
  68 * Here, resolve the physical address from the virtual address, and return
  69 * a pointer to the corresponding tag byte.  Exit with exception if the
  70 * virtual address is not accessible for @ptr_access.
  71 *
  72 * The @ptr_size and @tag_size values may not have an obvious relation
  73 * due to the alignment of @ptr, and the number of tag checks required.
  74 *
  75 * If there is no tag storage corresponding to @ptr, return NULL.
  76 */
  77static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
  78                                   uint64_t ptr, MMUAccessType ptr_access,
  79                                   int ptr_size, MMUAccessType tag_access,
  80                                   int tag_size, uintptr_t ra)
  81{
  82#ifdef CONFIG_USER_ONLY
  83    uint64_t clean_ptr = useronly_clean_ptr(ptr);
  84    int flags = page_get_flags(clean_ptr);
  85    uint8_t *tags;
  86    uintptr_t index;
  87
  88    if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
  89        cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
  90                              !(flags & PAGE_VALID), ra);
  91    }
  92
  93    /* Require both MAP_ANON and PROT_MTE for the page. */
  94    if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
  95        return NULL;
  96    }
  97
  98    tags = page_get_target_data(clean_ptr);
  99
 100    index = extract32(ptr, LOG2_TAG_GRANULE + 1,
 101                      TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
 102    return tags + index;
 103#else
 104    CPUTLBEntryFull *full;
 105    MemTxAttrs attrs;
 106    int in_page, flags;
 107    hwaddr ptr_paddr, tag_paddr, xlat;
 108    MemoryRegion *mr;
 109    ARMASIdx tag_asi;
 110    AddressSpace *tag_as;
 111    void *host;
 112
 113    /*
 114     * Probe the first byte of the virtual address.  This raises an
 115     * exception for inaccessible pages, and resolves the virtual address
 116     * into the softmmu tlb.
 117     *
 118     * When RA == 0, this is for mte_probe.  The page is expected to be
 119     * valid.  Indicate to probe_access_flags no-fault, then assert that
 120     * we received a valid page.
 121     */
 122    flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
 123                              ra == 0, &host, &full, ra);
 124    assert(!(flags & TLB_INVALID_MASK));
 125
 126    /* If the virtual page MemAttr != Tagged, access unchecked. */
 127    if (full->pte_attrs != 0xf0) {
 128        return NULL;
 129    }
 130
 131    /*
 132     * If not backed by host ram, there is no tag storage: access unchecked.
 133     * This is probably a guest os bug though, so log it.
 134     */
 135    if (unlikely(flags & TLB_MMIO)) {
 136        qemu_log_mask(LOG_GUEST_ERROR,
 137                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
 138                      "but is not backed by host ram\n", ptr);
 139        return NULL;
 140    }
 141
 142    /*
 143     * Remember these values across the second lookup below,
 144     * which may invalidate this pointer via tlb resize.
 145     */
 146    ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
 147    attrs = full->attrs;
 148    full = NULL;
 149
 150    /*
 151     * The Normal memory access can extend to the next page.  E.g. a single
 152     * 8-byte access to the last byte of a page will check only the last
 153     * tag on the first page.
 154     * Any page access exception has priority over tag check exception.
 155     */
 156    in_page = -(ptr | TARGET_PAGE_MASK);
 157    if (unlikely(ptr_size > in_page)) {
 158        flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
 159                                   ptr_mmu_idx, ra == 0, &host, &full, ra);
 160        assert(!(flags & TLB_INVALID_MASK));
 161    }
 162
 163    /* Any debug exception has priority over a tag check exception. */
 164    if (unlikely(flags & TLB_WATCHPOINT)) {
 165        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
 166        assert(ra != 0);
 167        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
 168    }
 169
 170    /* Convert to the physical address in tag space.  */
 171    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
 172
 173    /* Look up the address in tag space. */
 174    tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
 175    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
 176    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
 177                                 tag_access == MMU_DATA_STORE, attrs);
 178
 179    /*
 180     * Note that @mr will never be NULL.  If there is nothing in the address
 181     * space at @tag_paddr, the translation will return the unallocated memory
 182     * region.  For our purposes, the result must be ram.
 183     */
 184    if (unlikely(!memory_region_is_ram(mr))) {
 185        /* ??? Failure is a board configuration error. */
 186        qemu_log_mask(LOG_UNIMP,
 187                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
 188                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
 189                      tag_paddr, ptr_paddr);
 190        return NULL;
 191    }
 192
 193    /*
 194     * Ensure the tag memory is dirty on write, for migration.
 195     * Tag memory can never contain code or display memory (vga).
 196     */
 197    if (tag_access == MMU_DATA_STORE) {
 198        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
 199        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
 200    }
 201
 202    return memory_region_get_ram_ptr(mr) + xlat;
 203#endif
 204}
 205
 206uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
 207{
 208    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
 209    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
 210    int start = extract32(env->cp15.rgsr_el1, 0, 4);
 211    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
 212    int offset, i, rtag;
 213
 214    /*
 215     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
 216     * deterministic algorithm.  Except that with RRND==1 the kernel is
 217     * not required to have set RGSR_EL1.SEED != 0, which is required for
 218     * the deterministic algorithm to function.  So we force a non-zero
 219     * SEED for that case.
 220     */
 221    if (unlikely(seed == 0) && rrnd) {
 222        do {
 223            Error *err = NULL;
 224            uint16_t two;
 225
 226            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
 227                /*
 228                 * Failed, for unknown reasons in the crypto subsystem.
 229                 * Best we can do is log the reason and use a constant seed.
 230                 */
 231                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
 232                              error_get_pretty(err));
 233                error_free(err);
 234                two = 1;
 235            }
 236            seed = two;
 237        } while (seed == 0);
 238    }
 239
 240    /* RandomTag */
 241    for (i = offset = 0; i < 4; ++i) {
 242        /* NextRandomTagBit */
 243        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
 244                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
 245        seed = (top << 15) | (seed >> 1);
 246        offset |= top << i;
 247    }
 248    rtag = choose_nonexcluded_tag(start, offset, exclude);
 249    env->cp15.rgsr_el1 = rtag | (seed << 8);
 250
 251    return address_with_allocation_tag(rn, rtag);
 252}
 253
 254uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
 255                         int32_t offset, uint32_t tag_offset)
 256{
 257    int start_tag = allocation_tag_from_addr(ptr);
 258    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
 259    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
 260
 261    return address_with_allocation_tag(ptr + offset, rtag);
 262}
 263
 264static int load_tag1(uint64_t ptr, uint8_t *mem)
 265{
 266    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 267    return extract32(*mem, ofs, 4);
 268}
 269
 270uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 271{
 272    int mmu_idx = cpu_mmu_index(env, false);
 273    uint8_t *mem;
 274    int rtag = 0;
 275
 276    /* Trap if accessing an invalid page.  */
 277    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
 278                             MMU_DATA_LOAD, 1, GETPC());
 279
 280    /* Load if page supports tags. */
 281    if (mem) {
 282        rtag = load_tag1(ptr, mem);
 283    }
 284
 285    return address_with_allocation_tag(xt, rtag);
 286}
 287
 288static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
 289{
 290    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
 291        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
 292                                    cpu_mmu_index(env, false), ra);
 293        g_assert_not_reached();
 294    }
 295}
 296
 297/* For use in a non-parallel context, store to the given nibble.  */
 298static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
 299{
 300    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 301    *mem = deposit32(*mem, ofs, 4, tag);
 302}
 303
 304/* For use in a parallel context, atomically store to the given nibble.  */
 305static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
 306{
 307    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 308    uint8_t old = qatomic_read(mem);
 309
 310    while (1) {
 311        uint8_t new = deposit32(old, ofs, 4, tag);
 312        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
 313        if (likely(cmp == old)) {
 314            return;
 315        }
 316        old = cmp;
 317    }
 318}
 319
 320typedef void stg_store1(uint64_t, uint8_t *, int);
 321
 322static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
 323                          uintptr_t ra, stg_store1 store1)
 324{
 325    int mmu_idx = cpu_mmu_index(env, false);
 326    uint8_t *mem;
 327
 328    check_tag_aligned(env, ptr, ra);
 329
 330    /* Trap if accessing an invalid page.  */
 331    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
 332                             MMU_DATA_STORE, 1, ra);
 333
 334    /* Store if page supports tags. */
 335    if (mem) {
 336        store1(ptr, mem, allocation_tag_from_addr(xt));
 337    }
 338}
 339
 340void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 341{
 342    do_stg(env, ptr, xt, GETPC(), store_tag1);
 343}
 344
 345void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 346{
 347    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
 348}
 349
 350void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
 351{
 352    int mmu_idx = cpu_mmu_index(env, false);
 353    uintptr_t ra = GETPC();
 354
 355    check_tag_aligned(env, ptr, ra);
 356    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 357}
 358
 359static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
 360                           uintptr_t ra, stg_store1 store1)
 361{
 362    int mmu_idx = cpu_mmu_index(env, false);
 363    int tag = allocation_tag_from_addr(xt);
 364    uint8_t *mem1, *mem2;
 365
 366    check_tag_aligned(env, ptr, ra);
 367
 368    /*
 369     * Trap if accessing an invalid page(s).
 370     * This takes priority over !allocation_tag_access_enabled.
 371     */
 372    if (ptr & TAG_GRANULE) {
 373        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
 374        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 375                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 376        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
 377                                  MMU_DATA_STORE, TAG_GRANULE,
 378                                  MMU_DATA_STORE, 1, ra);
 379
 380        /* Store if page(s) support tags. */
 381        if (mem1) {
 382            store1(TAG_GRANULE, mem1, tag);
 383        }
 384        if (mem2) {
 385            store1(0, mem2, tag);
 386        }
 387    } else {
 388        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
 389        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 390                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 391        if (mem1) {
 392            tag |= tag << 4;
 393            qatomic_set(mem1, tag);
 394        }
 395    }
 396}
 397
 398void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 399{
 400    do_st2g(env, ptr, xt, GETPC(), store_tag1);
 401}
 402
 403void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 404{
 405    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
 406}
 407
 408void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
 409{
 410    int mmu_idx = cpu_mmu_index(env, false);
 411    uintptr_t ra = GETPC();
 412    int in_page = -(ptr | TARGET_PAGE_MASK);
 413
 414    check_tag_aligned(env, ptr, ra);
 415
 416    if (likely(in_page >= 2 * TAG_GRANULE)) {
 417        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
 418    } else {
 419        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 420        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
 421    }
 422}
 423
 424#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
 425
 426uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
 427{
 428    int mmu_idx = cpu_mmu_index(env, false);
 429    uintptr_t ra = GETPC();
 430    void *tag_mem;
 431
 432    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 433
 434    /* Trap if accessing an invalid page.  */
 435    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
 436                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 437                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 438
 439    /* The tag is squashed to zero if the page does not support tags.  */
 440    if (!tag_mem) {
 441        return 0;
 442    }
 443
 444    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 445    /*
 446     * We are loading 64-bits worth of tags.  The ordering of elements
 447     * within the word corresponds to a 64-bit little-endian operation.
 448     */
 449    return ldq_le_p(tag_mem);
 450}
 451
 452void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
 453{
 454    int mmu_idx = cpu_mmu_index(env, false);
 455    uintptr_t ra = GETPC();
 456    void *tag_mem;
 457
 458    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 459
 460    /* Trap if accessing an invalid page.  */
 461    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 462                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 463                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 464
 465    /*
 466     * Tag store only happens if the page support tags,
 467     * and if the OS has enabled access to the tags.
 468     */
 469    if (!tag_mem) {
 470        return;
 471    }
 472
 473    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 474    /*
 475     * We are storing 64-bits worth of tags.  The ordering of elements
 476     * within the word corresponds to a 64-bit little-endian operation.
 477     */
 478    stq_le_p(tag_mem, val);
 479}
 480
 481void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
 482{
 483    uintptr_t ra = GETPC();
 484    int mmu_idx = cpu_mmu_index(env, false);
 485    int log2_dcz_bytes, log2_tag_bytes;
 486    intptr_t dcz_bytes, tag_bytes;
 487    uint8_t *mem;
 488
 489    /*
 490     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
 491     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
 492     * to make sure that we can access one complete tag byte here.
 493     */
 494    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 495    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 496    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 497    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 498    ptr &= -dcz_bytes;
 499
 500    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
 501                             MMU_DATA_STORE, tag_bytes, ra);
 502    if (mem) {
 503        int tag_pair = (val & 0xf) * 0x11;
 504        memset(mem, tag_pair, tag_bytes);
 505    }
 506}
 507
 508static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
 509                                uint64_t dirty_ptr, uintptr_t ra)
 510{
 511    int is_write, syn;
 512
 513    env->exception.vaddress = dirty_ptr;
 514
 515    is_write = FIELD_EX32(desc, MTEDESC, WRITE);
 516    syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
 517                                0x11);
 518    raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
 519    g_assert_not_reached();
 520}
 521
 522static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
 523                                 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
 524{
 525    int select;
 526
 527    if (regime_has_2_ranges(arm_mmu_idx)) {
 528        select = extract64(dirty_ptr, 55, 1);
 529    } else {
 530        select = 0;
 531    }
 532    env->cp15.tfsr_el[el] |= 1 << select;
 533#ifdef CONFIG_USER_ONLY
 534    /*
 535     * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
 536     * which then sends a SIGSEGV when the thread is next scheduled.
 537     * This cpu will return to the main loop at the end of the TB,
 538     * which is rather sooner than "normal".  But the alternative
 539     * is waiting until the next syscall.
 540     */
 541    qemu_cpu_kick(env_cpu(env));
 542#endif
 543}
 544
 545/* Record a tag check failure.  */
 546static void mte_check_fail(CPUARMState *env, uint32_t desc,
 547                           uint64_t dirty_ptr, uintptr_t ra)
 548{
 549    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 550    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
 551    int el, reg_el, tcf;
 552    uint64_t sctlr;
 553
 554    reg_el = regime_el(env, arm_mmu_idx);
 555    sctlr = env->cp15.sctlr_el[reg_el];
 556
 557    switch (arm_mmu_idx) {
 558    case ARMMMUIdx_E10_0:
 559    case ARMMMUIdx_E20_0:
 560        el = 0;
 561        tcf = extract64(sctlr, 38, 2);
 562        break;
 563    default:
 564        el = reg_el;
 565        tcf = extract64(sctlr, 40, 2);
 566    }
 567
 568    switch (tcf) {
 569    case 1:
 570        /* Tag check fail causes a synchronous exception. */
 571        mte_sync_check_fail(env, desc, dirty_ptr, ra);
 572        break;
 573
 574    case 0:
 575        /*
 576         * Tag check fail does not affect the PE.
 577         * We eliminate this case by not setting MTE_ACTIVE
 578         * in tb_flags, so that we never make this runtime call.
 579         */
 580        g_assert_not_reached();
 581
 582    case 2:
 583        /* Tag check fail causes asynchronous flag set.  */
 584        mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 585        break;
 586
 587    case 3:
 588        /*
 589         * Tag check fail causes asynchronous flag set for stores, or
 590         * a synchronous exception for loads.
 591         */
 592        if (FIELD_EX32(desc, MTEDESC, WRITE)) {
 593            mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 594        } else {
 595            mte_sync_check_fail(env, desc, dirty_ptr, ra);
 596        }
 597        break;
 598    }
 599}
 600
 601/**
 602 * checkN:
 603 * @tag: tag memory to test
 604 * @odd: true to begin testing at tags at odd nibble
 605 * @cmp: the tag to compare against
 606 * @count: number of tags to test
 607 *
 608 * Return the number of successful tests.
 609 * Thus a return value < @count indicates a failure.
 610 *
 611 * A note about sizes: count is expected to be small.
 612 *
 613 * The most common use will be LDP/STP of two integer registers,
 614 * which means 16 bytes of memory touching at most 2 tags, but
 615 * often the access is aligned and thus just 1 tag.
 616 *
 617 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 618 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 619 * vector length is also 64 bytes; the maximum architectural length
 620 * is 256 bytes touching at most 9 tags.
 621 *
 622 * The loop below uses 7 logical operations and 1 memory operation
 623 * per tag pair.  An implementation that loads an aligned word and
 624 * uses masking to ignore adjacent tags requires 18 logical operations
 625 * and thus does not begin to pay off until 6 tags.
 626 * Which, according to the survey above, is unlikely to be common.
 627 */
 628static int checkN(uint8_t *mem, int odd, int cmp, int count)
 629{
 630    int n = 0, diff;
 631
 632    /* Replicate the test tag and compare.  */
 633    cmp *= 0x11;
 634    diff = *mem++ ^ cmp;
 635
 636    if (odd) {
 637        goto start_odd;
 638    }
 639
 640    while (1) {
 641        /* Test even tag. */
 642        if (unlikely((diff) & 0x0f)) {
 643            break;
 644        }
 645        if (++n == count) {
 646            break;
 647        }
 648
 649    start_odd:
 650        /* Test odd tag. */
 651        if (unlikely((diff) & 0xf0)) {
 652            break;
 653        }
 654        if (++n == count) {
 655            break;
 656        }
 657
 658        diff = *mem++ ^ cmp;
 659    }
 660    return n;
 661}
 662
 663/**
 664 * mte_probe_int() - helper for mte_probe and mte_check
 665 * @env: CPU environment
 666 * @desc: MTEDESC descriptor
 667 * @ptr: virtual address of the base of the access
 668 * @fault: return virtual address of the first check failure
 669 *
 670 * Internal routine for both mte_probe and mte_check.
 671 * Return zero on failure, filling in *fault.
 672 * Return negative on trivial success for tbi disabled.
 673 * Return positive on success with tbi enabled.
 674 */
 675static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
 676                         uintptr_t ra, uint64_t *fault)
 677{
 678    int mmu_idx, ptr_tag, bit55;
 679    uint64_t ptr_last, prev_page, next_page;
 680    uint64_t tag_first, tag_last;
 681    uint64_t tag_byte_first, tag_byte_last;
 682    uint32_t sizem1, tag_count, tag_size, n, c;
 683    uint8_t *mem1, *mem2;
 684    MMUAccessType type;
 685
 686    bit55 = extract64(ptr, 55, 1);
 687    *fault = ptr;
 688
 689    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 690    if (unlikely(!tbi_check(desc, bit55))) {
 691        return -1;
 692    }
 693
 694    ptr_tag = allocation_tag_from_addr(ptr);
 695
 696    if (tcma_check(desc, bit55, ptr_tag)) {
 697        return 1;
 698    }
 699
 700    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 701    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 702    sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
 703
 704    /* Find the addr of the end of the access */
 705    ptr_last = ptr + sizem1;
 706
 707    /* Round the bounds to the tag granule, and compute the number of tags. */
 708    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
 709    tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
 710    tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
 711
 712    /* Round the bounds to twice the tag granule, and compute the bytes. */
 713    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
 714    tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
 715
 716    /* Locate the page boundaries. */
 717    prev_page = ptr & TARGET_PAGE_MASK;
 718    next_page = prev_page + TARGET_PAGE_SIZE;
 719
 720    if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
 721        /* Memory access stays on one page. */
 722        tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
 723        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
 724                                  MMU_DATA_LOAD, tag_size, ra);
 725        if (!mem1) {
 726            return 1;
 727        }
 728        /* Perform all of the comparisons. */
 729        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
 730    } else {
 731        /* Memory access crosses to next page. */
 732        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
 733        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
 734                                  MMU_DATA_LOAD, tag_size, ra);
 735
 736        tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
 737        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
 738                                  ptr_last - next_page + 1,
 739                                  MMU_DATA_LOAD, tag_size, ra);
 740
 741        /*
 742         * Perform all of the comparisons.
 743         * Note the possible but unlikely case of the operation spanning
 744         * two pages that do not both have tagging enabled.
 745         */
 746        n = c = (next_page - tag_first) / TAG_GRANULE;
 747        if (mem1) {
 748            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
 749        }
 750        if (n == c) {
 751            if (!mem2) {
 752                return 1;
 753            }
 754            n += checkN(mem2, 0, ptr_tag, tag_count - c);
 755        }
 756    }
 757
 758    if (likely(n == tag_count)) {
 759        return 1;
 760    }
 761
 762    /*
 763     * If we failed, we know which granule.  For the first granule, the
 764     * failure address is @ptr, the first byte accessed.  Otherwise the
 765     * failure address is the first byte of the nth granule.
 766     */
 767    if (n > 0) {
 768        *fault = tag_first + n * TAG_GRANULE;
 769    }
 770    return 0;
 771}
 772
 773uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
 774{
 775    uint64_t fault;
 776    int ret = mte_probe_int(env, desc, ptr, ra, &fault);
 777
 778    if (unlikely(ret == 0)) {
 779        mte_check_fail(env, desc, fault, ra);
 780    } else if (ret < 0) {
 781        return ptr;
 782    }
 783    return useronly_clean_ptr(ptr);
 784}
 785
 786uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 787{
 788    return mte_check(env, desc, ptr, GETPC());
 789}
 790
 791/*
 792 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
 793 * Returns false if the access is Checked and the check failed.  This
 794 * is only intended to probe the tag -- the validity of the page must
 795 * be checked beforehand.
 796 */
 797bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
 798{
 799    uint64_t fault;
 800    int ret = mte_probe_int(env, desc, ptr, 0, &fault);
 801
 802    return ret != 0;
 803}
 804
 805/*
 806 * Perform an MTE checked access for DC_ZVA.
 807 */
 808uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 809{
 810    uintptr_t ra = GETPC();
 811    int log2_dcz_bytes, log2_tag_bytes;
 812    int mmu_idx, bit55;
 813    intptr_t dcz_bytes, tag_bytes, i;
 814    void *mem;
 815    uint64_t ptr_tag, mem_tag, align_ptr;
 816
 817    bit55 = extract64(ptr, 55, 1);
 818
 819    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 820    if (unlikely(!tbi_check(desc, bit55))) {
 821        return ptr;
 822    }
 823
 824    ptr_tag = allocation_tag_from_addr(ptr);
 825
 826    if (tcma_check(desc, bit55, ptr_tag)) {
 827        goto done;
 828    }
 829
 830    /*
 831     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
 832     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
 833     * sure that we can access one complete tag byte here.
 834     */
 835    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 836    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 837    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 838    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 839    align_ptr = ptr & -dcz_bytes;
 840
 841    /*
 842     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 843     * the original pointer for an invalid page.  But watchpoints require
 844     * that we probe the actual space.  So do both.
 845     */
 846    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 847    (void) probe_write(env, ptr, 1, mmu_idx, ra);
 848    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
 849                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
 850    if (!mem) {
 851        goto done;
 852    }
 853
 854    /*
 855     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
 856     * it is quite easy to perform all of the comparisons at once without
 857     * any extra masking.
 858     *
 859     * The most common zva block size is 64; some of the thunderx cpus use
 860     * a block size of 128.  For user-only, aarch64_max_initfn will set the
 861     * block size to 512.  Fill out the other cases for future-proofing.
 862     *
 863     * In order to be able to find the first miscompare later, we want the
 864     * tag bytes to be in little-endian order.
 865     */
 866    switch (log2_tag_bytes) {
 867    case 0: /* zva_blocksize 32 */
 868        mem_tag = *(uint8_t *)mem;
 869        ptr_tag *= 0x11u;
 870        break;
 871    case 1: /* zva_blocksize 64 */
 872        mem_tag = cpu_to_le16(*(uint16_t *)mem);
 873        ptr_tag *= 0x1111u;
 874        break;
 875    case 2: /* zva_blocksize 128 */
 876        mem_tag = cpu_to_le32(*(uint32_t *)mem);
 877        ptr_tag *= 0x11111111u;
 878        break;
 879    case 3: /* zva_blocksize 256 */
 880        mem_tag = cpu_to_le64(*(uint64_t *)mem);
 881        ptr_tag *= 0x1111111111111111ull;
 882        break;
 883
 884    default: /* zva_blocksize 512, 1024, 2048 */
 885        ptr_tag *= 0x1111111111111111ull;
 886        i = 0;
 887        do {
 888            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
 889            if (unlikely(mem_tag != ptr_tag)) {
 890                goto fail;
 891            }
 892            i += 8;
 893            align_ptr += 16 * TAG_GRANULE;
 894        } while (i < tag_bytes);
 895        goto done;
 896    }
 897
 898    if (likely(mem_tag == ptr_tag)) {
 899        goto done;
 900    }
 901
 902 fail:
 903    /* Locate the first nibble that differs. */
 904    i = ctz64(mem_tag ^ ptr_tag) >> 4;
 905    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
 906
 907 done:
 908    return useronly_clean_ptr(ptr);
 909}
 910