qemu/hw/net/imx_fec.c
<<
>>
Prefs
   1/*
   2 * i.MX Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
   5 *
   6 * Based on Coldfire Fast Ethernet Controller emulation.
   7 *
   8 * Copyright (c) 2007 CodeSourcery.
   9 *
  10 *  This program is free software; you can redistribute it and/or modify it
  11 *  under the terms of the GNU General Public License as published by the
  12 *  Free Software Foundation; either version 2 of the License, or
  13 *  (at your option) any later version.
  14 *
  15 *  This program is distributed in the hope that it will be useful, but WITHOUT
  16 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  17 *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  18 *  for more details.
  19 *
  20 *  You should have received a copy of the GNU General Public License along
  21 *  with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/irq.h"
  26#include "hw/net/imx_fec.h"
  27#include "hw/qdev-properties.h"
  28#include "migration/vmstate.h"
  29#include "sysemu/dma.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "net/checksum.h"
  33#include "net/eth.h"
  34#include "trace.h"
  35
  36/* For crc32 */
  37#include <zlib.h>
  38
  39#define IMX_MAX_DESC    1024
  40
  41static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
  42{
  43    static char tmp[20];
  44    sprintf(tmp, "index %d", index);
  45    return tmp;
  46}
  47
  48static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
  49{
  50    switch (index) {
  51    case ENET_FRBR:
  52        return "FRBR";
  53    case ENET_FRSR:
  54        return "FRSR";
  55    case ENET_MIIGSK_CFGR:
  56        return "MIIGSK_CFGR";
  57    case ENET_MIIGSK_ENR:
  58        return "MIIGSK_ENR";
  59    default:
  60        return imx_default_reg_name(s, index);
  61    }
  62}
  63
  64static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
  65{
  66    switch (index) {
  67    case ENET_RSFL:
  68        return "RSFL";
  69    case ENET_RSEM:
  70        return "RSEM";
  71    case ENET_RAEM:
  72        return "RAEM";
  73    case ENET_RAFL:
  74        return "RAFL";
  75    case ENET_TSEM:
  76        return "TSEM";
  77    case ENET_TAEM:
  78        return "TAEM";
  79    case ENET_TAFL:
  80        return "TAFL";
  81    case ENET_TIPG:
  82        return "TIPG";
  83    case ENET_FTRL:
  84        return "FTRL";
  85    case ENET_TACC:
  86        return "TACC";
  87    case ENET_RACC:
  88        return "RACC";
  89    case ENET_ATCR:
  90        return "ATCR";
  91    case ENET_ATVR:
  92        return "ATVR";
  93    case ENET_ATOFF:
  94        return "ATOFF";
  95    case ENET_ATPER:
  96        return "ATPER";
  97    case ENET_ATCOR:
  98        return "ATCOR";
  99    case ENET_ATINC:
 100        return "ATINC";
 101    case ENET_ATSTMP:
 102        return "ATSTMP";
 103    case ENET_TGSR:
 104        return "TGSR";
 105    case ENET_TCSR0:
 106        return "TCSR0";
 107    case ENET_TCCR0:
 108        return "TCCR0";
 109    case ENET_TCSR1:
 110        return "TCSR1";
 111    case ENET_TCCR1:
 112        return "TCCR1";
 113    case ENET_TCSR2:
 114        return "TCSR2";
 115    case ENET_TCCR2:
 116        return "TCCR2";
 117    case ENET_TCSR3:
 118        return "TCSR3";
 119    case ENET_TCCR3:
 120        return "TCCR3";
 121    default:
 122        return imx_default_reg_name(s, index);
 123    }
 124}
 125
 126static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
 127{
 128    switch (index) {
 129    case ENET_EIR:
 130        return "EIR";
 131    case ENET_EIMR:
 132        return "EIMR";
 133    case ENET_RDAR:
 134        return "RDAR";
 135    case ENET_TDAR:
 136        return "TDAR";
 137    case ENET_ECR:
 138        return "ECR";
 139    case ENET_MMFR:
 140        return "MMFR";
 141    case ENET_MSCR:
 142        return "MSCR";
 143    case ENET_MIBC:
 144        return "MIBC";
 145    case ENET_RCR:
 146        return "RCR";
 147    case ENET_TCR:
 148        return "TCR";
 149    case ENET_PALR:
 150        return "PALR";
 151    case ENET_PAUR:
 152        return "PAUR";
 153    case ENET_OPD:
 154        return "OPD";
 155    case ENET_IAUR:
 156        return "IAUR";
 157    case ENET_IALR:
 158        return "IALR";
 159    case ENET_GAUR:
 160        return "GAUR";
 161    case ENET_GALR:
 162        return "GALR";
 163    case ENET_TFWR:
 164        return "TFWR";
 165    case ENET_RDSR:
 166        return "RDSR";
 167    case ENET_TDSR:
 168        return "TDSR";
 169    case ENET_MRBR:
 170        return "MRBR";
 171    default:
 172        if (s->is_fec) {
 173            return imx_fec_reg_name(s, index);
 174        } else {
 175            return imx_enet_reg_name(s, index);
 176        }
 177    }
 178}
 179
 180/*
 181 * Versions of this device with more than one TX descriptor save the
 182 * 2nd and 3rd descriptors in a subsection, to maintain migration
 183 * compatibility with previous versions of the device that only
 184 * supported a single descriptor.
 185 */
 186static bool imx_eth_is_multi_tx_ring(void *opaque)
 187{
 188    IMXFECState *s = IMX_FEC(opaque);
 189
 190    return s->tx_ring_num > 1;
 191}
 192
 193static const VMStateDescription vmstate_imx_eth_txdescs = {
 194    .name = "imx.fec/txdescs",
 195    .version_id = 1,
 196    .minimum_version_id = 1,
 197    .needed = imx_eth_is_multi_tx_ring,
 198    .fields = (VMStateField[]) {
 199         VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
 200         VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
 201         VMSTATE_END_OF_LIST()
 202    }
 203};
 204
 205static const VMStateDescription vmstate_imx_eth = {
 206    .name = TYPE_IMX_FEC,
 207    .version_id = 2,
 208    .minimum_version_id = 2,
 209    .fields = (VMStateField[]) {
 210        VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
 211        VMSTATE_UINT32(rx_descriptor, IMXFECState),
 212        VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
 213        VMSTATE_UINT32(phy_status, IMXFECState),
 214        VMSTATE_UINT32(phy_control, IMXFECState),
 215        VMSTATE_UINT32(phy_advertise, IMXFECState),
 216        VMSTATE_UINT32(phy_int, IMXFECState),
 217        VMSTATE_UINT32(phy_int_mask, IMXFECState),
 218        VMSTATE_END_OF_LIST()
 219    },
 220    .subsections = (const VMStateDescription * []) {
 221        &vmstate_imx_eth_txdescs,
 222        NULL
 223    },
 224};
 225
 226#define PHY_INT_ENERGYON            (1 << 7)
 227#define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
 228#define PHY_INT_FAULT               (1 << 5)
 229#define PHY_INT_DOWN                (1 << 4)
 230#define PHY_INT_AUTONEG_LP          (1 << 3)
 231#define PHY_INT_PARFAULT            (1 << 2)
 232#define PHY_INT_AUTONEG_PAGE        (1 << 1)
 233
 234static void imx_eth_update(IMXFECState *s);
 235
 236/*
 237 * The MII phy could raise a GPIO to the processor which in turn
 238 * could be handled as an interrpt by the OS.
 239 * For now we don't handle any GPIO/interrupt line, so the OS will
 240 * have to poll for the PHY status.
 241 */
 242static void imx_phy_update_irq(IMXFECState *s)
 243{
 244    imx_eth_update(s);
 245}
 246
 247static void imx_phy_update_link(IMXFECState *s)
 248{
 249    /* Autonegotiation status mirrors link status.  */
 250    if (qemu_get_queue(s->nic)->link_down) {
 251        trace_imx_phy_update_link("down");
 252        s->phy_status &= ~0x0024;
 253        s->phy_int |= PHY_INT_DOWN;
 254    } else {
 255        trace_imx_phy_update_link("up");
 256        s->phy_status |= 0x0024;
 257        s->phy_int |= PHY_INT_ENERGYON;
 258        s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
 259    }
 260    imx_phy_update_irq(s);
 261}
 262
 263static void imx_eth_set_link(NetClientState *nc)
 264{
 265    imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
 266}
 267
 268static void imx_phy_reset(IMXFECState *s)
 269{
 270    trace_imx_phy_reset();
 271
 272    s->phy_status = 0x7809;
 273    s->phy_control = 0x3000;
 274    s->phy_advertise = 0x01e1;
 275    s->phy_int_mask = 0;
 276    s->phy_int = 0;
 277    imx_phy_update_link(s);
 278}
 279
 280static uint32_t imx_phy_read(IMXFECState *s, int reg)
 281{
 282    uint32_t val;
 283    uint32_t phy = reg / 32;
 284
 285    if (!s->phy_connected) {
 286        return 0xffff;
 287    }
 288
 289    if (phy != s->phy_num) {
 290        if (s->phy_consumer && phy == s->phy_consumer->phy_num) {
 291            s = s->phy_consumer;
 292        } else {
 293            trace_imx_phy_read_num(phy, s->phy_num);
 294            return 0xffff;
 295        }
 296    }
 297
 298    reg %= 32;
 299
 300    switch (reg) {
 301    case 0:     /* Basic Control */
 302        val = s->phy_control;
 303        break;
 304    case 1:     /* Basic Status */
 305        val = s->phy_status;
 306        break;
 307    case 2:     /* ID1 */
 308        val = 0x0007;
 309        break;
 310    case 3:     /* ID2 */
 311        val = 0xc0d1;
 312        break;
 313    case 4:     /* Auto-neg advertisement */
 314        val = s->phy_advertise;
 315        break;
 316    case 5:     /* Auto-neg Link Partner Ability */
 317        val = 0x0f71;
 318        break;
 319    case 6:     /* Auto-neg Expansion */
 320        val = 1;
 321        break;
 322    case 29:    /* Interrupt source.  */
 323        val = s->phy_int;
 324        s->phy_int = 0;
 325        imx_phy_update_irq(s);
 326        break;
 327    case 30:    /* Interrupt mask */
 328        val = s->phy_int_mask;
 329        break;
 330    case 17:
 331    case 18:
 332    case 27:
 333    case 31:
 334        qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
 335                      TYPE_IMX_FEC, __func__, reg);
 336        val = 0;
 337        break;
 338    default:
 339        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
 340                      TYPE_IMX_FEC, __func__, reg);
 341        val = 0;
 342        break;
 343    }
 344
 345    trace_imx_phy_read(val, phy, reg);
 346
 347    return val;
 348}
 349
 350static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
 351{
 352    uint32_t phy = reg / 32;
 353
 354    if (!s->phy_connected) {
 355        return;
 356    }
 357
 358    if (phy != s->phy_num) {
 359        if (s->phy_consumer && phy == s->phy_consumer->phy_num) {
 360            s = s->phy_consumer;
 361        } else {
 362            trace_imx_phy_write_num(phy, s->phy_num);
 363            return;
 364        }
 365    }
 366
 367    reg %= 32;
 368
 369    trace_imx_phy_write(val, phy, reg);
 370
 371    switch (reg) {
 372    case 0:     /* Basic Control */
 373        if (val & 0x8000) {
 374            imx_phy_reset(s);
 375        } else {
 376            s->phy_control = val & 0x7980;
 377            /* Complete autonegotiation immediately.  */
 378            if (val & 0x1000) {
 379                s->phy_status |= 0x0020;
 380            }
 381        }
 382        break;
 383    case 4:     /* Auto-neg advertisement */
 384        s->phy_advertise = (val & 0x2d7f) | 0x80;
 385        break;
 386    case 30:    /* Interrupt mask */
 387        s->phy_int_mask = val & 0xff;
 388        imx_phy_update_irq(s);
 389        break;
 390    case 17:
 391    case 18:
 392    case 27:
 393    case 31:
 394        qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
 395                      TYPE_IMX_FEC, __func__, reg);
 396        break;
 397    default:
 398        qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
 399                      TYPE_IMX_FEC, __func__, reg);
 400        break;
 401    }
 402}
 403
 404static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
 405{
 406    dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd),
 407                    MEMTXATTRS_UNSPECIFIED);
 408
 409    trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
 410}
 411
 412static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
 413{
 414    dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd),
 415                     MEMTXATTRS_UNSPECIFIED);
 416}
 417
 418static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
 419{
 420    dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd),
 421                    MEMTXATTRS_UNSPECIFIED);
 422
 423    trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
 424                   bd->option, bd->status);
 425}
 426
 427static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
 428{
 429    dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd),
 430                     MEMTXATTRS_UNSPECIFIED);
 431}
 432
 433static void imx_eth_update(IMXFECState *s)
 434{
 435    /*
 436     * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
 437     * interrupts swapped. This worked with older versions of Linux (4.14
 438     * and older) since Linux associated both interrupt lines with Ethernet
 439     * MAC interrupts. Specifically,
 440     * - Linux 4.15 and later have separate interrupt handlers for the MAC and
 441     *   timer interrupts. Those versions of Linux fail with versions of QEMU
 442     *   with swapped interrupt assignments.
 443     * - In linux 4.14, both interrupt lines were registered with the Ethernet
 444     *   MAC interrupt handler. As a result, all versions of qemu happen to
 445     *   work, though that is accidental.
 446     * - In Linux 4.9 and older, the timer interrupt was registered directly
 447     *   with the Ethernet MAC interrupt handler. The MAC interrupt was
 448     *   redirected to a GPIO interrupt to work around erratum ERR006687.
 449     *   This was implemented using the SOC's IOMUX block. In qemu, this GPIO
 450     *   interrupt never fired since IOMUX is currently not supported in qemu.
 451     *   Linux instead received MAC interrupts on the timer interrupt.
 452     *   As a result, qemu versions with the swapped interrupt assignment work,
 453     *   albeit accidentally, but qemu versions with the correct interrupt
 454     *   assignment fail.
 455     *
 456     * To ensure that all versions of Linux work, generate ENET_INT_MAC
 457     * interrupts on both interrupt lines. This should be changed if and when
 458     * qemu supports IOMUX.
 459     */
 460    if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
 461        (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
 462        qemu_set_irq(s->irq[1], 1);
 463    } else {
 464        qemu_set_irq(s->irq[1], 0);
 465    }
 466
 467    if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
 468        qemu_set_irq(s->irq[0], 1);
 469    } else {
 470        qemu_set_irq(s->irq[0], 0);
 471    }
 472}
 473
 474static void imx_fec_do_tx(IMXFECState *s)
 475{
 476    int frame_size = 0, descnt = 0;
 477    uint8_t *ptr = s->frame;
 478    uint32_t addr = s->tx_descriptor[0];
 479
 480    while (descnt++ < IMX_MAX_DESC) {
 481        IMXFECBufDesc bd;
 482        int len;
 483
 484        imx_fec_read_bd(&bd, addr);
 485        if ((bd.flags & ENET_BD_R) == 0) {
 486
 487            /* Run out of descriptors to transmit.  */
 488            trace_imx_eth_tx_bd_busy();
 489
 490            break;
 491        }
 492        len = bd.length;
 493        if (frame_size + len > ENET_MAX_FRAME_SIZE) {
 494            len = ENET_MAX_FRAME_SIZE - frame_size;
 495            s->regs[ENET_EIR] |= ENET_INT_BABT;
 496        }
 497        dma_memory_read(&address_space_memory, bd.data, ptr, len,
 498                        MEMTXATTRS_UNSPECIFIED);
 499        ptr += len;
 500        frame_size += len;
 501        if (bd.flags & ENET_BD_L) {
 502            /* Last buffer in frame.  */
 503            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
 504            ptr = s->frame;
 505            frame_size = 0;
 506            s->regs[ENET_EIR] |= ENET_INT_TXF;
 507        }
 508        s->regs[ENET_EIR] |= ENET_INT_TXB;
 509        bd.flags &= ~ENET_BD_R;
 510        /* Write back the modified descriptor.  */
 511        imx_fec_write_bd(&bd, addr);
 512        /* Advance to the next descriptor.  */
 513        if ((bd.flags & ENET_BD_W) != 0) {
 514            addr = s->regs[ENET_TDSR];
 515        } else {
 516            addr += sizeof(bd);
 517        }
 518    }
 519
 520    s->tx_descriptor[0] = addr;
 521
 522    imx_eth_update(s);
 523}
 524
 525static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
 526{
 527    int frame_size = 0, descnt = 0;
 528
 529    uint8_t *ptr = s->frame;
 530    uint32_t addr, int_txb, int_txf, tdsr;
 531    size_t ring;
 532
 533    switch (index) {
 534    case ENET_TDAR:
 535        ring    = 0;
 536        int_txb = ENET_INT_TXB;
 537        int_txf = ENET_INT_TXF;
 538        tdsr    = ENET_TDSR;
 539        break;
 540    case ENET_TDAR1:
 541        ring    = 1;
 542        int_txb = ENET_INT_TXB1;
 543        int_txf = ENET_INT_TXF1;
 544        tdsr    = ENET_TDSR1;
 545        break;
 546    case ENET_TDAR2:
 547        ring    = 2;
 548        int_txb = ENET_INT_TXB2;
 549        int_txf = ENET_INT_TXF2;
 550        tdsr    = ENET_TDSR2;
 551        break;
 552    default:
 553        qemu_log_mask(LOG_GUEST_ERROR,
 554                      "%s: bogus value for index %x\n",
 555                      __func__, index);
 556        abort();
 557        break;
 558    }
 559
 560    addr = s->tx_descriptor[ring];
 561
 562    while (descnt++ < IMX_MAX_DESC) {
 563        IMXENETBufDesc bd;
 564        int len;
 565
 566        imx_enet_read_bd(&bd, addr);
 567        if ((bd.flags & ENET_BD_R) == 0) {
 568            /* Run out of descriptors to transmit.  */
 569
 570            trace_imx_eth_tx_bd_busy();
 571
 572            break;
 573        }
 574        len = bd.length;
 575        if (frame_size + len > ENET_MAX_FRAME_SIZE) {
 576            len = ENET_MAX_FRAME_SIZE - frame_size;
 577            s->regs[ENET_EIR] |= ENET_INT_BABT;
 578        }
 579        dma_memory_read(&address_space_memory, bd.data, ptr, len,
 580                        MEMTXATTRS_UNSPECIFIED);
 581        ptr += len;
 582        frame_size += len;
 583        if (bd.flags & ENET_BD_L) {
 584            int csum = 0;
 585
 586            if (bd.option & ENET_BD_PINS) {
 587                csum |= (CSUM_TCP | CSUM_UDP);
 588            }
 589            if (bd.option & ENET_BD_IINS) {
 590                csum |= CSUM_IP;
 591            }
 592            if (csum) {
 593                net_checksum_calculate(s->frame, frame_size, csum);
 594            }
 595
 596            /* Last buffer in frame.  */
 597
 598            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
 599            ptr = s->frame;
 600
 601            frame_size = 0;
 602            if (bd.option & ENET_BD_TX_INT) {
 603                s->regs[ENET_EIR] |= int_txf;
 604            }
 605            /* Indicate that we've updated the last buffer descriptor. */
 606            bd.last_buffer = ENET_BD_BDU;
 607        }
 608        if (bd.option & ENET_BD_TX_INT) {
 609            s->regs[ENET_EIR] |= int_txb;
 610        }
 611        bd.flags &= ~ENET_BD_R;
 612        /* Write back the modified descriptor.  */
 613        imx_enet_write_bd(&bd, addr);
 614        /* Advance to the next descriptor.  */
 615        if ((bd.flags & ENET_BD_W) != 0) {
 616            addr = s->regs[tdsr];
 617        } else {
 618            addr += sizeof(bd);
 619        }
 620    }
 621
 622    s->tx_descriptor[ring] = addr;
 623
 624    imx_eth_update(s);
 625}
 626
 627static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
 628{
 629    if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
 630        imx_enet_do_tx(s, index);
 631    } else {
 632        imx_fec_do_tx(s);
 633    }
 634}
 635
 636static void imx_eth_enable_rx(IMXFECState *s, bool flush)
 637{
 638    IMXFECBufDesc bd;
 639
 640    imx_fec_read_bd(&bd, s->rx_descriptor);
 641
 642    s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
 643
 644    if (!s->regs[ENET_RDAR]) {
 645        trace_imx_eth_rx_bd_full();
 646    } else if (flush) {
 647        qemu_flush_queued_packets(qemu_get_queue(s->nic));
 648    }
 649}
 650
 651static void imx_eth_reset(DeviceState *d)
 652{
 653    IMXFECState *s = IMX_FEC(d);
 654
 655    /* Reset the Device */
 656    memset(s->regs, 0, sizeof(s->regs));
 657    s->regs[ENET_ECR]   = 0xf0000000;
 658    s->regs[ENET_MIBC]  = 0xc0000000;
 659    s->regs[ENET_RCR]   = 0x05ee0001;
 660    s->regs[ENET_OPD]   = 0x00010000;
 661
 662    s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
 663                          | (s->conf.macaddr.a[1] << 16)
 664                          | (s->conf.macaddr.a[2] << 8)
 665                          | s->conf.macaddr.a[3];
 666    s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
 667                          | (s->conf.macaddr.a[5] << 16)
 668                          | 0x8808;
 669
 670    if (s->is_fec) {
 671        s->regs[ENET_FRBR]  = 0x00000600;
 672        s->regs[ENET_FRSR]  = 0x00000500;
 673        s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
 674    } else {
 675        s->regs[ENET_RAEM]  = 0x00000004;
 676        s->regs[ENET_RAFL]  = 0x00000004;
 677        s->regs[ENET_TAEM]  = 0x00000004;
 678        s->regs[ENET_TAFL]  = 0x00000008;
 679        s->regs[ENET_TIPG]  = 0x0000000c;
 680        s->regs[ENET_FTRL]  = 0x000007ff;
 681        s->regs[ENET_ATPER] = 0x3b9aca00;
 682    }
 683
 684    s->rx_descriptor = 0;
 685    memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
 686
 687    /* We also reset the PHY */
 688    imx_phy_reset(s);
 689}
 690
 691static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
 692{
 693    qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 694                  PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
 695    return 0;
 696}
 697
 698static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
 699{
 700    switch (index) {
 701    case ENET_FRBR:
 702    case ENET_FRSR:
 703    case ENET_MIIGSK_CFGR:
 704    case ENET_MIIGSK_ENR:
 705        return s->regs[index];
 706    default:
 707        return imx_default_read(s, index);
 708    }
 709}
 710
 711static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
 712{
 713    switch (index) {
 714    case ENET_RSFL:
 715    case ENET_RSEM:
 716    case ENET_RAEM:
 717    case ENET_RAFL:
 718    case ENET_TSEM:
 719    case ENET_TAEM:
 720    case ENET_TAFL:
 721    case ENET_TIPG:
 722    case ENET_FTRL:
 723    case ENET_TACC:
 724    case ENET_RACC:
 725    case ENET_ATCR:
 726    case ENET_ATVR:
 727    case ENET_ATOFF:
 728    case ENET_ATPER:
 729    case ENET_ATCOR:
 730    case ENET_ATINC:
 731    case ENET_ATSTMP:
 732    case ENET_TGSR:
 733    case ENET_TCSR0:
 734    case ENET_TCCR0:
 735    case ENET_TCSR1:
 736    case ENET_TCCR1:
 737    case ENET_TCSR2:
 738    case ENET_TCCR2:
 739    case ENET_TCSR3:
 740    case ENET_TCCR3:
 741        return s->regs[index];
 742    default:
 743        return imx_default_read(s, index);
 744    }
 745}
 746
 747static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
 748{
 749    uint32_t value = 0;
 750    IMXFECState *s = IMX_FEC(opaque);
 751    uint32_t index = offset >> 2;
 752
 753    switch (index) {
 754    case ENET_EIR:
 755    case ENET_EIMR:
 756    case ENET_RDAR:
 757    case ENET_TDAR:
 758    case ENET_ECR:
 759    case ENET_MMFR:
 760    case ENET_MSCR:
 761    case ENET_MIBC:
 762    case ENET_RCR:
 763    case ENET_TCR:
 764    case ENET_PALR:
 765    case ENET_PAUR:
 766    case ENET_OPD:
 767    case ENET_IAUR:
 768    case ENET_IALR:
 769    case ENET_GAUR:
 770    case ENET_GALR:
 771    case ENET_TFWR:
 772    case ENET_RDSR:
 773    case ENET_TDSR:
 774    case ENET_MRBR:
 775        value = s->regs[index];
 776        break;
 777    default:
 778        if (s->is_fec) {
 779            value = imx_fec_read(s, index);
 780        } else {
 781            value = imx_enet_read(s, index);
 782        }
 783        break;
 784    }
 785
 786    trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
 787
 788    return value;
 789}
 790
 791static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
 792{
 793    qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
 794                  PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
 795    return;
 796}
 797
 798static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
 799{
 800    switch (index) {
 801    case ENET_FRBR:
 802        /* FRBR is read only */
 803        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
 804                      TYPE_IMX_FEC, __func__);
 805        break;
 806    case ENET_FRSR:
 807        s->regs[index] = (value & 0x000003fc) | 0x00000400;
 808        break;
 809    case ENET_MIIGSK_CFGR:
 810        s->regs[index] = value & 0x00000053;
 811        break;
 812    case ENET_MIIGSK_ENR:
 813        s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
 814        break;
 815    default:
 816        imx_default_write(s, index, value);
 817        break;
 818    }
 819}
 820
 821static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
 822{
 823    switch (index) {
 824    case ENET_RSFL:
 825    case ENET_RSEM:
 826    case ENET_RAEM:
 827    case ENET_RAFL:
 828    case ENET_TSEM:
 829    case ENET_TAEM:
 830    case ENET_TAFL:
 831        s->regs[index] = value & 0x000001ff;
 832        break;
 833    case ENET_TIPG:
 834        s->regs[index] = value & 0x0000001f;
 835        break;
 836    case ENET_FTRL:
 837        s->regs[index] = value & 0x00003fff;
 838        break;
 839    case ENET_TACC:
 840        s->regs[index] = value & 0x00000019;
 841        break;
 842    case ENET_RACC:
 843        s->regs[index] = value & 0x000000C7;
 844        break;
 845    case ENET_ATCR:
 846        s->regs[index] = value & 0x00002a9d;
 847        break;
 848    case ENET_ATVR:
 849    case ENET_ATOFF:
 850    case ENET_ATPER:
 851        s->regs[index] = value;
 852        break;
 853    case ENET_ATSTMP:
 854        /* ATSTMP is read only */
 855        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
 856                      TYPE_IMX_FEC, __func__);
 857        break;
 858    case ENET_ATCOR:
 859        s->regs[index] = value & 0x7fffffff;
 860        break;
 861    case ENET_ATINC:
 862        s->regs[index] = value & 0x00007f7f;
 863        break;
 864    case ENET_TGSR:
 865        /* implement clear timer flag */
 866        s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
 867        break;
 868    case ENET_TCSR0:
 869    case ENET_TCSR1:
 870    case ENET_TCSR2:
 871    case ENET_TCSR3:
 872        s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
 873        s->regs[index] &= ~0x0000007d; /* writable fields */
 874        s->regs[index] |= (value & 0x0000007d);
 875        break;
 876    case ENET_TCCR0:
 877    case ENET_TCCR1:
 878    case ENET_TCCR2:
 879    case ENET_TCCR3:
 880        s->regs[index] = value;
 881        break;
 882    default:
 883        imx_default_write(s, index, value);
 884        break;
 885    }
 886}
 887
 888static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
 889                           unsigned size)
 890{
 891    IMXFECState *s = IMX_FEC(opaque);
 892    const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
 893    uint32_t index = offset >> 2;
 894
 895    trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
 896
 897    switch (index) {
 898    case ENET_EIR:
 899        s->regs[index] &= ~value;
 900        break;
 901    case ENET_EIMR:
 902        s->regs[index] = value;
 903        break;
 904    case ENET_RDAR:
 905        if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
 906            if (!s->regs[index]) {
 907                imx_eth_enable_rx(s, true);
 908            }
 909        } else {
 910            s->regs[index] = 0;
 911        }
 912        break;
 913    case ENET_TDAR1:
 914    case ENET_TDAR2:
 915        if (unlikely(single_tx_ring)) {
 916            qemu_log_mask(LOG_GUEST_ERROR,
 917                          "[%s]%s: trying to access TDAR2 or TDAR1\n",
 918                          TYPE_IMX_FEC, __func__);
 919            return;
 920        }
 921        /* fall through */
 922    case ENET_TDAR:
 923        if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
 924            s->regs[index] = ENET_TDAR_TDAR;
 925            imx_eth_do_tx(s, index);
 926        }
 927        s->regs[index] = 0;
 928        break;
 929    case ENET_ECR:
 930        if (value & ENET_ECR_RESET) {
 931            return imx_eth_reset(DEVICE(s));
 932        }
 933        s->regs[index] = value;
 934        if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
 935            s->regs[ENET_RDAR] = 0;
 936            s->rx_descriptor = s->regs[ENET_RDSR];
 937            s->regs[ENET_TDAR]  = 0;
 938            s->regs[ENET_TDAR1] = 0;
 939            s->regs[ENET_TDAR2] = 0;
 940            s->tx_descriptor[0] = s->regs[ENET_TDSR];
 941            s->tx_descriptor[1] = s->regs[ENET_TDSR1];
 942            s->tx_descriptor[2] = s->regs[ENET_TDSR2];
 943        }
 944        break;
 945    case ENET_MMFR:
 946        s->regs[index] = value;
 947        if (extract32(value, 29, 1)) {
 948            /* This is a read operation */
 949            s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
 950                                           imx_phy_read(s,
 951                                                       extract32(value,
 952                                                                 18, 10)));
 953        } else {
 954            /* This is a write operation */
 955            imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
 956        }
 957        /* raise the interrupt as the PHY operation is done */
 958        s->regs[ENET_EIR] |= ENET_INT_MII;
 959        break;
 960    case ENET_MSCR:
 961        s->regs[index] = value & 0xfe;
 962        break;
 963    case ENET_MIBC:
 964        /* TODO: Implement MIB.  */
 965        s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
 966        break;
 967    case ENET_RCR:
 968        s->regs[index] = value & 0x07ff003f;
 969        /* TODO: Implement LOOP mode.  */
 970        break;
 971    case ENET_TCR:
 972        /* We transmit immediately, so raise GRA immediately.  */
 973        s->regs[index] = value;
 974        if (value & 1) {
 975            s->regs[ENET_EIR] |= ENET_INT_GRA;
 976        }
 977        break;
 978    case ENET_PALR:
 979        s->regs[index] = value;
 980        s->conf.macaddr.a[0] = value >> 24;
 981        s->conf.macaddr.a[1] = value >> 16;
 982        s->conf.macaddr.a[2] = value >> 8;
 983        s->conf.macaddr.a[3] = value;
 984        break;
 985    case ENET_PAUR:
 986        s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
 987        s->conf.macaddr.a[4] = value >> 24;
 988        s->conf.macaddr.a[5] = value >> 16;
 989        break;
 990    case ENET_OPD:
 991        s->regs[index] = (value & 0x0000ffff) | 0x00010000;
 992        break;
 993    case ENET_IAUR:
 994    case ENET_IALR:
 995    case ENET_GAUR:
 996    case ENET_GALR:
 997        /* TODO: implement MAC hash filtering.  */
 998        break;
 999    case ENET_TFWR:
1000        if (s->is_fec) {
1001            s->regs[index] = value & 0x3;
1002        } else {
1003            s->regs[index] = value & 0x13f;
1004        }
1005        break;
1006    case ENET_RDSR:
1007        if (s->is_fec) {
1008            s->regs[index] = value & ~3;
1009        } else {
1010            s->regs[index] = value & ~7;
1011        }
1012        s->rx_descriptor = s->regs[index];
1013        break;
1014    case ENET_TDSR:
1015        if (s->is_fec) {
1016            s->regs[index] = value & ~3;
1017        } else {
1018            s->regs[index] = value & ~7;
1019        }
1020        s->tx_descriptor[0] = s->regs[index];
1021        break;
1022    case ENET_TDSR1:
1023        if (unlikely(single_tx_ring)) {
1024            qemu_log_mask(LOG_GUEST_ERROR,
1025                          "[%s]%s: trying to access TDSR1\n",
1026                          TYPE_IMX_FEC, __func__);
1027            return;
1028        }
1029
1030        s->regs[index] = value & ~7;
1031        s->tx_descriptor[1] = s->regs[index];
1032        break;
1033    case ENET_TDSR2:
1034        if (unlikely(single_tx_ring)) {
1035            qemu_log_mask(LOG_GUEST_ERROR,
1036                          "[%s]%s: trying to access TDSR2\n",
1037                          TYPE_IMX_FEC, __func__);
1038            return;
1039        }
1040
1041        s->regs[index] = value & ~7;
1042        s->tx_descriptor[2] = s->regs[index];
1043        break;
1044    case ENET_MRBR:
1045        s->regs[index] = value & 0x00003ff0;
1046        break;
1047    default:
1048        if (s->is_fec) {
1049            imx_fec_write(s, index, value);
1050        } else {
1051            imx_enet_write(s, index, value);
1052        }
1053        return;
1054    }
1055
1056    imx_eth_update(s);
1057}
1058
1059static bool imx_eth_can_receive(NetClientState *nc)
1060{
1061    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1062
1063    return !!s->regs[ENET_RDAR];
1064}
1065
1066static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1067                               size_t len)
1068{
1069    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1070    IMXFECBufDesc bd;
1071    uint32_t flags = 0;
1072    uint32_t addr;
1073    uint32_t crc;
1074    uint32_t buf_addr;
1075    uint8_t *crc_ptr;
1076    unsigned int buf_len;
1077    size_t size = len;
1078
1079    trace_imx_fec_receive(size);
1080
1081    if (!s->regs[ENET_RDAR]) {
1082        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1083                      TYPE_IMX_FEC, __func__);
1084        return 0;
1085    }
1086
1087    crc = cpu_to_be32(crc32(~0, buf, size));
1088    /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */
1089    size += 4;
1090    crc_ptr = (uint8_t *) &crc;
1091
1092    /* Huge frames are truncated.  */
1093    if (size > ENET_MAX_FRAME_SIZE) {
1094        size = ENET_MAX_FRAME_SIZE;
1095        flags |= ENET_BD_TR | ENET_BD_LG;
1096    }
1097
1098    /* Frames larger than the user limit just set error flags.  */
1099    if (size > (s->regs[ENET_RCR] >> 16)) {
1100        flags |= ENET_BD_LG;
1101    }
1102
1103    addr = s->rx_descriptor;
1104    while (size > 0) {
1105        imx_fec_read_bd(&bd, addr);
1106        if ((bd.flags & ENET_BD_E) == 0) {
1107            /* No descriptors available.  Bail out.  */
1108            /*
1109             * FIXME: This is wrong. We should probably either
1110             * save the remainder for when more RX buffers are
1111             * available, or flag an error.
1112             */
1113            qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1114                          TYPE_IMX_FEC, __func__);
1115            break;
1116        }
1117        buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1118        bd.length = buf_len;
1119        size -= buf_len;
1120
1121        trace_imx_fec_receive_len(addr, bd.length);
1122
1123        /* The last 4 bytes are the CRC.  */
1124        if (size < 4) {
1125            buf_len += size - 4;
1126        }
1127        buf_addr = bd.data;
1128        dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
1129                         MEMTXATTRS_UNSPECIFIED);
1130        buf += buf_len;
1131        if (size < 4) {
1132            dma_memory_write(&address_space_memory, buf_addr + buf_len,
1133                             crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
1134            crc_ptr += 4 - size;
1135        }
1136        bd.flags &= ~ENET_BD_E;
1137        if (size == 0) {
1138            /* Last buffer in frame.  */
1139            bd.flags |= flags | ENET_BD_L;
1140
1141            trace_imx_fec_receive_last(bd.flags);
1142
1143            s->regs[ENET_EIR] |= ENET_INT_RXF;
1144        } else {
1145            s->regs[ENET_EIR] |= ENET_INT_RXB;
1146        }
1147        imx_fec_write_bd(&bd, addr);
1148        /* Advance to the next descriptor.  */
1149        if ((bd.flags & ENET_BD_W) != 0) {
1150            addr = s->regs[ENET_RDSR];
1151        } else {
1152            addr += sizeof(bd);
1153        }
1154    }
1155    s->rx_descriptor = addr;
1156    imx_eth_enable_rx(s, false);
1157    imx_eth_update(s);
1158    return len;
1159}
1160
1161static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1162                                size_t len)
1163{
1164    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1165    IMXENETBufDesc bd;
1166    uint32_t flags = 0;
1167    uint32_t addr;
1168    uint32_t crc;
1169    uint32_t buf_addr;
1170    uint8_t *crc_ptr;
1171    unsigned int buf_len;
1172    size_t size = len;
1173    bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1174
1175    trace_imx_enet_receive(size);
1176
1177    if (!s->regs[ENET_RDAR]) {
1178        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1179                      TYPE_IMX_FEC, __func__);
1180        return 0;
1181    }
1182
1183    crc = cpu_to_be32(crc32(~0, buf, size));
1184    /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */
1185    size += 4;
1186    crc_ptr = (uint8_t *) &crc;
1187
1188    if (shift16) {
1189        size += 2;
1190    }
1191
1192    /* Huge frames are truncated. */
1193    if (size > s->regs[ENET_FTRL]) {
1194        size = s->regs[ENET_FTRL];
1195        flags |= ENET_BD_TR | ENET_BD_LG;
1196    }
1197
1198    /* Frames larger than the user limit just set error flags.  */
1199    if (size > (s->regs[ENET_RCR] >> 16)) {
1200        flags |= ENET_BD_LG;
1201    }
1202
1203    addr = s->rx_descriptor;
1204    while (size > 0) {
1205        imx_enet_read_bd(&bd, addr);
1206        if ((bd.flags & ENET_BD_E) == 0) {
1207            /* No descriptors available.  Bail out.  */
1208            /*
1209             * FIXME: This is wrong. We should probably either
1210             * save the remainder for when more RX buffers are
1211             * available, or flag an error.
1212             */
1213            qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1214                          TYPE_IMX_FEC, __func__);
1215            break;
1216        }
1217        buf_len = MIN(size, s->regs[ENET_MRBR]);
1218        bd.length = buf_len;
1219        size -= buf_len;
1220
1221        trace_imx_enet_receive_len(addr, bd.length);
1222
1223        /* The last 4 bytes are the CRC.  */
1224        if (size < 4) {
1225            buf_len += size - 4;
1226        }
1227        buf_addr = bd.data;
1228
1229        if (shift16) {
1230            /*
1231             * If SHIFT16 bit of ENETx_RACC register is set we need to
1232             * align the payload to 4-byte boundary.
1233             */
1234            const uint8_t zeros[2] = { 0 };
1235
1236            dma_memory_write(&address_space_memory, buf_addr, zeros,
1237                             sizeof(zeros), MEMTXATTRS_UNSPECIFIED);
1238
1239            buf_addr += sizeof(zeros);
1240            buf_len  -= sizeof(zeros);
1241
1242            /* We only do this once per Ethernet frame */
1243            shift16 = false;
1244        }
1245
1246        dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
1247                         MEMTXATTRS_UNSPECIFIED);
1248        buf += buf_len;
1249        if (size < 4) {
1250            dma_memory_write(&address_space_memory, buf_addr + buf_len,
1251                             crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
1252            crc_ptr += 4 - size;
1253        }
1254        bd.flags &= ~ENET_BD_E;
1255        if (size == 0) {
1256            /* Last buffer in frame.  */
1257            bd.flags |= flags | ENET_BD_L;
1258
1259            trace_imx_enet_receive_last(bd.flags);
1260
1261            /* Indicate that we've updated the last buffer descriptor. */
1262            bd.last_buffer = ENET_BD_BDU;
1263            if (bd.option & ENET_BD_RX_INT) {
1264                s->regs[ENET_EIR] |= ENET_INT_RXF;
1265            }
1266        } else {
1267            if (bd.option & ENET_BD_RX_INT) {
1268                s->regs[ENET_EIR] |= ENET_INT_RXB;
1269            }
1270        }
1271        imx_enet_write_bd(&bd, addr);
1272        /* Advance to the next descriptor.  */
1273        if ((bd.flags & ENET_BD_W) != 0) {
1274            addr = s->regs[ENET_RDSR];
1275        } else {
1276            addr += sizeof(bd);
1277        }
1278    }
1279    s->rx_descriptor = addr;
1280    imx_eth_enable_rx(s, false);
1281    imx_eth_update(s);
1282    return len;
1283}
1284
1285static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1286                                size_t len)
1287{
1288    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1289
1290    if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1291        return imx_enet_receive(nc, buf, len);
1292    } else {
1293        return imx_fec_receive(nc, buf, len);
1294    }
1295}
1296
1297static const MemoryRegionOps imx_eth_ops = {
1298    .read                  = imx_eth_read,
1299    .write                 = imx_eth_write,
1300    .valid.min_access_size = 4,
1301    .valid.max_access_size = 4,
1302    .endianness            = DEVICE_NATIVE_ENDIAN,
1303};
1304
1305static void imx_eth_cleanup(NetClientState *nc)
1306{
1307    IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1308
1309    s->nic = NULL;
1310}
1311
1312static NetClientInfo imx_eth_net_info = {
1313    .type                = NET_CLIENT_DRIVER_NIC,
1314    .size                = sizeof(NICState),
1315    .can_receive         = imx_eth_can_receive,
1316    .receive             = imx_eth_receive,
1317    .cleanup             = imx_eth_cleanup,
1318    .link_status_changed = imx_eth_set_link,
1319};
1320
1321
1322static void imx_eth_realize(DeviceState *dev, Error **errp)
1323{
1324    IMXFECState *s = IMX_FEC(dev);
1325    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1326
1327    memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1328                          TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1329    sysbus_init_mmio(sbd, &s->iomem);
1330    sysbus_init_irq(sbd, &s->irq[0]);
1331    sysbus_init_irq(sbd, &s->irq[1]);
1332
1333    qemu_macaddr_default_if_unset(&s->conf.macaddr);
1334
1335    s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1336                          object_get_typename(OBJECT(dev)),
1337                          dev->id, s);
1338
1339    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1340}
1341
1342static Property imx_eth_properties[] = {
1343    DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1344    DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1345    DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0),
1346    DEFINE_PROP_BOOL("phy-connected", IMXFECState, phy_connected, true),
1347    DEFINE_PROP_LINK("phy-consumer", IMXFECState, phy_consumer, TYPE_IMX_FEC,
1348                     IMXFECState *),
1349    DEFINE_PROP_END_OF_LIST(),
1350};
1351
1352static void imx_eth_class_init(ObjectClass *klass, void *data)
1353{
1354    DeviceClass *dc = DEVICE_CLASS(klass);
1355
1356    dc->vmsd    = &vmstate_imx_eth;
1357    dc->reset   = imx_eth_reset;
1358    device_class_set_props(dc, imx_eth_properties);
1359    dc->realize = imx_eth_realize;
1360    dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1361}
1362
1363static void imx_fec_init(Object *obj)
1364{
1365    IMXFECState *s = IMX_FEC(obj);
1366
1367    s->is_fec = true;
1368}
1369
1370static void imx_enet_init(Object *obj)
1371{
1372    IMXFECState *s = IMX_FEC(obj);
1373
1374    s->is_fec = false;
1375}
1376
1377static const TypeInfo imx_fec_info = {
1378    .name          = TYPE_IMX_FEC,
1379    .parent        = TYPE_SYS_BUS_DEVICE,
1380    .instance_size = sizeof(IMXFECState),
1381    .instance_init = imx_fec_init,
1382    .class_init    = imx_eth_class_init,
1383};
1384
1385static const TypeInfo imx_enet_info = {
1386    .name          = TYPE_IMX_ENET,
1387    .parent        = TYPE_IMX_FEC,
1388    .instance_init = imx_enet_init,
1389};
1390
1391static void imx_eth_register_types(void)
1392{
1393    type_register_static(&imx_fec_info);
1394    type_register_static(&imx_enet_info);
1395}
1396
1397type_init(imx_eth_register_types)
1398