qemu/target/arm/tcg/translate-a64.c
<<
>>
Prefs
   1/*
   2 *  AArch64 translation
   3 *
   4 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20
  21#include "translate.h"
  22#include "translate-a64.h"
  23#include "qemu/log.h"
  24#include "disas/disas.h"
  25#include "arm_ldst.h"
  26#include "semihosting/semihost.h"
  27#include "cpregs.h"
  28
  29static TCGv_i64 cpu_X[32];
  30static TCGv_i64 cpu_pc;
  31
  32/* Load/store exclusive handling */
  33static TCGv_i64 cpu_exclusive_high;
  34
  35static const char *regnames[] = {
  36    "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
  37    "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
  38    "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
  39    "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
  40};
  41
  42enum a64_shift_type {
  43    A64_SHIFT_TYPE_LSL = 0,
  44    A64_SHIFT_TYPE_LSR = 1,
  45    A64_SHIFT_TYPE_ASR = 2,
  46    A64_SHIFT_TYPE_ROR = 3
  47};
  48
  49/*
  50 * Helpers for extracting complex instruction fields
  51 */
  52
  53/*
  54 * For load/store with an unsigned 12 bit immediate scaled by the element
  55 * size. The input has the immediate field in bits [14:3] and the element
  56 * size in [2:0].
  57 */
  58static int uimm_scaled(DisasContext *s, int x)
  59{
  60    unsigned imm = x >> 3;
  61    unsigned scale = extract32(x, 0, 3);
  62    return imm << scale;
  63}
  64
  65/* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
  66static int scale_by_log2_tag_granule(DisasContext *s, int x)
  67{
  68    return x << LOG2_TAG_GRANULE;
  69}
  70
  71/*
  72 * Include the generated decoders.
  73 */
  74
  75#include "decode-sme-fa64.c.inc"
  76#include "decode-a64.c.inc"
  77
  78/* Table based decoder typedefs - used when the relevant bits for decode
  79 * are too awkwardly scattered across the instruction (eg SIMD).
  80 */
  81typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
  82
  83typedef struct AArch64DecodeTable {
  84    uint32_t pattern;
  85    uint32_t mask;
  86    AArch64DecodeFn *disas_fn;
  87} AArch64DecodeTable;
  88
  89/* initialize TCG globals.  */
  90void a64_translate_init(void)
  91{
  92    int i;
  93
  94    cpu_pc = tcg_global_mem_new_i64(cpu_env,
  95                                    offsetof(CPUARMState, pc),
  96                                    "pc");
  97    for (i = 0; i < 32; i++) {
  98        cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
  99                                          offsetof(CPUARMState, xregs[i]),
 100                                          regnames[i]);
 101    }
 102
 103    cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
 104        offsetof(CPUARMState, exclusive_high), "exclusive_high");
 105}
 106
 107/*
 108 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
 109 */
 110static int get_a64_user_mem_index(DisasContext *s)
 111{
 112    /*
 113     * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
 114     * which is the usual mmu_idx for this cpu state.
 115     */
 116    ARMMMUIdx useridx = s->mmu_idx;
 117
 118    if (s->unpriv) {
 119        /*
 120         * We have pre-computed the condition for AccType_UNPRIV.
 121         * Therefore we should never get here with a mmu_idx for
 122         * which we do not know the corresponding user mmu_idx.
 123         */
 124        switch (useridx) {
 125        case ARMMMUIdx_E10_1:
 126        case ARMMMUIdx_E10_1_PAN:
 127            useridx = ARMMMUIdx_E10_0;
 128            break;
 129        case ARMMMUIdx_E20_2:
 130        case ARMMMUIdx_E20_2_PAN:
 131            useridx = ARMMMUIdx_E20_0;
 132            break;
 133        default:
 134            g_assert_not_reached();
 135        }
 136    }
 137    return arm_to_core_mmu_idx(useridx);
 138}
 139
 140static void set_btype_raw(int val)
 141{
 142    tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
 143                   offsetof(CPUARMState, btype));
 144}
 145
 146static void set_btype(DisasContext *s, int val)
 147{
 148    /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
 149    tcg_debug_assert(val >= 1 && val <= 3);
 150    set_btype_raw(val);
 151    s->btype = -1;
 152}
 153
 154static void reset_btype(DisasContext *s)
 155{
 156    if (s->btype != 0) {
 157        set_btype_raw(0);
 158        s->btype = 0;
 159    }
 160}
 161
 162static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
 163{
 164    assert(s->pc_save != -1);
 165    if (tb_cflags(s->base.tb) & CF_PCREL) {
 166        tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
 167    } else {
 168        tcg_gen_movi_i64(dest, s->pc_curr + diff);
 169    }
 170}
 171
 172void gen_a64_update_pc(DisasContext *s, target_long diff)
 173{
 174    gen_pc_plus_diff(s, cpu_pc, diff);
 175    s->pc_save = s->pc_curr + diff;
 176}
 177
 178/*
 179 * Handle Top Byte Ignore (TBI) bits.
 180 *
 181 * If address tagging is enabled via the TCR TBI bits:
 182 *  + for EL2 and EL3 there is only one TBI bit, and if it is set
 183 *    then the address is zero-extended, clearing bits [63:56]
 184 *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
 185 *    and TBI1 controls addresses with bit 55 == 1.
 186 *    If the appropriate TBI bit is set for the address then
 187 *    the address is sign-extended from bit 55 into bits [63:56]
 188 *
 189 * Here We have concatenated TBI{1,0} into tbi.
 190 */
 191static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
 192                                TCGv_i64 src, int tbi)
 193{
 194    if (tbi == 0) {
 195        /* Load unmodified address */
 196        tcg_gen_mov_i64(dst, src);
 197    } else if (!regime_has_2_ranges(s->mmu_idx)) {
 198        /* Force tag byte to all zero */
 199        tcg_gen_extract_i64(dst, src, 0, 56);
 200    } else {
 201        /* Sign-extend from bit 55.  */
 202        tcg_gen_sextract_i64(dst, src, 0, 56);
 203
 204        switch (tbi) {
 205        case 1:
 206            /* tbi0 but !tbi1: only use the extension if positive */
 207            tcg_gen_and_i64(dst, dst, src);
 208            break;
 209        case 2:
 210            /* !tbi0 but tbi1: only use the extension if negative */
 211            tcg_gen_or_i64(dst, dst, src);
 212            break;
 213        case 3:
 214            /* tbi0 and tbi1: always use the extension */
 215            break;
 216        default:
 217            g_assert_not_reached();
 218        }
 219    }
 220}
 221
 222static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
 223{
 224    /*
 225     * If address tagging is enabled for instructions via the TCR TBI bits,
 226     * then loading an address into the PC will clear out any tag.
 227     */
 228    gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
 229    s->pc_save = -1;
 230}
 231
 232/*
 233 * Handle MTE and/or TBI.
 234 *
 235 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
 236 * for the tag to be present in the FAR_ELx register.  But for user-only
 237 * mode we do not have a TLB with which to implement this, so we must
 238 * remove the top byte now.
 239 *
 240 * Always return a fresh temporary that we can increment independently
 241 * of the write-back address.
 242 */
 243
 244TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
 245{
 246    TCGv_i64 clean = tcg_temp_new_i64();
 247#ifdef CONFIG_USER_ONLY
 248    gen_top_byte_ignore(s, clean, addr, s->tbid);
 249#else
 250    tcg_gen_mov_i64(clean, addr);
 251#endif
 252    return clean;
 253}
 254
 255/* Insert a zero tag into src, with the result at dst. */
 256static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
 257{
 258    tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
 259}
 260
 261static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
 262                             MMUAccessType acc, int log2_size)
 263{
 264    gen_helper_probe_access(cpu_env, ptr,
 265                            tcg_constant_i32(acc),
 266                            tcg_constant_i32(get_mem_index(s)),
 267                            tcg_constant_i32(1 << log2_size));
 268}
 269
 270/*
 271 * For MTE, check a single logical or atomic access.  This probes a single
 272 * address, the exact one specified.  The size and alignment of the access
 273 * is not relevant to MTE, per se, but watchpoints do require the size,
 274 * and we want to recognize those before making any other changes to state.
 275 */
 276static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
 277                                      bool is_write, bool tag_checked,
 278                                      MemOp memop, bool is_unpriv,
 279                                      int core_idx)
 280{
 281    if (tag_checked && s->mte_active[is_unpriv]) {
 282        TCGv_i64 ret;
 283        int desc = 0;
 284
 285        desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
 286        desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
 287        desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
 288        desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
 289        desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
 290        desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
 291
 292        ret = tcg_temp_new_i64();
 293        gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
 294
 295        return ret;
 296    }
 297    return clean_data_tbi(s, addr);
 298}
 299
 300TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
 301                        bool tag_checked, MemOp memop)
 302{
 303    return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
 304                                 false, get_mem_index(s));
 305}
 306
 307/*
 308 * For MTE, check multiple logical sequential accesses.
 309 */
 310TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
 311                        bool tag_checked, int total_size, MemOp single_mop)
 312{
 313    if (tag_checked && s->mte_active[0]) {
 314        TCGv_i64 ret;
 315        int desc = 0;
 316
 317        desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
 318        desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
 319        desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
 320        desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
 321        desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
 322        desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
 323
 324        ret = tcg_temp_new_i64();
 325        gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
 326
 327        return ret;
 328    }
 329    return clean_data_tbi(s, addr);
 330}
 331
 332/*
 333 * Generate the special alignment check that applies to AccType_ATOMIC
 334 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
 335 * naturally aligned, but it must not cross a 16-byte boundary.
 336 * See AArch64.CheckAlignment().
 337 */
 338static void check_lse2_align(DisasContext *s, int rn, int imm,
 339                             bool is_write, MemOp mop)
 340{
 341    TCGv_i32 tmp;
 342    TCGv_i64 addr;
 343    TCGLabel *over_label;
 344    MMUAccessType type;
 345    int mmu_idx;
 346
 347    tmp = tcg_temp_new_i32();
 348    tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
 349    tcg_gen_addi_i32(tmp, tmp, imm & 15);
 350    tcg_gen_andi_i32(tmp, tmp, 15);
 351    tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
 352
 353    over_label = gen_new_label();
 354    tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
 355
 356    addr = tcg_temp_new_i64();
 357    tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
 358
 359    type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
 360    mmu_idx = get_mem_index(s);
 361    gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type),
 362                                tcg_constant_i32(mmu_idx));
 363
 364    gen_set_label(over_label);
 365
 366}
 367
 368/* Handle the alignment check for AccType_ATOMIC instructions. */
 369static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
 370{
 371    MemOp size = mop & MO_SIZE;
 372
 373    if (size == MO_8) {
 374        return mop;
 375    }
 376
 377    /*
 378     * If size == MO_128, this is a LDXP, and the operation is single-copy
 379     * atomic for each doubleword, not the entire quadword; it still must
 380     * be quadword aligned.
 381     */
 382    if (size == MO_128) {
 383        return finalize_memop_atom(s, MO_128 | MO_ALIGN,
 384                                   MO_ATOM_IFALIGN_PAIR);
 385    }
 386    if (dc_isar_feature(aa64_lse2, s)) {
 387        check_lse2_align(s, rn, 0, true, mop);
 388    } else {
 389        mop |= MO_ALIGN;
 390    }
 391    return finalize_memop(s, mop);
 392}
 393
 394/* Handle the alignment check for AccType_ORDERED instructions. */
 395static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
 396                                 bool is_write, MemOp mop)
 397{
 398    MemOp size = mop & MO_SIZE;
 399
 400    if (size == MO_8) {
 401        return mop;
 402    }
 403    if (size == MO_128) {
 404        return finalize_memop_atom(s, MO_128 | MO_ALIGN,
 405                                   MO_ATOM_IFALIGN_PAIR);
 406    }
 407    if (!dc_isar_feature(aa64_lse2, s)) {
 408        mop |= MO_ALIGN;
 409    } else if (!s->naa) {
 410        check_lse2_align(s, rn, imm, is_write, mop);
 411    }
 412    return finalize_memop(s, mop);
 413}
 414
 415typedef struct DisasCompare64 {
 416    TCGCond cond;
 417    TCGv_i64 value;
 418} DisasCompare64;
 419
 420static void a64_test_cc(DisasCompare64 *c64, int cc)
 421{
 422    DisasCompare c32;
 423
 424    arm_test_cc(&c32, cc);
 425
 426    /*
 427     * Sign-extend the 32-bit value so that the GE/LT comparisons work
 428     * properly.  The NE/EQ comparisons are also fine with this choice.
 429      */
 430    c64->cond = c32.cond;
 431    c64->value = tcg_temp_new_i64();
 432    tcg_gen_ext_i32_i64(c64->value, c32.value);
 433}
 434
 435static void gen_rebuild_hflags(DisasContext *s)
 436{
 437    gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
 438}
 439
 440static void gen_exception_internal(int excp)
 441{
 442    assert(excp_is_internal(excp));
 443    gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
 444}
 445
 446static void gen_exception_internal_insn(DisasContext *s, int excp)
 447{
 448    gen_a64_update_pc(s, 0);
 449    gen_exception_internal(excp);
 450    s->base.is_jmp = DISAS_NORETURN;
 451}
 452
 453static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
 454{
 455    gen_a64_update_pc(s, 0);
 456    gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
 457    s->base.is_jmp = DISAS_NORETURN;
 458}
 459
 460static void gen_step_complete_exception(DisasContext *s)
 461{
 462    /* We just completed step of an insn. Move from Active-not-pending
 463     * to Active-pending, and then also take the swstep exception.
 464     * This corresponds to making the (IMPDEF) choice to prioritize
 465     * swstep exceptions over asynchronous exceptions taken to an exception
 466     * level where debug is disabled. This choice has the advantage that
 467     * we do not need to maintain internal state corresponding to the
 468     * ISV/EX syndrome bits between completion of the step and generation
 469     * of the exception, and our syndrome information is always correct.
 470     */
 471    gen_ss_advance(s);
 472    gen_swstep_exception(s, 1, s->is_ldex);
 473    s->base.is_jmp = DISAS_NORETURN;
 474}
 475
 476static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
 477{
 478    if (s->ss_active) {
 479        return false;
 480    }
 481    return translator_use_goto_tb(&s->base, dest);
 482}
 483
 484static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
 485{
 486    if (use_goto_tb(s, s->pc_curr + diff)) {
 487        /*
 488         * For pcrel, the pc must always be up-to-date on entry to
 489         * the linked TB, so that it can use simple additions for all
 490         * further adjustments.  For !pcrel, the linked TB is compiled
 491         * to know its full virtual address, so we can delay the
 492         * update to pc to the unlinked path.  A long chain of links
 493         * can thus avoid many updates to the PC.
 494         */
 495        if (tb_cflags(s->base.tb) & CF_PCREL) {
 496            gen_a64_update_pc(s, diff);
 497            tcg_gen_goto_tb(n);
 498        } else {
 499            tcg_gen_goto_tb(n);
 500            gen_a64_update_pc(s, diff);
 501        }
 502        tcg_gen_exit_tb(s->base.tb, n);
 503        s->base.is_jmp = DISAS_NORETURN;
 504    } else {
 505        gen_a64_update_pc(s, diff);
 506        if (s->ss_active) {
 507            gen_step_complete_exception(s);
 508        } else {
 509            tcg_gen_lookup_and_goto_ptr();
 510            s->base.is_jmp = DISAS_NORETURN;
 511        }
 512    }
 513}
 514
 515/*
 516 * Register access functions
 517 *
 518 * These functions are used for directly accessing a register in where
 519 * changes to the final register value are likely to be made. If you
 520 * need to use a register for temporary calculation (e.g. index type
 521 * operations) use the read_* form.
 522 *
 523 * B1.2.1 Register mappings
 524 *
 525 * In instruction register encoding 31 can refer to ZR (zero register) or
 526 * the SP (stack pointer) depending on context. In QEMU's case we map SP
 527 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
 528 * This is the point of the _sp forms.
 529 */
 530TCGv_i64 cpu_reg(DisasContext *s, int reg)
 531{
 532    if (reg == 31) {
 533        TCGv_i64 t = tcg_temp_new_i64();
 534        tcg_gen_movi_i64(t, 0);
 535        return t;
 536    } else {
 537        return cpu_X[reg];
 538    }
 539}
 540
 541/* register access for when 31 == SP */
 542TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
 543{
 544    return cpu_X[reg];
 545}
 546
 547/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
 548 * representing the register contents. This TCGv is an auto-freed
 549 * temporary so it need not be explicitly freed, and may be modified.
 550 */
 551TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
 552{
 553    TCGv_i64 v = tcg_temp_new_i64();
 554    if (reg != 31) {
 555        if (sf) {
 556            tcg_gen_mov_i64(v, cpu_X[reg]);
 557        } else {
 558            tcg_gen_ext32u_i64(v, cpu_X[reg]);
 559        }
 560    } else {
 561        tcg_gen_movi_i64(v, 0);
 562    }
 563    return v;
 564}
 565
 566TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
 567{
 568    TCGv_i64 v = tcg_temp_new_i64();
 569    if (sf) {
 570        tcg_gen_mov_i64(v, cpu_X[reg]);
 571    } else {
 572        tcg_gen_ext32u_i64(v, cpu_X[reg]);
 573    }
 574    return v;
 575}
 576
 577/* Return the offset into CPUARMState of a slice (from
 578 * the least significant end) of FP register Qn (ie
 579 * Dn, Sn, Hn or Bn).
 580 * (Note that this is not the same mapping as for A32; see cpu.h)
 581 */
 582static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
 583{
 584    return vec_reg_offset(s, regno, 0, size);
 585}
 586
 587/* Offset of the high half of the 128 bit vector Qn */
 588static inline int fp_reg_hi_offset(DisasContext *s, int regno)
 589{
 590    return vec_reg_offset(s, regno, 1, MO_64);
 591}
 592
 593/* Convenience accessors for reading and writing single and double
 594 * FP registers. Writing clears the upper parts of the associated
 595 * 128 bit vector register, as required by the architecture.
 596 * Note that unlike the GP register accessors, the values returned
 597 * by the read functions must be manually freed.
 598 */
 599static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
 600{
 601    TCGv_i64 v = tcg_temp_new_i64();
 602
 603    tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
 604    return v;
 605}
 606
 607static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
 608{
 609    TCGv_i32 v = tcg_temp_new_i32();
 610
 611    tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
 612    return v;
 613}
 614
 615static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
 616{
 617    TCGv_i32 v = tcg_temp_new_i32();
 618
 619    tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
 620    return v;
 621}
 622
 623/* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
 624 * If SVE is not enabled, then there are only 128 bits in the vector.
 625 */
 626static void clear_vec_high(DisasContext *s, bool is_q, int rd)
 627{
 628    unsigned ofs = fp_reg_offset(s, rd, MO_64);
 629    unsigned vsz = vec_full_reg_size(s);
 630
 631    /* Nop move, with side effect of clearing the tail. */
 632    tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
 633}
 634
 635void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
 636{
 637    unsigned ofs = fp_reg_offset(s, reg, MO_64);
 638
 639    tcg_gen_st_i64(v, cpu_env, ofs);
 640    clear_vec_high(s, false, reg);
 641}
 642
 643static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
 644{
 645    TCGv_i64 tmp = tcg_temp_new_i64();
 646
 647    tcg_gen_extu_i32_i64(tmp, v);
 648    write_fp_dreg(s, reg, tmp);
 649}
 650
 651/* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
 652static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
 653                         GVecGen2Fn *gvec_fn, int vece)
 654{
 655    gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
 656            is_q ? 16 : 8, vec_full_reg_size(s));
 657}
 658
 659/* Expand a 2-operand + immediate AdvSIMD vector operation using
 660 * an expander function.
 661 */
 662static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
 663                          int64_t imm, GVecGen2iFn *gvec_fn, int vece)
 664{
 665    gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
 666            imm, is_q ? 16 : 8, vec_full_reg_size(s));
 667}
 668
 669/* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
 670static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
 671                         GVecGen3Fn *gvec_fn, int vece)
 672{
 673    gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
 674            vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
 675}
 676
 677/* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
 678static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
 679                         int rx, GVecGen4Fn *gvec_fn, int vece)
 680{
 681    gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
 682            vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
 683            is_q ? 16 : 8, vec_full_reg_size(s));
 684}
 685
 686/* Expand a 2-operand operation using an out-of-line helper.  */
 687static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
 688                             int rn, int data, gen_helper_gvec_2 *fn)
 689{
 690    tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
 691                       vec_full_reg_offset(s, rn),
 692                       is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
 693}
 694
 695/* Expand a 3-operand operation using an out-of-line helper.  */
 696static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
 697                             int rn, int rm, int data, gen_helper_gvec_3 *fn)
 698{
 699    tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
 700                       vec_full_reg_offset(s, rn),
 701                       vec_full_reg_offset(s, rm),
 702                       is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
 703}
 704
 705/* Expand a 3-operand + fpstatus pointer + simd data value operation using
 706 * an out-of-line helper.
 707 */
 708static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
 709                              int rm, bool is_fp16, int data,
 710                              gen_helper_gvec_3_ptr *fn)
 711{
 712    TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
 713    tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
 714                       vec_full_reg_offset(s, rn),
 715                       vec_full_reg_offset(s, rm), fpst,
 716                       is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
 717}
 718
 719/* Expand a 3-operand + qc + operation using an out-of-line helper.  */
 720static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
 721                            int rm, gen_helper_gvec_3_ptr *fn)
 722{
 723    TCGv_ptr qc_ptr = tcg_temp_new_ptr();
 724
 725    tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
 726    tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
 727                       vec_full_reg_offset(s, rn),
 728                       vec_full_reg_offset(s, rm), qc_ptr,
 729                       is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
 730}
 731
 732/* Expand a 4-operand operation using an out-of-line helper.  */
 733static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
 734                             int rm, int ra, int data, gen_helper_gvec_4 *fn)
 735{
 736    tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
 737                       vec_full_reg_offset(s, rn),
 738                       vec_full_reg_offset(s, rm),
 739                       vec_full_reg_offset(s, ra),
 740                       is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
 741}
 742
 743/*
 744 * Expand a 4-operand + fpstatus pointer + simd data value operation using
 745 * an out-of-line helper.
 746 */
 747static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
 748                              int rm, int ra, bool is_fp16, int data,
 749                              gen_helper_gvec_4_ptr *fn)
 750{
 751    TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
 752    tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
 753                       vec_full_reg_offset(s, rn),
 754                       vec_full_reg_offset(s, rm),
 755                       vec_full_reg_offset(s, ra), fpst,
 756                       is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
 757}
 758
 759/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
 760 * than the 32 bit equivalent.
 761 */
 762static inline void gen_set_NZ64(TCGv_i64 result)
 763{
 764    tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
 765    tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
 766}
 767
 768/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
 769static inline void gen_logic_CC(int sf, TCGv_i64 result)
 770{
 771    if (sf) {
 772        gen_set_NZ64(result);
 773    } else {
 774        tcg_gen_extrl_i64_i32(cpu_ZF, result);
 775        tcg_gen_mov_i32(cpu_NF, cpu_ZF);
 776    }
 777    tcg_gen_movi_i32(cpu_CF, 0);
 778    tcg_gen_movi_i32(cpu_VF, 0);
 779}
 780
 781/* dest = T0 + T1; compute C, N, V and Z flags */
 782static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 783{
 784    TCGv_i64 result, flag, tmp;
 785    result = tcg_temp_new_i64();
 786    flag = tcg_temp_new_i64();
 787    tmp = tcg_temp_new_i64();
 788
 789    tcg_gen_movi_i64(tmp, 0);
 790    tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
 791
 792    tcg_gen_extrl_i64_i32(cpu_CF, flag);
 793
 794    gen_set_NZ64(result);
 795
 796    tcg_gen_xor_i64(flag, result, t0);
 797    tcg_gen_xor_i64(tmp, t0, t1);
 798    tcg_gen_andc_i64(flag, flag, tmp);
 799    tcg_gen_extrh_i64_i32(cpu_VF, flag);
 800
 801    tcg_gen_mov_i64(dest, result);
 802}
 803
 804static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 805{
 806    TCGv_i32 t0_32 = tcg_temp_new_i32();
 807    TCGv_i32 t1_32 = tcg_temp_new_i32();
 808    TCGv_i32 tmp = tcg_temp_new_i32();
 809
 810    tcg_gen_movi_i32(tmp, 0);
 811    tcg_gen_extrl_i64_i32(t0_32, t0);
 812    tcg_gen_extrl_i64_i32(t1_32, t1);
 813    tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
 814    tcg_gen_mov_i32(cpu_ZF, cpu_NF);
 815    tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
 816    tcg_gen_xor_i32(tmp, t0_32, t1_32);
 817    tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
 818    tcg_gen_extu_i32_i64(dest, cpu_NF);
 819}
 820
 821static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 822{
 823    if (sf) {
 824        gen_add64_CC(dest, t0, t1);
 825    } else {
 826        gen_add32_CC(dest, t0, t1);
 827    }
 828}
 829
 830/* dest = T0 - T1; compute C, N, V and Z flags */
 831static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 832{
 833    /* 64 bit arithmetic */
 834    TCGv_i64 result, flag, tmp;
 835
 836    result = tcg_temp_new_i64();
 837    flag = tcg_temp_new_i64();
 838    tcg_gen_sub_i64(result, t0, t1);
 839
 840    gen_set_NZ64(result);
 841
 842    tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
 843    tcg_gen_extrl_i64_i32(cpu_CF, flag);
 844
 845    tcg_gen_xor_i64(flag, result, t0);
 846    tmp = tcg_temp_new_i64();
 847    tcg_gen_xor_i64(tmp, t0, t1);
 848    tcg_gen_and_i64(flag, flag, tmp);
 849    tcg_gen_extrh_i64_i32(cpu_VF, flag);
 850    tcg_gen_mov_i64(dest, result);
 851}
 852
 853static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 854{
 855    /* 32 bit arithmetic */
 856    TCGv_i32 t0_32 = tcg_temp_new_i32();
 857    TCGv_i32 t1_32 = tcg_temp_new_i32();
 858    TCGv_i32 tmp;
 859
 860    tcg_gen_extrl_i64_i32(t0_32, t0);
 861    tcg_gen_extrl_i64_i32(t1_32, t1);
 862    tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
 863    tcg_gen_mov_i32(cpu_ZF, cpu_NF);
 864    tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
 865    tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
 866    tmp = tcg_temp_new_i32();
 867    tcg_gen_xor_i32(tmp, t0_32, t1_32);
 868    tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
 869    tcg_gen_extu_i32_i64(dest, cpu_NF);
 870}
 871
 872static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 873{
 874    if (sf) {
 875        gen_sub64_CC(dest, t0, t1);
 876    } else {
 877        gen_sub32_CC(dest, t0, t1);
 878    }
 879}
 880
 881/* dest = T0 + T1 + CF; do not compute flags. */
 882static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 883{
 884    TCGv_i64 flag = tcg_temp_new_i64();
 885    tcg_gen_extu_i32_i64(flag, cpu_CF);
 886    tcg_gen_add_i64(dest, t0, t1);
 887    tcg_gen_add_i64(dest, dest, flag);
 888
 889    if (!sf) {
 890        tcg_gen_ext32u_i64(dest, dest);
 891    }
 892}
 893
 894/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
 895static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
 896{
 897    if (sf) {
 898        TCGv_i64 result = tcg_temp_new_i64();
 899        TCGv_i64 cf_64 = tcg_temp_new_i64();
 900        TCGv_i64 vf_64 = tcg_temp_new_i64();
 901        TCGv_i64 tmp = tcg_temp_new_i64();
 902        TCGv_i64 zero = tcg_constant_i64(0);
 903
 904        tcg_gen_extu_i32_i64(cf_64, cpu_CF);
 905        tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
 906        tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
 907        tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
 908        gen_set_NZ64(result);
 909
 910        tcg_gen_xor_i64(vf_64, result, t0);
 911        tcg_gen_xor_i64(tmp, t0, t1);
 912        tcg_gen_andc_i64(vf_64, vf_64, tmp);
 913        tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
 914
 915        tcg_gen_mov_i64(dest, result);
 916    } else {
 917        TCGv_i32 t0_32 = tcg_temp_new_i32();
 918        TCGv_i32 t1_32 = tcg_temp_new_i32();
 919        TCGv_i32 tmp = tcg_temp_new_i32();
 920        TCGv_i32 zero = tcg_constant_i32(0);
 921
 922        tcg_gen_extrl_i64_i32(t0_32, t0);
 923        tcg_gen_extrl_i64_i32(t1_32, t1);
 924        tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
 925        tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
 926
 927        tcg_gen_mov_i32(cpu_ZF, cpu_NF);
 928        tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
 929        tcg_gen_xor_i32(tmp, t0_32, t1_32);
 930        tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
 931        tcg_gen_extu_i32_i64(dest, cpu_NF);
 932    }
 933}
 934
 935/*
 936 * Load/Store generators
 937 */
 938
 939/*
 940 * Store from GPR register to memory.
 941 */
 942static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
 943                             TCGv_i64 tcg_addr, MemOp memop, int memidx,
 944                             bool iss_valid,
 945                             unsigned int iss_srt,
 946                             bool iss_sf, bool iss_ar)
 947{
 948    tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
 949
 950    if (iss_valid) {
 951        uint32_t syn;
 952
 953        syn = syn_data_abort_with_iss(0,
 954                                      (memop & MO_SIZE),
 955                                      false,
 956                                      iss_srt,
 957                                      iss_sf,
 958                                      iss_ar,
 959                                      0, 0, 0, 0, 0, false);
 960        disas_set_insn_syndrome(s, syn);
 961    }
 962}
 963
 964static void do_gpr_st(DisasContext *s, TCGv_i64 source,
 965                      TCGv_i64 tcg_addr, MemOp memop,
 966                      bool iss_valid,
 967                      unsigned int iss_srt,
 968                      bool iss_sf, bool iss_ar)
 969{
 970    do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
 971                     iss_valid, iss_srt, iss_sf, iss_ar);
 972}
 973
 974/*
 975 * Load from memory to GPR register
 976 */
 977static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
 978                             MemOp memop, bool extend, int memidx,
 979                             bool iss_valid, unsigned int iss_srt,
 980                             bool iss_sf, bool iss_ar)
 981{
 982    tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
 983
 984    if (extend && (memop & MO_SIGN)) {
 985        g_assert((memop & MO_SIZE) <= MO_32);
 986        tcg_gen_ext32u_i64(dest, dest);
 987    }
 988
 989    if (iss_valid) {
 990        uint32_t syn;
 991
 992        syn = syn_data_abort_with_iss(0,
 993                                      (memop & MO_SIZE),
 994                                      (memop & MO_SIGN) != 0,
 995                                      iss_srt,
 996                                      iss_sf,
 997                                      iss_ar,
 998                                      0, 0, 0, 0, 0, false);
 999        disas_set_insn_syndrome(s, syn);
1000    }
1001}
1002
1003static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1004                      MemOp memop, bool extend,
1005                      bool iss_valid, unsigned int iss_srt,
1006                      bool iss_sf, bool iss_ar)
1007{
1008    do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1009                     iss_valid, iss_srt, iss_sf, iss_ar);
1010}
1011
1012/*
1013 * Store from FP register to memory
1014 */
1015static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1016{
1017    /* This writes the bottom N bits of a 128 bit wide vector to memory */
1018    TCGv_i64 tmplo = tcg_temp_new_i64();
1019
1020    tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1021
1022    if ((mop & MO_SIZE) < MO_128) {
1023        tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1024    } else {
1025        TCGv_i64 tmphi = tcg_temp_new_i64();
1026        TCGv_i128 t16 = tcg_temp_new_i128();
1027
1028        tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
1029        tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1030
1031        tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1032    }
1033}
1034
1035/*
1036 * Load from memory to FP register
1037 */
1038static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1039{
1040    /* This always zero-extends and writes to a full 128 bit wide vector */
1041    TCGv_i64 tmplo = tcg_temp_new_i64();
1042    TCGv_i64 tmphi = NULL;
1043
1044    if ((mop & MO_SIZE) < MO_128) {
1045        tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1046    } else {
1047        TCGv_i128 t16 = tcg_temp_new_i128();
1048
1049        tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1050
1051        tmphi = tcg_temp_new_i64();
1052        tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1053    }
1054
1055    tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1056
1057    if (tmphi) {
1058        tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1059    }
1060    clear_vec_high(s, tmphi != NULL, destidx);
1061}
1062
1063/*
1064 * Vector load/store helpers.
1065 *
1066 * The principal difference between this and a FP load is that we don't
1067 * zero extend as we are filling a partial chunk of the vector register.
1068 * These functions don't support 128 bit loads/stores, which would be
1069 * normal load/store operations.
1070 *
1071 * The _i32 versions are useful when operating on 32 bit quantities
1072 * (eg for floating point single or using Neon helper functions).
1073 */
1074
1075/* Get value of an element within a vector register */
1076static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1077                             int element, MemOp memop)
1078{
1079    int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1080    switch ((unsigned)memop) {
1081    case MO_8:
1082        tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1083        break;
1084    case MO_16:
1085        tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1086        break;
1087    case MO_32:
1088        tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1089        break;
1090    case MO_8|MO_SIGN:
1091        tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1092        break;
1093    case MO_16|MO_SIGN:
1094        tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1095        break;
1096    case MO_32|MO_SIGN:
1097        tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1098        break;
1099    case MO_64:
1100    case MO_64|MO_SIGN:
1101        tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1102        break;
1103    default:
1104        g_assert_not_reached();
1105    }
1106}
1107
1108static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1109                                 int element, MemOp memop)
1110{
1111    int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1112    switch (memop) {
1113    case MO_8:
1114        tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1115        break;
1116    case MO_16:
1117        tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1118        break;
1119    case MO_8|MO_SIGN:
1120        tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1121        break;
1122    case MO_16|MO_SIGN:
1123        tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1124        break;
1125    case MO_32:
1126    case MO_32|MO_SIGN:
1127        tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1128        break;
1129    default:
1130        g_assert_not_reached();
1131    }
1132}
1133
1134/* Set value of an element within a vector register */
1135static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1136                              int element, MemOp memop)
1137{
1138    int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1139    switch (memop) {
1140    case MO_8:
1141        tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1142        break;
1143    case MO_16:
1144        tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1145        break;
1146    case MO_32:
1147        tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1148        break;
1149    case MO_64:
1150        tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1151        break;
1152    default:
1153        g_assert_not_reached();
1154    }
1155}
1156
1157static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1158                                  int destidx, int element, MemOp memop)
1159{
1160    int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1161    switch (memop) {
1162    case MO_8:
1163        tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1164        break;
1165    case MO_16:
1166        tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1167        break;
1168    case MO_32:
1169        tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1170        break;
1171    default:
1172        g_assert_not_reached();
1173    }
1174}
1175
1176/* Store from vector register to memory */
1177static void do_vec_st(DisasContext *s, int srcidx, int element,
1178                      TCGv_i64 tcg_addr, MemOp mop)
1179{
1180    TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1181
1182    read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1183    tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1184}
1185
1186/* Load from memory to vector register */
1187static void do_vec_ld(DisasContext *s, int destidx, int element,
1188                      TCGv_i64 tcg_addr, MemOp mop)
1189{
1190    TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1191
1192    tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1193    write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1194}
1195
1196/* Check that FP/Neon access is enabled. If it is, return
1197 * true. If not, emit code to generate an appropriate exception,
1198 * and return false; the caller should not emit any code for
1199 * the instruction. Note that this check must happen after all
1200 * unallocated-encoding checks (otherwise the syndrome information
1201 * for the resulting exception will be incorrect).
1202 */
1203static bool fp_access_check_only(DisasContext *s)
1204{
1205    if (s->fp_excp_el) {
1206        assert(!s->fp_access_checked);
1207        s->fp_access_checked = true;
1208
1209        gen_exception_insn_el(s, 0, EXCP_UDEF,
1210                              syn_fp_access_trap(1, 0xe, false, 0),
1211                              s->fp_excp_el);
1212        return false;
1213    }
1214    s->fp_access_checked = true;
1215    return true;
1216}
1217
1218static bool fp_access_check(DisasContext *s)
1219{
1220    if (!fp_access_check_only(s)) {
1221        return false;
1222    }
1223    if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1224        gen_exception_insn(s, 0, EXCP_UDEF,
1225                           syn_smetrap(SME_ET_Streaming, false));
1226        return false;
1227    }
1228    return true;
1229}
1230
1231/*
1232 * Check that SVE access is enabled.  If it is, return true.
1233 * If not, emit code to generate an appropriate exception and return false.
1234 * This function corresponds to CheckSVEEnabled().
1235 */
1236bool sve_access_check(DisasContext *s)
1237{
1238    if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1239        assert(dc_isar_feature(aa64_sme, s));
1240        if (!sme_sm_enabled_check(s)) {
1241            goto fail_exit;
1242        }
1243    } else if (s->sve_excp_el) {
1244        gen_exception_insn_el(s, 0, EXCP_UDEF,
1245                              syn_sve_access_trap(), s->sve_excp_el);
1246        goto fail_exit;
1247    }
1248    s->sve_access_checked = true;
1249    return fp_access_check(s);
1250
1251 fail_exit:
1252    /* Assert that we only raise one exception per instruction. */
1253    assert(!s->sve_access_checked);
1254    s->sve_access_checked = true;
1255    return false;
1256}
1257
1258/*
1259 * Check that SME access is enabled, raise an exception if not.
1260 * Note that this function corresponds to CheckSMEAccess and is
1261 * only used directly for cpregs.
1262 */
1263static bool sme_access_check(DisasContext *s)
1264{
1265    if (s->sme_excp_el) {
1266        gen_exception_insn_el(s, 0, EXCP_UDEF,
1267                              syn_smetrap(SME_ET_AccessTrap, false),
1268                              s->sme_excp_el);
1269        return false;
1270    }
1271    return true;
1272}
1273
1274/* This function corresponds to CheckSMEEnabled. */
1275bool sme_enabled_check(DisasContext *s)
1276{
1277    /*
1278     * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1279     * to be zero when fp_excp_el has priority.  This is because we need
1280     * sme_excp_el by itself for cpregs access checks.
1281     */
1282    if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1283        s->fp_access_checked = true;
1284        return sme_access_check(s);
1285    }
1286    return fp_access_check_only(s);
1287}
1288
1289/* Common subroutine for CheckSMEAnd*Enabled. */
1290bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1291{
1292    if (!sme_enabled_check(s)) {
1293        return false;
1294    }
1295    if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1296        gen_exception_insn(s, 0, EXCP_UDEF,
1297                           syn_smetrap(SME_ET_NotStreaming, false));
1298        return false;
1299    }
1300    if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1301        gen_exception_insn(s, 0, EXCP_UDEF,
1302                           syn_smetrap(SME_ET_InactiveZA, false));
1303        return false;
1304    }
1305    return true;
1306}
1307
1308/*
1309 * This utility function is for doing register extension with an
1310 * optional shift. You will likely want to pass a temporary for the
1311 * destination register. See DecodeRegExtend() in the ARM ARM.
1312 */
1313static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1314                              int option, unsigned int shift)
1315{
1316    int extsize = extract32(option, 0, 2);
1317    bool is_signed = extract32(option, 2, 1);
1318
1319    if (is_signed) {
1320        switch (extsize) {
1321        case 0:
1322            tcg_gen_ext8s_i64(tcg_out, tcg_in);
1323            break;
1324        case 1:
1325            tcg_gen_ext16s_i64(tcg_out, tcg_in);
1326            break;
1327        case 2:
1328            tcg_gen_ext32s_i64(tcg_out, tcg_in);
1329            break;
1330        case 3:
1331            tcg_gen_mov_i64(tcg_out, tcg_in);
1332            break;
1333        }
1334    } else {
1335        switch (extsize) {
1336        case 0:
1337            tcg_gen_ext8u_i64(tcg_out, tcg_in);
1338            break;
1339        case 1:
1340            tcg_gen_ext16u_i64(tcg_out, tcg_in);
1341            break;
1342        case 2:
1343            tcg_gen_ext32u_i64(tcg_out, tcg_in);
1344            break;
1345        case 3:
1346            tcg_gen_mov_i64(tcg_out, tcg_in);
1347            break;
1348        }
1349    }
1350
1351    if (shift) {
1352        tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1353    }
1354}
1355
1356static inline void gen_check_sp_alignment(DisasContext *s)
1357{
1358    /* The AArch64 architecture mandates that (if enabled via PSTATE
1359     * or SCTLR bits) there is a check that SP is 16-aligned on every
1360     * SP-relative load or store (with an exception generated if it is not).
1361     * In line with general QEMU practice regarding misaligned accesses,
1362     * we omit these checks for the sake of guest program performance.
1363     * This function is provided as a hook so we can more easily add these
1364     * checks in future (possibly as a "favour catching guest program bugs
1365     * over speed" user selectable option).
1366     */
1367}
1368
1369/*
1370 * This provides a simple table based table lookup decoder. It is
1371 * intended to be used when the relevant bits for decode are too
1372 * awkwardly placed and switch/if based logic would be confusing and
1373 * deeply nested. Since it's a linear search through the table, tables
1374 * should be kept small.
1375 *
1376 * It returns the first handler where insn & mask == pattern, or
1377 * NULL if there is no match.
1378 * The table is terminated by an empty mask (i.e. 0)
1379 */
1380static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1381                                               uint32_t insn)
1382{
1383    const AArch64DecodeTable *tptr = table;
1384
1385    while (tptr->mask) {
1386        if ((insn & tptr->mask) == tptr->pattern) {
1387            return tptr->disas_fn;
1388        }
1389        tptr++;
1390    }
1391    return NULL;
1392}
1393
1394/*
1395 * The instruction disassembly implemented here matches
1396 * the instruction encoding classifications in chapter C4
1397 * of the ARM Architecture Reference Manual (DDI0487B_a);
1398 * classification names and decode diagrams here should generally
1399 * match up with those in the manual.
1400 */
1401
1402static bool trans_B(DisasContext *s, arg_i *a)
1403{
1404    reset_btype(s);
1405    gen_goto_tb(s, 0, a->imm);
1406    return true;
1407}
1408
1409static bool trans_BL(DisasContext *s, arg_i *a)
1410{
1411    gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1412    reset_btype(s);
1413    gen_goto_tb(s, 0, a->imm);
1414    return true;
1415}
1416
1417
1418static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1419{
1420    DisasLabel match;
1421    TCGv_i64 tcg_cmp;
1422
1423    tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1424    reset_btype(s);
1425
1426    match = gen_disas_label(s);
1427    tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1428                        tcg_cmp, 0, match.label);
1429    gen_goto_tb(s, 0, 4);
1430    set_disas_label(s, match);
1431    gen_goto_tb(s, 1, a->imm);
1432    return true;
1433}
1434
1435static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1436{
1437    DisasLabel match;
1438    TCGv_i64 tcg_cmp;
1439
1440    tcg_cmp = tcg_temp_new_i64();
1441    tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1442
1443    reset_btype(s);
1444
1445    match = gen_disas_label(s);
1446    tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1447                        tcg_cmp, 0, match.label);
1448    gen_goto_tb(s, 0, 4);
1449    set_disas_label(s, match);
1450    gen_goto_tb(s, 1, a->imm);
1451    return true;
1452}
1453
1454static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1455{
1456    reset_btype(s);
1457    if (a->cond < 0x0e) {
1458        /* genuinely conditional branches */
1459        DisasLabel match = gen_disas_label(s);
1460        arm_gen_test_cc(a->cond, match.label);
1461        gen_goto_tb(s, 0, 4);
1462        set_disas_label(s, match);
1463        gen_goto_tb(s, 1, a->imm);
1464    } else {
1465        /* 0xe and 0xf are both "always" conditions */
1466        gen_goto_tb(s, 0, a->imm);
1467    }
1468    return true;
1469}
1470
1471static void set_btype_for_br(DisasContext *s, int rn)
1472{
1473    if (dc_isar_feature(aa64_bti, s)) {
1474        /* BR to {x16,x17} or !guard -> 1, else 3.  */
1475        set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1476    }
1477}
1478
1479static void set_btype_for_blr(DisasContext *s)
1480{
1481    if (dc_isar_feature(aa64_bti, s)) {
1482        /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1483        set_btype(s, 2);
1484    }
1485}
1486
1487static bool trans_BR(DisasContext *s, arg_r *a)
1488{
1489    gen_a64_set_pc(s, cpu_reg(s, a->rn));
1490    set_btype_for_br(s, a->rn);
1491    s->base.is_jmp = DISAS_JUMP;
1492    return true;
1493}
1494
1495static bool trans_BLR(DisasContext *s, arg_r *a)
1496{
1497    TCGv_i64 dst = cpu_reg(s, a->rn);
1498    TCGv_i64 lr = cpu_reg(s, 30);
1499    if (dst == lr) {
1500        TCGv_i64 tmp = tcg_temp_new_i64();
1501        tcg_gen_mov_i64(tmp, dst);
1502        dst = tmp;
1503    }
1504    gen_pc_plus_diff(s, lr, curr_insn_len(s));
1505    gen_a64_set_pc(s, dst);
1506    set_btype_for_blr(s);
1507    s->base.is_jmp = DISAS_JUMP;
1508    return true;
1509}
1510
1511static bool trans_RET(DisasContext *s, arg_r *a)
1512{
1513    gen_a64_set_pc(s, cpu_reg(s, a->rn));
1514    s->base.is_jmp = DISAS_JUMP;
1515    return true;
1516}
1517
1518static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1519                                   TCGv_i64 modifier, bool use_key_a)
1520{
1521    TCGv_i64 truedst;
1522    /*
1523     * Return the branch target for a BRAA/RETA/etc, which is either
1524     * just the destination dst, or that value with the pauth check
1525     * done and the code removed from the high bits.
1526     */
1527    if (!s->pauth_active) {
1528        return dst;
1529    }
1530
1531    truedst = tcg_temp_new_i64();
1532    if (use_key_a) {
1533        gen_helper_autia(truedst, cpu_env, dst, modifier);
1534    } else {
1535        gen_helper_autib(truedst, cpu_env, dst, modifier);
1536    }
1537    return truedst;
1538}
1539
1540static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1541{
1542    TCGv_i64 dst;
1543
1544    if (!dc_isar_feature(aa64_pauth, s)) {
1545        return false;
1546    }
1547
1548    dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1549    gen_a64_set_pc(s, dst);
1550    set_btype_for_br(s, a->rn);
1551    s->base.is_jmp = DISAS_JUMP;
1552    return true;
1553}
1554
1555static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1556{
1557    TCGv_i64 dst, lr;
1558
1559    if (!dc_isar_feature(aa64_pauth, s)) {
1560        return false;
1561    }
1562
1563    dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1564    lr = cpu_reg(s, 30);
1565    if (dst == lr) {
1566        TCGv_i64 tmp = tcg_temp_new_i64();
1567        tcg_gen_mov_i64(tmp, dst);
1568        dst = tmp;
1569    }
1570    gen_pc_plus_diff(s, lr, curr_insn_len(s));
1571    gen_a64_set_pc(s, dst);
1572    set_btype_for_blr(s);
1573    s->base.is_jmp = DISAS_JUMP;
1574    return true;
1575}
1576
1577static bool trans_RETA(DisasContext *s, arg_reta *a)
1578{
1579    TCGv_i64 dst;
1580
1581    dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1582    gen_a64_set_pc(s, dst);
1583    s->base.is_jmp = DISAS_JUMP;
1584    return true;
1585}
1586
1587static bool trans_BRA(DisasContext *s, arg_bra *a)
1588{
1589    TCGv_i64 dst;
1590
1591    if (!dc_isar_feature(aa64_pauth, s)) {
1592        return false;
1593    }
1594    dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1595    gen_a64_set_pc(s, dst);
1596    set_btype_for_br(s, a->rn);
1597    s->base.is_jmp = DISAS_JUMP;
1598    return true;
1599}
1600
1601static bool trans_BLRA(DisasContext *s, arg_bra *a)
1602{
1603    TCGv_i64 dst, lr;
1604
1605    if (!dc_isar_feature(aa64_pauth, s)) {
1606        return false;
1607    }
1608    dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1609    lr = cpu_reg(s, 30);
1610    if (dst == lr) {
1611        TCGv_i64 tmp = tcg_temp_new_i64();
1612        tcg_gen_mov_i64(tmp, dst);
1613        dst = tmp;
1614    }
1615    gen_pc_plus_diff(s, lr, curr_insn_len(s));
1616    gen_a64_set_pc(s, dst);
1617    set_btype_for_blr(s);
1618    s->base.is_jmp = DISAS_JUMP;
1619    return true;
1620}
1621
1622static bool trans_ERET(DisasContext *s, arg_ERET *a)
1623{
1624    TCGv_i64 dst;
1625
1626    if (s->current_el == 0) {
1627        return false;
1628    }
1629    if (s->fgt_eret) {
1630        gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1631        return true;
1632    }
1633    dst = tcg_temp_new_i64();
1634    tcg_gen_ld_i64(dst, cpu_env,
1635                   offsetof(CPUARMState, elr_el[s->current_el]));
1636
1637    translator_io_start(&s->base);
1638
1639    gen_helper_exception_return(cpu_env, dst);
1640    /* Must exit loop to check un-masked IRQs */
1641    s->base.is_jmp = DISAS_EXIT;
1642    return true;
1643}
1644
1645static bool trans_ERETA(DisasContext *s, arg_reta *a)
1646{
1647    TCGv_i64 dst;
1648
1649    if (!dc_isar_feature(aa64_pauth, s)) {
1650        return false;
1651    }
1652    if (s->current_el == 0) {
1653        return false;
1654    }
1655    /* The FGT trap takes precedence over an auth trap. */
1656    if (s->fgt_eret) {
1657        gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1658        return true;
1659    }
1660    dst = tcg_temp_new_i64();
1661    tcg_gen_ld_i64(dst, cpu_env,
1662                   offsetof(CPUARMState, elr_el[s->current_el]));
1663
1664    dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1665
1666    translator_io_start(&s->base);
1667
1668    gen_helper_exception_return(cpu_env, dst);
1669    /* Must exit loop to check un-masked IRQs */
1670    s->base.is_jmp = DISAS_EXIT;
1671    return true;
1672}
1673
1674static bool trans_NOP(DisasContext *s, arg_NOP *a)
1675{
1676    return true;
1677}
1678
1679static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1680{
1681    /*
1682     * When running in MTTCG we don't generate jumps to the yield and
1683     * WFE helpers as it won't affect the scheduling of other vCPUs.
1684     * If we wanted to more completely model WFE/SEV so we don't busy
1685     * spin unnecessarily we would need to do something more involved.
1686     */
1687    if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1688        s->base.is_jmp = DISAS_YIELD;
1689    }
1690    return true;
1691}
1692
1693static bool trans_WFI(DisasContext *s, arg_WFI *a)
1694{
1695    s->base.is_jmp = DISAS_WFI;
1696    return true;
1697}
1698
1699static bool trans_WFE(DisasContext *s, arg_WFI *a)
1700{
1701    /*
1702     * When running in MTTCG we don't generate jumps to the yield and
1703     * WFE helpers as it won't affect the scheduling of other vCPUs.
1704     * If we wanted to more completely model WFE/SEV so we don't busy
1705     * spin unnecessarily we would need to do something more involved.
1706     */
1707    if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1708        s->base.is_jmp = DISAS_WFE;
1709    }
1710    return true;
1711}
1712
1713static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1714{
1715    if (s->pauth_active) {
1716        gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1717    }
1718    return true;
1719}
1720
1721static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1722{
1723    if (s->pauth_active) {
1724        gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1725    }
1726    return true;
1727}
1728
1729static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1730{
1731    if (s->pauth_active) {
1732        gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1733    }
1734    return true;
1735}
1736
1737static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1738{
1739    if (s->pauth_active) {
1740        gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1741    }
1742    return true;
1743}
1744
1745static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1746{
1747    if (s->pauth_active) {
1748        gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1749    }
1750    return true;
1751}
1752
1753static bool trans_ESB(DisasContext *s, arg_ESB *a)
1754{
1755    /* Without RAS, we must implement this as NOP. */
1756    if (dc_isar_feature(aa64_ras, s)) {
1757        /*
1758         * QEMU does not have a source of physical SErrors,
1759         * so we are only concerned with virtual SErrors.
1760         * The pseudocode in the ARM for this case is
1761         *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1762         *      AArch64.vESBOperation();
1763         * Most of the condition can be evaluated at translation time.
1764         * Test for EL2 present, and defer test for SEL2 to runtime.
1765         */
1766        if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1767            gen_helper_vesb(cpu_env);
1768        }
1769    }
1770    return true;
1771}
1772
1773static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1774{
1775    if (s->pauth_active) {
1776        gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1777    }
1778    return true;
1779}
1780
1781static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1782{
1783    if (s->pauth_active) {
1784        gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1785    }
1786    return true;
1787}
1788
1789static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1790{
1791    if (s->pauth_active) {
1792        gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1793    }
1794    return true;
1795}
1796
1797static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1798{
1799    if (s->pauth_active) {
1800        gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1801    }
1802    return true;
1803}
1804
1805static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1806{
1807    if (s->pauth_active) {
1808        gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1809    }
1810    return true;
1811}
1812
1813static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1814{
1815    if (s->pauth_active) {
1816        gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1817    }
1818    return true;
1819}
1820
1821static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1822{
1823    if (s->pauth_active) {
1824        gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1825    }
1826    return true;
1827}
1828
1829static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1830{
1831    if (s->pauth_active) {
1832        gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1833    }
1834    return true;
1835}
1836
1837static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1838{
1839    tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1840    return true;
1841}
1842
1843static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1844{
1845    /* We handle DSB and DMB the same way */
1846    TCGBar bar;
1847
1848    switch (a->types) {
1849    case 1: /* MBReqTypes_Reads */
1850        bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1851        break;
1852    case 2: /* MBReqTypes_Writes */
1853        bar = TCG_BAR_SC | TCG_MO_ST_ST;
1854        break;
1855    default: /* MBReqTypes_All */
1856        bar = TCG_BAR_SC | TCG_MO_ALL;
1857        break;
1858    }
1859    tcg_gen_mb(bar);
1860    return true;
1861}
1862
1863static bool trans_ISB(DisasContext *s, arg_ISB *a)
1864{
1865    /*
1866     * We need to break the TB after this insn to execute
1867     * self-modifying code correctly and also to take
1868     * any pending interrupts immediately.
1869     */
1870    reset_btype(s);
1871    gen_goto_tb(s, 0, 4);
1872    return true;
1873}
1874
1875static bool trans_SB(DisasContext *s, arg_SB *a)
1876{
1877    if (!dc_isar_feature(aa64_sb, s)) {
1878        return false;
1879    }
1880    /*
1881     * TODO: There is no speculation barrier opcode for TCG;
1882     * MB and end the TB instead.
1883     */
1884    tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1885    gen_goto_tb(s, 0, 4);
1886    return true;
1887}
1888
1889static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1890{
1891    if (!dc_isar_feature(aa64_condm_4, s)) {
1892        return false;
1893    }
1894    tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1895    return true;
1896}
1897
1898static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1899{
1900    TCGv_i32 z;
1901
1902    if (!dc_isar_feature(aa64_condm_5, s)) {
1903        return false;
1904    }
1905
1906    z = tcg_temp_new_i32();
1907
1908    tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1909
1910    /*
1911     * (!C & !Z) << 31
1912     * (!(C | Z)) << 31
1913     * ~((C | Z) << 31)
1914     * ~-(C | Z)
1915     * (C | Z) - 1
1916     */
1917    tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1918    tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1919
1920    /* !(Z & C) */
1921    tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1922    tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1923
1924    /* (!C & Z) << 31 -> -(Z & ~C) */
1925    tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1926    tcg_gen_neg_i32(cpu_VF, cpu_VF);
1927
1928    /* C | Z */
1929    tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1930
1931    return true;
1932}
1933
1934static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1935{
1936    if (!dc_isar_feature(aa64_condm_5, s)) {
1937        return false;
1938    }
1939
1940    tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1941    tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1942
1943    /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1944    tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1945
1946    tcg_gen_movi_i32(cpu_NF, 0);
1947    tcg_gen_movi_i32(cpu_VF, 0);
1948
1949    return true;
1950}
1951
1952static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1953{
1954    if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1955        return false;
1956    }
1957    if (a->imm & 1) {
1958        set_pstate_bits(PSTATE_UAO);
1959    } else {
1960        clear_pstate_bits(PSTATE_UAO);
1961    }
1962    gen_rebuild_hflags(s);
1963    s->base.is_jmp = DISAS_TOO_MANY;
1964    return true;
1965}
1966
1967static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1968{
1969    if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1970        return false;
1971    }
1972    if (a->imm & 1) {
1973        set_pstate_bits(PSTATE_PAN);
1974    } else {
1975        clear_pstate_bits(PSTATE_PAN);
1976    }
1977    gen_rebuild_hflags(s);
1978    s->base.is_jmp = DISAS_TOO_MANY;
1979    return true;
1980}
1981
1982static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1983{
1984    if (s->current_el == 0) {
1985        return false;
1986    }
1987    gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP));
1988    s->base.is_jmp = DISAS_TOO_MANY;
1989    return true;
1990}
1991
1992static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1993{
1994    if (!dc_isar_feature(aa64_ssbs, s)) {
1995        return false;
1996    }
1997    if (a->imm & 1) {
1998        set_pstate_bits(PSTATE_SSBS);
1999    } else {
2000        clear_pstate_bits(PSTATE_SSBS);
2001    }
2002    /* Don't need to rebuild hflags since SSBS is a nop */
2003    s->base.is_jmp = DISAS_TOO_MANY;
2004    return true;
2005}
2006
2007static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2008{
2009    if (!dc_isar_feature(aa64_dit, s)) {
2010        return false;
2011    }
2012    if (a->imm & 1) {
2013        set_pstate_bits(PSTATE_DIT);
2014    } else {
2015        clear_pstate_bits(PSTATE_DIT);
2016    }
2017    /* There's no need to rebuild hflags because DIT is a nop */
2018    s->base.is_jmp = DISAS_TOO_MANY;
2019    return true;
2020}
2021
2022static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2023{
2024    if (dc_isar_feature(aa64_mte, s)) {
2025        /* Full MTE is enabled -- set the TCO bit as directed. */
2026        if (a->imm & 1) {
2027            set_pstate_bits(PSTATE_TCO);
2028        } else {
2029            clear_pstate_bits(PSTATE_TCO);
2030        }
2031        gen_rebuild_hflags(s);
2032        /* Many factors, including TCO, go into MTE_ACTIVE. */
2033        s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2034        return true;
2035    } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2036        /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2037        return true;
2038    } else {
2039        /* Insn not present */
2040        return false;
2041    }
2042}
2043
2044static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2045{
2046    gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm));
2047    s->base.is_jmp = DISAS_TOO_MANY;
2048    return true;
2049}
2050
2051static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2052{
2053    gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm));
2054    /* Exit the cpu loop to re-evaluate pending IRQs. */
2055    s->base.is_jmp = DISAS_UPDATE_EXIT;
2056    return true;
2057}
2058
2059static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2060{
2061    if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2062        return false;
2063    }
2064    if (sme_access_check(s)) {
2065        int old = s->pstate_sm | (s->pstate_za << 1);
2066        int new = a->imm * 3;
2067
2068        if ((old ^ new) & a->mask) {
2069            /* At least one bit changes. */
2070            gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
2071                                tcg_constant_i32(a->mask));
2072            s->base.is_jmp = DISAS_TOO_MANY;
2073        }
2074    }
2075    return true;
2076}
2077
2078static void gen_get_nzcv(TCGv_i64 tcg_rt)
2079{
2080    TCGv_i32 tmp = tcg_temp_new_i32();
2081    TCGv_i32 nzcv = tcg_temp_new_i32();
2082
2083    /* build bit 31, N */
2084    tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2085    /* build bit 30, Z */
2086    tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2087    tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2088    /* build bit 29, C */
2089    tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2090    /* build bit 28, V */
2091    tcg_gen_shri_i32(tmp, cpu_VF, 31);
2092    tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2093    /* generate result */
2094    tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2095}
2096
2097static void gen_set_nzcv(TCGv_i64 tcg_rt)
2098{
2099    TCGv_i32 nzcv = tcg_temp_new_i32();
2100
2101    /* take NZCV from R[t] */
2102    tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2103
2104    /* bit 31, N */
2105    tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2106    /* bit 30, Z */
2107    tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2108    tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2109    /* bit 29, C */
2110    tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2111    tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2112    /* bit 28, V */
2113    tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2114    tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2115}
2116
2117static void gen_sysreg_undef(DisasContext *s, bool isread,
2118                             uint8_t op0, uint8_t op1, uint8_t op2,
2119                             uint8_t crn, uint8_t crm, uint8_t rt)
2120{
2121    /*
2122     * Generate code to emit an UNDEF with correct syndrome
2123     * information for a failed system register access.
2124     * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2125     * but if FEAT_IDST is implemented then read accesses to registers
2126     * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2127     * syndrome.
2128     */
2129    uint32_t syndrome;
2130
2131    if (isread && dc_isar_feature(aa64_ids, s) &&
2132        arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2133        syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2134    } else {
2135        syndrome = syn_uncategorized();
2136    }
2137    gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2138}
2139
2140/* MRS - move from system register
2141 * MSR (register) - move to system register
2142 * SYS
2143 * SYSL
2144 * These are all essentially the same insn in 'read' and 'write'
2145 * versions, with varying op0 fields.
2146 */
2147static void handle_sys(DisasContext *s, bool isread,
2148                       unsigned int op0, unsigned int op1, unsigned int op2,
2149                       unsigned int crn, unsigned int crm, unsigned int rt)
2150{
2151    uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2152                                      crn, crm, op0, op1, op2);
2153    const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2154    bool need_exit_tb = false;
2155    TCGv_ptr tcg_ri = NULL;
2156    TCGv_i64 tcg_rt;
2157
2158    if (!ri) {
2159        /* Unknown register; this might be a guest error or a QEMU
2160         * unimplemented feature.
2161         */
2162        qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2163                      "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2164                      isread ? "read" : "write", op0, op1, crn, crm, op2);
2165        gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2166        return;
2167    }
2168
2169    /* Check access permissions */
2170    if (!cp_access_ok(s->current_el, ri, isread)) {
2171        gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2172        return;
2173    }
2174
2175    if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2176        /* Emit code to perform further access permissions checks at
2177         * runtime; this may result in an exception.
2178         */
2179        uint32_t syndrome;
2180
2181        syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182        gen_a64_update_pc(s, 0);
2183        tcg_ri = tcg_temp_new_ptr();
2184        gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2185                                       tcg_constant_i32(key),
2186                                       tcg_constant_i32(syndrome),
2187                                       tcg_constant_i32(isread));
2188    } else if (ri->type & ARM_CP_RAISES_EXC) {
2189        /*
2190         * The readfn or writefn might raise an exception;
2191         * synchronize the CPU state in case it does.
2192         */
2193        gen_a64_update_pc(s, 0);
2194    }
2195
2196    /* Handle special cases first */
2197    switch (ri->type & ARM_CP_SPECIAL_MASK) {
2198    case 0:
2199        break;
2200    case ARM_CP_NOP:
2201        return;
2202    case ARM_CP_NZCV:
2203        tcg_rt = cpu_reg(s, rt);
2204        if (isread) {
2205            gen_get_nzcv(tcg_rt);
2206        } else {
2207            gen_set_nzcv(tcg_rt);
2208        }
2209        return;
2210    case ARM_CP_CURRENTEL:
2211        /* Reads as current EL value from pstate, which is
2212         * guaranteed to be constant by the tb flags.
2213         */
2214        tcg_rt = cpu_reg(s, rt);
2215        tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2216        return;
2217    case ARM_CP_DC_ZVA:
2218        /* Writes clear the aligned block of memory which rt points into. */
2219        if (s->mte_active[0]) {
2220            int desc = 0;
2221
2222            desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2223            desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2224            desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2225
2226            tcg_rt = tcg_temp_new_i64();
2227            gen_helper_mte_check_zva(tcg_rt, cpu_env,
2228                                     tcg_constant_i32(desc), cpu_reg(s, rt));
2229        } else {
2230            tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2231        }
2232        gen_helper_dc_zva(cpu_env, tcg_rt);
2233        return;
2234    case ARM_CP_DC_GVA:
2235        {
2236            TCGv_i64 clean_addr, tag;
2237
2238            /*
2239             * DC_GVA, like DC_ZVA, requires that we supply the original
2240             * pointer for an invalid page.  Probe that address first.
2241             */
2242            tcg_rt = cpu_reg(s, rt);
2243            clean_addr = clean_data_tbi(s, tcg_rt);
2244            gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2245
2246            if (s->ata) {
2247                /* Extract the tag from the register to match STZGM.  */
2248                tag = tcg_temp_new_i64();
2249                tcg_gen_shri_i64(tag, tcg_rt, 56);
2250                gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2251            }
2252        }
2253        return;
2254    case ARM_CP_DC_GZVA:
2255        {
2256            TCGv_i64 clean_addr, tag;
2257
2258            /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2259            tcg_rt = cpu_reg(s, rt);
2260            clean_addr = clean_data_tbi(s, tcg_rt);
2261            gen_helper_dc_zva(cpu_env, clean_addr);
2262
2263            if (s->ata) {
2264                /* Extract the tag from the register to match STZGM.  */
2265                tag = tcg_temp_new_i64();
2266                tcg_gen_shri_i64(tag, tcg_rt, 56);
2267                gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2268            }
2269        }
2270        return;
2271    default:
2272        g_assert_not_reached();
2273    }
2274    if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2275        return;
2276    } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2277        return;
2278    } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2279        return;
2280    }
2281
2282    if (ri->type & ARM_CP_IO) {
2283        /* I/O operations must end the TB here (whether read or write) */
2284        need_exit_tb = translator_io_start(&s->base);
2285    }
2286
2287    tcg_rt = cpu_reg(s, rt);
2288
2289    if (isread) {
2290        if (ri->type & ARM_CP_CONST) {
2291            tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2292        } else if (ri->readfn) {
2293            if (!tcg_ri) {
2294                tcg_ri = gen_lookup_cp_reg(key);
2295            }
2296            gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2297        } else {
2298            tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2299        }
2300    } else {
2301        if (ri->type & ARM_CP_CONST) {
2302            /* If not forbidden by access permissions, treat as WI */
2303            return;
2304        } else if (ri->writefn) {
2305            if (!tcg_ri) {
2306                tcg_ri = gen_lookup_cp_reg(key);
2307            }
2308            gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2309        } else {
2310            tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2311        }
2312    }
2313
2314    if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2315        /*
2316         * A write to any coprocessor register that ends a TB
2317         * must rebuild the hflags for the next TB.
2318         */
2319        gen_rebuild_hflags(s);
2320        /*
2321         * We default to ending the TB on a coprocessor register write,
2322         * but allow this to be suppressed by the register definition
2323         * (usually only necessary to work around guest bugs).
2324         */
2325        need_exit_tb = true;
2326    }
2327    if (need_exit_tb) {
2328        s->base.is_jmp = DISAS_UPDATE_EXIT;
2329    }
2330}
2331
2332static bool trans_SYS(DisasContext *s, arg_SYS *a)
2333{
2334    handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2335    return true;
2336}
2337
2338static bool trans_SVC(DisasContext *s, arg_i *a)
2339{
2340    /*
2341     * For SVC, HVC and SMC we advance the single-step state
2342     * machine before taking the exception. This is architecturally
2343     * mandated, to ensure that single-stepping a system call
2344     * instruction works properly.
2345     */
2346    uint32_t syndrome = syn_aa64_svc(a->imm);
2347    if (s->fgt_svc) {
2348        gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2349        return true;
2350    }
2351    gen_ss_advance(s);
2352    gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2353    return true;
2354}
2355
2356static bool trans_HVC(DisasContext *s, arg_i *a)
2357{
2358    if (s->current_el == 0) {
2359        unallocated_encoding(s);
2360        return true;
2361    }
2362    /*
2363     * The pre HVC helper handles cases when HVC gets trapped
2364     * as an undefined insn by runtime configuration.
2365     */
2366    gen_a64_update_pc(s, 0);
2367    gen_helper_pre_hvc(cpu_env);
2368    /* Architecture requires ss advance before we do the actual work */
2369    gen_ss_advance(s);
2370    gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2);
2371    return true;
2372}
2373
2374static bool trans_SMC(DisasContext *s, arg_i *a)
2375{
2376    if (s->current_el == 0) {
2377        unallocated_encoding(s);
2378        return true;
2379    }
2380    gen_a64_update_pc(s, 0);
2381    gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2382    /* Architecture requires ss advance before we do the actual work */
2383    gen_ss_advance(s);
2384    gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2385    return true;
2386}
2387
2388static bool trans_BRK(DisasContext *s, arg_i *a)
2389{
2390    gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2391    return true;
2392}
2393
2394static bool trans_HLT(DisasContext *s, arg_i *a)
2395{
2396    /*
2397     * HLT. This has two purposes.
2398     * Architecturally, it is an external halting debug instruction.
2399     * Since QEMU doesn't implement external debug, we treat this as
2400     * it is required for halting debug disabled: it will UNDEF.
2401     * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2402     */
2403    if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2404        gen_exception_internal_insn(s, EXCP_SEMIHOST);
2405    } else {
2406        unallocated_encoding(s);
2407    }
2408    return true;
2409}
2410
2411/*
2412 * Load/Store exclusive instructions are implemented by remembering
2413 * the value/address loaded, and seeing if these are the same
2414 * when the store is performed. This is not actually the architecturally
2415 * mandated semantics, but it works for typical guest code sequences
2416 * and avoids having to monitor regular stores.
2417 *
2418 * The store exclusive uses the atomic cmpxchg primitives to avoid
2419 * races in multi-threaded linux-user and when MTTCG softmmu is
2420 * enabled.
2421 */
2422static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2423                               int size, bool is_pair)
2424{
2425    int idx = get_mem_index(s);
2426    TCGv_i64 dirty_addr, clean_addr;
2427    MemOp memop = check_atomic_align(s, rn, size + is_pair);
2428
2429    s->is_ldex = true;
2430    dirty_addr = cpu_reg_sp(s, rn);
2431    clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2432
2433    g_assert(size <= 3);
2434    if (is_pair) {
2435        g_assert(size >= 2);
2436        if (size == 2) {
2437            tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2438            if (s->be_data == MO_LE) {
2439                tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2440                tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2441            } else {
2442                tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2443                tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2444            }
2445        } else {
2446            TCGv_i128 t16 = tcg_temp_new_i128();
2447
2448            tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2449
2450            if (s->be_data == MO_LE) {
2451                tcg_gen_extr_i128_i64(cpu_exclusive_val,
2452                                      cpu_exclusive_high, t16);
2453            } else {
2454                tcg_gen_extr_i128_i64(cpu_exclusive_high,
2455                                      cpu_exclusive_val, t16);
2456            }
2457            tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2458            tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2459        }
2460    } else {
2461        tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2462        tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2463    }
2464    tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2465}
2466
2467static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2468                                int rn, int size, int is_pair)
2469{
2470    /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2471     *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2472     *     [addr] = {Rt};
2473     *     if (is_pair) {
2474     *         [addr + datasize] = {Rt2};
2475     *     }
2476     *     {Rd} = 0;
2477     * } else {
2478     *     {Rd} = 1;
2479     * }
2480     * env->exclusive_addr = -1;
2481     */
2482    TCGLabel *fail_label = gen_new_label();
2483    TCGLabel *done_label = gen_new_label();
2484    TCGv_i64 tmp, clean_addr;
2485    MemOp memop;
2486
2487    /*
2488     * FIXME: We are out of spec here.  We have recorded only the address
2489     * from load_exclusive, not the entire range, and we assume that the
2490     * size of the access on both sides match.  The architecture allows the
2491     * store to be smaller than the load, so long as the stored bytes are
2492     * within the range recorded by the load.
2493     */
2494
2495    /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2496    clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2497    tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2498
2499    /*
2500     * The write, and any associated faults, only happen if the virtual
2501     * and physical addresses pass the exclusive monitor check.  These
2502     * faults are exceedingly unlikely, because normally the guest uses
2503     * the exact same address register for the load_exclusive, and we
2504     * would have recognized these faults there.
2505     *
2506     * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2507     * unaligned 4-byte write within the range of an aligned 8-byte load.
2508     * With LSE2, the store would need to cross a 16-byte boundary when the
2509     * load did not, which would mean the store is outside the range
2510     * recorded for the monitor, which would have failed a corrected monitor
2511     * check above.  For now, we assume no size change and retain the
2512     * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2513     *
2514     * It is possible to trigger an MTE fault, by performing the load with
2515     * a virtual address with a valid tag and performing the store with the
2516     * same virtual address and a different invalid tag.
2517     */
2518    memop = size + is_pair;
2519    if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2520        memop |= MO_ALIGN;
2521    }
2522    memop = finalize_memop(s, memop);
2523    gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2524
2525    tmp = tcg_temp_new_i64();
2526    if (is_pair) {
2527        if (size == 2) {
2528            if (s->be_data == MO_LE) {
2529                tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2530            } else {
2531                tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2532            }
2533            tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2534                                       cpu_exclusive_val, tmp,
2535                                       get_mem_index(s), memop);
2536            tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2537        } else {
2538            TCGv_i128 t16 = tcg_temp_new_i128();
2539            TCGv_i128 c16 = tcg_temp_new_i128();
2540            TCGv_i64 a, b;
2541
2542            if (s->be_data == MO_LE) {
2543                tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2544                tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2545                                        cpu_exclusive_high);
2546            } else {
2547                tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2548                tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2549                                        cpu_exclusive_val);
2550            }
2551
2552            tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2553                                        get_mem_index(s), memop);
2554
2555            a = tcg_temp_new_i64();
2556            b = tcg_temp_new_i64();
2557            if (s->be_data == MO_LE) {
2558                tcg_gen_extr_i128_i64(a, b, t16);
2559            } else {
2560                tcg_gen_extr_i128_i64(b, a, t16);
2561            }
2562
2563            tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2564            tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2565            tcg_gen_or_i64(tmp, a, b);
2566
2567            tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2568        }
2569    } else {
2570        tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2571                                   cpu_reg(s, rt), get_mem_index(s), memop);
2572        tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2573    }
2574    tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2575    tcg_gen_br(done_label);
2576
2577    gen_set_label(fail_label);
2578    tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2579    gen_set_label(done_label);
2580    tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2581}
2582
2583static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2584                                 int rn, int size)
2585{
2586    TCGv_i64 tcg_rs = cpu_reg(s, rs);
2587    TCGv_i64 tcg_rt = cpu_reg(s, rt);
2588    int memidx = get_mem_index(s);
2589    TCGv_i64 clean_addr;
2590    MemOp memop;
2591
2592    if (rn == 31) {
2593        gen_check_sp_alignment(s);
2594    }
2595    memop = check_atomic_align(s, rn, size);
2596    clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2597    tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2598                               memidx, memop);
2599}
2600
2601static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2602                                      int rn, int size)
2603{
2604    TCGv_i64 s1 = cpu_reg(s, rs);
2605    TCGv_i64 s2 = cpu_reg(s, rs + 1);
2606    TCGv_i64 t1 = cpu_reg(s, rt);
2607    TCGv_i64 t2 = cpu_reg(s, rt + 1);
2608    TCGv_i64 clean_addr;
2609    int memidx = get_mem_index(s);
2610    MemOp memop;
2611
2612    if (rn == 31) {
2613        gen_check_sp_alignment(s);
2614    }
2615
2616    /* This is a single atomic access, despite the "pair". */
2617    memop = check_atomic_align(s, rn, size + 1);
2618    clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2619
2620    if (size == 2) {
2621        TCGv_i64 cmp = tcg_temp_new_i64();
2622        TCGv_i64 val = tcg_temp_new_i64();
2623
2624        if (s->be_data == MO_LE) {
2625            tcg_gen_concat32_i64(val, t1, t2);
2626            tcg_gen_concat32_i64(cmp, s1, s2);
2627        } else {
2628            tcg_gen_concat32_i64(val, t2, t1);
2629            tcg_gen_concat32_i64(cmp, s2, s1);
2630        }
2631
2632        tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2633
2634        if (s->be_data == MO_LE) {
2635            tcg_gen_extr32_i64(s1, s2, cmp);
2636        } else {
2637            tcg_gen_extr32_i64(s2, s1, cmp);
2638        }
2639    } else {
2640        TCGv_i128 cmp = tcg_temp_new_i128();
2641        TCGv_i128 val = tcg_temp_new_i128();
2642
2643        if (s->be_data == MO_LE) {
2644            tcg_gen_concat_i64_i128(val, t1, t2);
2645            tcg_gen_concat_i64_i128(cmp, s1, s2);
2646        } else {
2647            tcg_gen_concat_i64_i128(val, t2, t1);
2648            tcg_gen_concat_i64_i128(cmp, s2, s1);
2649        }
2650
2651        tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2652
2653        if (s->be_data == MO_LE) {
2654            tcg_gen_extr_i128_i64(s1, s2, cmp);
2655        } else {
2656            tcg_gen_extr_i128_i64(s2, s1, cmp);
2657        }
2658    }
2659}
2660
2661/*
2662 * Compute the ISS.SF bit for syndrome information if an exception
2663 * is taken on a load or store. This indicates whether the instruction
2664 * is accessing a 32-bit or 64-bit register. This logic is derived
2665 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2666 */
2667static bool ldst_iss_sf(int size, bool sign, bool ext)
2668{
2669
2670    if (sign) {
2671        /*
2672         * Signed loads are 64 bit results if we are not going to
2673         * do a zero-extend from 32 to 64 after the load.
2674         * (For a store, sign and ext are always false.)
2675         */
2676        return !ext;
2677    } else {
2678        /* Unsigned loads/stores work at the specified size */
2679        return size == MO_64;
2680    }
2681}
2682
2683static bool trans_STXR(DisasContext *s, arg_stxr *a)
2684{
2685    if (a->rn == 31) {
2686        gen_check_sp_alignment(s);
2687    }
2688    if (a->lasr) {
2689        tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2690    }
2691    gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2692    return true;
2693}
2694
2695static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2696{
2697    if (a->rn == 31) {
2698        gen_check_sp_alignment(s);
2699    }
2700    gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2701    if (a->lasr) {
2702        tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2703    }
2704    return true;
2705}
2706
2707static bool trans_STLR(DisasContext *s, arg_stlr *a)
2708{
2709    TCGv_i64 clean_addr;
2710    MemOp memop;
2711    bool iss_sf = ldst_iss_sf(a->sz, false, false);
2712
2713    /*
2714     * StoreLORelease is the same as Store-Release for QEMU, but
2715     * needs the feature-test.
2716     */
2717    if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2718        return false;
2719    }
2720    /* Generate ISS for non-exclusive accesses including LASR.  */
2721    if (a->rn == 31) {
2722        gen_check_sp_alignment(s);
2723    }
2724    tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2725    memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2726    clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2727                                true, a->rn != 31, memop);
2728    do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2729              iss_sf, a->lasr);
2730    return true;
2731}
2732
2733static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2734{
2735    TCGv_i64 clean_addr;
2736    MemOp memop;
2737    bool iss_sf = ldst_iss_sf(a->sz, false, false);
2738
2739    /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2740    if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2741        return false;
2742    }
2743    /* Generate ISS for non-exclusive accesses including LASR.  */
2744    if (a->rn == 31) {
2745        gen_check_sp_alignment(s);
2746    }
2747    memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2748    clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2749                                false, a->rn != 31, memop);
2750    do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2751              a->rt, iss_sf, a->lasr);
2752    tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2753    return true;
2754}
2755
2756static bool trans_STXP(DisasContext *s, arg_stxr *a)
2757{
2758    if (a->rn == 31) {
2759        gen_check_sp_alignment(s);
2760    }
2761    if (a->lasr) {
2762        tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2763    }
2764    gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2765    return true;
2766}
2767
2768static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2769{
2770    if (a->rn == 31) {
2771        gen_check_sp_alignment(s);
2772    }
2773    gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2774    if (a->lasr) {
2775        tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2776    }
2777    return true;
2778}
2779
2780static bool trans_CASP(DisasContext *s, arg_CASP *a)
2781{
2782    if (!dc_isar_feature(aa64_atomics, s)) {
2783        return false;
2784    }
2785    if (((a->rt | a->rs) & 1) != 0) {
2786        return false;
2787    }
2788
2789    gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2790    return true;
2791}
2792
2793static bool trans_CAS(DisasContext *s, arg_CAS *a)
2794{
2795    if (!dc_isar_feature(aa64_atomics, s)) {
2796        return false;
2797    }
2798    gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2799    return true;
2800}
2801
2802static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2803{
2804    bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2805    TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2806    TCGv_i64 clean_addr = tcg_temp_new_i64();
2807    MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2808
2809    gen_pc_plus_diff(s, clean_addr, a->imm);
2810    do_gpr_ld(s, tcg_rt, clean_addr, memop,
2811              false, true, a->rt, iss_sf, false);
2812    return true;
2813}
2814
2815static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2816{
2817    /* Load register (literal), vector version */
2818    TCGv_i64 clean_addr;
2819    MemOp memop;
2820
2821    if (!fp_access_check(s)) {
2822        return true;
2823    }
2824    memop = finalize_memop_asimd(s, a->sz);
2825    clean_addr = tcg_temp_new_i64();
2826    gen_pc_plus_diff(s, clean_addr, a->imm);
2827    do_fp_ld(s, a->rt, clean_addr, memop);
2828    return true;
2829}
2830
2831static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2832                                 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2833                                 uint64_t offset, bool is_store, MemOp mop)
2834{
2835    if (a->rn == 31) {
2836        gen_check_sp_alignment(s);
2837    }
2838
2839    *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2840    if (!a->p) {
2841        tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2842    }
2843
2844    *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2845                                 (a->w || a->rn != 31), 2 << a->sz, mop);
2846}
2847
2848static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2849                                  TCGv_i64 dirty_addr, uint64_t offset)
2850{
2851    if (a->w) {
2852        if (a->p) {
2853            tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2854        }
2855        tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2856    }
2857}
2858
2859static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2860{
2861    uint64_t offset = a->imm << a->sz;
2862    TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2863    MemOp mop = finalize_memop(s, a->sz);
2864
2865    op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2866    tcg_rt = cpu_reg(s, a->rt);
2867    tcg_rt2 = cpu_reg(s, a->rt2);
2868    /*
2869     * We built mop above for the single logical access -- rebuild it
2870     * now for the paired operation.
2871     *
2872     * With LSE2, non-sign-extending pairs are treated atomically if
2873     * aligned, and if unaligned one of the pair will be completely
2874     * within a 16-byte block and that element will be atomic.
2875     * Otherwise each element is separately atomic.
2876     * In all cases, issue one operation with the correct atomicity.
2877     */
2878    mop = a->sz + 1;
2879    if (s->align_mem) {
2880        mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2881    }
2882    mop = finalize_memop_pair(s, mop);
2883    if (a->sz == 2) {
2884        TCGv_i64 tmp = tcg_temp_new_i64();
2885
2886        if (s->be_data == MO_LE) {
2887            tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
2888        } else {
2889            tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
2890        }
2891        tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
2892    } else {
2893        TCGv_i128 tmp = tcg_temp_new_i128();
2894
2895        if (s->be_data == MO_LE) {
2896            tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
2897        } else {
2898            tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
2899        }
2900        tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
2901    }
2902    op_addr_ldstpair_post(s, a, dirty_addr, offset);
2903    return true;
2904}
2905
2906static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
2907{
2908    uint64_t offset = a->imm << a->sz;
2909    TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2910    MemOp mop = finalize_memop(s, a->sz);
2911
2912    op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2913    tcg_rt = cpu_reg(s, a->rt);
2914    tcg_rt2 = cpu_reg(s, a->rt2);
2915
2916    /*
2917     * We built mop above for the single logical access -- rebuild it
2918     * now for the paired operation.
2919     *
2920     * With LSE2, non-sign-extending pairs are treated atomically if
2921     * aligned, and if unaligned one of the pair will be completely
2922     * within a 16-byte block and that element will be atomic.
2923     * Otherwise each element is separately atomic.
2924     * In all cases, issue one operation with the correct atomicity.
2925     *
2926     * This treats sign-extending loads like zero-extending loads,
2927     * since that reuses the most code below.
2928     */
2929    mop = a->sz + 1;
2930    if (s->align_mem) {
2931        mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2932    }
2933    mop = finalize_memop_pair(s, mop);
2934    if (a->sz == 2) {
2935        int o2 = s->be_data == MO_LE ? 32 : 0;
2936        int o1 = o2 ^ 32;
2937
2938        tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2939        if (a->sign) {
2940            tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2941            tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2942        } else {
2943            tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2944            tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2945        }
2946    } else {
2947        TCGv_i128 tmp = tcg_temp_new_i128();
2948
2949        tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2950        if (s->be_data == MO_LE) {
2951            tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2952        } else {
2953            tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2954        }
2955    }
2956    op_addr_ldstpair_post(s, a, dirty_addr, offset);
2957    return true;
2958}
2959
2960static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
2961{
2962    uint64_t offset = a->imm << a->sz;
2963    TCGv_i64 clean_addr, dirty_addr;
2964    MemOp mop;
2965
2966    if (!fp_access_check(s)) {
2967        return true;
2968    }
2969
2970    /* LSE2 does not merge FP pairs; leave these as separate operations. */
2971    mop = finalize_memop_asimd(s, a->sz);
2972    op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2973    do_fp_st(s, a->rt, clean_addr, mop);
2974    tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2975    do_fp_st(s, a->rt2, clean_addr, mop);
2976    op_addr_ldstpair_post(s, a, dirty_addr, offset);
2977    return true;
2978}
2979
2980static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
2981{
2982    uint64_t offset = a->imm << a->sz;
2983    TCGv_i64 clean_addr, dirty_addr;
2984    MemOp mop;
2985
2986    if (!fp_access_check(s)) {
2987        return true;
2988    }
2989
2990    /* LSE2 does not merge FP pairs; leave these as separate operations. */
2991    mop = finalize_memop_asimd(s, a->sz);
2992    op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2993    do_fp_ld(s, a->rt, clean_addr, mop);
2994    tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2995    do_fp_ld(s, a->rt2, clean_addr, mop);
2996    op_addr_ldstpair_post(s, a, dirty_addr, offset);
2997    return true;
2998}
2999
3000static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3001{
3002    TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3003    uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3004    MemOp mop;
3005    TCGv_i128 tmp;
3006
3007    /* STGP only comes in one size. */
3008    tcg_debug_assert(a->sz == MO_64);
3009
3010    if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3011        return false;
3012    }
3013
3014    if (a->rn == 31) {
3015        gen_check_sp_alignment(s);
3016    }
3017
3018    dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3019    if (!a->p) {
3020        tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3021    }
3022
3023    if (!s->ata) {
3024        /*
3025         * TODO: We could rely on the stores below, at least for
3026         * system mode, if we arrange to add MO_ALIGN_16.
3027         */
3028        gen_helper_stg_stub(cpu_env, dirty_addr);
3029    } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3030        gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3031    } else {
3032        gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3033    }
3034
3035    mop = finalize_memop(s, MO_64);
3036    clean_addr = gen_mte_checkN(s, dirty_addr, true, false, 2 << MO_64, mop);
3037
3038    tcg_rt = cpu_reg(s, a->rt);
3039    tcg_rt2 = cpu_reg(s, a->rt2);
3040
3041    /*
3042     * STGP is defined as two 8-byte memory operations and one tag operation.
3043     * We implement it as one single 16-byte memory operation for convenience.
3044     * Rebuild mop as for STP.
3045     * TODO: The atomicity with LSE2 is stronger than required.
3046     * Need a form of MO_ATOM_WITHIN16_PAIR that never requires
3047     * 16-byte atomicity.
3048     */
3049    mop = MO_128;
3050    if (s->align_mem) {
3051        mop |= MO_ALIGN_8;
3052    }
3053    mop = finalize_memop_pair(s, mop);
3054
3055    tmp = tcg_temp_new_i128();
3056    if (s->be_data == MO_LE) {
3057        tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3058    } else {
3059        tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3060    }
3061    tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3062
3063    op_addr_ldstpair_post(s, a, dirty_addr, offset);
3064    return true;
3065}
3066
3067static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3068                                 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3069                                 uint64_t offset, bool is_store, MemOp mop)
3070{
3071    int memidx;
3072
3073    if (a->rn == 31) {
3074        gen_check_sp_alignment(s);
3075    }
3076
3077    *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3078    if (!a->p) {
3079        tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3080    }
3081    memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3082    *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3083                                        a->w || a->rn != 31,
3084                                        mop, a->unpriv, memidx);
3085}
3086
3087static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3088                                  TCGv_i64 dirty_addr, uint64_t offset)
3089{
3090    if (a->w) {
3091        if (a->p) {
3092            tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3093        }
3094        tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3095    }
3096}
3097
3098static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3099{
3100    bool iss_sf, iss_valid = !a->w;
3101    TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3102    int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3103    MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3104
3105    op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3106
3107    tcg_rt = cpu_reg(s, a->rt);
3108    iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3109
3110    do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3111                     iss_valid, a->rt, iss_sf, false);
3112    op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3113    return true;
3114}
3115
3116static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3117{
3118    bool iss_sf, iss_valid = !a->w;
3119    TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3120    int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3121    MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3122
3123    op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3124
3125    tcg_rt = cpu_reg(s, a->rt);
3126    iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3127
3128    do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3129                     a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3130    op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3131    return true;
3132}
3133
3134static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3135{
3136    TCGv_i64 clean_addr, dirty_addr;
3137    MemOp mop;
3138
3139    if (!fp_access_check(s)) {
3140        return true;
3141    }
3142    mop = finalize_memop_asimd(s, a->sz);
3143    op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3144    do_fp_st(s, a->rt, clean_addr, mop);
3145    op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3146    return true;
3147}
3148
3149static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3150{
3151    TCGv_i64 clean_addr, dirty_addr;
3152    MemOp mop;
3153
3154    if (!fp_access_check(s)) {
3155        return true;
3156    }
3157    mop = finalize_memop_asimd(s, a->sz);
3158    op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3159    do_fp_ld(s, a->rt, clean_addr, mop);
3160    op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3161    return true;
3162}
3163
3164static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3165                             TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3166                             bool is_store, MemOp memop)
3167{
3168    TCGv_i64 tcg_rm;
3169
3170    if (a->rn == 31) {
3171        gen_check_sp_alignment(s);
3172    }
3173    *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3174
3175    tcg_rm = read_cpu_reg(s, a->rm, 1);
3176    ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3177
3178    tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3179    *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3180}
3181
3182static bool trans_LDR(DisasContext *s, arg_ldst *a)
3183{
3184    TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3185    bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3186    MemOp memop;
3187
3188    if (extract32(a->opt, 1, 1) == 0) {
3189        return false;
3190    }
3191
3192    memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3193    op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3194    tcg_rt = cpu_reg(s, a->rt);
3195    do_gpr_ld(s, tcg_rt, clean_addr, memop,
3196              a->ext, true, a->rt, iss_sf, false);
3197    return true;
3198}
3199
3200static bool trans_STR(DisasContext *s, arg_ldst *a)
3201{
3202    TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3203    bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3204    MemOp memop;
3205
3206    if (extract32(a->opt, 1, 1) == 0) {
3207        return false;
3208    }
3209
3210    memop = finalize_memop(s, a->sz);
3211    op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3212    tcg_rt = cpu_reg(s, a->rt);
3213    do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3214    return true;
3215}
3216
3217static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3218{
3219    TCGv_i64 clean_addr, dirty_addr;
3220    MemOp memop;
3221
3222    if (extract32(a->opt, 1, 1) == 0) {
3223        return false;
3224    }
3225
3226    if (!fp_access_check(s)) {
3227        return true;
3228    }
3229
3230    memop = finalize_memop_asimd(s, a->sz);
3231    op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3232    do_fp_ld(s, a->rt, clean_addr, memop);
3233    return true;
3234}
3235
3236static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3237{
3238    TCGv_i64 clean_addr, dirty_addr;
3239    MemOp memop;
3240
3241    if (extract32(a->opt, 1, 1) == 0) {
3242        return false;
3243    }
3244
3245    if (!fp_access_check(s)) {
3246        return true;
3247    }
3248
3249    memop = finalize_memop_asimd(s, a->sz);
3250    op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3251    do_fp_st(s, a->rt, clean_addr, memop);
3252    return true;
3253}
3254
3255
3256static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3257                         int sign, bool invert)
3258{
3259    MemOp mop = a->sz | sign;
3260    TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3261
3262    if (a->rn == 31) {
3263        gen_check_sp_alignment(s);
3264    }
3265    mop = check_atomic_align(s, a->rn, mop);
3266    clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3267                                a->rn != 31, mop);
3268    tcg_rs = read_cpu_reg(s, a->rs, true);
3269    tcg_rt = cpu_reg(s, a->rt);
3270    if (invert) {
3271        tcg_gen_not_i64(tcg_rs, tcg_rs);
3272    }
3273    /*
3274     * The tcg atomic primitives are all full barriers.  Therefore we
3275     * can ignore the Acquire and Release bits of this instruction.
3276     */
3277    fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3278
3279    if (mop & MO_SIGN) {
3280        switch (a->sz) {
3281        case MO_8:
3282            tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3283            break;
3284        case MO_16:
3285            tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3286            break;
3287        case MO_32:
3288            tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3289            break;
3290        case MO_64:
3291            break;
3292        default:
3293            g_assert_not_reached();
3294        }
3295    }
3296    return true;
3297}
3298
3299TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3300TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3301TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3302TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3303TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3304TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3305TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3306TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3307TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3308
3309static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3310{
3311    bool iss_sf = ldst_iss_sf(a->sz, false, false);
3312    TCGv_i64 clean_addr;
3313    MemOp mop;
3314
3315    if (!dc_isar_feature(aa64_atomics, s) ||
3316        !dc_isar_feature(aa64_rcpc_8_3, s)) {
3317        return false;
3318    }
3319    if (a->rn == 31) {
3320        gen_check_sp_alignment(s);
3321    }
3322    mop = check_atomic_align(s, a->rn, a->sz);
3323    clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3324                                a->rn != 31, mop);
3325    /*
3326     * LDAPR* are a special case because they are a simple load, not a
3327     * fetch-and-do-something op.
3328     * The architectural consistency requirements here are weaker than
3329     * full load-acquire (we only need "load-acquire processor consistent"),
3330     * but we choose to implement them as full LDAQ.
3331     */
3332    do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3333              true, a->rt, iss_sf, true);
3334    tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3335    return true;
3336}
3337
3338static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3339{
3340    TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3341    MemOp memop;
3342
3343    /* Load with pointer authentication */
3344    if (!dc_isar_feature(aa64_pauth, s)) {
3345        return false;
3346    }
3347
3348    if (a->rn == 31) {
3349        gen_check_sp_alignment(s);
3350    }
3351    dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3352
3353    if (s->pauth_active) {
3354        if (!a->m) {
3355            gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3356                             tcg_constant_i64(0));
3357        } else {
3358            gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3359                             tcg_constant_i64(0));
3360        }
3361    }
3362
3363    tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3364
3365    memop = finalize_memop(s, MO_64);
3366
3367    /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3368    clean_addr = gen_mte_check1(s, dirty_addr, false,
3369                                a->w || a->rn != 31, memop);
3370
3371    tcg_rt = cpu_reg(s, a->rt);
3372    do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373              /* extend */ false, /* iss_valid */ !a->w,
3374              /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3375
3376    if (a->w) {
3377        tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3378    }
3379    return true;
3380}
3381
3382static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3383{
3384    TCGv_i64 clean_addr, dirty_addr;
3385    MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3386    bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3387
3388    if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3389        return false;
3390    }
3391
3392    if (a->rn == 31) {
3393        gen_check_sp_alignment(s);
3394    }
3395
3396    mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3397    dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398    tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3399    clean_addr = clean_data_tbi(s, dirty_addr);
3400
3401    /*
3402     * Load-AcquirePC semantics; we implement as the slightly more
3403     * restrictive Load-Acquire.
3404     */
3405    do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3406              a->rt, iss_sf, true);
3407    tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3408    return true;
3409}
3410
3411static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3412{
3413    TCGv_i64 clean_addr, dirty_addr;
3414    MemOp mop = a->sz;
3415    bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3416
3417    if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3418        return false;
3419    }
3420
3421    /* TODO: ARMv8.4-LSE SCTLR.nAA */
3422
3423    if (a->rn == 31) {
3424        gen_check_sp_alignment(s);
3425    }
3426
3427    mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3428    dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3429    tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3430    clean_addr = clean_data_tbi(s, dirty_addr);
3431
3432    /* Store-Release semantics */
3433    tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3434    do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3435    return true;
3436}
3437
3438static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3439{
3440    TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3441    MemOp endian, align, mop;
3442
3443    int total;    /* total bytes */
3444    int elements; /* elements per vector */
3445    int r;
3446    int size = a->sz;
3447
3448    if (!a->p && a->rm != 0) {
3449        /* For non-postindexed accesses the Rm field must be 0 */
3450        return false;
3451    }
3452    if (size == 3 && !a->q && a->selem != 1) {
3453        return false;
3454    }
3455    if (!fp_access_check(s)) {
3456        return true;
3457    }
3458
3459    if (a->rn == 31) {
3460        gen_check_sp_alignment(s);
3461    }
3462
3463    /* For our purposes, bytes are always little-endian.  */
3464    endian = s->be_data;
3465    if (size == 0) {
3466        endian = MO_LE;
3467    }
3468
3469    total = a->rpt * a->selem * (a->q ? 16 : 8);
3470    tcg_rn = cpu_reg_sp(s, a->rn);
3471
3472    /*
3473     * Issue the MTE check vs the logical repeat count, before we
3474     * promote consecutive little-endian elements below.
3475     */
3476    clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3477                                finalize_memop_asimd(s, size));
3478
3479    /*
3480     * Consecutive little-endian elements from a single register
3481     * can be promoted to a larger little-endian operation.
3482     */
3483    align = MO_ALIGN;
3484    if (a->selem == 1 && endian == MO_LE) {
3485        align = pow2_align(size);
3486        size = 3;
3487    }
3488    if (!s->align_mem) {
3489        align = 0;
3490    }
3491    mop = endian | size | align;
3492
3493    elements = (a->q ? 16 : 8) >> size;
3494    tcg_ebytes = tcg_constant_i64(1 << size);
3495    for (r = 0; r < a->rpt; r++) {
3496        int e;
3497        for (e = 0; e < elements; e++) {
3498            int xs;
3499            for (xs = 0; xs < a->selem; xs++) {
3500                int tt = (a->rt + r + xs) % 32;
3501                do_vec_ld(s, tt, e, clean_addr, mop);
3502                tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3503            }
3504        }
3505    }
3506
3507    /*
3508     * For non-quad operations, setting a slice of the low 64 bits of
3509     * the register clears the high 64 bits (in the ARM ARM pseudocode
3510     * this is implicit in the fact that 'rval' is a 64 bit wide
3511     * variable).  For quad operations, we might still need to zero
3512     * the high bits of SVE.
3513     */
3514    for (r = 0; r < a->rpt * a->selem; r++) {
3515        int tt = (a->rt + r) % 32;
3516        clear_vec_high(s, a->q, tt);
3517    }
3518
3519    if (a->p) {
3520        if (a->rm == 31) {
3521            tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3522        } else {
3523            tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3524        }
3525    }
3526    return true;
3527}
3528
3529static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3530{
3531    TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3532    MemOp endian, align, mop;
3533
3534    int total;    /* total bytes */
3535    int elements; /* elements per vector */
3536    int r;
3537    int size = a->sz;
3538
3539    if (!a->p && a->rm != 0) {
3540        /* For non-postindexed accesses the Rm field must be 0 */
3541        return false;
3542    }
3543    if (size == 3 && !a->q && a->selem != 1) {
3544        return false;
3545    }
3546    if (!fp_access_check(s)) {
3547        return true;
3548    }
3549
3550    if (a->rn == 31) {
3551        gen_check_sp_alignment(s);
3552    }
3553
3554    /* For our purposes, bytes are always little-endian.  */
3555    endian = s->be_data;
3556    if (size == 0) {
3557        endian = MO_LE;
3558    }
3559
3560    total = a->rpt * a->selem * (a->q ? 16 : 8);
3561    tcg_rn = cpu_reg_sp(s, a->rn);
3562
3563    /*
3564     * Issue the MTE check vs the logical repeat count, before we
3565     * promote consecutive little-endian elements below.
3566     */
3567    clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3568                                finalize_memop_asimd(s, size));
3569
3570    /*
3571     * Consecutive little-endian elements from a single register
3572     * can be promoted to a larger little-endian operation.
3573     */
3574    align = MO_ALIGN;
3575    if (a->selem == 1 && endian == MO_LE) {
3576        align = pow2_align(size);
3577        size = 3;
3578    }
3579    if (!s->align_mem) {
3580        align = 0;
3581    }
3582    mop = endian | size | align;
3583
3584    elements = (a->q ? 16 : 8) >> size;
3585    tcg_ebytes = tcg_constant_i64(1 << size);
3586    for (r = 0; r < a->rpt; r++) {
3587        int e;
3588        for (e = 0; e < elements; e++) {
3589            int xs;
3590            for (xs = 0; xs < a->selem; xs++) {
3591                int tt = (a->rt + r + xs) % 32;
3592                do_vec_st(s, tt, e, clean_addr, mop);
3593                tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3594            }
3595        }
3596    }
3597
3598    if (a->p) {
3599        if (a->rm == 31) {
3600            tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3601        } else {
3602            tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3603        }
3604    }
3605    return true;
3606}
3607
3608static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3609{
3610    int xs, total, rt;
3611    TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3612    MemOp mop;
3613
3614    if (!a->p && a->rm != 0) {
3615        return false;
3616    }
3617    if (!fp_access_check(s)) {
3618        return true;
3619    }
3620
3621    if (a->rn == 31) {
3622        gen_check_sp_alignment(s);
3623    }
3624
3625    total = a->selem << a->scale;
3626    tcg_rn = cpu_reg_sp(s, a->rn);
3627
3628    mop = finalize_memop_asimd(s, a->scale);
3629    clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3630                                total, mop);
3631
3632    tcg_ebytes = tcg_constant_i64(1 << a->scale);
3633    for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3634        do_vec_st(s, rt, a->index, clean_addr, mop);
3635        tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3636    }
3637
3638    if (a->p) {
3639        if (a->rm == 31) {
3640            tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3641        } else {
3642            tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3643        }
3644    }
3645    return true;
3646}
3647
3648static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3649{
3650    int xs, total, rt;
3651    TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3652    MemOp mop;
3653
3654    if (!a->p && a->rm != 0) {
3655        return false;
3656    }
3657    if (!fp_access_check(s)) {
3658        return true;
3659    }
3660
3661    if (a->rn == 31) {
3662        gen_check_sp_alignment(s);
3663    }
3664
3665    total = a->selem << a->scale;
3666    tcg_rn = cpu_reg_sp(s, a->rn);
3667
3668    mop = finalize_memop_asimd(s, a->scale);
3669    clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3670                                total, mop);
3671
3672    tcg_ebytes = tcg_constant_i64(1 << a->scale);
3673    for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3674        do_vec_ld(s, rt, a->index, clean_addr, mop);
3675        tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3676    }
3677
3678    if (a->p) {
3679        if (a->rm == 31) {
3680            tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3681        } else {
3682            tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3683        }
3684    }
3685    return true;
3686}
3687
3688static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3689{
3690    int xs, total, rt;
3691    TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3692    MemOp mop;
3693
3694    if (!a->p && a->rm != 0) {
3695        return false;
3696    }
3697    if (!fp_access_check(s)) {
3698        return true;
3699    }
3700
3701    if (a->rn == 31) {
3702        gen_check_sp_alignment(s);
3703    }
3704
3705    total = a->selem << a->scale;
3706    tcg_rn = cpu_reg_sp(s, a->rn);
3707
3708    mop = finalize_memop_asimd(s, a->scale);
3709    clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3710                                total, mop);
3711
3712    tcg_ebytes = tcg_constant_i64(1 << a->scale);
3713    for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3714        /* Load and replicate to all elements */
3715        TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3716
3717        tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3718        tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3719                             (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3720        tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3721    }
3722
3723    if (a->p) {
3724        if (a->rm == 31) {
3725            tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3726        } else {
3727            tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3728        }
3729    }
3730    return true;
3731}
3732
3733static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3734{
3735    TCGv_i64 addr, clean_addr, tcg_rt;
3736    int size = 4 << s->dcz_blocksize;
3737
3738    if (!dc_isar_feature(aa64_mte, s)) {
3739        return false;
3740    }
3741    if (s->current_el == 0) {
3742        return false;
3743    }
3744
3745    if (a->rn == 31) {
3746        gen_check_sp_alignment(s);
3747    }
3748
3749    addr = read_cpu_reg_sp(s, a->rn, true);
3750    tcg_gen_addi_i64(addr, addr, a->imm);
3751    tcg_rt = cpu_reg(s, a->rt);
3752
3753    if (s->ata) {
3754        gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
3755    }
3756    /*
3757     * The non-tags portion of STZGM is mostly like DC_ZVA,
3758     * except the alignment happens before the access.
3759     */
3760    clean_addr = clean_data_tbi(s, addr);
3761    tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3762    gen_helper_dc_zva(cpu_env, clean_addr);
3763    return true;
3764}
3765
3766static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3767{
3768    TCGv_i64 addr, clean_addr, tcg_rt;
3769
3770    if (!dc_isar_feature(aa64_mte, s)) {
3771        return false;
3772    }
3773    if (s->current_el == 0) {
3774        return false;
3775    }
3776
3777    if (a->rn == 31) {
3778        gen_check_sp_alignment(s);
3779    }
3780
3781    addr = read_cpu_reg_sp(s, a->rn, true);
3782    tcg_gen_addi_i64(addr, addr, a->imm);
3783    tcg_rt = cpu_reg(s, a->rt);
3784
3785    if (s->ata) {
3786        gen_helper_stgm(cpu_env, addr, tcg_rt);
3787    } else {
3788        MMUAccessType acc = MMU_DATA_STORE;
3789        int size = 4 << GMID_EL1_BS;
3790
3791        clean_addr = clean_data_tbi(s, addr);
3792        tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3793        gen_probe_access(s, clean_addr, acc, size);
3794    }
3795    return true;
3796}
3797
3798static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3799{
3800    TCGv_i64 addr, clean_addr, tcg_rt;
3801
3802    if (!dc_isar_feature(aa64_mte, s)) {
3803        return false;
3804    }
3805    if (s->current_el == 0) {
3806        return false;
3807    }
3808
3809    if (a->rn == 31) {
3810        gen_check_sp_alignment(s);
3811    }
3812
3813    addr = read_cpu_reg_sp(s, a->rn, true);
3814    tcg_gen_addi_i64(addr, addr, a->imm);
3815    tcg_rt = cpu_reg(s, a->rt);
3816
3817    if (s->ata) {
3818        gen_helper_ldgm(tcg_rt, cpu_env, addr);
3819    } else {
3820        MMUAccessType acc = MMU_DATA_LOAD;
3821        int size = 4 << GMID_EL1_BS;
3822
3823        clean_addr = clean_data_tbi(s, addr);
3824        tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3825        gen_probe_access(s, clean_addr, acc, size);
3826        /* The result tags are zeros.  */
3827        tcg_gen_movi_i64(tcg_rt, 0);
3828    }
3829    return true;
3830}
3831
3832static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3833{
3834    TCGv_i64 addr, clean_addr, tcg_rt;
3835
3836    if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3837        return false;
3838    }
3839
3840    if (a->rn == 31) {
3841        gen_check_sp_alignment(s);
3842    }
3843
3844    addr = read_cpu_reg_sp(s, a->rn, true);
3845    if (!a->p) {
3846        /* pre-index or signed offset */
3847        tcg_gen_addi_i64(addr, addr, a->imm);
3848    }
3849
3850    tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3851    tcg_rt = cpu_reg(s, a->rt);
3852    if (s->ata) {
3853        gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
3854    } else {
3855        /*
3856         * Tag access disabled: we must check for aborts on the load
3857         * load from [rn+offset], and then insert a 0 tag into rt.
3858         */
3859        clean_addr = clean_data_tbi(s, addr);
3860        gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3861        gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3862    }
3863
3864    if (a->w) {
3865        /* pre-index or post-index */
3866        if (a->p) {
3867            /* post-index */
3868            tcg_gen_addi_i64(addr, addr, a->imm);
3869        }
3870        tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3871    }
3872    return true;
3873}
3874
3875static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3876{
3877    TCGv_i64 addr, tcg_rt;
3878
3879    if (a->rn == 31) {
3880        gen_check_sp_alignment(s);
3881    }
3882
3883    addr = read_cpu_reg_sp(s, a->rn, true);
3884    if (!a->p) {
3885        /* pre-index or signed offset */
3886        tcg_gen_addi_i64(addr, addr, a->imm);
3887    }
3888    tcg_rt = cpu_reg_sp(s, a->rt);
3889    if (!s->ata) {
3890        /*
3891         * For STG and ST2G, we need to check alignment and probe memory.
3892         * TODO: For STZG and STZ2G, we could rely on the stores below,
3893         * at least for system mode; user-only won't enforce alignment.
3894         */
3895        if (is_pair) {
3896            gen_helper_st2g_stub(cpu_env, addr);
3897        } else {
3898            gen_helper_stg_stub(cpu_env, addr);
3899        }
3900    } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3901        if (is_pair) {
3902            gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
3903        } else {
3904            gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
3905        }
3906    } else {
3907        if (is_pair) {
3908            gen_helper_st2g(cpu_env, addr, tcg_rt);
3909        } else {
3910            gen_helper_stg(cpu_env, addr, tcg_rt);
3911        }
3912    }
3913
3914    if (is_zero) {
3915        TCGv_i64 clean_addr = clean_data_tbi(s, addr);
3916        TCGv_i64 zero64 = tcg_constant_i64(0);
3917        TCGv_i128 zero128 = tcg_temp_new_i128();
3918        int mem_index = get_mem_index(s);
3919        MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
3920
3921        tcg_gen_concat_i64_i128(zero128, zero64, zero64);
3922
3923        /* This is 1 or 2 atomic 16-byte operations. */
3924        tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3925        if (is_pair) {
3926            tcg_gen_addi_i64(clean_addr, clean_addr, 16);
3927            tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3928        }
3929    }
3930
3931    if (a->w) {
3932        /* pre-index or post-index */
3933        if (a->p) {
3934            /* post-index */
3935            tcg_gen_addi_i64(addr, addr, a->imm);
3936        }
3937        tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3938    }
3939    return true;
3940}
3941
3942TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
3943TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
3944TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
3945TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
3946
3947typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
3948
3949static bool gen_rri(DisasContext *s, arg_rri_sf *a,
3950                    bool rd_sp, bool rn_sp, ArithTwoOp *fn)
3951{
3952    TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
3953    TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
3954    TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
3955
3956    fn(tcg_rd, tcg_rn, tcg_imm);
3957    if (!a->sf) {
3958        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3959    }
3960    return true;
3961}
3962
3963/*
3964 * PC-rel. addressing
3965 */
3966
3967static bool trans_ADR(DisasContext *s, arg_ri *a)
3968{
3969    gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
3970    return true;
3971}
3972
3973static bool trans_ADRP(DisasContext *s, arg_ri *a)
3974{
3975    int64_t offset = (int64_t)a->imm << 12;
3976
3977    /* The page offset is ok for CF_PCREL. */
3978    offset -= s->pc_curr & 0xfff;
3979    gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
3980    return true;
3981}
3982
3983/*
3984 * Add/subtract (immediate)
3985 */
3986TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
3987TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
3988TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
3989TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
3990
3991/*
3992 * Add/subtract (immediate, with tags)
3993 */
3994
3995static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
3996                                      bool sub_op)
3997{
3998    TCGv_i64 tcg_rn, tcg_rd;
3999    int imm;
4000
4001    imm = a->uimm6 << LOG2_TAG_GRANULE;
4002    if (sub_op) {
4003        imm = -imm;
4004    }
4005
4006    tcg_rn = cpu_reg_sp(s, a->rn);
4007    tcg_rd = cpu_reg_sp(s, a->rd);
4008
4009    if (s->ata) {
4010        gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4011                           tcg_constant_i32(imm),
4012                           tcg_constant_i32(a->uimm4));
4013    } else {
4014        tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4015        gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4016    }
4017    return true;
4018}
4019
4020TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4021TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4022
4023/* The input should be a value in the bottom e bits (with higher
4024 * bits zero); returns that value replicated into every element
4025 * of size e in a 64 bit integer.
4026 */
4027static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4028{
4029    assert(e != 0);
4030    while (e < 64) {
4031        mask |= mask << e;
4032        e *= 2;
4033    }
4034    return mask;
4035}
4036
4037/*
4038 * Logical (immediate)
4039 */
4040
4041/*
4042 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4043 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4044 * value (ie should cause a guest UNDEF exception), and true if they are
4045 * valid, in which case the decoded bit pattern is written to result.
4046 */
4047bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4048                            unsigned int imms, unsigned int immr)
4049{
4050    uint64_t mask;
4051    unsigned e, levels, s, r;
4052    int len;
4053
4054    assert(immn < 2 && imms < 64 && immr < 64);
4055
4056    /* The bit patterns we create here are 64 bit patterns which
4057     * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4058     * 64 bits each. Each element contains the same value: a run
4059     * of between 1 and e-1 non-zero bits, rotated within the
4060     * element by between 0 and e-1 bits.
4061     *
4062     * The element size and run length are encoded into immn (1 bit)
4063     * and imms (6 bits) as follows:
4064     * 64 bit elements: immn = 1, imms = <length of run - 1>
4065     * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4066     * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4067     *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4068     *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4069     *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4070     * Notice that immn = 0, imms = 11111x is the only combination
4071     * not covered by one of the above options; this is reserved.
4072     * Further, <length of run - 1> all-ones is a reserved pattern.
4073     *
4074     * In all cases the rotation is by immr % e (and immr is 6 bits).
4075     */
4076
4077    /* First determine the element size */
4078    len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4079    if (len < 1) {
4080        /* This is the immn == 0, imms == 0x11111x case */
4081        return false;
4082    }
4083    e = 1 << len;
4084
4085    levels = e - 1;
4086    s = imms & levels;
4087    r = immr & levels;
4088
4089    if (s == levels) {
4090        /* <length of run - 1> mustn't be all-ones. */
4091        return false;
4092    }
4093
4094    /* Create the value of one element: s+1 set bits rotated
4095     * by r within the element (which is e bits wide)...
4096     */
4097    mask = MAKE_64BIT_MASK(0, s + 1);
4098    if (r) {
4099        mask = (mask >> r) | (mask << (e - r));
4100        mask &= MAKE_64BIT_MASK(0, e);
4101    }
4102    /* ...then replicate the element over the whole 64 bit value */
4103    mask = bitfield_replicate(mask, e);
4104    *result = mask;
4105    return true;
4106}
4107
4108static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4109                        void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4110{
4111    TCGv_i64 tcg_rd, tcg_rn;
4112    uint64_t imm;
4113
4114    /* Some immediate field values are reserved. */
4115    if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4116                                extract32(a->dbm, 0, 6),
4117                                extract32(a->dbm, 6, 6))) {
4118        return false;
4119    }
4120    if (!a->sf) {
4121        imm &= 0xffffffffull;
4122    }
4123
4124    tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4125    tcg_rn = cpu_reg(s, a->rn);
4126
4127    fn(tcg_rd, tcg_rn, imm);
4128    if (set_cc) {
4129        gen_logic_CC(a->sf, tcg_rd);
4130    }
4131    if (!a->sf) {
4132        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4133    }
4134    return true;
4135}
4136
4137TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4138TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4139TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4140TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4141
4142/*
4143 * Move wide (immediate)
4144 */
4145
4146static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4147{
4148    int pos = a->hw << 4;
4149    tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4150    return true;
4151}
4152
4153static bool trans_MOVN(DisasContext *s, arg_movw *a)
4154{
4155    int pos = a->hw << 4;
4156    uint64_t imm = a->imm;
4157
4158    imm = ~(imm << pos);
4159    if (!a->sf) {
4160        imm = (uint32_t)imm;
4161    }
4162    tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4163    return true;
4164}
4165
4166static bool trans_MOVK(DisasContext *s, arg_movw *a)
4167{
4168    int pos = a->hw << 4;
4169    TCGv_i64 tcg_rd, tcg_im;
4170
4171    tcg_rd = cpu_reg(s, a->rd);
4172    tcg_im = tcg_constant_i64(a->imm);
4173    tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4174    if (!a->sf) {
4175        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4176    }
4177    return true;
4178}
4179
4180/*
4181 * Bitfield
4182 */
4183
4184static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4185{
4186    TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4187    TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4188    unsigned int bitsize = a->sf ? 64 : 32;
4189    unsigned int ri = a->immr;
4190    unsigned int si = a->imms;
4191    unsigned int pos, len;
4192
4193    if (si >= ri) {
4194        /* Wd<s-r:0> = Wn<s:r> */
4195        len = (si - ri) + 1;
4196        tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4197        if (!a->sf) {
4198            tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4199        }
4200    } else {
4201        /* Wd<32+s-r,32-r> = Wn<s:0> */
4202        len = si + 1;
4203        pos = (bitsize - ri) & (bitsize - 1);
4204
4205        if (len < ri) {
4206            /*
4207             * Sign extend the destination field from len to fill the
4208             * balance of the word.  Let the deposit below insert all
4209             * of those sign bits.
4210             */
4211            tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4212            len = ri;
4213        }
4214
4215        /*
4216         * We start with zero, and we haven't modified any bits outside
4217         * bitsize, therefore no final zero-extension is unneeded for !sf.
4218         */
4219        tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4220    }
4221    return true;
4222}
4223
4224static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4225{
4226    TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4227    TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4228    unsigned int bitsize = a->sf ? 64 : 32;
4229    unsigned int ri = a->immr;
4230    unsigned int si = a->imms;
4231    unsigned int pos, len;
4232
4233    tcg_rd = cpu_reg(s, a->rd);
4234    tcg_tmp = read_cpu_reg(s, a->rn, 1);
4235
4236    if (si >= ri) {
4237        /* Wd<s-r:0> = Wn<s:r> */
4238        len = (si - ri) + 1;
4239        tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4240    } else {
4241        /* Wd<32+s-r,32-r> = Wn<s:0> */
4242        len = si + 1;
4243        pos = (bitsize - ri) & (bitsize - 1);
4244        tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4245    }
4246    return true;
4247}
4248
4249static bool trans_BFM(DisasContext *s, arg_BFM *a)
4250{
4251    TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4252    TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4253    unsigned int bitsize = a->sf ? 64 : 32;
4254    unsigned int ri = a->immr;
4255    unsigned int si = a->imms;
4256    unsigned int pos, len;
4257
4258    tcg_rd = cpu_reg(s, a->rd);
4259    tcg_tmp = read_cpu_reg(s, a->rn, 1);
4260
4261    if (si >= ri) {
4262        /* Wd<s-r:0> = Wn<s:r> */
4263        tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4264        len = (si - ri) + 1;
4265        pos = 0;
4266    } else {
4267        /* Wd<32+s-r,32-r> = Wn<s:0> */
4268        len = si + 1;
4269        pos = (bitsize - ri) & (bitsize - 1);
4270    }
4271
4272    tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4273    if (!a->sf) {
4274        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4275    }
4276    return true;
4277}
4278
4279static bool trans_EXTR(DisasContext *s, arg_extract *a)
4280{
4281    TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4282
4283    tcg_rd = cpu_reg(s, a->rd);
4284
4285    if (unlikely(a->imm == 0)) {
4286        /*
4287         * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4288         * so an extract from bit 0 is a special case.
4289         */
4290        if (a->sf) {
4291            tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4292        } else {
4293            tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4294        }
4295    } else {
4296        tcg_rm = cpu_reg(s, a->rm);
4297        tcg_rn = cpu_reg(s, a->rn);
4298
4299        if (a->sf) {
4300            /* Specialization to ROR happens in EXTRACT2.  */
4301            tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4302        } else {
4303            TCGv_i32 t0 = tcg_temp_new_i32();
4304
4305            tcg_gen_extrl_i64_i32(t0, tcg_rm);
4306            if (a->rm == a->rn) {
4307                tcg_gen_rotri_i32(t0, t0, a->imm);
4308            } else {
4309                TCGv_i32 t1 = tcg_temp_new_i32();
4310                tcg_gen_extrl_i64_i32(t1, tcg_rn);
4311                tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4312            }
4313            tcg_gen_extu_i32_i64(tcg_rd, t0);
4314        }
4315    }
4316    return true;
4317}
4318
4319/* Shift a TCGv src by TCGv shift_amount, put result in dst.
4320 * Note that it is the caller's responsibility to ensure that the
4321 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4322 * mandated semantics for out of range shifts.
4323 */
4324static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4325                      enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4326{
4327    switch (shift_type) {
4328    case A64_SHIFT_TYPE_LSL:
4329        tcg_gen_shl_i64(dst, src, shift_amount);
4330        break;
4331    case A64_SHIFT_TYPE_LSR:
4332        tcg_gen_shr_i64(dst, src, shift_amount);
4333        break;
4334    case A64_SHIFT_TYPE_ASR:
4335        if (!sf) {
4336            tcg_gen_ext32s_i64(dst, src);
4337        }
4338        tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4339        break;
4340    case A64_SHIFT_TYPE_ROR:
4341        if (sf) {
4342            tcg_gen_rotr_i64(dst, src, shift_amount);
4343        } else {
4344            TCGv_i32 t0, t1;
4345            t0 = tcg_temp_new_i32();
4346            t1 = tcg_temp_new_i32();
4347            tcg_gen_extrl_i64_i32(t0, src);
4348            tcg_gen_extrl_i64_i32(t1, shift_amount);
4349            tcg_gen_rotr_i32(t0, t0, t1);
4350            tcg_gen_extu_i32_i64(dst, t0);
4351        }
4352        break;
4353    default:
4354        assert(FALSE); /* all shift types should be handled */
4355        break;
4356    }
4357
4358    if (!sf) { /* zero extend final result */
4359        tcg_gen_ext32u_i64(dst, dst);
4360    }
4361}
4362
4363/* Shift a TCGv src by immediate, put result in dst.
4364 * The shift amount must be in range (this should always be true as the
4365 * relevant instructions will UNDEF on bad shift immediates).
4366 */
4367static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4368                          enum a64_shift_type shift_type, unsigned int shift_i)
4369{
4370    assert(shift_i < (sf ? 64 : 32));
4371
4372    if (shift_i == 0) {
4373        tcg_gen_mov_i64(dst, src);
4374    } else {
4375        shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4376    }
4377}
4378
4379/* Logical (shifted register)
4380 *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4381 * +----+-----+-----------+-------+---+------+--------+------+------+
4382 * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4383 * +----+-----+-----------+-------+---+------+--------+------+------+
4384 */
4385static void disas_logic_reg(DisasContext *s, uint32_t insn)
4386{
4387    TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4388    unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4389
4390    sf = extract32(insn, 31, 1);
4391    opc = extract32(insn, 29, 2);
4392    shift_type = extract32(insn, 22, 2);
4393    invert = extract32(insn, 21, 1);
4394    rm = extract32(insn, 16, 5);
4395    shift_amount = extract32(insn, 10, 6);
4396    rn = extract32(insn, 5, 5);
4397    rd = extract32(insn, 0, 5);
4398
4399    if (!sf && (shift_amount & (1 << 5))) {
4400        unallocated_encoding(s);
4401        return;
4402    }
4403
4404    tcg_rd = cpu_reg(s, rd);
4405
4406    if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4407        /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4408         * register-register MOV and MVN, so it is worth special casing.
4409         */
4410        tcg_rm = cpu_reg(s, rm);
4411        if (invert) {
4412            tcg_gen_not_i64(tcg_rd, tcg_rm);
4413            if (!sf) {
4414                tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4415            }
4416        } else {
4417            if (sf) {
4418                tcg_gen_mov_i64(tcg_rd, tcg_rm);
4419            } else {
4420                tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4421            }
4422        }
4423        return;
4424    }
4425
4426    tcg_rm = read_cpu_reg(s, rm, sf);
4427
4428    if (shift_amount) {
4429        shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4430    }
4431
4432    tcg_rn = cpu_reg(s, rn);
4433
4434    switch (opc | (invert << 2)) {
4435    case 0: /* AND */
4436    case 3: /* ANDS */
4437        tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4438        break;
4439    case 1: /* ORR */
4440        tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4441        break;
4442    case 2: /* EOR */
4443        tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4444        break;
4445    case 4: /* BIC */
4446    case 7: /* BICS */
4447        tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4448        break;
4449    case 5: /* ORN */
4450        tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4451        break;
4452    case 6: /* EON */
4453        tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4454        break;
4455    default:
4456        assert(FALSE);
4457        break;
4458    }
4459
4460    if (!sf) {
4461        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4462    }
4463
4464    if (opc == 3) {
4465        gen_logic_CC(sf, tcg_rd);
4466    }
4467}
4468
4469/*
4470 * Add/subtract (extended register)
4471 *
4472 *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4473 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4474 * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4475 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4476 *
4477 *  sf: 0 -> 32bit, 1 -> 64bit
4478 *  op: 0 -> add  , 1 -> sub
4479 *   S: 1 -> set flags
4480 * opt: 00
4481 * option: extension type (see DecodeRegExtend)
4482 * imm3: optional shift to Rm
4483 *
4484 * Rd = Rn + LSL(extend(Rm), amount)
4485 */
4486static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4487{
4488    int rd = extract32(insn, 0, 5);
4489    int rn = extract32(insn, 5, 5);
4490    int imm3 = extract32(insn, 10, 3);
4491    int option = extract32(insn, 13, 3);
4492    int rm = extract32(insn, 16, 5);
4493    int opt = extract32(insn, 22, 2);
4494    bool setflags = extract32(insn, 29, 1);
4495    bool sub_op = extract32(insn, 30, 1);
4496    bool sf = extract32(insn, 31, 1);
4497
4498    TCGv_i64 tcg_rm, tcg_rn; /* temps */
4499    TCGv_i64 tcg_rd;
4500    TCGv_i64 tcg_result;
4501
4502    if (imm3 > 4 || opt != 0) {
4503        unallocated_encoding(s);
4504        return;
4505    }
4506
4507    /* non-flag setting ops may use SP */
4508    if (!setflags) {
4509        tcg_rd = cpu_reg_sp(s, rd);
4510    } else {
4511        tcg_rd = cpu_reg(s, rd);
4512    }
4513    tcg_rn = read_cpu_reg_sp(s, rn, sf);
4514
4515    tcg_rm = read_cpu_reg(s, rm, sf);
4516    ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4517
4518    tcg_result = tcg_temp_new_i64();
4519
4520    if (!setflags) {
4521        if (sub_op) {
4522            tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4523        } else {
4524            tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4525        }
4526    } else {
4527        if (sub_op) {
4528            gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4529        } else {
4530            gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4531        }
4532    }
4533
4534    if (sf) {
4535        tcg_gen_mov_i64(tcg_rd, tcg_result);
4536    } else {
4537        tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4538    }
4539}
4540
4541/*
4542 * Add/subtract (shifted register)
4543 *
4544 *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4545 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4546 * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4547 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4548 *
4549 *    sf: 0 -> 32bit, 1 -> 64bit
4550 *    op: 0 -> add  , 1 -> sub
4551 *     S: 1 -> set flags
4552 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4553 *  imm6: Shift amount to apply to Rm before the add/sub
4554 */
4555static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4556{
4557    int rd = extract32(insn, 0, 5);
4558    int rn = extract32(insn, 5, 5);
4559    int imm6 = extract32(insn, 10, 6);
4560    int rm = extract32(insn, 16, 5);
4561    int shift_type = extract32(insn, 22, 2);
4562    bool setflags = extract32(insn, 29, 1);
4563    bool sub_op = extract32(insn, 30, 1);
4564    bool sf = extract32(insn, 31, 1);
4565
4566    TCGv_i64 tcg_rd = cpu_reg(s, rd);
4567    TCGv_i64 tcg_rn, tcg_rm;
4568    TCGv_i64 tcg_result;
4569
4570    if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4571        unallocated_encoding(s);
4572        return;
4573    }
4574
4575    tcg_rn = read_cpu_reg(s, rn, sf);
4576    tcg_rm = read_cpu_reg(s, rm, sf);
4577
4578    shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4579
4580    tcg_result = tcg_temp_new_i64();
4581
4582    if (!setflags) {
4583        if (sub_op) {
4584            tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4585        } else {
4586            tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4587        }
4588    } else {
4589        if (sub_op) {
4590            gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4591        } else {
4592            gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4593        }
4594    }
4595
4596    if (sf) {
4597        tcg_gen_mov_i64(tcg_rd, tcg_result);
4598    } else {
4599        tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4600    }
4601}
4602
4603/* Data-processing (3 source)
4604 *
4605 *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4606 *  +--+------+-----------+------+------+----+------+------+------+
4607 *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4608 *  +--+------+-----------+------+------+----+------+------+------+
4609 */
4610static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4611{
4612    int rd = extract32(insn, 0, 5);
4613    int rn = extract32(insn, 5, 5);
4614    int ra = extract32(insn, 10, 5);
4615    int rm = extract32(insn, 16, 5);
4616    int op_id = (extract32(insn, 29, 3) << 4) |
4617        (extract32(insn, 21, 3) << 1) |
4618        extract32(insn, 15, 1);
4619    bool sf = extract32(insn, 31, 1);
4620    bool is_sub = extract32(op_id, 0, 1);
4621    bool is_high = extract32(op_id, 2, 1);
4622    bool is_signed = false;
4623    TCGv_i64 tcg_op1;
4624    TCGv_i64 tcg_op2;
4625    TCGv_i64 tcg_tmp;
4626
4627    /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4628    switch (op_id) {
4629    case 0x42: /* SMADDL */
4630    case 0x43: /* SMSUBL */
4631    case 0x44: /* SMULH */
4632        is_signed = true;
4633        break;
4634    case 0x0: /* MADD (32bit) */
4635    case 0x1: /* MSUB (32bit) */
4636    case 0x40: /* MADD (64bit) */
4637    case 0x41: /* MSUB (64bit) */
4638    case 0x4a: /* UMADDL */
4639    case 0x4b: /* UMSUBL */
4640    case 0x4c: /* UMULH */
4641        break;
4642    default:
4643        unallocated_encoding(s);
4644        return;
4645    }
4646
4647    if (is_high) {
4648        TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4649        TCGv_i64 tcg_rd = cpu_reg(s, rd);
4650        TCGv_i64 tcg_rn = cpu_reg(s, rn);
4651        TCGv_i64 tcg_rm = cpu_reg(s, rm);
4652
4653        if (is_signed) {
4654            tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4655        } else {
4656            tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4657        }
4658        return;
4659    }
4660
4661    tcg_op1 = tcg_temp_new_i64();
4662    tcg_op2 = tcg_temp_new_i64();
4663    tcg_tmp = tcg_temp_new_i64();
4664
4665    if (op_id < 0x42) {
4666        tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4667        tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4668    } else {
4669        if (is_signed) {
4670            tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4671            tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4672        } else {
4673            tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4674            tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4675        }
4676    }
4677
4678    if (ra == 31 && !is_sub) {
4679        /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4680        tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4681    } else {
4682        tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4683        if (is_sub) {
4684            tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4685        } else {
4686            tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4687        }
4688    }
4689
4690    if (!sf) {
4691        tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4692    }
4693}
4694
4695/* Add/subtract (with carry)
4696 *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4697 * +--+--+--+------------------------+------+-------------+------+-----+
4698 * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4699 * +--+--+--+------------------------+------+-------------+------+-----+
4700 */
4701
4702static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4703{
4704    unsigned int sf, op, setflags, rm, rn, rd;
4705    TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4706
4707    sf = extract32(insn, 31, 1);
4708    op = extract32(insn, 30, 1);
4709    setflags = extract32(insn, 29, 1);
4710    rm = extract32(insn, 16, 5);
4711    rn = extract32(insn, 5, 5);
4712    rd = extract32(insn, 0, 5);
4713
4714    tcg_rd = cpu_reg(s, rd);
4715    tcg_rn = cpu_reg(s, rn);
4716
4717    if (op) {
4718        tcg_y = tcg_temp_new_i64();
4719        tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4720    } else {
4721        tcg_y = cpu_reg(s, rm);
4722    }
4723
4724    if (setflags) {
4725        gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4726    } else {
4727        gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4728    }
4729}
4730
4731/*
4732 * Rotate right into flags
4733 *  31 30 29                21       15          10      5  4      0
4734 * +--+--+--+-----------------+--------+-----------+------+--+------+
4735 * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4736 * +--+--+--+-----------------+--------+-----------+------+--+------+
4737 */
4738static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4739{
4740    int mask = extract32(insn, 0, 4);
4741    int o2 = extract32(insn, 4, 1);
4742    int rn = extract32(insn, 5, 5);
4743    int imm6 = extract32(insn, 15, 6);
4744    int sf_op_s = extract32(insn, 29, 3);
4745    TCGv_i64 tcg_rn;
4746    TCGv_i32 nzcv;
4747
4748    if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4749        unallocated_encoding(s);
4750        return;
4751    }
4752
4753    tcg_rn = read_cpu_reg(s, rn, 1);
4754    tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4755
4756    nzcv = tcg_temp_new_i32();
4757    tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4758
4759    if (mask & 8) { /* N */
4760        tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4761    }
4762    if (mask & 4) { /* Z */
4763        tcg_gen_not_i32(cpu_ZF, nzcv);
4764        tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4765    }
4766    if (mask & 2) { /* C */
4767        tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4768    }
4769    if (mask & 1) { /* V */
4770        tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4771    }
4772}
4773
4774/*
4775 * Evaluate into flags
4776 *  31 30 29                21        15   14        10      5  4      0
4777 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4778 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
4779 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4780 */
4781static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4782{
4783    int o3_mask = extract32(insn, 0, 5);
4784    int rn = extract32(insn, 5, 5);
4785    int o2 = extract32(insn, 15, 6);
4786    int sz = extract32(insn, 14, 1);
4787    int sf_op_s = extract32(insn, 29, 3);
4788    TCGv_i32 tmp;
4789    int shift;
4790
4791    if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4792        !dc_isar_feature(aa64_condm_4, s)) {
4793        unallocated_encoding(s);
4794        return;
4795    }
4796    shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
4797
4798    tmp = tcg_temp_new_i32();
4799    tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4800    tcg_gen_shli_i32(cpu_NF, tmp, shift);
4801    tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4802    tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4803    tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4804}
4805
4806/* Conditional compare (immediate / register)
4807 *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
4808 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4809 * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
4810 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4811 *        [1]                             y                [0]       [0]
4812 */
4813static void disas_cc(DisasContext *s, uint32_t insn)
4814{
4815    unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4816    TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4817    TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4818    DisasCompare c;
4819
4820    if (!extract32(insn, 29, 1)) {
4821        unallocated_encoding(s);
4822        return;
4823    }
4824    if (insn & (1 << 10 | 1 << 4)) {
4825        unallocated_encoding(s);
4826        return;
4827    }
4828    sf = extract32(insn, 31, 1);
4829    op = extract32(insn, 30, 1);
4830    is_imm = extract32(insn, 11, 1);
4831    y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4832    cond = extract32(insn, 12, 4);
4833    rn = extract32(insn, 5, 5);
4834    nzcv = extract32(insn, 0, 4);
4835
4836    /* Set T0 = !COND.  */
4837    tcg_t0 = tcg_temp_new_i32();
4838    arm_test_cc(&c, cond);
4839    tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4840
4841    /* Load the arguments for the new comparison.  */
4842    if (is_imm) {
4843        tcg_y = tcg_temp_new_i64();
4844        tcg_gen_movi_i64(tcg_y, y);
4845    } else {
4846        tcg_y = cpu_reg(s, y);
4847    }
4848    tcg_rn = cpu_reg(s, rn);
4849
4850    /* Set the flags for the new comparison.  */
4851    tcg_tmp = tcg_temp_new_i64();
4852    if (op) {
4853        gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4854    } else {
4855        gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4856    }
4857
4858    /* If COND was false, force the flags to #nzcv.  Compute two masks
4859     * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4860     * For tcg hosts that support ANDC, we can make do with just T1.
4861     * In either case, allow the tcg optimizer to delete any unused mask.
4862     */
4863    tcg_t1 = tcg_temp_new_i32();
4864    tcg_t2 = tcg_temp_new_i32();
4865    tcg_gen_neg_i32(tcg_t1, tcg_t0);
4866    tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4867
4868    if (nzcv & 8) { /* N */
4869        tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4870    } else {
4871        if (TCG_TARGET_HAS_andc_i32) {
4872            tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4873        } else {
4874            tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4875        }
4876    }
4877    if (nzcv & 4) { /* Z */
4878        if (TCG_TARGET_HAS_andc_i32) {
4879            tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4880        } else {
4881            tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4882        }
4883    } else {
4884        tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4885    }
4886    if (nzcv & 2) { /* C */
4887        tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4888    } else {
4889        if (TCG_TARGET_HAS_andc_i32) {
4890            tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4891        } else {
4892            tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4893        }
4894    }
4895    if (nzcv & 1) { /* V */
4896        tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4897    } else {
4898        if (TCG_TARGET_HAS_andc_i32) {
4899            tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4900        } else {
4901            tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4902        }
4903    }
4904}
4905
4906/* Conditional select
4907 *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
4908 * +----+----+---+-----------------+------+------+-----+------+------+
4909 * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
4910 * +----+----+---+-----------------+------+------+-----+------+------+
4911 */
4912static void disas_cond_select(DisasContext *s, uint32_t insn)
4913{
4914    unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4915    TCGv_i64 tcg_rd, zero;
4916    DisasCompare64 c;
4917
4918    if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4919        /* S == 1 or op2<1> == 1 */
4920        unallocated_encoding(s);
4921        return;
4922    }
4923    sf = extract32(insn, 31, 1);
4924    else_inv = extract32(insn, 30, 1);
4925    rm = extract32(insn, 16, 5);
4926    cond = extract32(insn, 12, 4);
4927    else_inc = extract32(insn, 10, 1);
4928    rn = extract32(insn, 5, 5);
4929    rd = extract32(insn, 0, 5);
4930
4931    tcg_rd = cpu_reg(s, rd);
4932
4933    a64_test_cc(&c, cond);
4934    zero = tcg_constant_i64(0);
4935
4936    if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4937        /* CSET & CSETM.  */
4938        tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4939        if (else_inv) {
4940            tcg_gen_neg_i64(tcg_rd, tcg_rd);
4941        }
4942    } else {
4943        TCGv_i64 t_true = cpu_reg(s, rn);
4944        TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4945        if (else_inv && else_inc) {
4946            tcg_gen_neg_i64(t_false, t_false);
4947        } else if (else_inv) {
4948            tcg_gen_not_i64(t_false, t_false);
4949        } else if (else_inc) {
4950            tcg_gen_addi_i64(t_false, t_false, 1);
4951        }
4952        tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4953    }
4954
4955    if (!sf) {
4956        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4957    }
4958}
4959
4960static void handle_clz(DisasContext *s, unsigned int sf,
4961                       unsigned int rn, unsigned int rd)
4962{
4963    TCGv_i64 tcg_rd, tcg_rn;
4964    tcg_rd = cpu_reg(s, rd);
4965    tcg_rn = cpu_reg(s, rn);
4966
4967    if (sf) {
4968        tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4969    } else {
4970        TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4971        tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4972        tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4973        tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4974    }
4975}
4976
4977static void handle_cls(DisasContext *s, unsigned int sf,
4978                       unsigned int rn, unsigned int rd)
4979{
4980    TCGv_i64 tcg_rd, tcg_rn;
4981    tcg_rd = cpu_reg(s, rd);
4982    tcg_rn = cpu_reg(s, rn);
4983
4984    if (sf) {
4985        tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4986    } else {
4987        TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4988        tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4989        tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4990        tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4991    }
4992}
4993
4994static void handle_rbit(DisasContext *s, unsigned int sf,
4995                        unsigned int rn, unsigned int rd)
4996{
4997    TCGv_i64 tcg_rd, tcg_rn;
4998    tcg_rd = cpu_reg(s, rd);
4999    tcg_rn = cpu_reg(s, rn);
5000
5001    if (sf) {
5002        gen_helper_rbit64(tcg_rd, tcg_rn);
5003    } else {
5004        TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5005        tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5006        gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5007        tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5008    }
5009}
5010
5011/* REV with sf==1, opcode==3 ("REV64") */
5012static void handle_rev64(DisasContext *s, unsigned int sf,
5013                         unsigned int rn, unsigned int rd)
5014{
5015    if (!sf) {
5016        unallocated_encoding(s);
5017        return;
5018    }
5019    tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5020}
5021
5022/* REV with sf==0, opcode==2
5023 * REV32 (sf==1, opcode==2)
5024 */
5025static void handle_rev32(DisasContext *s, unsigned int sf,
5026                         unsigned int rn, unsigned int rd)
5027{
5028    TCGv_i64 tcg_rd = cpu_reg(s, rd);
5029    TCGv_i64 tcg_rn = cpu_reg(s, rn);
5030
5031    if (sf) {
5032        tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5033        tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5034    } else {
5035        tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5036    }
5037}
5038
5039/* REV16 (opcode==1) */
5040static void handle_rev16(DisasContext *s, unsigned int sf,
5041                         unsigned int rn, unsigned int rd)
5042{
5043    TCGv_i64 tcg_rd = cpu_reg(s, rd);
5044    TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5045    TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5046    TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5047
5048    tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5049    tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5050    tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5051    tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5052    tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5053}
5054
5055/* Data-processing (1 source)
5056 *   31  30  29  28             21 20     16 15    10 9    5 4    0
5057 * +----+---+---+-----------------+---------+--------+------+------+
5058 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5059 * +----+---+---+-----------------+---------+--------+------+------+
5060 */
5061static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5062{
5063    unsigned int sf, opcode, opcode2, rn, rd;
5064    TCGv_i64 tcg_rd;
5065
5066    if (extract32(insn, 29, 1)) {
5067        unallocated_encoding(s);
5068        return;
5069    }
5070
5071    sf = extract32(insn, 31, 1);
5072    opcode = extract32(insn, 10, 6);
5073    opcode2 = extract32(insn, 16, 5);
5074    rn = extract32(insn, 5, 5);
5075    rd = extract32(insn, 0, 5);
5076
5077#define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5078
5079    switch (MAP(sf, opcode2, opcode)) {
5080    case MAP(0, 0x00, 0x00): /* RBIT */
5081    case MAP(1, 0x00, 0x00):
5082        handle_rbit(s, sf, rn, rd);
5083        break;
5084    case MAP(0, 0x00, 0x01): /* REV16 */
5085    case MAP(1, 0x00, 0x01):
5086        handle_rev16(s, sf, rn, rd);
5087        break;
5088    case MAP(0, 0x00, 0x02): /* REV/REV32 */
5089    case MAP(1, 0x00, 0x02):
5090        handle_rev32(s, sf, rn, rd);
5091        break;
5092    case MAP(1, 0x00, 0x03): /* REV64 */
5093        handle_rev64(s, sf, rn, rd);
5094        break;
5095    case MAP(0, 0x00, 0x04): /* CLZ */
5096    case MAP(1, 0x00, 0x04):
5097        handle_clz(s, sf, rn, rd);
5098        break;
5099    case MAP(0, 0x00, 0x05): /* CLS */
5100    case MAP(1, 0x00, 0x05):
5101        handle_cls(s, sf, rn, rd);
5102        break;
5103    case MAP(1, 0x01, 0x00): /* PACIA */
5104        if (s->pauth_active) {
5105            tcg_rd = cpu_reg(s, rd);
5106            gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5107        } else if (!dc_isar_feature(aa64_pauth, s)) {
5108            goto do_unallocated;
5109        }
5110        break;
5111    case MAP(1, 0x01, 0x01): /* PACIB */
5112        if (s->pauth_active) {
5113            tcg_rd = cpu_reg(s, rd);
5114            gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5115        } else if (!dc_isar_feature(aa64_pauth, s)) {
5116            goto do_unallocated;
5117        }
5118        break;
5119    case MAP(1, 0x01, 0x02): /* PACDA */
5120        if (s->pauth_active) {
5121            tcg_rd = cpu_reg(s, rd);
5122            gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5123        } else if (!dc_isar_feature(aa64_pauth, s)) {
5124            goto do_unallocated;
5125        }
5126        break;
5127    case MAP(1, 0x01, 0x03): /* PACDB */
5128        if (s->pauth_active) {
5129            tcg_rd = cpu_reg(s, rd);
5130            gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5131        } else if (!dc_isar_feature(aa64_pauth, s)) {
5132            goto do_unallocated;
5133        }
5134        break;
5135    case MAP(1, 0x01, 0x04): /* AUTIA */
5136        if (s->pauth_active) {
5137            tcg_rd = cpu_reg(s, rd);
5138            gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5139        } else if (!dc_isar_feature(aa64_pauth, s)) {
5140            goto do_unallocated;
5141        }
5142        break;
5143    case MAP(1, 0x01, 0x05): /* AUTIB */
5144        if (s->pauth_active) {
5145            tcg_rd = cpu_reg(s, rd);
5146            gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5147        } else if (!dc_isar_feature(aa64_pauth, s)) {
5148            goto do_unallocated;
5149        }
5150        break;
5151    case MAP(1, 0x01, 0x06): /* AUTDA */
5152        if (s->pauth_active) {
5153            tcg_rd = cpu_reg(s, rd);
5154            gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5155        } else if (!dc_isar_feature(aa64_pauth, s)) {
5156            goto do_unallocated;
5157        }
5158        break;
5159    case MAP(1, 0x01, 0x07): /* AUTDB */
5160        if (s->pauth_active) {
5161            tcg_rd = cpu_reg(s, rd);
5162            gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5163        } else if (!dc_isar_feature(aa64_pauth, s)) {
5164            goto do_unallocated;
5165        }
5166        break;
5167    case MAP(1, 0x01, 0x08): /* PACIZA */
5168        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5169            goto do_unallocated;
5170        } else if (s->pauth_active) {
5171            tcg_rd = cpu_reg(s, rd);
5172            gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5173        }
5174        break;
5175    case MAP(1, 0x01, 0x09): /* PACIZB */
5176        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5177            goto do_unallocated;
5178        } else if (s->pauth_active) {
5179            tcg_rd = cpu_reg(s, rd);
5180            gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5181        }
5182        break;
5183    case MAP(1, 0x01, 0x0a): /* PACDZA */
5184        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5185            goto do_unallocated;
5186        } else if (s->pauth_active) {
5187            tcg_rd = cpu_reg(s, rd);
5188            gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5189        }
5190        break;
5191    case MAP(1, 0x01, 0x0b): /* PACDZB */
5192        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5193            goto do_unallocated;
5194        } else if (s->pauth_active) {
5195            tcg_rd = cpu_reg(s, rd);
5196            gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5197        }
5198        break;
5199    case MAP(1, 0x01, 0x0c): /* AUTIZA */
5200        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5201            goto do_unallocated;
5202        } else if (s->pauth_active) {
5203            tcg_rd = cpu_reg(s, rd);
5204            gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5205        }
5206        break;
5207    case MAP(1, 0x01, 0x0d): /* AUTIZB */
5208        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5209            goto do_unallocated;
5210        } else if (s->pauth_active) {
5211            tcg_rd = cpu_reg(s, rd);
5212            gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5213        }
5214        break;
5215    case MAP(1, 0x01, 0x0e): /* AUTDZA */
5216        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5217            goto do_unallocated;
5218        } else if (s->pauth_active) {
5219            tcg_rd = cpu_reg(s, rd);
5220            gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5221        }
5222        break;
5223    case MAP(1, 0x01, 0x0f): /* AUTDZB */
5224        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5225            goto do_unallocated;
5226        } else if (s->pauth_active) {
5227            tcg_rd = cpu_reg(s, rd);
5228            gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5229        }
5230        break;
5231    case MAP(1, 0x01, 0x10): /* XPACI */
5232        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5233            goto do_unallocated;
5234        } else if (s->pauth_active) {
5235            tcg_rd = cpu_reg(s, rd);
5236            gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5237        }
5238        break;
5239    case MAP(1, 0x01, 0x11): /* XPACD */
5240        if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5241            goto do_unallocated;
5242        } else if (s->pauth_active) {
5243            tcg_rd = cpu_reg(s, rd);
5244            gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5245        }
5246        break;
5247    default:
5248    do_unallocated:
5249        unallocated_encoding(s);
5250        break;
5251    }
5252
5253#undef MAP
5254}
5255
5256static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5257                       unsigned int rm, unsigned int rn, unsigned int rd)
5258{
5259    TCGv_i64 tcg_n, tcg_m, tcg_rd;
5260    tcg_rd = cpu_reg(s, rd);
5261
5262    if (!sf && is_signed) {
5263        tcg_n = tcg_temp_new_i64();
5264        tcg_m = tcg_temp_new_i64();
5265        tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5266        tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5267    } else {
5268        tcg_n = read_cpu_reg(s, rn, sf);
5269        tcg_m = read_cpu_reg(s, rm, sf);
5270    }
5271
5272    if (is_signed) {
5273        gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5274    } else {
5275        gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5276    }
5277
5278    if (!sf) { /* zero extend final result */
5279        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5280    }
5281}
5282
5283/* LSLV, LSRV, ASRV, RORV */
5284static void handle_shift_reg(DisasContext *s,
5285                             enum a64_shift_type shift_type, unsigned int sf,
5286                             unsigned int rm, unsigned int rn, unsigned int rd)
5287{
5288    TCGv_i64 tcg_shift = tcg_temp_new_i64();
5289    TCGv_i64 tcg_rd = cpu_reg(s, rd);
5290    TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5291
5292    tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5293    shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5294}
5295
5296/* CRC32[BHWX], CRC32C[BHWX] */
5297static void handle_crc32(DisasContext *s,
5298                         unsigned int sf, unsigned int sz, bool crc32c,
5299                         unsigned int rm, unsigned int rn, unsigned int rd)
5300{
5301    TCGv_i64 tcg_acc, tcg_val;
5302    TCGv_i32 tcg_bytes;
5303
5304    if (!dc_isar_feature(aa64_crc32, s)
5305        || (sf == 1 && sz != 3)
5306        || (sf == 0 && sz == 3)) {
5307        unallocated_encoding(s);
5308        return;
5309    }
5310
5311    if (sz == 3) {
5312        tcg_val = cpu_reg(s, rm);
5313    } else {
5314        uint64_t mask;
5315        switch (sz) {
5316        case 0:
5317            mask = 0xFF;
5318            break;
5319        case 1:
5320            mask = 0xFFFF;
5321            break;
5322        case 2:
5323            mask = 0xFFFFFFFF;
5324            break;
5325        default:
5326            g_assert_not_reached();
5327        }
5328        tcg_val = tcg_temp_new_i64();
5329        tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5330    }
5331
5332    tcg_acc = cpu_reg(s, rn);
5333    tcg_bytes = tcg_constant_i32(1 << sz);
5334
5335    if (crc32c) {
5336        gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5337    } else {
5338        gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5339    }
5340}
5341
5342/* Data-processing (2 source)
5343 *   31   30  29 28             21 20  16 15    10 9    5 4    0
5344 * +----+---+---+-----------------+------+--------+------+------+
5345 * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5346 * +----+---+---+-----------------+------+--------+------+------+
5347 */
5348static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5349{
5350    unsigned int sf, rm, opcode, rn, rd, setflag;
5351    sf = extract32(insn, 31, 1);
5352    setflag = extract32(insn, 29, 1);
5353    rm = extract32(insn, 16, 5);
5354    opcode = extract32(insn, 10, 6);
5355    rn = extract32(insn, 5, 5);
5356    rd = extract32(insn, 0, 5);
5357
5358    if (setflag && opcode != 0) {
5359        unallocated_encoding(s);
5360        return;
5361    }
5362
5363    switch (opcode) {
5364    case 0: /* SUBP(S) */
5365        if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5366            goto do_unallocated;
5367        } else {
5368            TCGv_i64 tcg_n, tcg_m, tcg_d;
5369
5370            tcg_n = read_cpu_reg_sp(s, rn, true);
5371            tcg_m = read_cpu_reg_sp(s, rm, true);
5372            tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5373            tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5374            tcg_d = cpu_reg(s, rd);
5375
5376            if (setflag) {
5377                gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5378            } else {
5379                tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5380            }
5381        }
5382        break;
5383    case 2: /* UDIV */
5384        handle_div(s, false, sf, rm, rn, rd);
5385        break;
5386    case 3: /* SDIV */
5387        handle_div(s, true, sf, rm, rn, rd);
5388        break;
5389    case 4: /* IRG */
5390        if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5391            goto do_unallocated;
5392        }
5393        if (s->ata) {
5394            gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5395                           cpu_reg_sp(s, rn), cpu_reg(s, rm));
5396        } else {
5397            gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5398                                             cpu_reg_sp(s, rn));
5399        }
5400        break;
5401    case 5: /* GMI */
5402        if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5403            goto do_unallocated;
5404        } else {
5405            TCGv_i64 t = tcg_temp_new_i64();
5406
5407            tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5408            tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5409            tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5410        }
5411        break;
5412    case 8: /* LSLV */
5413        handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5414        break;
5415    case 9: /* LSRV */
5416        handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5417        break;
5418    case 10: /* ASRV */
5419        handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5420        break;
5421    case 11: /* RORV */
5422        handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5423        break;
5424    case 12: /* PACGA */
5425        if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5426            goto do_unallocated;
5427        }
5428        gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5429                         cpu_reg(s, rn), cpu_reg_sp(s, rm));
5430        break;
5431    case 16:
5432    case 17:
5433    case 18:
5434    case 19:
5435    case 20:
5436    case 21:
5437    case 22:
5438    case 23: /* CRC32 */
5439    {
5440        int sz = extract32(opcode, 0, 2);
5441        bool crc32c = extract32(opcode, 2, 1);
5442        handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5443        break;
5444    }
5445    default:
5446    do_unallocated:
5447        unallocated_encoding(s);
5448        break;
5449    }
5450}
5451
5452/*
5453 * Data processing - register
5454 *  31  30 29  28      25    21  20  16      10         0
5455 * +--+---+--+---+-------+-----+-------+-------+---------+
5456 * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5457 * +--+---+--+---+-------+-----+-------+-------+---------+
5458 */
5459static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5460{
5461    int op0 = extract32(insn, 30, 1);
5462    int op1 = extract32(insn, 28, 1);
5463    int op2 = extract32(insn, 21, 4);
5464    int op3 = extract32(insn, 10, 6);
5465
5466    if (!op1) {
5467        if (op2 & 8) {
5468            if (op2 & 1) {
5469                /* Add/sub (extended register) */
5470                disas_add_sub_ext_reg(s, insn);
5471            } else {
5472                /* Add/sub (shifted register) */
5473                disas_add_sub_reg(s, insn);
5474            }
5475        } else {
5476            /* Logical (shifted register) */
5477            disas_logic_reg(s, insn);
5478        }
5479        return;
5480    }
5481
5482    switch (op2) {
5483    case 0x0:
5484        switch (op3) {
5485        case 0x00: /* Add/subtract (with carry) */
5486            disas_adc_sbc(s, insn);
5487            break;
5488
5489        case 0x01: /* Rotate right into flags */
5490        case 0x21:
5491            disas_rotate_right_into_flags(s, insn);
5492            break;
5493
5494        case 0x02: /* Evaluate into flags */
5495        case 0x12:
5496        case 0x22:
5497        case 0x32:
5498            disas_evaluate_into_flags(s, insn);
5499            break;
5500
5501        default:
5502            goto do_unallocated;
5503        }
5504        break;
5505
5506    case 0x2: /* Conditional compare */
5507        disas_cc(s, insn); /* both imm and reg forms */
5508        break;
5509
5510    case 0x4: /* Conditional select */
5511        disas_cond_select(s, insn);
5512        break;
5513
5514    case 0x6: /* Data-processing */
5515        if (op0) {    /* (1 source) */
5516            disas_data_proc_1src(s, insn);
5517        } else {      /* (2 source) */
5518            disas_data_proc_2src(s, insn);
5519        }
5520        break;
5521    case 0x8 ... 0xf: /* (3 source) */
5522        disas_data_proc_3src(s, insn);
5523        break;
5524
5525    default:
5526    do_unallocated:
5527        unallocated_encoding(s);
5528        break;
5529    }
5530}
5531
5532static void handle_fp_compare(DisasContext *s, int size,
5533                              unsigned int rn, unsigned int rm,
5534                              bool cmp_with_zero, bool signal_all_nans)
5535{
5536    TCGv_i64 tcg_flags = tcg_temp_new_i64();
5537    TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5538
5539    if (size == MO_64) {
5540        TCGv_i64 tcg_vn, tcg_vm;
5541
5542        tcg_vn = read_fp_dreg(s, rn);
5543        if (cmp_with_zero) {
5544            tcg_vm = tcg_constant_i64(0);
5545        } else {
5546            tcg_vm = read_fp_dreg(s, rm);
5547        }
5548        if (signal_all_nans) {
5549            gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5550        } else {
5551            gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5552        }
5553    } else {
5554        TCGv_i32 tcg_vn = tcg_temp_new_i32();
5555        TCGv_i32 tcg_vm = tcg_temp_new_i32();
5556
5557        read_vec_element_i32(s, tcg_vn, rn, 0, size);
5558        if (cmp_with_zero) {
5559            tcg_gen_movi_i32(tcg_vm, 0);
5560        } else {
5561            read_vec_element_i32(s, tcg_vm, rm, 0, size);
5562        }
5563
5564        switch (size) {
5565        case MO_32:
5566            if (signal_all_nans) {
5567                gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5568            } else {
5569                gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5570            }
5571            break;
5572        case MO_16:
5573            if (signal_all_nans) {
5574                gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5575            } else {
5576                gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5577            }
5578            break;
5579        default:
5580            g_assert_not_reached();
5581        }
5582    }
5583
5584    gen_set_nzcv(tcg_flags);
5585}
5586
5587/* Floating point compare
5588 *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5589 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5590 * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5591 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5592 */
5593static void disas_fp_compare(DisasContext *s, uint32_t insn)
5594{
5595    unsigned int mos, type, rm, op, rn, opc, op2r;
5596    int size;
5597
5598    mos = extract32(insn, 29, 3);
5599    type = extract32(insn, 22, 2);
5600    rm = extract32(insn, 16, 5);
5601    op = extract32(insn, 14, 2);
5602    rn = extract32(insn, 5, 5);
5603    opc = extract32(insn, 3, 2);
5604    op2r = extract32(insn, 0, 3);
5605
5606    if (mos || op || op2r) {
5607        unallocated_encoding(s);
5608        return;
5609    }
5610
5611    switch (type) {
5612    case 0:
5613        size = MO_32;
5614        break;
5615    case 1:
5616        size = MO_64;
5617        break;
5618    case 3:
5619        size = MO_16;
5620        if (dc_isar_feature(aa64_fp16, s)) {
5621            break;
5622        }
5623        /* fallthru */
5624    default:
5625        unallocated_encoding(s);
5626        return;
5627    }
5628
5629    if (!fp_access_check(s)) {
5630        return;
5631    }
5632
5633    handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5634}
5635
5636/* Floating point conditional compare
5637 *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5638 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5639 * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5640 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5641 */
5642static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5643{
5644    unsigned int mos, type, rm, cond, rn, op, nzcv;
5645    TCGLabel *label_continue = NULL;
5646    int size;
5647
5648    mos = extract32(insn, 29, 3);
5649    type = extract32(insn, 22, 2);
5650    rm = extract32(insn, 16, 5);
5651    cond = extract32(insn, 12, 4);
5652    rn = extract32(insn, 5, 5);
5653    op = extract32(insn, 4, 1);
5654    nzcv = extract32(insn, 0, 4);
5655
5656    if (mos) {
5657        unallocated_encoding(s);
5658        return;
5659    }
5660
5661    switch (type) {
5662    case 0:
5663        size = MO_32;
5664        break;
5665    case 1:
5666        size = MO_64;
5667        break;
5668    case 3:
5669        size = MO_16;
5670        if (dc_isar_feature(aa64_fp16, s)) {
5671            break;
5672        }
5673        /* fallthru */
5674    default:
5675        unallocated_encoding(s);
5676        return;
5677    }
5678
5679    if (!fp_access_check(s)) {
5680        return;
5681    }
5682
5683    if (cond < 0x0e) { /* not always */
5684        TCGLabel *label_match = gen_new_label();
5685        label_continue = gen_new_label();
5686        arm_gen_test_cc(cond, label_match);
5687        /* nomatch: */
5688        gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5689        tcg_gen_br(label_continue);
5690        gen_set_label(label_match);
5691    }
5692
5693    handle_fp_compare(s, size, rn, rm, false, op);
5694
5695    if (cond < 0x0e) {
5696        gen_set_label(label_continue);
5697    }
5698}
5699
5700/* Floating point conditional select
5701 *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5702 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5703 * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5704 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5705 */
5706static void disas_fp_csel(DisasContext *s, uint32_t insn)
5707{
5708    unsigned int mos, type, rm, cond, rn, rd;
5709    TCGv_i64 t_true, t_false;
5710    DisasCompare64 c;
5711    MemOp sz;
5712
5713    mos = extract32(insn, 29, 3);
5714    type = extract32(insn, 22, 2);
5715    rm = extract32(insn, 16, 5);
5716    cond = extract32(insn, 12, 4);
5717    rn = extract32(insn, 5, 5);
5718    rd = extract32(insn, 0, 5);
5719
5720    if (mos) {
5721        unallocated_encoding(s);
5722        return;
5723    }
5724
5725    switch (type) {
5726    case 0:
5727        sz = MO_32;
5728        break;
5729    case 1:
5730        sz = MO_64;
5731        break;
5732    case 3:
5733        sz = MO_16;
5734        if (dc_isar_feature(aa64_fp16, s)) {
5735            break;
5736        }
5737        /* fallthru */
5738    default:
5739        unallocated_encoding(s);
5740        return;
5741    }
5742
5743    if (!fp_access_check(s)) {
5744        return;
5745    }
5746
5747    /* Zero extend sreg & hreg inputs to 64 bits now.  */
5748    t_true = tcg_temp_new_i64();
5749    t_false = tcg_temp_new_i64();
5750    read_vec_element(s, t_true, rn, 0, sz);
5751    read_vec_element(s, t_false, rm, 0, sz);
5752
5753    a64_test_cc(&c, cond);
5754    tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5755                        t_true, t_false);
5756
5757    /* Note that sregs & hregs write back zeros to the high bits,
5758       and we've already done the zero-extension.  */
5759    write_fp_dreg(s, rd, t_true);
5760}
5761
5762/* Floating-point data-processing (1 source) - half precision */
5763static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5764{
5765    TCGv_ptr fpst = NULL;
5766    TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5767    TCGv_i32 tcg_res = tcg_temp_new_i32();
5768
5769    switch (opcode) {
5770    case 0x0: /* FMOV */
5771        tcg_gen_mov_i32(tcg_res, tcg_op);
5772        break;
5773    case 0x1: /* FABS */
5774        tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5775        break;
5776    case 0x2: /* FNEG */
5777        tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5778        break;
5779    case 0x3: /* FSQRT */
5780        fpst = fpstatus_ptr(FPST_FPCR_F16);
5781        gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5782        break;
5783    case 0x8: /* FRINTN */
5784    case 0x9: /* FRINTP */
5785    case 0xa: /* FRINTM */
5786    case 0xb: /* FRINTZ */
5787    case 0xc: /* FRINTA */
5788    {
5789        TCGv_i32 tcg_rmode;
5790
5791        fpst = fpstatus_ptr(FPST_FPCR_F16);
5792        tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5793        gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5794        gen_restore_rmode(tcg_rmode, fpst);
5795        break;
5796    }
5797    case 0xe: /* FRINTX */
5798        fpst = fpstatus_ptr(FPST_FPCR_F16);
5799        gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5800        break;
5801    case 0xf: /* FRINTI */
5802        fpst = fpstatus_ptr(FPST_FPCR_F16);
5803        gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5804        break;
5805    default:
5806        g_assert_not_reached();
5807    }
5808
5809    write_fp_sreg(s, rd, tcg_res);
5810}
5811
5812/* Floating-point data-processing (1 source) - single precision */
5813static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5814{
5815    void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5816    TCGv_i32 tcg_op, tcg_res;
5817    TCGv_ptr fpst;
5818    int rmode = -1;
5819
5820    tcg_op = read_fp_sreg(s, rn);
5821    tcg_res = tcg_temp_new_i32();
5822
5823    switch (opcode) {
5824    case 0x0: /* FMOV */
5825        tcg_gen_mov_i32(tcg_res, tcg_op);
5826        goto done;
5827    case 0x1: /* FABS */
5828        gen_helper_vfp_abss(tcg_res, tcg_op);
5829        goto done;
5830    case 0x2: /* FNEG */
5831        gen_helper_vfp_negs(tcg_res, tcg_op);
5832        goto done;
5833    case 0x3: /* FSQRT */
5834        gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5835        goto done;
5836    case 0x6: /* BFCVT */
5837        gen_fpst = gen_helper_bfcvt;
5838        break;
5839    case 0x8: /* FRINTN */
5840    case 0x9: /* FRINTP */
5841    case 0xa: /* FRINTM */
5842    case 0xb: /* FRINTZ */
5843    case 0xc: /* FRINTA */
5844        rmode = opcode & 7;
5845        gen_fpst = gen_helper_rints;
5846        break;
5847    case 0xe: /* FRINTX */
5848        gen_fpst = gen_helper_rints_exact;
5849        break;
5850    case 0xf: /* FRINTI */
5851        gen_fpst = gen_helper_rints;
5852        break;
5853    case 0x10: /* FRINT32Z */
5854        rmode = FPROUNDING_ZERO;
5855        gen_fpst = gen_helper_frint32_s;
5856        break;
5857    case 0x11: /* FRINT32X */
5858        gen_fpst = gen_helper_frint32_s;
5859        break;
5860    case 0x12: /* FRINT64Z */
5861        rmode = FPROUNDING_ZERO;
5862        gen_fpst = gen_helper_frint64_s;
5863        break;
5864    case 0x13: /* FRINT64X */
5865        gen_fpst = gen_helper_frint64_s;
5866        break;
5867    default:
5868        g_assert_not_reached();
5869    }
5870
5871    fpst = fpstatus_ptr(FPST_FPCR);
5872    if (rmode >= 0) {
5873        TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
5874        gen_fpst(tcg_res, tcg_op, fpst);
5875        gen_restore_rmode(tcg_rmode, fpst);
5876    } else {
5877        gen_fpst(tcg_res, tcg_op, fpst);
5878    }
5879
5880 done:
5881    write_fp_sreg(s, rd, tcg_res);
5882}
5883
5884/* Floating-point data-processing (1 source) - double precision */
5885static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5886{
5887    void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5888    TCGv_i64 tcg_op, tcg_res;
5889    TCGv_ptr fpst;
5890    int rmode = -1;
5891
5892    switch (opcode) {
5893    case 0x0: /* FMOV */
5894        gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5895        return;
5896    }
5897
5898    tcg_op = read_fp_dreg(s, rn);
5899    tcg_res = tcg_temp_new_i64();
5900
5901    switch (opcode) {
5902    case 0x1: /* FABS */
5903        gen_helper_vfp_absd(tcg_res, tcg_op);
5904        goto done;
5905    case 0x2: /* FNEG */
5906        gen_helper_vfp_negd(tcg_res, tcg_op);
5907        goto done;
5908    case 0x3: /* FSQRT */
5909        gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5910        goto done;
5911    case 0x8: /* FRINTN */
5912    case 0x9: /* FRINTP */
5913    case 0xa: /* FRINTM */
5914    case 0xb: /* FRINTZ */
5915    case 0xc: /* FRINTA */
5916        rmode = opcode & 7;
5917        gen_fpst = gen_helper_rintd;
5918        break;
5919    case 0xe: /* FRINTX */
5920        gen_fpst = gen_helper_rintd_exact;
5921        break;
5922    case 0xf: /* FRINTI */
5923        gen_fpst = gen_helper_rintd;
5924        break;
5925    case 0x10: /* FRINT32Z */
5926        rmode = FPROUNDING_ZERO;
5927        gen_fpst = gen_helper_frint32_d;
5928        break;
5929    case 0x11: /* FRINT32X */
5930        gen_fpst = gen_helper_frint32_d;
5931        break;
5932    case 0x12: /* FRINT64Z */
5933        rmode = FPROUNDING_ZERO;
5934        gen_fpst = gen_helper_frint64_d;
5935        break;
5936    case 0x13: /* FRINT64X */
5937        gen_fpst = gen_helper_frint64_d;
5938        break;
5939    default:
5940        g_assert_not_reached();
5941    }
5942
5943    fpst = fpstatus_ptr(FPST_FPCR);
5944    if (rmode >= 0) {
5945        TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
5946        gen_fpst(tcg_res, tcg_op, fpst);
5947        gen_restore_rmode(tcg_rmode, fpst);
5948    } else {
5949        gen_fpst(tcg_res, tcg_op, fpst);
5950    }
5951
5952 done:
5953    write_fp_dreg(s, rd, tcg_res);
5954}
5955
5956static void handle_fp_fcvt(DisasContext *s, int opcode,
5957                           int rd, int rn, int dtype, int ntype)
5958{
5959    switch (ntype) {
5960    case 0x0:
5961    {
5962        TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5963        if (dtype == 1) {
5964            /* Single to double */
5965            TCGv_i64 tcg_rd = tcg_temp_new_i64();
5966            gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5967            write_fp_dreg(s, rd, tcg_rd);
5968        } else {
5969            /* Single to half */
5970            TCGv_i32 tcg_rd = tcg_temp_new_i32();
5971            TCGv_i32 ahp = get_ahp_flag();
5972            TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
5973
5974            gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5975            /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5976            write_fp_sreg(s, rd, tcg_rd);
5977        }
5978        break;
5979    }
5980    case 0x1:
5981    {
5982        TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5983        TCGv_i32 tcg_rd = tcg_temp_new_i32();
5984        if (dtype == 0) {
5985            /* Double to single */
5986            gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5987        } else {
5988            TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
5989            TCGv_i32 ahp = get_ahp_flag();
5990            /* Double to half */
5991            gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5992            /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5993        }
5994        write_fp_sreg(s, rd, tcg_rd);
5995        break;
5996    }
5997    case 0x3:
5998    {
5999        TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6000        TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6001        TCGv_i32 tcg_ahp = get_ahp_flag();
6002        tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6003        if (dtype == 0) {
6004            /* Half to single */
6005            TCGv_i32 tcg_rd = tcg_temp_new_i32();
6006            gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6007            write_fp_sreg(s, rd, tcg_rd);
6008        } else {
6009            /* Half to double */
6010            TCGv_i64 tcg_rd = tcg_temp_new_i64();
6011            gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6012            write_fp_dreg(s, rd, tcg_rd);
6013        }
6014        break;
6015    }
6016    default:
6017        g_assert_not_reached();
6018    }
6019}
6020
6021/* Floating point data-processing (1 source)
6022 *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6023 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6024 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6025 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6026 */
6027static void disas_fp_1src(DisasContext *s, uint32_t insn)
6028{
6029    int mos = extract32(insn, 29, 3);
6030    int type = extract32(insn, 22, 2);
6031    int opcode = extract32(insn, 15, 6);
6032    int rn = extract32(insn, 5, 5);
6033    int rd = extract32(insn, 0, 5);
6034
6035    if (mos) {
6036        goto do_unallocated;
6037    }
6038
6039    switch (opcode) {
6040    case 0x4: case 0x5: case 0x7:
6041    {
6042        /* FCVT between half, single and double precision */
6043        int dtype = extract32(opcode, 0, 2);
6044        if (type == 2 || dtype == type) {
6045            goto do_unallocated;
6046        }
6047        if (!fp_access_check(s)) {
6048            return;
6049        }
6050
6051        handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6052        break;
6053    }
6054
6055    case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6056        if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6057            goto do_unallocated;
6058        }
6059        /* fall through */
6060    case 0x0 ... 0x3:
6061    case 0x8 ... 0xc:
6062    case 0xe ... 0xf:
6063        /* 32-to-32 and 64-to-64 ops */
6064        switch (type) {
6065        case 0:
6066            if (!fp_access_check(s)) {
6067                return;
6068            }
6069            handle_fp_1src_single(s, opcode, rd, rn);
6070            break;
6071        case 1:
6072            if (!fp_access_check(s)) {
6073                return;
6074            }
6075            handle_fp_1src_double(s, opcode, rd, rn);
6076            break;
6077        case 3:
6078            if (!dc_isar_feature(aa64_fp16, s)) {
6079                goto do_unallocated;
6080            }
6081
6082            if (!fp_access_check(s)) {
6083                return;
6084            }
6085            handle_fp_1src_half(s, opcode, rd, rn);
6086            break;
6087        default:
6088            goto do_unallocated;
6089        }
6090        break;
6091
6092    case 0x6:
6093        switch (type) {
6094        case 1: /* BFCVT */
6095            if (!dc_isar_feature(aa64_bf16, s)) {
6096                goto do_unallocated;
6097            }
6098            if (!fp_access_check(s)) {
6099                return;
6100            }
6101            handle_fp_1src_single(s, opcode, rd, rn);
6102            break;
6103        default:
6104            goto do_unallocated;
6105        }
6106        break;
6107
6108    default:
6109    do_unallocated:
6110        unallocated_encoding(s);
6111        break;
6112    }
6113}
6114
6115/* Floating-point data-processing (2 source) - single precision */
6116static void handle_fp_2src_single(DisasContext *s, int opcode,
6117                                  int rd, int rn, int rm)
6118{
6119    TCGv_i32 tcg_op1;
6120    TCGv_i32 tcg_op2;
6121    TCGv_i32 tcg_res;
6122    TCGv_ptr fpst;
6123
6124    tcg_res = tcg_temp_new_i32();
6125    fpst = fpstatus_ptr(FPST_FPCR);
6126    tcg_op1 = read_fp_sreg(s, rn);
6127    tcg_op2 = read_fp_sreg(s, rm);
6128
6129    switch (opcode) {
6130    case 0x0: /* FMUL */
6131        gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6132        break;
6133    case 0x1: /* FDIV */
6134        gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6135        break;
6136    case 0x2: /* FADD */
6137        gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6138        break;
6139    case 0x3: /* FSUB */
6140        gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6141        break;
6142    case 0x4: /* FMAX */
6143        gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6144        break;
6145    case 0x5: /* FMIN */
6146        gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6147        break;
6148    case 0x6: /* FMAXNM */
6149        gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6150        break;
6151    case 0x7: /* FMINNM */
6152        gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6153        break;
6154    case 0x8: /* FNMUL */
6155        gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6156        gen_helper_vfp_negs(tcg_res, tcg_res);
6157        break;
6158    }
6159
6160    write_fp_sreg(s, rd, tcg_res);
6161}
6162
6163/* Floating-point data-processing (2 source) - double precision */
6164static void handle_fp_2src_double(DisasContext *s, int opcode,
6165                                  int rd, int rn, int rm)
6166{
6167    TCGv_i64 tcg_op1;
6168    TCGv_i64 tcg_op2;
6169    TCGv_i64 tcg_res;
6170    TCGv_ptr fpst;
6171
6172    tcg_res = tcg_temp_new_i64();
6173    fpst = fpstatus_ptr(FPST_FPCR);
6174    tcg_op1 = read_fp_dreg(s, rn);
6175    tcg_op2 = read_fp_dreg(s, rm);
6176
6177    switch (opcode) {
6178    case 0x0: /* FMUL */
6179        gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6180        break;
6181    case 0x1: /* FDIV */
6182        gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6183        break;
6184    case 0x2: /* FADD */
6185        gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6186        break;
6187    case 0x3: /* FSUB */
6188        gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6189        break;
6190    case 0x4: /* FMAX */
6191        gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6192        break;
6193    case 0x5: /* FMIN */
6194        gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6195        break;
6196    case 0x6: /* FMAXNM */
6197        gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6198        break;
6199    case 0x7: /* FMINNM */
6200        gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6201        break;
6202    case 0x8: /* FNMUL */
6203        gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6204        gen_helper_vfp_negd(tcg_res, tcg_res);
6205        break;
6206    }
6207
6208    write_fp_dreg(s, rd, tcg_res);
6209}
6210
6211/* Floating-point data-processing (2 source) - half precision */
6212static void handle_fp_2src_half(DisasContext *s, int opcode,
6213                                int rd, int rn, int rm)
6214{
6215    TCGv_i32 tcg_op1;
6216    TCGv_i32 tcg_op2;
6217    TCGv_i32 tcg_res;
6218    TCGv_ptr fpst;
6219
6220    tcg_res = tcg_temp_new_i32();
6221    fpst = fpstatus_ptr(FPST_FPCR_F16);
6222    tcg_op1 = read_fp_hreg(s, rn);
6223    tcg_op2 = read_fp_hreg(s, rm);
6224
6225    switch (opcode) {
6226    case 0x0: /* FMUL */
6227        gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6228        break;
6229    case 0x1: /* FDIV */
6230        gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6231        break;
6232    case 0x2: /* FADD */
6233        gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6234        break;
6235    case 0x3: /* FSUB */
6236        gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6237        break;
6238    case 0x4: /* FMAX */
6239        gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6240        break;
6241    case 0x5: /* FMIN */
6242        gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6243        break;
6244    case 0x6: /* FMAXNM */
6245        gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6246        break;
6247    case 0x7: /* FMINNM */
6248        gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6249        break;
6250    case 0x8: /* FNMUL */
6251        gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6252        tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6253        break;
6254    default:
6255        g_assert_not_reached();
6256    }
6257
6258    write_fp_sreg(s, rd, tcg_res);
6259}
6260
6261/* Floating point data-processing (2 source)
6262 *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6263 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6264 * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6265 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6266 */
6267static void disas_fp_2src(DisasContext *s, uint32_t insn)
6268{
6269    int mos = extract32(insn, 29, 3);
6270    int type = extract32(insn, 22, 2);
6271    int rd = extract32(insn, 0, 5);
6272    int rn = extract32(insn, 5, 5);
6273    int rm = extract32(insn, 16, 5);
6274    int opcode = extract32(insn, 12, 4);
6275
6276    if (opcode > 8 || mos) {
6277        unallocated_encoding(s);
6278        return;
6279    }
6280
6281    switch (type) {
6282    case 0:
6283        if (!fp_access_check(s)) {
6284            return;
6285        }
6286        handle_fp_2src_single(s, opcode, rd, rn, rm);
6287        break;
6288    case 1:
6289        if (!fp_access_check(s)) {
6290            return;
6291        }
6292        handle_fp_2src_double(s, opcode, rd, rn, rm);
6293        break;
6294    case 3:
6295        if (!dc_isar_feature(aa64_fp16, s)) {
6296            unallocated_encoding(s);
6297            return;
6298        }
6299        if (!fp_access_check(s)) {
6300            return;
6301        }
6302        handle_fp_2src_half(s, opcode, rd, rn, rm);
6303        break;
6304    default:
6305        unallocated_encoding(s);
6306    }
6307}
6308
6309/* Floating-point data-processing (3 source) - single precision */
6310static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6311                                  int rd, int rn, int rm, int ra)
6312{
6313    TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6314    TCGv_i32 tcg_res = tcg_temp_new_i32();
6315    TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6316
6317    tcg_op1 = read_fp_sreg(s, rn);
6318    tcg_op2 = read_fp_sreg(s, rm);
6319    tcg_op3 = read_fp_sreg(s, ra);
6320
6321    /* These are fused multiply-add, and must be done as one
6322     * floating point operation with no rounding between the
6323     * multiplication and addition steps.
6324     * NB that doing the negations here as separate steps is
6325     * correct : an input NaN should come out with its sign bit
6326     * flipped if it is a negated-input.
6327     */
6328    if (o1 == true) {
6329        gen_helper_vfp_negs(tcg_op3, tcg_op3);
6330    }
6331
6332    if (o0 != o1) {
6333        gen_helper_vfp_negs(tcg_op1, tcg_op1);
6334    }
6335
6336    gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6337
6338    write_fp_sreg(s, rd, tcg_res);
6339}
6340
6341/* Floating-point data-processing (3 source) - double precision */
6342static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6343                                  int rd, int rn, int rm, int ra)
6344{
6345    TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6346    TCGv_i64 tcg_res = tcg_temp_new_i64();
6347    TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6348
6349    tcg_op1 = read_fp_dreg(s, rn);
6350    tcg_op2 = read_fp_dreg(s, rm);
6351    tcg_op3 = read_fp_dreg(s, ra);
6352
6353    /* These are fused multiply-add, and must be done as one
6354     * floating point operation with no rounding between the
6355     * multiplication and addition steps.
6356     * NB that doing the negations here as separate steps is
6357     * correct : an input NaN should come out with its sign bit
6358     * flipped if it is a negated-input.
6359     */
6360    if (o1 == true) {
6361        gen_helper_vfp_negd(tcg_op3, tcg_op3);
6362    }
6363
6364    if (o0 != o1) {
6365        gen_helper_vfp_negd(tcg_op1, tcg_op1);
6366    }
6367
6368    gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6369
6370    write_fp_dreg(s, rd, tcg_res);
6371}
6372
6373/* Floating-point data-processing (3 source) - half precision */
6374static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6375                                int rd, int rn, int rm, int ra)
6376{
6377    TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6378    TCGv_i32 tcg_res = tcg_temp_new_i32();
6379    TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6380
6381    tcg_op1 = read_fp_hreg(s, rn);
6382    tcg_op2 = read_fp_hreg(s, rm);
6383    tcg_op3 = read_fp_hreg(s, ra);
6384
6385    /* These are fused multiply-add, and must be done as one
6386     * floating point operation with no rounding between the
6387     * multiplication and addition steps.
6388     * NB that doing the negations here as separate steps is
6389     * correct : an input NaN should come out with its sign bit
6390     * flipped if it is a negated-input.
6391     */
6392    if (o1 == true) {
6393        tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6394    }
6395
6396    if (o0 != o1) {
6397        tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6398    }
6399
6400    gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6401
6402    write_fp_sreg(s, rd, tcg_res);
6403}
6404
6405/* Floating point data-processing (3 source)
6406 *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6407 * +---+---+---+-----------+------+----+------+----+------+------+------+
6408 * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6409 * +---+---+---+-----------+------+----+------+----+------+------+------+
6410 */
6411static void disas_fp_3src(DisasContext *s, uint32_t insn)
6412{
6413    int mos = extract32(insn, 29, 3);
6414    int type = extract32(insn, 22, 2);
6415    int rd = extract32(insn, 0, 5);
6416    int rn = extract32(insn, 5, 5);
6417    int ra = extract32(insn, 10, 5);
6418    int rm = extract32(insn, 16, 5);
6419    bool o0 = extract32(insn, 15, 1);
6420    bool o1 = extract32(insn, 21, 1);
6421
6422    if (mos) {
6423        unallocated_encoding(s);
6424        return;
6425    }
6426
6427    switch (type) {
6428    case 0:
6429        if (!fp_access_check(s)) {
6430            return;
6431        }
6432        handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6433        break;
6434    case 1:
6435        if (!fp_access_check(s)) {
6436            return;
6437        }
6438        handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6439        break;
6440    case 3:
6441        if (!dc_isar_feature(aa64_fp16, s)) {
6442            unallocated_encoding(s);
6443            return;
6444        }
6445        if (!fp_access_check(s)) {
6446            return;
6447        }
6448        handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6449        break;
6450    default:
6451        unallocated_encoding(s);
6452    }
6453}
6454
6455/* Floating point immediate
6456 *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6457 * +---+---+---+-----------+------+---+------------+-------+------+------+
6458 * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6459 * +---+---+---+-----------+------+---+------------+-------+------+------+
6460 */
6461static void disas_fp_imm(DisasContext *s, uint32_t insn)
6462{
6463    int rd = extract32(insn, 0, 5);
6464    int imm5 = extract32(insn, 5, 5);
6465    int imm8 = extract32(insn, 13, 8);
6466    int type = extract32(insn, 22, 2);
6467    int mos = extract32(insn, 29, 3);
6468    uint64_t imm;
6469    MemOp sz;
6470
6471    if (mos || imm5) {
6472        unallocated_encoding(s);
6473        return;
6474    }
6475
6476    switch (type) {
6477    case 0:
6478        sz = MO_32;
6479        break;
6480    case 1:
6481        sz = MO_64;
6482        break;
6483    case 3:
6484        sz = MO_16;
6485        if (dc_isar_feature(aa64_fp16, s)) {
6486            break;
6487        }
6488        /* fallthru */
6489    default:
6490        unallocated_encoding(s);
6491        return;
6492    }
6493
6494    if (!fp_access_check(s)) {
6495        return;
6496    }
6497
6498    imm = vfp_expand_imm(sz, imm8);
6499    write_fp_dreg(s, rd, tcg_constant_i64(imm));
6500}
6501
6502/* Handle floating point <=> fixed point conversions. Note that we can
6503 * also deal with fp <=> integer conversions as a special case (scale == 64)
6504 * OPTME: consider handling that special case specially or at least skipping
6505 * the call to scalbn in the helpers for zero shifts.
6506 */
6507static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6508                           bool itof, int rmode, int scale, int sf, int type)
6509{
6510    bool is_signed = !(opcode & 1);
6511    TCGv_ptr tcg_fpstatus;
6512    TCGv_i32 tcg_shift, tcg_single;
6513    TCGv_i64 tcg_double;
6514
6515    tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6516
6517    tcg_shift = tcg_constant_i32(64 - scale);
6518
6519    if (itof) {
6520        TCGv_i64 tcg_int = cpu_reg(s, rn);
6521        if (!sf) {
6522            TCGv_i64 tcg_extend = tcg_temp_new_i64();
6523
6524            if (is_signed) {
6525                tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6526            } else {
6527                tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6528            }
6529
6530            tcg_int = tcg_extend;
6531        }
6532
6533        switch (type) {
6534        case 1: /* float64 */
6535            tcg_double = tcg_temp_new_i64();
6536            if (is_signed) {
6537                gen_helper_vfp_sqtod(tcg_double, tcg_int,
6538                                     tcg_shift, tcg_fpstatus);
6539            } else {
6540                gen_helper_vfp_uqtod(tcg_double, tcg_int,
6541                                     tcg_shift, tcg_fpstatus);
6542            }
6543            write_fp_dreg(s, rd, tcg_double);
6544            break;
6545
6546        case 0: /* float32 */
6547            tcg_single = tcg_temp_new_i32();
6548            if (is_signed) {
6549                gen_helper_vfp_sqtos(tcg_single, tcg_int,
6550                                     tcg_shift, tcg_fpstatus);
6551            } else {
6552                gen_helper_vfp_uqtos(tcg_single, tcg_int,
6553                                     tcg_shift, tcg_fpstatus);
6554            }
6555            write_fp_sreg(s, rd, tcg_single);
6556            break;
6557
6558        case 3: /* float16 */
6559            tcg_single = tcg_temp_new_i32();
6560            if (is_signed) {
6561                gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6562                                     tcg_shift, tcg_fpstatus);
6563            } else {
6564                gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6565                                     tcg_shift, tcg_fpstatus);
6566            }
6567            write_fp_sreg(s, rd, tcg_single);
6568            break;
6569
6570        default:
6571            g_assert_not_reached();
6572        }
6573    } else {
6574        TCGv_i64 tcg_int = cpu_reg(s, rd);
6575        TCGv_i32 tcg_rmode;
6576
6577        if (extract32(opcode, 2, 1)) {
6578            /* There are too many rounding modes to all fit into rmode,
6579             * so FCVTA[US] is a special case.
6580             */
6581            rmode = FPROUNDING_TIEAWAY;
6582        }
6583
6584        tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6585
6586        switch (type) {
6587        case 1: /* float64 */
6588            tcg_double = read_fp_dreg(s, rn);
6589            if (is_signed) {
6590                if (!sf) {
6591                    gen_helper_vfp_tosld(tcg_int, tcg_double,
6592                                         tcg_shift, tcg_fpstatus);
6593                } else {
6594                    gen_helper_vfp_tosqd(tcg_int, tcg_double,
6595                                         tcg_shift, tcg_fpstatus);
6596                }
6597            } else {
6598                if (!sf) {
6599                    gen_helper_vfp_tould(tcg_int, tcg_double,
6600                                         tcg_shift, tcg_fpstatus);
6601                } else {
6602                    gen_helper_vfp_touqd(tcg_int, tcg_double,
6603                                         tcg_shift, tcg_fpstatus);
6604                }
6605            }
6606            if (!sf) {
6607                tcg_gen_ext32u_i64(tcg_int, tcg_int);
6608            }
6609            break;
6610
6611        case 0: /* float32 */
6612            tcg_single = read_fp_sreg(s, rn);
6613            if (sf) {
6614                if (is_signed) {
6615                    gen_helper_vfp_tosqs(tcg_int, tcg_single,
6616                                         tcg_shift, tcg_fpstatus);
6617                } else {
6618                    gen_helper_vfp_touqs(tcg_int, tcg_single,
6619                                         tcg_shift, tcg_fpstatus);
6620                }
6621            } else {
6622                TCGv_i32 tcg_dest = tcg_temp_new_i32();
6623                if (is_signed) {
6624                    gen_helper_vfp_tosls(tcg_dest, tcg_single,
6625                                         tcg_shift, tcg_fpstatus);
6626                } else {
6627                    gen_helper_vfp_touls(tcg_dest, tcg_single,
6628                                         tcg_shift, tcg_fpstatus);
6629                }
6630                tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6631            }
6632            break;
6633
6634        case 3: /* float16 */
6635            tcg_single = read_fp_sreg(s, rn);
6636            if (sf) {
6637                if (is_signed) {
6638                    gen_helper_vfp_tosqh(tcg_int, tcg_single,
6639                                         tcg_shift, tcg_fpstatus);
6640                } else {
6641                    gen_helper_vfp_touqh(tcg_int, tcg_single,
6642                                         tcg_shift, tcg_fpstatus);
6643                }
6644            } else {
6645                TCGv_i32 tcg_dest = tcg_temp_new_i32();
6646                if (is_signed) {
6647                    gen_helper_vfp_toslh(tcg_dest, tcg_single,
6648                                         tcg_shift, tcg_fpstatus);
6649                } else {
6650                    gen_helper_vfp_toulh(tcg_dest, tcg_single,
6651                                         tcg_shift, tcg_fpstatus);
6652                }
6653                tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6654            }
6655            break;
6656
6657        default:
6658            g_assert_not_reached();
6659        }
6660
6661        gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6662    }
6663}
6664
6665/* Floating point <-> fixed point conversions
6666 *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6667 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6668 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6669 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6670 */
6671static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6672{
6673    int rd = extract32(insn, 0, 5);
6674    int rn = extract32(insn, 5, 5);
6675    int scale = extract32(insn, 10, 6);
6676    int opcode = extract32(insn, 16, 3);
6677    int rmode = extract32(insn, 19, 2);
6678    int type = extract32(insn, 22, 2);
6679    bool sbit = extract32(insn, 29, 1);
6680    bool sf = extract32(insn, 31, 1);
6681    bool itof;
6682
6683    if (sbit || (!sf && scale < 32)) {
6684        unallocated_encoding(s);
6685        return;
6686    }
6687
6688    switch (type) {
6689    case 0: /* float32 */
6690    case 1: /* float64 */
6691        break;
6692    case 3: /* float16 */
6693        if (dc_isar_feature(aa64_fp16, s)) {
6694            break;
6695        }
6696        /* fallthru */
6697    default:
6698        unallocated_encoding(s);
6699        return;
6700    }
6701
6702    switch ((rmode << 3) | opcode) {
6703    case 0x2: /* SCVTF */
6704    case 0x3: /* UCVTF */
6705        itof = true;
6706        break;
6707    case 0x18: /* FCVTZS */
6708    case 0x19: /* FCVTZU */
6709        itof = false;
6710        break;
6711    default:
6712        unallocated_encoding(s);
6713        return;
6714    }
6715
6716    if (!fp_access_check(s)) {
6717        return;
6718    }
6719
6720    handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6721}
6722
6723static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6724{
6725    /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6726     * without conversion.
6727     */
6728
6729    if (itof) {
6730        TCGv_i64 tcg_rn = cpu_reg(s, rn);
6731        TCGv_i64 tmp;
6732
6733        switch (type) {
6734        case 0:
6735            /* 32 bit */
6736            tmp = tcg_temp_new_i64();
6737            tcg_gen_ext32u_i64(tmp, tcg_rn);
6738            write_fp_dreg(s, rd, tmp);
6739            break;
6740        case 1:
6741            /* 64 bit */
6742            write_fp_dreg(s, rd, tcg_rn);
6743            break;
6744        case 2:
6745            /* 64 bit to top half. */
6746            tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6747            clear_vec_high(s, true, rd);
6748            break;
6749        case 3:
6750            /* 16 bit */
6751            tmp = tcg_temp_new_i64();
6752            tcg_gen_ext16u_i64(tmp, tcg_rn);
6753            write_fp_dreg(s, rd, tmp);
6754            break;
6755        default:
6756            g_assert_not_reached();
6757        }
6758    } else {
6759        TCGv_i64 tcg_rd = cpu_reg(s, rd);
6760
6761        switch (type) {
6762        case 0:
6763            /* 32 bit */
6764            tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6765            break;
6766        case 1:
6767            /* 64 bit */
6768            tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6769            break;
6770        case 2:
6771            /* 64 bits from top half */
6772            tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6773            break;
6774        case 3:
6775            /* 16 bit */
6776            tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6777            break;
6778        default:
6779            g_assert_not_reached();
6780        }
6781    }
6782}
6783
6784static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6785{
6786    TCGv_i64 t = read_fp_dreg(s, rn);
6787    TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6788
6789    gen_helper_fjcvtzs(t, t, fpstatus);
6790
6791    tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6792    tcg_gen_extrh_i64_i32(cpu_ZF, t);
6793    tcg_gen_movi_i32(cpu_CF, 0);
6794    tcg_gen_movi_i32(cpu_NF, 0);
6795    tcg_gen_movi_i32(cpu_VF, 0);
6796}
6797
6798/* Floating point <-> integer conversions
6799 *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
6800 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6801 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6802 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6803 */
6804static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6805{
6806    int rd = extract32(insn, 0, 5);
6807    int rn = extract32(insn, 5, 5);
6808    int opcode = extract32(insn, 16, 3);
6809    int rmode = extract32(insn, 19, 2);
6810    int type = extract32(insn, 22, 2);
6811    bool sbit = extract32(insn, 29, 1);
6812    bool sf = extract32(insn, 31, 1);
6813    bool itof = false;
6814
6815    if (sbit) {
6816        goto do_unallocated;
6817    }
6818
6819    switch (opcode) {
6820    case 2: /* SCVTF */
6821    case 3: /* UCVTF */
6822        itof = true;
6823        /* fallthru */
6824    case 4: /* FCVTAS */
6825    case 5: /* FCVTAU */
6826        if (rmode != 0) {
6827            goto do_unallocated;
6828        }
6829        /* fallthru */
6830    case 0: /* FCVT[NPMZ]S */
6831    case 1: /* FCVT[NPMZ]U */
6832        switch (type) {
6833        case 0: /* float32 */
6834        case 1: /* float64 */
6835            break;
6836        case 3: /* float16 */
6837            if (!dc_isar_feature(aa64_fp16, s)) {
6838                goto do_unallocated;
6839            }
6840            break;
6841        default:
6842            goto do_unallocated;
6843        }
6844        if (!fp_access_check(s)) {
6845            return;
6846        }
6847        handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6848        break;
6849
6850    default:
6851        switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6852        case 0b01100110: /* FMOV half <-> 32-bit int */
6853        case 0b01100111:
6854        case 0b11100110: /* FMOV half <-> 64-bit int */
6855        case 0b11100111:
6856            if (!dc_isar_feature(aa64_fp16, s)) {
6857                goto do_unallocated;
6858            }
6859            /* fallthru */
6860        case 0b00000110: /* FMOV 32-bit */
6861        case 0b00000111:
6862        case 0b10100110: /* FMOV 64-bit */
6863        case 0b10100111:
6864        case 0b11001110: /* FMOV top half of 128-bit */
6865        case 0b11001111:
6866            if (!fp_access_check(s)) {
6867                return;
6868            }
6869            itof = opcode & 1;
6870            handle_fmov(s, rd, rn, type, itof);
6871            break;
6872
6873        case 0b00111110: /* FJCVTZS */
6874            if (!dc_isar_feature(aa64_jscvt, s)) {
6875                goto do_unallocated;
6876            } else if (fp_access_check(s)) {
6877                handle_fjcvtzs(s, rd, rn);
6878            }
6879            break;
6880
6881        default:
6882        do_unallocated:
6883            unallocated_encoding(s);
6884            return;
6885        }
6886        break;
6887    }
6888}
6889
6890/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6891 *   31  30  29 28     25 24                          0
6892 * +---+---+---+---------+-----------------------------+
6893 * |   | 0 |   | 1 1 1 1 |                             |
6894 * +---+---+---+---------+-----------------------------+
6895 */
6896static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6897{
6898    if (extract32(insn, 24, 1)) {
6899        /* Floating point data-processing (3 source) */
6900        disas_fp_3src(s, insn);
6901    } else if (extract32(insn, 21, 1) == 0) {
6902        /* Floating point to fixed point conversions */
6903        disas_fp_fixed_conv(s, insn);
6904    } else {
6905        switch (extract32(insn, 10, 2)) {
6906        case 1:
6907            /* Floating point conditional compare */
6908            disas_fp_ccomp(s, insn);
6909            break;
6910        case 2:
6911            /* Floating point data-processing (2 source) */
6912            disas_fp_2src(s, insn);
6913            break;
6914        case 3:
6915            /* Floating point conditional select */
6916            disas_fp_csel(s, insn);
6917            break;
6918        case 0:
6919            switch (ctz32(extract32(insn, 12, 4))) {
6920            case 0: /* [15:12] == xxx1 */
6921                /* Floating point immediate */
6922                disas_fp_imm(s, insn);
6923                break;
6924            case 1: /* [15:12] == xx10 */
6925                /* Floating point compare */
6926                disas_fp_compare(s, insn);
6927                break;
6928            case 2: /* [15:12] == x100 */
6929                /* Floating point data-processing (1 source) */
6930                disas_fp_1src(s, insn);
6931                break;
6932            case 3: /* [15:12] == 1000 */
6933                unallocated_encoding(s);
6934                break;
6935            default: /* [15:12] == 0000 */
6936                /* Floating point <-> integer conversions */
6937                disas_fp_int_conv(s, insn);
6938                break;
6939            }
6940            break;
6941        }
6942    }
6943}
6944
6945static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6946                     int pos)
6947{
6948    /* Extract 64 bits from the middle of two concatenated 64 bit
6949     * vector register slices left:right. The extracted bits start
6950     * at 'pos' bits into the right (least significant) side.
6951     * We return the result in tcg_right, and guarantee not to
6952     * trash tcg_left.
6953     */
6954    TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6955    assert(pos > 0 && pos < 64);
6956
6957    tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6958    tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6959    tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6960}
6961
6962/* EXT
6963 *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
6964 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6965 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
6966 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6967 */
6968static void disas_simd_ext(DisasContext *s, uint32_t insn)
6969{
6970    int is_q = extract32(insn, 30, 1);
6971    int op2 = extract32(insn, 22, 2);
6972    int imm4 = extract32(insn, 11, 4);
6973    int rm = extract32(insn, 16, 5);
6974    int rn = extract32(insn, 5, 5);
6975    int rd = extract32(insn, 0, 5);
6976    int pos = imm4 << 3;
6977    TCGv_i64 tcg_resl, tcg_resh;
6978
6979    if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6980        unallocated_encoding(s);
6981        return;
6982    }
6983
6984    if (!fp_access_check(s)) {
6985        return;
6986    }
6987
6988    tcg_resh = tcg_temp_new_i64();
6989    tcg_resl = tcg_temp_new_i64();
6990
6991    /* Vd gets bits starting at pos bits into Vm:Vn. This is
6992     * either extracting 128 bits from a 128:128 concatenation, or
6993     * extracting 64 bits from a 64:64 concatenation.
6994     */
6995    if (!is_q) {
6996        read_vec_element(s, tcg_resl, rn, 0, MO_64);
6997        if (pos != 0) {
6998            read_vec_element(s, tcg_resh, rm, 0, MO_64);
6999            do_ext64(s, tcg_resh, tcg_resl, pos);
7000        }
7001    } else {
7002        TCGv_i64 tcg_hh;
7003        typedef struct {
7004            int reg;
7005            int elt;
7006        } EltPosns;
7007        EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7008        EltPosns *elt = eltposns;
7009
7010        if (pos >= 64) {
7011            elt++;
7012            pos -= 64;
7013        }
7014
7015        read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7016        elt++;
7017        read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7018        elt++;
7019        if (pos != 0) {
7020            do_ext64(s, tcg_resh, tcg_resl, pos);
7021            tcg_hh = tcg_temp_new_i64();
7022            read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7023            do_ext64(s, tcg_hh, tcg_resh, pos);
7024        }
7025    }
7026
7027    write_vec_element(s, tcg_resl, rd, 0, MO_64);
7028    if (is_q) {
7029        write_vec_element(s, tcg_resh, rd, 1, MO_64);
7030    }
7031    clear_vec_high(s, is_q, rd);
7032}
7033
7034/* TBL/TBX
7035 *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7036 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7037 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7038 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7039 */
7040static void disas_simd_tb(DisasContext *s, uint32_t insn)
7041{
7042    int op2 = extract32(insn, 22, 2);
7043    int is_q = extract32(insn, 30, 1);
7044    int rm = extract32(insn, 16, 5);
7045    int rn = extract32(insn, 5, 5);
7046    int rd = extract32(insn, 0, 5);
7047    int is_tbx = extract32(insn, 12, 1);
7048    int len = (extract32(insn, 13, 2) + 1) * 16;
7049
7050    if (op2 != 0) {
7051        unallocated_encoding(s);
7052        return;
7053    }
7054
7055    if (!fp_access_check(s)) {
7056        return;
7057    }
7058
7059    tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7060                       vec_full_reg_offset(s, rm), cpu_env,
7061                       is_q ? 16 : 8, vec_full_reg_size(s),
7062                       (len << 6) | (is_tbx << 5) | rn,
7063                       gen_helper_simd_tblx);
7064}
7065
7066/* ZIP/UZP/TRN
7067 *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7068 * +---+---+-------------+------+---+------+---+------------------+------+
7069 * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7070 * +---+---+-------------+------+---+------+---+------------------+------+
7071 */
7072static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7073{
7074    int rd = extract32(insn, 0, 5);
7075    int rn = extract32(insn, 5, 5);
7076    int rm = extract32(insn, 16, 5);
7077    int size = extract32(insn, 22, 2);
7078    /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7079     * bit 2 indicates 1 vs 2 variant of the insn.
7080     */
7081    int opcode = extract32(insn, 12, 2);
7082    bool part = extract32(insn, 14, 1);
7083    bool is_q = extract32(insn, 30, 1);
7084    int esize = 8 << size;
7085    int i;
7086    int datasize = is_q ? 128 : 64;
7087    int elements = datasize / esize;
7088    TCGv_i64 tcg_res[2], tcg_ele;
7089
7090    if (opcode == 0 || (size == 3 && !is_q)) {
7091        unallocated_encoding(s);
7092        return;
7093    }
7094
7095    if (!fp_access_check(s)) {
7096        return;
7097    }
7098
7099    tcg_res[0] = tcg_temp_new_i64();
7100    tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7101    tcg_ele = tcg_temp_new_i64();
7102
7103    for (i = 0; i < elements; i++) {
7104        int o, w;
7105
7106        switch (opcode) {
7107        case 1: /* UZP1/2 */
7108        {
7109            int midpoint = elements / 2;
7110            if (i < midpoint) {
7111                read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7112            } else {
7113                read_vec_element(s, tcg_ele, rm,
7114                                 2 * (i - midpoint) + part, size);
7115            }
7116            break;
7117        }
7118        case 2: /* TRN1/2 */
7119            if (i & 1) {
7120                read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7121            } else {
7122                read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7123            }
7124            break;
7125        case 3: /* ZIP1/2 */
7126        {
7127            int base = part * elements / 2;
7128            if (i & 1) {
7129                read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7130            } else {
7131                read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7132            }
7133            break;
7134        }
7135        default:
7136            g_assert_not_reached();
7137        }
7138
7139        w = (i * esize) / 64;
7140        o = (i * esize) % 64;
7141        if (o == 0) {
7142            tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7143        } else {
7144            tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7145            tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7146        }
7147    }
7148
7149    for (i = 0; i <= is_q; ++i) {
7150        write_vec_element(s, tcg_res[i], rd, i, MO_64);
7151    }
7152    clear_vec_high(s, is_q, rd);
7153}
7154
7155/*
7156 * do_reduction_op helper
7157 *
7158 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7159 * important for correct NaN propagation that we do these
7160 * operations in exactly the order specified by the pseudocode.
7161 *
7162 * This is a recursive function, TCG temps should be freed by the
7163 * calling function once it is done with the values.
7164 */
7165static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7166                                int esize, int size, int vmap, TCGv_ptr fpst)
7167{
7168    if (esize == size) {
7169        int element;
7170        MemOp msize = esize == 16 ? MO_16 : MO_32;
7171        TCGv_i32 tcg_elem;
7172
7173        /* We should have one register left here */
7174        assert(ctpop8(vmap) == 1);
7175        element = ctz32(vmap);
7176        assert(element < 8);
7177
7178        tcg_elem = tcg_temp_new_i32();
7179        read_vec_element_i32(s, tcg_elem, rn, element, msize);
7180        return tcg_elem;
7181    } else {
7182        int bits = size / 2;
7183        int shift = ctpop8(vmap) / 2;
7184        int vmap_lo = (vmap >> shift) & vmap;
7185        int vmap_hi = (vmap & ~vmap_lo);
7186        TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7187
7188        tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7189        tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7190        tcg_res = tcg_temp_new_i32();
7191
7192        switch (fpopcode) {
7193        case 0x0c: /* fmaxnmv half-precision */
7194            gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7195            break;
7196        case 0x0f: /* fmaxv half-precision */
7197            gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7198            break;
7199        case 0x1c: /* fminnmv half-precision */
7200            gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7201            break;
7202        case 0x1f: /* fminv half-precision */
7203            gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7204            break;
7205        case 0x2c: /* fmaxnmv */
7206            gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7207            break;
7208        case 0x2f: /* fmaxv */
7209            gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7210            break;
7211        case 0x3c: /* fminnmv */
7212            gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7213            break;
7214        case 0x3f: /* fminv */
7215            gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7216            break;
7217        default:
7218            g_assert_not_reached();
7219        }
7220        return tcg_res;
7221    }
7222}
7223
7224/* AdvSIMD across lanes
7225 *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7226 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7227 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7228 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7229 */
7230static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7231{
7232    int rd = extract32(insn, 0, 5);
7233    int rn = extract32(insn, 5, 5);
7234    int size = extract32(insn, 22, 2);
7235    int opcode = extract32(insn, 12, 5);
7236    bool is_q = extract32(insn, 30, 1);
7237    bool is_u = extract32(insn, 29, 1);
7238    bool is_fp = false;
7239    bool is_min = false;
7240    int esize;
7241    int elements;
7242    int i;
7243    TCGv_i64 tcg_res, tcg_elt;
7244
7245    switch (opcode) {
7246    case 0x1b: /* ADDV */
7247        if (is_u) {
7248            unallocated_encoding(s);
7249            return;
7250        }
7251        /* fall through */
7252    case 0x3: /* SADDLV, UADDLV */
7253    case 0xa: /* SMAXV, UMAXV */
7254    case 0x1a: /* SMINV, UMINV */
7255        if (size == 3 || (size == 2 && !is_q)) {
7256            unallocated_encoding(s);
7257            return;
7258        }
7259        break;
7260    case 0xc: /* FMAXNMV, FMINNMV */
7261    case 0xf: /* FMAXV, FMINV */
7262        /* Bit 1 of size field encodes min vs max and the actual size
7263         * depends on the encoding of the U bit. If not set (and FP16
7264         * enabled) then we do half-precision float instead of single
7265         * precision.
7266         */
7267        is_min = extract32(size, 1, 1);
7268        is_fp = true;
7269        if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7270            size = 1;
7271        } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7272            unallocated_encoding(s);
7273            return;
7274        } else {
7275            size = 2;
7276        }
7277        break;
7278    default:
7279        unallocated_encoding(s);
7280        return;
7281    }
7282
7283    if (!fp_access_check(s)) {
7284        return;
7285    }
7286
7287    esize = 8 << size;
7288    elements = (is_q ? 128 : 64) / esize;
7289
7290    tcg_res = tcg_temp_new_i64();
7291    tcg_elt = tcg_temp_new_i64();
7292
7293    /* These instructions operate across all lanes of a vector
7294     * to produce a single result. We can guarantee that a 64
7295     * bit intermediate is sufficient:
7296     *  + for [US]ADDLV the maximum element size is 32 bits, and
7297     *    the result type is 64 bits
7298     *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7299     *    same as the element size, which is 32 bits at most
7300     * For the integer operations we can choose to work at 64
7301     * or 32 bits and truncate at the end; for simplicity
7302     * we use 64 bits always. The floating point
7303     * ops do require 32 bit intermediates, though.
7304     */
7305    if (!is_fp) {
7306        read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7307
7308        for (i = 1; i < elements; i++) {
7309            read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7310
7311            switch (opcode) {
7312            case 0x03: /* SADDLV / UADDLV */
7313            case 0x1b: /* ADDV */
7314                tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7315                break;
7316            case 0x0a: /* SMAXV / UMAXV */
7317                if (is_u) {
7318                    tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7319                } else {
7320                    tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7321                }
7322                break;
7323            case 0x1a: /* SMINV / UMINV */
7324                if (is_u) {
7325                    tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7326                } else {
7327                    tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7328                }
7329                break;
7330            default:
7331                g_assert_not_reached();
7332            }
7333
7334        }
7335    } else {
7336        /* Floating point vector reduction ops which work across 32
7337         * bit (single) or 16 bit (half-precision) intermediates.
7338         * Note that correct NaN propagation requires that we do these
7339         * operations in exactly the order specified by the pseudocode.
7340         */
7341        TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7342        int fpopcode = opcode | is_min << 4 | is_u << 5;
7343        int vmap = (1 << elements) - 1;
7344        TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7345                                             (is_q ? 128 : 64), vmap, fpst);
7346        tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7347    }
7348
7349    /* Now truncate the result to the width required for the final output */
7350    if (opcode == 0x03) {
7351        /* SADDLV, UADDLV: result is 2*esize */
7352        size++;
7353    }
7354
7355    switch (size) {
7356    case 0:
7357        tcg_gen_ext8u_i64(tcg_res, tcg_res);
7358        break;
7359    case 1:
7360        tcg_gen_ext16u_i64(tcg_res, tcg_res);
7361        break;
7362    case 2:
7363        tcg_gen_ext32u_i64(tcg_res, tcg_res);
7364        break;
7365    case 3:
7366        break;
7367    default:
7368        g_assert_not_reached();
7369    }
7370
7371    write_fp_dreg(s, rd, tcg_res);
7372}
7373
7374/* DUP (Element, Vector)
7375 *
7376 *  31  30   29              21 20    16 15        10  9    5 4    0
7377 * +---+---+-------------------+--------+-------------+------+------+
7378 * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7379 * +---+---+-------------------+--------+-------------+------+------+
7380 *
7381 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7382 */
7383static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7384                             int imm5)
7385{
7386    int size = ctz32(imm5);
7387    int index;
7388
7389    if (size > 3 || (size == 3 && !is_q)) {
7390        unallocated_encoding(s);
7391        return;
7392    }
7393
7394    if (!fp_access_check(s)) {
7395        return;
7396    }
7397
7398    index = imm5 >> (size + 1);
7399    tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7400                         vec_reg_offset(s, rn, index, size),
7401                         is_q ? 16 : 8, vec_full_reg_size(s));
7402}
7403
7404/* DUP (element, scalar)
7405 *  31                   21 20    16 15        10  9    5 4    0
7406 * +-----------------------+--------+-------------+------+------+
7407 * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7408 * +-----------------------+--------+-------------+------+------+
7409 */
7410static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7411                              int imm5)
7412{
7413    int size = ctz32(imm5);
7414    int index;
7415    TCGv_i64 tmp;
7416
7417    if (size > 3) {
7418        unallocated_encoding(s);
7419        return;
7420    }
7421
7422    if (!fp_access_check(s)) {
7423        return;
7424    }
7425
7426    index = imm5 >> (size + 1);
7427
7428    /* This instruction just extracts the specified element and
7429     * zero-extends it into the bottom of the destination register.
7430     */
7431    tmp = tcg_temp_new_i64();
7432    read_vec_element(s, tmp, rn, index, size);
7433    write_fp_dreg(s, rd, tmp);
7434}
7435
7436/* DUP (General)
7437 *
7438 *  31  30   29              21 20    16 15        10  9    5 4    0
7439 * +---+---+-------------------+--------+-------------+------+------+
7440 * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7441 * +---+---+-------------------+--------+-------------+------+------+
7442 *
7443 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7444 */
7445static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7446                             int imm5)
7447{
7448    int size = ctz32(imm5);
7449    uint32_t dofs, oprsz, maxsz;
7450
7451    if (size > 3 || ((size == 3) && !is_q)) {
7452        unallocated_encoding(s);
7453        return;
7454    }
7455
7456    if (!fp_access_check(s)) {
7457        return;
7458    }
7459
7460    dofs = vec_full_reg_offset(s, rd);
7461    oprsz = is_q ? 16 : 8;
7462    maxsz = vec_full_reg_size(s);
7463
7464    tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7465}
7466
7467/* INS (Element)
7468 *
7469 *  31                   21 20    16 15  14    11  10 9    5 4    0
7470 * +-----------------------+--------+------------+---+------+------+
7471 * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7472 * +-----------------------+--------+------------+---+------+------+
7473 *
7474 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7475 * index: encoded in imm5<4:size+1>
7476 */
7477static void handle_simd_inse(DisasContext *s, int rd, int rn,
7478                             int imm4, int imm5)
7479{
7480    int size = ctz32(imm5);
7481    int src_index, dst_index;
7482    TCGv_i64 tmp;
7483
7484    if (size > 3) {
7485        unallocated_encoding(s);
7486        return;
7487    }
7488
7489    if (!fp_access_check(s)) {
7490        return;
7491    }
7492
7493    dst_index = extract32(imm5, 1+size, 5);
7494    src_index = extract32(imm4, size, 4);
7495
7496    tmp = tcg_temp_new_i64();
7497
7498    read_vec_element(s, tmp, rn, src_index, size);
7499    write_vec_element(s, tmp, rd, dst_index, size);
7500
7501    /* INS is considered a 128-bit write for SVE. */
7502    clear_vec_high(s, true, rd);
7503}
7504
7505
7506/* INS (General)
7507 *
7508 *  31                   21 20    16 15        10  9    5 4    0
7509 * +-----------------------+--------+-------------+------+------+
7510 * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7511 * +-----------------------+--------+-------------+------+------+
7512 *
7513 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7514 * index: encoded in imm5<4:size+1>
7515 */
7516static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7517{
7518    int size = ctz32(imm5);
7519    int idx;
7520
7521    if (size > 3) {
7522        unallocated_encoding(s);
7523        return;
7524    }
7525
7526    if (!fp_access_check(s)) {
7527        return;
7528    }
7529
7530    idx = extract32(imm5, 1 + size, 4 - size);
7531    write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7532
7533    /* INS is considered a 128-bit write for SVE. */
7534    clear_vec_high(s, true, rd);
7535}
7536
7537/*
7538 * UMOV (General)
7539 * SMOV (General)
7540 *
7541 *  31  30   29              21 20    16 15    12   10 9    5 4    0
7542 * +---+---+-------------------+--------+-------------+------+------+
7543 * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7544 * +---+---+-------------------+--------+-------------+------+------+
7545 *
7546 * U: unsigned when set
7547 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7548 */
7549static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7550                                  int rn, int rd, int imm5)
7551{
7552    int size = ctz32(imm5);
7553    int element;
7554    TCGv_i64 tcg_rd;
7555
7556    /* Check for UnallocatedEncodings */
7557    if (is_signed) {
7558        if (size > 2 || (size == 2 && !is_q)) {
7559            unallocated_encoding(s);
7560            return;
7561        }
7562    } else {
7563        if (size > 3
7564            || (size < 3 && is_q)
7565            || (size == 3 && !is_q)) {
7566            unallocated_encoding(s);
7567            return;
7568        }
7569    }
7570
7571    if (!fp_access_check(s)) {
7572        return;
7573    }
7574
7575    element = extract32(imm5, 1+size, 4);
7576
7577    tcg_rd = cpu_reg(s, rd);
7578    read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7579    if (is_signed && !is_q) {
7580        tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7581    }
7582}
7583
7584/* AdvSIMD copy
7585 *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7586 * +---+---+----+-----------------+------+---+------+---+------+------+
7587 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7588 * +---+---+----+-----------------+------+---+------+---+------+------+
7589 */
7590static void disas_simd_copy(DisasContext *s, uint32_t insn)
7591{
7592    int rd = extract32(insn, 0, 5);
7593    int rn = extract32(insn, 5, 5);
7594    int imm4 = extract32(insn, 11, 4);
7595    int op = extract32(insn, 29, 1);
7596    int is_q = extract32(insn, 30, 1);
7597    int imm5 = extract32(insn, 16, 5);
7598
7599    if (op) {
7600        if (is_q) {
7601            /* INS (element) */
7602            handle_simd_inse(s, rd, rn, imm4, imm5);
7603        } else {
7604            unallocated_encoding(s);
7605        }
7606    } else {
7607        switch (imm4) {
7608        case 0:
7609            /* DUP (element - vector) */
7610            handle_simd_dupe(s, is_q, rd, rn, imm5);
7611            break;
7612        case 1:
7613            /* DUP (general) */
7614            handle_simd_dupg(s, is_q, rd, rn, imm5);
7615            break;
7616        case 3:
7617            if (is_q) {
7618                /* INS (general) */
7619                handle_simd_insg(s, rd, rn, imm5);
7620            } else {
7621                unallocated_encoding(s);
7622            }
7623            break;
7624        case 5:
7625        case 7:
7626            /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7627            handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7628            break;
7629        default:
7630            unallocated_encoding(s);
7631            break;
7632        }
7633    }
7634}
7635
7636/* AdvSIMD modified immediate
7637 *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7638 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7639 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7640 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7641 *
7642 * There are a number of operations that can be carried out here:
7643 *   MOVI - move (shifted) imm into register
7644 *   MVNI - move inverted (shifted) imm into register
7645 *   ORR  - bitwise OR of (shifted) imm with register
7646 *   BIC  - bitwise clear of (shifted) imm with register
7647 * With ARMv8.2 we also have:
7648 *   FMOV half-precision
7649 */
7650static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7651{
7652    int rd = extract32(insn, 0, 5);
7653    int cmode = extract32(insn, 12, 4);
7654    int o2 = extract32(insn, 11, 1);
7655    uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7656    bool is_neg = extract32(insn, 29, 1);
7657    bool is_q = extract32(insn, 30, 1);
7658    uint64_t imm = 0;
7659
7660    if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7661        /* Check for FMOV (vector, immediate) - half-precision */
7662        if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7663            unallocated_encoding(s);
7664            return;
7665        }
7666    }
7667
7668    if (!fp_access_check(s)) {
7669        return;
7670    }
7671
7672    if (cmode == 15 && o2 && !is_neg) {
7673        /* FMOV (vector, immediate) - half-precision */
7674        imm = vfp_expand_imm(MO_16, abcdefgh);
7675        /* now duplicate across the lanes */
7676        imm = dup_const(MO_16, imm);
7677    } else {
7678        imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7679    }
7680
7681    if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7682        /* MOVI or MVNI, with MVNI negation handled above.  */
7683        tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7684                             vec_full_reg_size(s), imm);
7685    } else {
7686        /* ORR or BIC, with BIC negation to AND handled above.  */
7687        if (is_neg) {
7688            gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7689        } else {
7690            gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7691        }
7692    }
7693}
7694
7695/* AdvSIMD scalar copy
7696 *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7697 * +-----+----+-----------------+------+---+------+---+------+------+
7698 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7699 * +-----+----+-----------------+------+---+------+---+------+------+
7700 */
7701static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7702{
7703    int rd = extract32(insn, 0, 5);
7704    int rn = extract32(insn, 5, 5);
7705    int imm4 = extract32(insn, 11, 4);
7706    int imm5 = extract32(insn, 16, 5);
7707    int op = extract32(insn, 29, 1);
7708
7709    if (op != 0 || imm4 != 0) {
7710        unallocated_encoding(s);
7711        return;
7712    }
7713
7714    /* DUP (element, scalar) */
7715    handle_simd_dupes(s, rd, rn, imm5);
7716}
7717
7718/* AdvSIMD scalar pairwise
7719 *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7720 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7721 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7722 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7723 */
7724static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7725{
7726    int u = extract32(insn, 29, 1);
7727    int size = extract32(insn, 22, 2);
7728    int opcode = extract32(insn, 12, 5);
7729    int rn = extract32(insn, 5, 5);
7730    int rd = extract32(insn, 0, 5);
7731    TCGv_ptr fpst;
7732
7733    /* For some ops (the FP ones), size[1] is part of the encoding.
7734     * For ADDP strictly it is not but size[1] is always 1 for valid
7735     * encodings.
7736     */
7737    opcode |= (extract32(size, 1, 1) << 5);
7738
7739    switch (opcode) {
7740    case 0x3b: /* ADDP */
7741        if (u || size != 3) {
7742            unallocated_encoding(s);
7743            return;
7744        }
7745        if (!fp_access_check(s)) {
7746            return;
7747        }
7748
7749        fpst = NULL;
7750        break;
7751    case 0xc: /* FMAXNMP */
7752    case 0xd: /* FADDP */
7753    case 0xf: /* FMAXP */
7754    case 0x2c: /* FMINNMP */
7755    case 0x2f: /* FMINP */
7756        /* FP op, size[0] is 32 or 64 bit*/
7757        if (!u) {
7758            if (!dc_isar_feature(aa64_fp16, s)) {
7759                unallocated_encoding(s);
7760                return;
7761            } else {
7762                size = MO_16;
7763            }
7764        } else {
7765            size = extract32(size, 0, 1) ? MO_64 : MO_32;
7766        }
7767
7768        if (!fp_access_check(s)) {
7769            return;
7770        }
7771
7772        fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7773        break;
7774    default:
7775        unallocated_encoding(s);
7776        return;
7777    }
7778
7779    if (size == MO_64) {
7780        TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7781        TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7782        TCGv_i64 tcg_res = tcg_temp_new_i64();
7783
7784        read_vec_element(s, tcg_op1, rn, 0, MO_64);
7785        read_vec_element(s, tcg_op2, rn, 1, MO_64);
7786
7787        switch (opcode) {
7788        case 0x3b: /* ADDP */
7789            tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7790            break;
7791        case 0xc: /* FMAXNMP */
7792            gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7793            break;
7794        case 0xd: /* FADDP */
7795            gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7796            break;
7797        case 0xf: /* FMAXP */
7798            gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7799            break;
7800        case 0x2c: /* FMINNMP */
7801            gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7802            break;
7803        case 0x2f: /* FMINP */
7804            gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7805            break;
7806        default:
7807            g_assert_not_reached();
7808        }
7809
7810        write_fp_dreg(s, rd, tcg_res);
7811    } else {
7812        TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7813        TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7814        TCGv_i32 tcg_res = tcg_temp_new_i32();
7815
7816        read_vec_element_i32(s, tcg_op1, rn, 0, size);
7817        read_vec_element_i32(s, tcg_op2, rn, 1, size);
7818
7819        if (size == MO_16) {
7820            switch (opcode) {
7821            case 0xc: /* FMAXNMP */
7822                gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7823                break;
7824            case 0xd: /* FADDP */
7825                gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7826                break;
7827            case 0xf: /* FMAXP */
7828                gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7829                break;
7830            case 0x2c: /* FMINNMP */
7831                gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7832                break;
7833            case 0x2f: /* FMINP */
7834                gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7835                break;
7836            default:
7837                g_assert_not_reached();
7838            }
7839        } else {
7840            switch (opcode) {
7841            case 0xc: /* FMAXNMP */
7842                gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7843                break;
7844            case 0xd: /* FADDP */
7845                gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7846                break;
7847            case 0xf: /* FMAXP */
7848                gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7849                break;
7850            case 0x2c: /* FMINNMP */
7851                gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7852                break;
7853            case 0x2f: /* FMINP */
7854                gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7855                break;
7856            default:
7857                g_assert_not_reached();
7858            }
7859        }
7860
7861        write_fp_sreg(s, rd, tcg_res);
7862    }
7863}
7864
7865/*
7866 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7867 *
7868 * This code is handles the common shifting code and is used by both
7869 * the vector and scalar code.
7870 */
7871static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7872                                    TCGv_i64 tcg_rnd, bool accumulate,
7873                                    bool is_u, int size, int shift)
7874{
7875    bool extended_result = false;
7876    bool round = tcg_rnd != NULL;
7877    int ext_lshift = 0;
7878    TCGv_i64 tcg_src_hi;
7879
7880    if (round && size == 3) {
7881        extended_result = true;
7882        ext_lshift = 64 - shift;
7883        tcg_src_hi = tcg_temp_new_i64();
7884    } else if (shift == 64) {
7885        if (!accumulate && is_u) {
7886            /* result is zero */
7887            tcg_gen_movi_i64(tcg_res, 0);
7888            return;
7889        }
7890    }
7891
7892    /* Deal with the rounding step */
7893    if (round) {
7894        if (extended_result) {
7895            TCGv_i64 tcg_zero = tcg_constant_i64(0);
7896            if (!is_u) {
7897                /* take care of sign extending tcg_res */
7898                tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7899                tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7900                                 tcg_src, tcg_src_hi,
7901                                 tcg_rnd, tcg_zero);
7902            } else {
7903                tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7904                                 tcg_src, tcg_zero,
7905                                 tcg_rnd, tcg_zero);
7906            }
7907        } else {
7908            tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7909        }
7910    }
7911
7912    /* Now do the shift right */
7913    if (round && extended_result) {
7914        /* extended case, >64 bit precision required */
7915        if (ext_lshift == 0) {
7916            /* special case, only high bits matter */
7917            tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7918        } else {
7919            tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7920            tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7921            tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7922        }
7923    } else {
7924        if (is_u) {
7925            if (shift == 64) {
7926                /* essentially shifting in 64 zeros */
7927                tcg_gen_movi_i64(tcg_src, 0);
7928            } else {
7929                tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7930            }
7931        } else {
7932            if (shift == 64) {
7933                /* effectively extending the sign-bit */
7934                tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7935            } else {
7936                tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7937            }
7938        }
7939    }
7940
7941    if (accumulate) {
7942        tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7943    } else {
7944        tcg_gen_mov_i64(tcg_res, tcg_src);
7945    }
7946}
7947
7948/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7949static void handle_scalar_simd_shri(DisasContext *s,
7950                                    bool is_u, int immh, int immb,
7951                                    int opcode, int rn, int rd)
7952{
7953    const int size = 3;
7954    int immhb = immh << 3 | immb;
7955    int shift = 2 * (8 << size) - immhb;
7956    bool accumulate = false;
7957    bool round = false;
7958    bool insert = false;
7959    TCGv_i64 tcg_rn;
7960    TCGv_i64 tcg_rd;
7961    TCGv_i64 tcg_round;
7962
7963    if (!extract32(immh, 3, 1)) {
7964        unallocated_encoding(s);
7965        return;
7966    }
7967
7968    if (!fp_access_check(s)) {
7969        return;
7970    }
7971
7972    switch (opcode) {
7973    case 0x02: /* SSRA / USRA (accumulate) */
7974        accumulate = true;
7975        break;
7976    case 0x04: /* SRSHR / URSHR (rounding) */
7977        round = true;
7978        break;
7979    case 0x06: /* SRSRA / URSRA (accum + rounding) */
7980        accumulate = round = true;
7981        break;
7982    case 0x08: /* SRI */
7983        insert = true;
7984        break;
7985    }
7986
7987    if (round) {
7988        tcg_round = tcg_constant_i64(1ULL << (shift - 1));
7989    } else {
7990        tcg_round = NULL;
7991    }
7992
7993    tcg_rn = read_fp_dreg(s, rn);
7994    tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7995
7996    if (insert) {
7997        /* shift count same as element size is valid but does nothing;
7998         * special case to avoid potential shift by 64.
7999         */
8000        int esize = 8 << size;
8001        if (shift != esize) {
8002            tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8003            tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8004        }
8005    } else {
8006        handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8007                                accumulate, is_u, size, shift);
8008    }
8009
8010    write_fp_dreg(s, rd, tcg_rd);
8011}
8012
8013/* SHL/SLI - Scalar shift left */
8014static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8015                                    int immh, int immb, int opcode,
8016                                    int rn, int rd)
8017{
8018    int size = 32 - clz32(immh) - 1;
8019    int immhb = immh << 3 | immb;
8020    int shift = immhb - (8 << size);
8021    TCGv_i64 tcg_rn;
8022    TCGv_i64 tcg_rd;
8023
8024    if (!extract32(immh, 3, 1)) {
8025        unallocated_encoding(s);
8026        return;
8027    }
8028
8029    if (!fp_access_check(s)) {
8030        return;
8031    }
8032
8033    tcg_rn = read_fp_dreg(s, rn);
8034    tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8035
8036    if (insert) {
8037        tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8038    } else {
8039        tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8040    }
8041
8042    write_fp_dreg(s, rd, tcg_rd);
8043}
8044
8045/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8046 * (signed/unsigned) narrowing */
8047static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8048                                   bool is_u_shift, bool is_u_narrow,
8049                                   int immh, int immb, int opcode,
8050                                   int rn, int rd)
8051{
8052    int immhb = immh << 3 | immb;
8053    int size = 32 - clz32(immh) - 1;
8054    int esize = 8 << size;
8055    int shift = (2 * esize) - immhb;
8056    int elements = is_scalar ? 1 : (64 / esize);
8057    bool round = extract32(opcode, 0, 1);
8058    MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8059    TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8060    TCGv_i32 tcg_rd_narrowed;
8061    TCGv_i64 tcg_final;
8062
8063    static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8064        { gen_helper_neon_narrow_sat_s8,
8065          gen_helper_neon_unarrow_sat8 },
8066        { gen_helper_neon_narrow_sat_s16,
8067          gen_helper_neon_unarrow_sat16 },
8068        { gen_helper_neon_narrow_sat_s32,
8069          gen_helper_neon_unarrow_sat32 },
8070        { NULL, NULL },
8071    };
8072    static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8073        gen_helper_neon_narrow_sat_u8,
8074        gen_helper_neon_narrow_sat_u16,
8075        gen_helper_neon_narrow_sat_u32,
8076        NULL
8077    };
8078    NeonGenNarrowEnvFn *narrowfn;
8079
8080    int i;
8081
8082    assert(size < 4);
8083
8084    if (extract32(immh, 3, 1)) {
8085        unallocated_encoding(s);
8086        return;
8087    }
8088
8089    if (!fp_access_check(s)) {
8090        return;
8091    }
8092
8093    if (is_u_shift) {
8094        narrowfn = unsigned_narrow_fns[size];
8095    } else {
8096        narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8097    }
8098
8099    tcg_rn = tcg_temp_new_i64();
8100    tcg_rd = tcg_temp_new_i64();
8101    tcg_rd_narrowed = tcg_temp_new_i32();
8102    tcg_final = tcg_temp_new_i64();
8103
8104    if (round) {
8105        tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8106    } else {
8107        tcg_round = NULL;
8108    }
8109
8110    for (i = 0; i < elements; i++) {
8111        read_vec_element(s, tcg_rn, rn, i, ldop);
8112        handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8113                                false, is_u_shift, size+1, shift);
8114        narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8115        tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8116        if (i == 0) {
8117            tcg_gen_mov_i64(tcg_final, tcg_rd);
8118        } else {
8119            tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8120        }
8121    }
8122
8123    if (!is_q) {
8124        write_vec_element(s, tcg_final, rd, 0, MO_64);
8125    } else {
8126        write_vec_element(s, tcg_final, rd, 1, MO_64);
8127    }
8128    clear_vec_high(s, is_q, rd);
8129}
8130
8131/* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8132static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8133                             bool src_unsigned, bool dst_unsigned,
8134                             int immh, int immb, int rn, int rd)
8135{
8136    int immhb = immh << 3 | immb;
8137    int size = 32 - clz32(immh) - 1;
8138    int shift = immhb - (8 << size);
8139    int pass;
8140
8141    assert(immh != 0);
8142    assert(!(scalar && is_q));
8143
8144    if (!scalar) {
8145        if (!is_q && extract32(immh, 3, 1)) {
8146            unallocated_encoding(s);
8147            return;
8148        }
8149
8150        /* Since we use the variable-shift helpers we must
8151         * replicate the shift count into each element of
8152         * the tcg_shift value.
8153         */
8154        switch (size) {
8155        case 0:
8156            shift |= shift << 8;
8157            /* fall through */
8158        case 1:
8159            shift |= shift << 16;
8160            break;
8161        case 2:
8162        case 3:
8163            break;
8164        default:
8165            g_assert_not_reached();
8166        }
8167    }
8168
8169    if (!fp_access_check(s)) {
8170        return;
8171    }
8172
8173    if (size == 3) {
8174        TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8175        static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8176            { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8177            { NULL, gen_helper_neon_qshl_u64 },
8178        };
8179        NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8180        int maxpass = is_q ? 2 : 1;
8181
8182        for (pass = 0; pass < maxpass; pass++) {
8183            TCGv_i64 tcg_op = tcg_temp_new_i64();
8184
8185            read_vec_element(s, tcg_op, rn, pass, MO_64);
8186            genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8187            write_vec_element(s, tcg_op, rd, pass, MO_64);
8188        }
8189        clear_vec_high(s, is_q, rd);
8190    } else {
8191        TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8192        static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8193            {
8194                { gen_helper_neon_qshl_s8,
8195                  gen_helper_neon_qshl_s16,
8196                  gen_helper_neon_qshl_s32 },
8197                { gen_helper_neon_qshlu_s8,
8198                  gen_helper_neon_qshlu_s16,
8199                  gen_helper_neon_qshlu_s32 }
8200            }, {
8201                { NULL, NULL, NULL },
8202                { gen_helper_neon_qshl_u8,
8203                  gen_helper_neon_qshl_u16,
8204                  gen_helper_neon_qshl_u32 }
8205            }
8206        };
8207        NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8208        MemOp memop = scalar ? size : MO_32;
8209        int maxpass = scalar ? 1 : is_q ? 4 : 2;
8210
8211        for (pass = 0; pass < maxpass; pass++) {
8212            TCGv_i32 tcg_op = tcg_temp_new_i32();
8213
8214            read_vec_element_i32(s, tcg_op, rn, pass, memop);
8215            genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8216            if (scalar) {
8217                switch (size) {
8218                case 0:
8219                    tcg_gen_ext8u_i32(tcg_op, tcg_op);
8220                    break;
8221                case 1:
8222                    tcg_gen_ext16u_i32(tcg_op, tcg_op);
8223                    break;
8224                case 2:
8225                    break;
8226                default:
8227                    g_assert_not_reached();
8228                }
8229                write_fp_sreg(s, rd, tcg_op);
8230            } else {
8231                write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8232            }
8233        }
8234
8235        if (!scalar) {
8236            clear_vec_high(s, is_q, rd);
8237        }
8238    }
8239}
8240
8241/* Common vector code for handling integer to FP conversion */
8242static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8243                                   int elements, int is_signed,
8244                                   int fracbits, int size)
8245{
8246    TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8247    TCGv_i32 tcg_shift = NULL;
8248
8249    MemOp mop = size | (is_signed ? MO_SIGN : 0);
8250    int pass;
8251
8252    if (fracbits || size == MO_64) {
8253        tcg_shift = tcg_constant_i32(fracbits);
8254    }
8255
8256    if (size == MO_64) {
8257        TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8258        TCGv_i64 tcg_double = tcg_temp_new_i64();
8259
8260        for (pass = 0; pass < elements; pass++) {
8261            read_vec_element(s, tcg_int64, rn, pass, mop);
8262
8263            if (is_signed) {
8264                gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8265                                     tcg_shift, tcg_fpst);
8266            } else {
8267                gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8268                                     tcg_shift, tcg_fpst);
8269            }
8270            if (elements == 1) {
8271                write_fp_dreg(s, rd, tcg_double);
8272            } else {
8273                write_vec_element(s, tcg_double, rd, pass, MO_64);
8274            }
8275        }
8276    } else {
8277        TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8278        TCGv_i32 tcg_float = tcg_temp_new_i32();
8279
8280        for (pass = 0; pass < elements; pass++) {
8281            read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8282
8283            switch (size) {
8284            case MO_32:
8285                if (fracbits) {
8286                    if (is_signed) {
8287                        gen_helper_vfp_sltos(tcg_float, tcg_int32,
8288                                             tcg_shift, tcg_fpst);
8289                    } else {
8290                        gen_helper_vfp_ultos(tcg_float, tcg_int32,
8291                                             tcg_shift, tcg_fpst);
8292                    }
8293                } else {
8294                    if (is_signed) {
8295                        gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8296                    } else {
8297                        gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8298                    }
8299                }
8300                break;
8301            case MO_16:
8302                if (fracbits) {
8303                    if (is_signed) {
8304                        gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8305                                             tcg_shift, tcg_fpst);
8306                    } else {
8307                        gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8308                                             tcg_shift, tcg_fpst);
8309                    }
8310                } else {
8311                    if (is_signed) {
8312                        gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8313                    } else {
8314                        gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8315                    }
8316                }
8317                break;
8318            default:
8319                g_assert_not_reached();
8320            }
8321
8322            if (elements == 1) {
8323                write_fp_sreg(s, rd, tcg_float);
8324            } else {
8325                write_vec_element_i32(s, tcg_float, rd, pass, size);
8326            }
8327        }
8328    }
8329
8330    clear_vec_high(s, elements << size == 16, rd);
8331}
8332
8333/* UCVTF/SCVTF - Integer to FP conversion */
8334static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8335                                         bool is_q, bool is_u,
8336                                         int immh, int immb, int opcode,
8337                                         int rn, int rd)
8338{
8339    int size, elements, fracbits;
8340    int immhb = immh << 3 | immb;
8341
8342    if (immh & 8) {
8343        size = MO_64;
8344        if (!is_scalar && !is_q) {
8345            unallocated_encoding(s);
8346            return;
8347        }
8348    } else if (immh & 4) {
8349        size = MO_32;
8350    } else if (immh & 2) {
8351        size = MO_16;
8352        if (!dc_isar_feature(aa64_fp16, s)) {
8353            unallocated_encoding(s);
8354            return;
8355        }
8356    } else {
8357        /* immh == 0 would be a failure of the decode logic */
8358        g_assert(immh == 1);
8359        unallocated_encoding(s);
8360        return;
8361    }
8362
8363    if (is_scalar) {
8364        elements = 1;
8365    } else {
8366        elements = (8 << is_q) >> size;
8367    }
8368    fracbits = (16 << size) - immhb;
8369
8370    if (!fp_access_check(s)) {
8371        return;
8372    }
8373
8374    handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8375}
8376
8377/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8378static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8379                                         bool is_q, bool is_u,
8380                                         int immh, int immb, int rn, int rd)
8381{
8382    int immhb = immh << 3 | immb;
8383    int pass, size, fracbits;
8384    TCGv_ptr tcg_fpstatus;
8385    TCGv_i32 tcg_rmode, tcg_shift;
8386
8387    if (immh & 0x8) {
8388        size = MO_64;
8389        if (!is_scalar && !is_q) {
8390            unallocated_encoding(s);
8391            return;
8392        }
8393    } else if (immh & 0x4) {
8394        size = MO_32;
8395    } else if (immh & 0x2) {
8396        size = MO_16;
8397        if (!dc_isar_feature(aa64_fp16, s)) {
8398            unallocated_encoding(s);
8399            return;
8400        }
8401    } else {
8402        /* Should have split out AdvSIMD modified immediate earlier.  */
8403        assert(immh == 1);
8404        unallocated_encoding(s);
8405        return;
8406    }
8407
8408    if (!fp_access_check(s)) {
8409        return;
8410    }
8411
8412    assert(!(is_scalar && is_q));
8413
8414    tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8415    tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8416    fracbits = (16 << size) - immhb;
8417    tcg_shift = tcg_constant_i32(fracbits);
8418
8419    if (size == MO_64) {
8420        int maxpass = is_scalar ? 1 : 2;
8421
8422        for (pass = 0; pass < maxpass; pass++) {
8423            TCGv_i64 tcg_op = tcg_temp_new_i64();
8424
8425            read_vec_element(s, tcg_op, rn, pass, MO_64);
8426            if (is_u) {
8427                gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8428            } else {
8429                gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8430            }
8431            write_vec_element(s, tcg_op, rd, pass, MO_64);
8432        }
8433        clear_vec_high(s, is_q, rd);
8434    } else {
8435        void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8436        int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8437
8438        switch (size) {
8439        case MO_16:
8440            if (is_u) {
8441                fn = gen_helper_vfp_touhh;
8442            } else {
8443                fn = gen_helper_vfp_toshh;
8444            }
8445            break;
8446        case MO_32:
8447            if (is_u) {
8448                fn = gen_helper_vfp_touls;
8449            } else {
8450                fn = gen_helper_vfp_tosls;
8451            }
8452            break;
8453        default:
8454            g_assert_not_reached();
8455        }
8456
8457        for (pass = 0; pass < maxpass; pass++) {
8458            TCGv_i32 tcg_op = tcg_temp_new_i32();
8459
8460            read_vec_element_i32(s, tcg_op, rn, pass, size);
8461            fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8462            if (is_scalar) {
8463                write_fp_sreg(s, rd, tcg_op);
8464            } else {
8465                write_vec_element_i32(s, tcg_op, rd, pass, size);
8466            }
8467        }
8468        if (!is_scalar) {
8469            clear_vec_high(s, is_q, rd);
8470        }
8471    }
8472
8473    gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8474}
8475
8476/* AdvSIMD scalar shift by immediate
8477 *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8478 * +-----+---+-------------+------+------+--------+---+------+------+
8479 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8480 * +-----+---+-------------+------+------+--------+---+------+------+
8481 *
8482 * This is the scalar version so it works on a fixed sized registers
8483 */
8484static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8485{
8486    int rd = extract32(insn, 0, 5);
8487    int rn = extract32(insn, 5, 5);
8488    int opcode = extract32(insn, 11, 5);
8489    int immb = extract32(insn, 16, 3);
8490    int immh = extract32(insn, 19, 4);
8491    bool is_u = extract32(insn, 29, 1);
8492
8493    if (immh == 0) {
8494        unallocated_encoding(s);
8495        return;
8496    }
8497
8498    switch (opcode) {
8499    case 0x08: /* SRI */
8500        if (!is_u) {
8501            unallocated_encoding(s);
8502            return;
8503        }
8504        /* fall through */
8505    case 0x00: /* SSHR / USHR */
8506    case 0x02: /* SSRA / USRA */
8507    case 0x04: /* SRSHR / URSHR */
8508    case 0x06: /* SRSRA / URSRA */
8509        handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8510        break;
8511    case 0x0a: /* SHL / SLI */
8512        handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8513        break;
8514    case 0x1c: /* SCVTF, UCVTF */
8515        handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8516                                     opcode, rn, rd);
8517        break;
8518    case 0x10: /* SQSHRUN, SQSHRUN2 */
8519    case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8520        if (!is_u) {
8521            unallocated_encoding(s);
8522            return;
8523        }
8524        handle_vec_simd_sqshrn(s, true, false, false, true,
8525                               immh, immb, opcode, rn, rd);
8526        break;
8527    case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8528    case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8529        handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8530                               immh, immb, opcode, rn, rd);
8531        break;
8532    case 0xc: /* SQSHLU */
8533        if (!is_u) {
8534            unallocated_encoding(s);
8535            return;
8536        }
8537        handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8538        break;
8539    case 0xe: /* SQSHL, UQSHL */
8540        handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8541        break;
8542    case 0x1f: /* FCVTZS, FCVTZU */
8543        handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8544        break;
8545    default:
8546        unallocated_encoding(s);
8547        break;
8548    }
8549}
8550
8551/* AdvSIMD scalar three different
8552 *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8553 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8554 * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8555 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8556 */
8557static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8558{
8559    bool is_u = extract32(insn, 29, 1);
8560    int size = extract32(insn, 22, 2);
8561    int opcode = extract32(insn, 12, 4);
8562    int rm = extract32(insn, 16, 5);
8563    int rn = extract32(insn, 5, 5);
8564    int rd = extract32(insn, 0, 5);
8565
8566    if (is_u) {
8567        unallocated_encoding(s);
8568        return;
8569    }
8570
8571    switch (opcode) {
8572    case 0x9: /* SQDMLAL, SQDMLAL2 */
8573    case 0xb: /* SQDMLSL, SQDMLSL2 */
8574    case 0xd: /* SQDMULL, SQDMULL2 */
8575        if (size == 0 || size == 3) {
8576            unallocated_encoding(s);
8577            return;
8578        }
8579        break;
8580    default:
8581        unallocated_encoding(s);
8582        return;
8583    }
8584
8585    if (!fp_access_check(s)) {
8586        return;
8587    }
8588
8589    if (size == 2) {
8590        TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8591        TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8592        TCGv_i64 tcg_res = tcg_temp_new_i64();
8593
8594        read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8595        read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8596
8597        tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8598        gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8599
8600        switch (opcode) {
8601        case 0xd: /* SQDMULL, SQDMULL2 */
8602            break;
8603        case 0xb: /* SQDMLSL, SQDMLSL2 */
8604            tcg_gen_neg_i64(tcg_res, tcg_res);
8605            /* fall through */
8606        case 0x9: /* SQDMLAL, SQDMLAL2 */
8607            read_vec_element(s, tcg_op1, rd, 0, MO_64);
8608            gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8609                                              tcg_res, tcg_op1);
8610            break;
8611        default:
8612            g_assert_not_reached();
8613        }
8614
8615        write_fp_dreg(s, rd, tcg_res);
8616    } else {
8617        TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8618        TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8619        TCGv_i64 tcg_res = tcg_temp_new_i64();
8620
8621        gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8622        gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8623
8624        switch (opcode) {
8625        case 0xd: /* SQDMULL, SQDMULL2 */
8626            break;
8627        case 0xb: /* SQDMLSL, SQDMLSL2 */
8628            gen_helper_neon_negl_u32(tcg_res, tcg_res);
8629            /* fall through */
8630        case 0x9: /* SQDMLAL, SQDMLAL2 */
8631        {
8632            TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8633            read_vec_element(s, tcg_op3, rd, 0, MO_32);
8634            gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8635                                              tcg_res, tcg_op3);
8636            break;
8637        }
8638        default:
8639            g_assert_not_reached();
8640        }
8641
8642        tcg_gen_ext32u_i64(tcg_res, tcg_res);
8643        write_fp_dreg(s, rd, tcg_res);
8644    }
8645}
8646
8647static void handle_3same_64(DisasContext *s, int opcode, bool u,
8648                            TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8649{
8650    /* Handle 64x64->64 opcodes which are shared between the scalar
8651     * and vector 3-same groups. We cover every opcode where size == 3
8652     * is valid in either the three-reg-same (integer, not pairwise)
8653     * or scalar-three-reg-same groups.
8654     */
8655    TCGCond cond;
8656
8657    switch (opcode) {
8658    case 0x1: /* SQADD */
8659        if (u) {
8660            gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8661        } else {
8662            gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8663        }
8664        break;
8665    case 0x5: /* SQSUB */
8666        if (u) {
8667            gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8668        } else {
8669            gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8670        }
8671        break;
8672    case 0x6: /* CMGT, CMHI */
8673        /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8674         * We implement this using setcond (test) and then negating.
8675         */
8676        cond = u ? TCG_COND_GTU : TCG_COND_GT;
8677    do_cmop:
8678        tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8679        tcg_gen_neg_i64(tcg_rd, tcg_rd);
8680        break;
8681    case 0x7: /* CMGE, CMHS */
8682        cond = u ? TCG_COND_GEU : TCG_COND_GE;
8683        goto do_cmop;
8684    case 0x11: /* CMTST, CMEQ */
8685        if (u) {
8686            cond = TCG_COND_EQ;
8687            goto do_cmop;
8688        }
8689        gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8690        break;
8691    case 0x8: /* SSHL, USHL */
8692        if (u) {
8693            gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8694        } else {
8695            gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8696        }
8697        break;
8698    case 0x9: /* SQSHL, UQSHL */
8699        if (u) {
8700            gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8701        } else {
8702            gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8703        }
8704        break;
8705    case 0xa: /* SRSHL, URSHL */
8706        if (u) {
8707            gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8708        } else {
8709            gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8710        }
8711        break;
8712    case 0xb: /* SQRSHL, UQRSHL */
8713        if (u) {
8714            gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8715        } else {
8716            gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8717        }
8718        break;
8719    case 0x10: /* ADD, SUB */
8720        if (u) {
8721            tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8722        } else {
8723            tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8724        }
8725        break;
8726    default:
8727        g_assert_not_reached();
8728    }
8729}
8730
8731/* Handle the 3-same-operands float operations; shared by the scalar
8732 * and vector encodings. The caller must filter out any encodings
8733 * not allocated for the encoding it is dealing with.
8734 */
8735static void handle_3same_float(DisasContext *s, int size, int elements,
8736                               int fpopcode, int rd, int rn, int rm)
8737{
8738    int pass;
8739    TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8740
8741    for (pass = 0; pass < elements; pass++) {
8742        if (size) {
8743            /* Double */
8744            TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8745            TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8746            TCGv_i64 tcg_res = tcg_temp_new_i64();
8747
8748            read_vec_element(s, tcg_op1, rn, pass, MO_64);
8749            read_vec_element(s, tcg_op2, rm, pass, MO_64);
8750
8751            switch (fpopcode) {
8752            case 0x39: /* FMLS */
8753                /* As usual for ARM, separate negation for fused multiply-add */
8754                gen_helper_vfp_negd(tcg_op1, tcg_op1);
8755                /* fall through */
8756            case 0x19: /* FMLA */
8757                read_vec_element(s, tcg_res, rd, pass, MO_64);
8758                gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8759                                       tcg_res, fpst);
8760                break;
8761            case 0x18: /* FMAXNM */
8762                gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8763                break;
8764            case 0x1a: /* FADD */
8765                gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8766                break;
8767            case 0x1b: /* FMULX */
8768                gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8769                break;
8770            case 0x1c: /* FCMEQ */
8771                gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8772                break;
8773            case 0x1e: /* FMAX */
8774                gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8775                break;
8776            case 0x1f: /* FRECPS */
8777                gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8778                break;
8779            case 0x38: /* FMINNM */
8780                gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8781                break;
8782            case 0x3a: /* FSUB */
8783                gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8784                break;
8785            case 0x3e: /* FMIN */
8786                gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8787                break;
8788            case 0x3f: /* FRSQRTS */
8789                gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8790                break;
8791            case 0x5b: /* FMUL */
8792                gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8793                break;
8794            case 0x5c: /* FCMGE */
8795                gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8796                break;
8797            case 0x5d: /* FACGE */
8798                gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8799                break;
8800            case 0x5f: /* FDIV */
8801                gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8802                break;
8803            case 0x7a: /* FABD */
8804                gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8805                gen_helper_vfp_absd(tcg_res, tcg_res);
8806                break;
8807            case 0x7c: /* FCMGT */
8808                gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8809                break;
8810            case 0x7d: /* FACGT */
8811                gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8812                break;
8813            default:
8814                g_assert_not_reached();
8815            }
8816
8817            write_vec_element(s, tcg_res, rd, pass, MO_64);
8818        } else {
8819            /* Single */
8820            TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8821            TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8822            TCGv_i32 tcg_res = tcg_temp_new_i32();
8823
8824            read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8825            read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8826
8827            switch (fpopcode) {
8828            case 0x39: /* FMLS */
8829                /* As usual for ARM, separate negation for fused multiply-add */
8830                gen_helper_vfp_negs(tcg_op1, tcg_op1);
8831                /* fall through */
8832            case 0x19: /* FMLA */
8833                read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8834                gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8835                                       tcg_res, fpst);
8836                break;
8837            case 0x1a: /* FADD */
8838                gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8839                break;
8840            case 0x1b: /* FMULX */
8841                gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8842                break;
8843            case 0x1c: /* FCMEQ */
8844                gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8845                break;
8846            case 0x1e: /* FMAX */
8847                gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8848                break;
8849            case 0x1f: /* FRECPS */
8850                gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8851                break;
8852            case 0x18: /* FMAXNM */
8853                gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8854                break;
8855            case 0x38: /* FMINNM */
8856                gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8857                break;
8858            case 0x3a: /* FSUB */
8859                gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8860                break;
8861            case 0x3e: /* FMIN */
8862                gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8863                break;
8864            case 0x3f: /* FRSQRTS */
8865                gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8866                break;
8867            case 0x5b: /* FMUL */
8868                gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8869                break;
8870            case 0x5c: /* FCMGE */
8871                gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8872                break;
8873            case 0x5d: /* FACGE */
8874                gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8875                break;
8876            case 0x5f: /* FDIV */
8877                gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8878                break;
8879            case 0x7a: /* FABD */
8880                gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8881                gen_helper_vfp_abss(tcg_res, tcg_res);
8882                break;
8883            case 0x7c: /* FCMGT */
8884                gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8885                break;
8886            case 0x7d: /* FACGT */
8887                gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8888                break;
8889            default:
8890                g_assert_not_reached();
8891            }
8892
8893            if (elements == 1) {
8894                /* scalar single so clear high part */
8895                TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8896
8897                tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8898                write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8899            } else {
8900                write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8901            }
8902        }
8903    }
8904
8905    clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8906}
8907
8908/* AdvSIMD scalar three same
8909 *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
8910 * +-----+---+-----------+------+---+------+--------+---+------+------+
8911 * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
8912 * +-----+---+-----------+------+---+------+--------+---+------+------+
8913 */
8914static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8915{
8916    int rd = extract32(insn, 0, 5);
8917    int rn = extract32(insn, 5, 5);
8918    int opcode = extract32(insn, 11, 5);
8919    int rm = extract32(insn, 16, 5);
8920    int size = extract32(insn, 22, 2);
8921    bool u = extract32(insn, 29, 1);
8922    TCGv_i64 tcg_rd;
8923
8924    if (opcode >= 0x18) {
8925        /* Floating point: U, size[1] and opcode indicate operation */
8926        int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8927        switch (fpopcode) {
8928        case 0x1b: /* FMULX */
8929        case 0x1f: /* FRECPS */
8930        case 0x3f: /* FRSQRTS */
8931        case 0x5d: /* FACGE */
8932        case 0x7d: /* FACGT */
8933        case 0x1c: /* FCMEQ */
8934        case 0x5c: /* FCMGE */
8935        case 0x7c: /* FCMGT */
8936        case 0x7a: /* FABD */
8937            break;
8938        default:
8939            unallocated_encoding(s);
8940            return;
8941        }
8942
8943        if (!fp_access_check(s)) {
8944            return;
8945        }
8946
8947        handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8948        return;
8949    }
8950
8951    switch (opcode) {
8952    case 0x1: /* SQADD, UQADD */
8953    case 0x5: /* SQSUB, UQSUB */
8954    case 0x9: /* SQSHL, UQSHL */
8955    case 0xb: /* SQRSHL, UQRSHL */
8956        break;
8957    case 0x8: /* SSHL, USHL */
8958    case 0xa: /* SRSHL, URSHL */
8959    case 0x6: /* CMGT, CMHI */
8960    case 0x7: /* CMGE, CMHS */
8961    case 0x11: /* CMTST, CMEQ */
8962    case 0x10: /* ADD, SUB (vector) */
8963        if (size != 3) {
8964            unallocated_encoding(s);
8965            return;
8966        }
8967        break;
8968    case 0x16: /* SQDMULH, SQRDMULH (vector) */
8969        if (size != 1 && size != 2) {
8970            unallocated_encoding(s);
8971            return;
8972        }
8973        break;
8974    default:
8975        unallocated_encoding(s);
8976        return;
8977    }
8978
8979    if (!fp_access_check(s)) {
8980        return;
8981    }
8982
8983    tcg_rd = tcg_temp_new_i64();
8984
8985    if (size == 3) {
8986        TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8987        TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8988
8989        handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8990    } else {
8991        /* Do a single operation on the lowest element in the vector.
8992         * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8993         * no side effects for all these operations.
8994         * OPTME: special-purpose helpers would avoid doing some
8995         * unnecessary work in the helper for the 8 and 16 bit cases.
8996         */
8997        NeonGenTwoOpEnvFn *genenvfn;
8998        TCGv_i32 tcg_rn = tcg_temp_new_i32();
8999        TCGv_i32 tcg_rm = tcg_temp_new_i32();
9000        TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9001
9002        read_vec_element_i32(s, tcg_rn, rn, 0, size);
9003        read_vec_element_i32(s, tcg_rm, rm, 0, size);
9004
9005        switch (opcode) {
9006        case 0x1: /* SQADD, UQADD */
9007        {
9008            static NeonGenTwoOpEnvFn * const fns[3][2] = {
9009                { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9010                { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9011                { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9012            };
9013            genenvfn = fns[size][u];
9014            break;
9015        }
9016        case 0x5: /* SQSUB, UQSUB */
9017        {
9018            static NeonGenTwoOpEnvFn * const fns[3][2] = {
9019                { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9020                { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9021                { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9022            };
9023            genenvfn = fns[size][u];
9024            break;
9025        }
9026        case 0x9: /* SQSHL, UQSHL */
9027        {
9028            static NeonGenTwoOpEnvFn * const fns[3][2] = {
9029                { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9030                { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9031                { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9032            };
9033            genenvfn = fns[size][u];
9034            break;
9035        }
9036        case 0xb: /* SQRSHL, UQRSHL */
9037        {
9038            static NeonGenTwoOpEnvFn * const fns[3][2] = {
9039                { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9040                { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9041                { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9042            };
9043            genenvfn = fns[size][u];
9044            break;
9045        }
9046        case 0x16: /* SQDMULH, SQRDMULH */
9047        {
9048            static NeonGenTwoOpEnvFn * const fns[2][2] = {
9049                { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9050                { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9051            };
9052            assert(size == 1 || size == 2);
9053            genenvfn = fns[size - 1][u];
9054            break;
9055        }
9056        default:
9057            g_assert_not_reached();
9058        }
9059
9060        genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9061        tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9062    }
9063
9064    write_fp_dreg(s, rd, tcg_rd);
9065}
9066
9067/* AdvSIMD scalar three same FP16
9068 *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9069 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9070 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9071 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9072 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9073 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9074 */
9075static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9076                                                  uint32_t insn)
9077{
9078    int rd = extract32(insn, 0, 5);
9079    int rn = extract32(insn, 5, 5);
9080    int opcode = extract32(insn, 11, 3);
9081    int rm = extract32(insn, 16, 5);
9082    bool u = extract32(insn, 29, 1);
9083    bool a = extract32(insn, 23, 1);
9084    int fpopcode = opcode | (a << 3) |  (u << 4);
9085    TCGv_ptr fpst;
9086    TCGv_i32 tcg_op1;
9087    TCGv_i32 tcg_op2;
9088    TCGv_i32 tcg_res;
9089
9090    switch (fpopcode) {
9091    case 0x03: /* FMULX */
9092    case 0x04: /* FCMEQ (reg) */
9093    case 0x07: /* FRECPS */
9094    case 0x0f: /* FRSQRTS */
9095    case 0x14: /* FCMGE (reg) */
9096    case 0x15: /* FACGE */
9097    case 0x1a: /* FABD */
9098    case 0x1c: /* FCMGT (reg) */
9099    case 0x1d: /* FACGT */
9100        break;
9101    default:
9102        unallocated_encoding(s);
9103        return;
9104    }
9105
9106    if (!dc_isar_feature(aa64_fp16, s)) {
9107        unallocated_encoding(s);
9108    }
9109
9110    if (!fp_access_check(s)) {
9111        return;
9112    }
9113
9114    fpst = fpstatus_ptr(FPST_FPCR_F16);
9115
9116    tcg_op1 = read_fp_hreg(s, rn);
9117    tcg_op2 = read_fp_hreg(s, rm);
9118    tcg_res = tcg_temp_new_i32();
9119
9120    switch (fpopcode) {
9121    case 0x03: /* FMULX */
9122        gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9123        break;
9124    case 0x04: /* FCMEQ (reg) */
9125        gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9126        break;
9127    case 0x07: /* FRECPS */
9128        gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9129        break;
9130    case 0x0f: /* FRSQRTS */
9131        gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9132        break;
9133    case 0x14: /* FCMGE (reg) */
9134        gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9135        break;
9136    case 0x15: /* FACGE */
9137        gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9138        break;
9139    case 0x1a: /* FABD */
9140        gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9141        tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9142        break;
9143    case 0x1c: /* FCMGT (reg) */
9144        gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9145        break;
9146    case 0x1d: /* FACGT */
9147        gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9148        break;
9149    default:
9150        g_assert_not_reached();
9151    }
9152
9153    write_fp_sreg(s, rd, tcg_res);
9154}
9155
9156/* AdvSIMD scalar three same extra
9157 *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9158 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9159 * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9160 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9161 */
9162static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9163                                                   uint32_t insn)
9164{
9165    int rd = extract32(insn, 0, 5);
9166    int rn = extract32(insn, 5, 5);
9167    int opcode = extract32(insn, 11, 4);
9168    int rm = extract32(insn, 16, 5);
9169    int size = extract32(insn, 22, 2);
9170    bool u = extract32(insn, 29, 1);
9171    TCGv_i32 ele1, ele2, ele3;
9172    TCGv_i64 res;
9173    bool feature;
9174
9175    switch (u * 16 + opcode) {
9176    case 0x10: /* SQRDMLAH (vector) */
9177    case 0x11: /* SQRDMLSH (vector) */
9178        if (size != 1 && size != 2) {
9179            unallocated_encoding(s);
9180            return;
9181        }
9182        feature = dc_isar_feature(aa64_rdm, s);
9183        break;
9184    default:
9185        unallocated_encoding(s);
9186        return;
9187    }
9188    if (!feature) {
9189        unallocated_encoding(s);
9190        return;
9191    }
9192    if (!fp_access_check(s)) {
9193        return;
9194    }
9195
9196    /* Do a single operation on the lowest element in the vector.
9197     * We use the standard Neon helpers and rely on 0 OP 0 == 0
9198     * with no side effects for all these operations.
9199     * OPTME: special-purpose helpers would avoid doing some
9200     * unnecessary work in the helper for the 16 bit cases.
9201     */
9202    ele1 = tcg_temp_new_i32();
9203    ele2 = tcg_temp_new_i32();
9204    ele3 = tcg_temp_new_i32();
9205
9206    read_vec_element_i32(s, ele1, rn, 0, size);
9207    read_vec_element_i32(s, ele2, rm, 0, size);
9208    read_vec_element_i32(s, ele3, rd, 0, size);
9209
9210    switch (opcode) {
9211    case 0x0: /* SQRDMLAH */
9212        if (size == 1) {
9213            gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9214        } else {
9215            gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9216        }
9217        break;
9218    case 0x1: /* SQRDMLSH */
9219        if (size == 1) {
9220            gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9221        } else {
9222            gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9223        }
9224        break;
9225    default:
9226        g_assert_not_reached();
9227    }
9228
9229    res = tcg_temp_new_i64();
9230    tcg_gen_extu_i32_i64(res, ele3);
9231    write_fp_dreg(s, rd, res);
9232}
9233
9234static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9235                            TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9236                            TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9237{
9238    /* Handle 64->64 opcodes which are shared between the scalar and
9239     * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9240     * is valid in either group and also the double-precision fp ops.
9241     * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9242     * requires them.
9243     */
9244    TCGCond cond;
9245
9246    switch (opcode) {
9247    case 0x4: /* CLS, CLZ */
9248        if (u) {
9249            tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9250        } else {
9251            tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9252        }
9253        break;
9254    case 0x5: /* NOT */
9255        /* This opcode is shared with CNT and RBIT but we have earlier
9256         * enforced that size == 3 if and only if this is the NOT insn.
9257         */
9258        tcg_gen_not_i64(tcg_rd, tcg_rn);
9259        break;
9260    case 0x7: /* SQABS, SQNEG */
9261        if (u) {
9262            gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9263        } else {
9264            gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9265        }
9266        break;
9267    case 0xa: /* CMLT */
9268        /* 64 bit integer comparison against zero, result is
9269         * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9270         * subtracting 1.
9271         */
9272        cond = TCG_COND_LT;
9273    do_cmop:
9274        tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9275        tcg_gen_neg_i64(tcg_rd, tcg_rd);
9276        break;
9277    case 0x8: /* CMGT, CMGE */
9278        cond = u ? TCG_COND_GE : TCG_COND_GT;
9279        goto do_cmop;
9280    case 0x9: /* CMEQ, CMLE */
9281        cond = u ? TCG_COND_LE : TCG_COND_EQ;
9282        goto do_cmop;
9283    case 0xb: /* ABS, NEG */
9284        if (u) {
9285            tcg_gen_neg_i64(tcg_rd, tcg_rn);
9286        } else {
9287            tcg_gen_abs_i64(tcg_rd, tcg_rn);
9288        }
9289        break;
9290    case 0x2f: /* FABS */
9291        gen_helper_vfp_absd(tcg_rd, tcg_rn);
9292        break;
9293    case 0x6f: /* FNEG */
9294        gen_helper_vfp_negd(tcg_rd, tcg_rn);
9295        break;
9296    case 0x7f: /* FSQRT */
9297        gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9298        break;
9299    case 0x1a: /* FCVTNS */
9300    case 0x1b: /* FCVTMS */
9301    case 0x1c: /* FCVTAS */
9302    case 0x3a: /* FCVTPS */
9303    case 0x3b: /* FCVTZS */
9304        gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9305        break;
9306    case 0x5a: /* FCVTNU */
9307    case 0x5b: /* FCVTMU */
9308    case 0x5c: /* FCVTAU */
9309    case 0x7a: /* FCVTPU */
9310    case 0x7b: /* FCVTZU */
9311        gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9312        break;
9313    case 0x18: /* FRINTN */
9314    case 0x19: /* FRINTM */
9315    case 0x38: /* FRINTP */
9316    case 0x39: /* FRINTZ */
9317    case 0x58: /* FRINTA */
9318    case 0x79: /* FRINTI */
9319        gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9320        break;
9321    case 0x59: /* FRINTX */
9322        gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9323        break;
9324    case 0x1e: /* FRINT32Z */
9325    case 0x5e: /* FRINT32X */
9326        gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9327        break;
9328    case 0x1f: /* FRINT64Z */
9329    case 0x5f: /* FRINT64X */
9330        gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9331        break;
9332    default:
9333        g_assert_not_reached();
9334    }
9335}
9336
9337static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9338                                   bool is_scalar, bool is_u, bool is_q,
9339                                   int size, int rn, int rd)
9340{
9341    bool is_double = (size == MO_64);
9342    TCGv_ptr fpst;
9343
9344    if (!fp_access_check(s)) {
9345        return;
9346    }
9347
9348    fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9349
9350    if (is_double) {
9351        TCGv_i64 tcg_op = tcg_temp_new_i64();
9352        TCGv_i64 tcg_zero = tcg_constant_i64(0);
9353        TCGv_i64 tcg_res = tcg_temp_new_i64();
9354        NeonGenTwoDoubleOpFn *genfn;
9355        bool swap = false;
9356        int pass;
9357
9358        switch (opcode) {
9359        case 0x2e: /* FCMLT (zero) */
9360            swap = true;
9361            /* fallthrough */
9362        case 0x2c: /* FCMGT (zero) */
9363            genfn = gen_helper_neon_cgt_f64;
9364            break;
9365        case 0x2d: /* FCMEQ (zero) */
9366            genfn = gen_helper_neon_ceq_f64;
9367            break;
9368        case 0x6d: /* FCMLE (zero) */
9369            swap = true;
9370            /* fall through */
9371        case 0x6c: /* FCMGE (zero) */
9372            genfn = gen_helper_neon_cge_f64;
9373            break;
9374        default:
9375            g_assert_not_reached();
9376        }
9377
9378        for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9379            read_vec_element(s, tcg_op, rn, pass, MO_64);
9380            if (swap) {
9381                genfn(tcg_res, tcg_zero, tcg_op, fpst);
9382            } else {
9383                genfn(tcg_res, tcg_op, tcg_zero, fpst);
9384            }
9385            write_vec_element(s, tcg_res, rd, pass, MO_64);
9386        }
9387
9388        clear_vec_high(s, !is_scalar, rd);
9389    } else {
9390        TCGv_i32 tcg_op = tcg_temp_new_i32();
9391        TCGv_i32 tcg_zero = tcg_constant_i32(0);
9392        TCGv_i32 tcg_res = tcg_temp_new_i32();
9393        NeonGenTwoSingleOpFn *genfn;
9394        bool swap = false;
9395        int pass, maxpasses;
9396
9397        if (size == MO_16) {
9398            switch (opcode) {
9399            case 0x2e: /* FCMLT (zero) */
9400                swap = true;
9401                /* fall through */
9402            case 0x2c: /* FCMGT (zero) */
9403                genfn = gen_helper_advsimd_cgt_f16;
9404                break;
9405            case 0x2d: /* FCMEQ (zero) */
9406                genfn = gen_helper_advsimd_ceq_f16;
9407                break;
9408            case 0x6d: /* FCMLE (zero) */
9409                swap = true;
9410                /* fall through */
9411            case 0x6c: /* FCMGE (zero) */
9412                genfn = gen_helper_advsimd_cge_f16;
9413                break;
9414            default:
9415                g_assert_not_reached();
9416            }
9417        } else {
9418            switch (opcode) {
9419            case 0x2e: /* FCMLT (zero) */
9420                swap = true;
9421                /* fall through */
9422            case 0x2c: /* FCMGT (zero) */
9423                genfn = gen_helper_neon_cgt_f32;
9424                break;
9425            case 0x2d: /* FCMEQ (zero) */
9426                genfn = gen_helper_neon_ceq_f32;
9427                break;
9428            case 0x6d: /* FCMLE (zero) */
9429                swap = true;
9430                /* fall through */
9431            case 0x6c: /* FCMGE (zero) */
9432                genfn = gen_helper_neon_cge_f32;
9433                break;
9434            default:
9435                g_assert_not_reached();
9436            }
9437        }
9438
9439        if (is_scalar) {
9440            maxpasses = 1;
9441        } else {
9442            int vector_size = 8 << is_q;
9443            maxpasses = vector_size >> size;
9444        }
9445
9446        for (pass = 0; pass < maxpasses; pass++) {
9447            read_vec_element_i32(s, tcg_op, rn, pass, size);
9448            if (swap) {
9449                genfn(tcg_res, tcg_zero, tcg_op, fpst);
9450            } else {
9451                genfn(tcg_res, tcg_op, tcg_zero, fpst);
9452            }
9453            if (is_scalar) {
9454                write_fp_sreg(s, rd, tcg_res);
9455            } else {
9456                write_vec_element_i32(s, tcg_res, rd, pass, size);
9457            }
9458        }
9459
9460        if (!is_scalar) {
9461            clear_vec_high(s, is_q, rd);
9462        }
9463    }
9464}
9465
9466static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9467                                    bool is_scalar, bool is_u, bool is_q,
9468                                    int size, int rn, int rd)
9469{
9470    bool is_double = (size == 3);
9471    TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9472
9473    if (is_double) {
9474        TCGv_i64 tcg_op = tcg_temp_new_i64();
9475        TCGv_i64 tcg_res = tcg_temp_new_i64();
9476        int pass;
9477
9478        for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9479            read_vec_element(s, tcg_op, rn, pass, MO_64);
9480            switch (opcode) {
9481            case 0x3d: /* FRECPE */
9482                gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9483                break;
9484            case 0x3f: /* FRECPX */
9485                gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9486                break;
9487            case 0x7d: /* FRSQRTE */
9488                gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9489                break;
9490            default:
9491                g_assert_not_reached();
9492            }
9493            write_vec_element(s, tcg_res, rd, pass, MO_64);
9494        }
9495        clear_vec_high(s, !is_scalar, rd);
9496    } else {
9497        TCGv_i32 tcg_op = tcg_temp_new_i32();
9498        TCGv_i32 tcg_res = tcg_temp_new_i32();
9499        int pass, maxpasses;
9500
9501        if (is_scalar) {
9502            maxpasses = 1;
9503        } else {
9504            maxpasses = is_q ? 4 : 2;
9505        }
9506
9507        for (pass = 0; pass < maxpasses; pass++) {
9508            read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9509
9510            switch (opcode) {
9511            case 0x3c: /* URECPE */
9512                gen_helper_recpe_u32(tcg_res, tcg_op);
9513                break;
9514            case 0x3d: /* FRECPE */
9515                gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9516                break;
9517            case 0x3f: /* FRECPX */
9518                gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9519                break;
9520            case 0x7d: /* FRSQRTE */
9521                gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9522                break;
9523            default:
9524                g_assert_not_reached();
9525            }
9526
9527            if (is_scalar) {
9528                write_fp_sreg(s, rd, tcg_res);
9529            } else {
9530                write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9531            }
9532        }
9533        if (!is_scalar) {
9534            clear_vec_high(s, is_q, rd);
9535        }
9536    }
9537}
9538
9539static void handle_2misc_narrow(DisasContext *s, bool scalar,
9540                                int opcode, bool u, bool is_q,
9541                                int size, int rn, int rd)
9542{
9543    /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9544     * in the source becomes a size element in the destination).
9545     */
9546    int pass;
9547    TCGv_i32 tcg_res[2];
9548    int destelt = is_q ? 2 : 0;
9549    int passes = scalar ? 1 : 2;
9550
9551    if (scalar) {
9552        tcg_res[1] = tcg_constant_i32(0);
9553    }
9554
9555    for (pass = 0; pass < passes; pass++) {
9556        TCGv_i64 tcg_op = tcg_temp_new_i64();
9557        NeonGenNarrowFn *genfn = NULL;
9558        NeonGenNarrowEnvFn *genenvfn = NULL;
9559
9560        if (scalar) {
9561            read_vec_element(s, tcg_op, rn, pass, size + 1);
9562        } else {
9563            read_vec_element(s, tcg_op, rn, pass, MO_64);
9564        }
9565        tcg_res[pass] = tcg_temp_new_i32();
9566
9567        switch (opcode) {
9568        case 0x12: /* XTN, SQXTUN */
9569        {
9570            static NeonGenNarrowFn * const xtnfns[3] = {
9571                gen_helper_neon_narrow_u8,
9572                gen_helper_neon_narrow_u16,
9573                tcg_gen_extrl_i64_i32,
9574            };
9575            static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9576                gen_helper_neon_unarrow_sat8,
9577                gen_helper_neon_unarrow_sat16,
9578                gen_helper_neon_unarrow_sat32,
9579            };
9580            if (u) {
9581                genenvfn = sqxtunfns[size];
9582            } else {
9583                genfn = xtnfns[size];
9584            }
9585            break;
9586        }
9587        case 0x14: /* SQXTN, UQXTN */
9588        {
9589            static NeonGenNarrowEnvFn * const fns[3][2] = {
9590                { gen_helper_neon_narrow_sat_s8,
9591                  gen_helper_neon_narrow_sat_u8 },
9592                { gen_helper_neon_narrow_sat_s16,
9593                  gen_helper_neon_narrow_sat_u16 },
9594                { gen_helper_neon_narrow_sat_s32,
9595                  gen_helper_neon_narrow_sat_u32 },
9596            };
9597            genenvfn = fns[size][u];
9598            break;
9599        }
9600        case 0x16: /* FCVTN, FCVTN2 */
9601            /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9602            if (size == 2) {
9603                gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9604            } else {
9605                TCGv_i32 tcg_lo = tcg_temp_new_i32();
9606                TCGv_i32 tcg_hi = tcg_temp_new_i32();
9607                TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9608                TCGv_i32 ahp = get_ahp_flag();
9609
9610                tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9611                gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9612                gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9613                tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9614            }
9615            break;
9616        case 0x36: /* BFCVTN, BFCVTN2 */
9617            {
9618                TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9619                gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9620            }
9621            break;
9622        case 0x56:  /* FCVTXN, FCVTXN2 */
9623            /* 64 bit to 32 bit float conversion
9624             * with von Neumann rounding (round to odd)
9625             */
9626            assert(size == 2);
9627            gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9628            break;
9629        default:
9630            g_assert_not_reached();
9631        }
9632
9633        if (genfn) {
9634            genfn(tcg_res[pass], tcg_op);
9635        } else if (genenvfn) {
9636            genenvfn(tcg_res[pass], cpu_env, tcg_op);
9637        }
9638    }
9639
9640    for (pass = 0; pass < 2; pass++) {
9641        write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9642    }
9643    clear_vec_high(s, is_q, rd);
9644}
9645
9646/* Remaining saturating accumulating ops */
9647static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9648                                bool is_q, int size, int rn, int rd)
9649{
9650    bool is_double = (size == 3);
9651
9652    if (is_double) {
9653        TCGv_i64 tcg_rn = tcg_temp_new_i64();
9654        TCGv_i64 tcg_rd = tcg_temp_new_i64();
9655        int pass;
9656
9657        for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9658            read_vec_element(s, tcg_rn, rn, pass, MO_64);
9659            read_vec_element(s, tcg_rd, rd, pass, MO_64);
9660
9661            if (is_u) { /* USQADD */
9662                gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9663            } else { /* SUQADD */
9664                gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9665            }
9666            write_vec_element(s, tcg_rd, rd, pass, MO_64);
9667        }
9668        clear_vec_high(s, !is_scalar, rd);
9669    } else {
9670        TCGv_i32 tcg_rn = tcg_temp_new_i32();
9671        TCGv_i32 tcg_rd = tcg_temp_new_i32();
9672        int pass, maxpasses;
9673
9674        if (is_scalar) {
9675            maxpasses = 1;
9676        } else {
9677            maxpasses = is_q ? 4 : 2;
9678        }
9679
9680        for (pass = 0; pass < maxpasses; pass++) {
9681            if (is_scalar) {
9682                read_vec_element_i32(s, tcg_rn, rn, pass, size);
9683                read_vec_element_i32(s, tcg_rd, rd, pass, size);
9684            } else {
9685                read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9686                read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9687            }
9688
9689            if (is_u) { /* USQADD */
9690                switch (size) {
9691                case 0:
9692                    gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9693                    break;
9694                case 1:
9695                    gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9696                    break;
9697                case 2:
9698                    gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9699                    break;
9700                default:
9701                    g_assert_not_reached();
9702                }
9703            } else { /* SUQADD */
9704                switch (size) {
9705                case 0:
9706                    gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9707                    break;
9708                case 1:
9709                    gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9710                    break;
9711                case 2:
9712                    gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9713                    break;
9714                default:
9715                    g_assert_not_reached();
9716                }
9717            }
9718
9719            if (is_scalar) {
9720                write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9721            }
9722            write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9723        }
9724        clear_vec_high(s, is_q, rd);
9725    }
9726}
9727
9728/* AdvSIMD scalar two reg misc
9729 *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9730 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9731 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9732 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9733 */
9734static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9735{
9736    int rd = extract32(insn, 0, 5);
9737    int rn = extract32(insn, 5, 5);
9738    int opcode = extract32(insn, 12, 5);
9739    int size = extract32(insn, 22, 2);
9740    bool u = extract32(insn, 29, 1);
9741    bool is_fcvt = false;
9742    int rmode;
9743    TCGv_i32 tcg_rmode;
9744    TCGv_ptr tcg_fpstatus;
9745
9746    switch (opcode) {
9747    case 0x3: /* USQADD / SUQADD*/
9748        if (!fp_access_check(s)) {
9749            return;
9750        }
9751        handle_2misc_satacc(s, true, u, false, size, rn, rd);
9752        return;
9753    case 0x7: /* SQABS / SQNEG */
9754        break;
9755    case 0xa: /* CMLT */
9756        if (u) {
9757            unallocated_encoding(s);
9758            return;
9759        }
9760        /* fall through */
9761    case 0x8: /* CMGT, CMGE */
9762    case 0x9: /* CMEQ, CMLE */
9763    case 0xb: /* ABS, NEG */
9764        if (size != 3) {
9765            unallocated_encoding(s);
9766            return;
9767        }
9768        break;
9769    case 0x12: /* SQXTUN */
9770        if (!u) {
9771            unallocated_encoding(s);
9772            return;
9773        }
9774        /* fall through */
9775    case 0x14: /* SQXTN, UQXTN */
9776        if (size == 3) {
9777            unallocated_encoding(s);
9778            return;
9779        }
9780        if (!fp_access_check(s)) {
9781            return;
9782        }
9783        handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9784        return;
9785    case 0xc ... 0xf:
9786    case 0x16 ... 0x1d:
9787    case 0x1f:
9788        /* Floating point: U, size[1] and opcode indicate operation;
9789         * size[0] indicates single or double precision.
9790         */
9791        opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9792        size = extract32(size, 0, 1) ? 3 : 2;
9793        switch (opcode) {
9794        case 0x2c: /* FCMGT (zero) */
9795        case 0x2d: /* FCMEQ (zero) */
9796        case 0x2e: /* FCMLT (zero) */
9797        case 0x6c: /* FCMGE (zero) */
9798        case 0x6d: /* FCMLE (zero) */
9799            handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9800            return;
9801        case 0x1d: /* SCVTF */
9802        case 0x5d: /* UCVTF */
9803        {
9804            bool is_signed = (opcode == 0x1d);
9805            if (!fp_access_check(s)) {
9806                return;
9807            }
9808            handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9809            return;
9810        }
9811        case 0x3d: /* FRECPE */
9812        case 0x3f: /* FRECPX */
9813        case 0x7d: /* FRSQRTE */
9814            if (!fp_access_check(s)) {
9815                return;
9816            }
9817            handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9818            return;
9819        case 0x1a: /* FCVTNS */
9820        case 0x1b: /* FCVTMS */
9821        case 0x3a: /* FCVTPS */
9822        case 0x3b: /* FCVTZS */
9823        case 0x5a: /* FCVTNU */
9824        case 0x5b: /* FCVTMU */
9825        case 0x7a: /* FCVTPU */
9826        case 0x7b: /* FCVTZU */
9827            is_fcvt = true;
9828            rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9829            break;
9830        case 0x1c: /* FCVTAS */
9831        case 0x5c: /* FCVTAU */
9832            /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9833            is_fcvt = true;
9834            rmode = FPROUNDING_TIEAWAY;
9835            break;
9836        case 0x56: /* FCVTXN, FCVTXN2 */
9837            if (size == 2) {
9838                unallocated_encoding(s);
9839                return;
9840            }
9841            if (!fp_access_check(s)) {
9842                return;
9843            }
9844            handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9845            return;
9846        default:
9847            unallocated_encoding(s);
9848            return;
9849        }
9850        break;
9851    default:
9852        unallocated_encoding(s);
9853        return;
9854    }
9855
9856    if (!fp_access_check(s)) {
9857        return;
9858    }
9859
9860    if (is_fcvt) {
9861        tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
9862        tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9863    } else {
9864        tcg_fpstatus = NULL;
9865        tcg_rmode = NULL;
9866    }
9867
9868    if (size == 3) {
9869        TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9870        TCGv_i64 tcg_rd = tcg_temp_new_i64();
9871
9872        handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9873        write_fp_dreg(s, rd, tcg_rd);
9874    } else {
9875        TCGv_i32 tcg_rn = tcg_temp_new_i32();
9876        TCGv_i32 tcg_rd = tcg_temp_new_i32();
9877
9878        read_vec_element_i32(s, tcg_rn, rn, 0, size);
9879
9880        switch (opcode) {
9881        case 0x7: /* SQABS, SQNEG */
9882        {
9883            NeonGenOneOpEnvFn *genfn;
9884            static NeonGenOneOpEnvFn * const fns[3][2] = {
9885                { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9886                { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9887                { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9888            };
9889            genfn = fns[size][u];
9890            genfn(tcg_rd, cpu_env, tcg_rn);
9891            break;
9892        }
9893        case 0x1a: /* FCVTNS */
9894        case 0x1b: /* FCVTMS */
9895        case 0x1c: /* FCVTAS */
9896        case 0x3a: /* FCVTPS */
9897        case 0x3b: /* FCVTZS */
9898            gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
9899                                 tcg_fpstatus);
9900            break;
9901        case 0x5a: /* FCVTNU */
9902        case 0x5b: /* FCVTMU */
9903        case 0x5c: /* FCVTAU */
9904        case 0x7a: /* FCVTPU */
9905        case 0x7b: /* FCVTZU */
9906            gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
9907                                 tcg_fpstatus);
9908            break;
9909        default:
9910            g_assert_not_reached();
9911        }
9912
9913        write_fp_sreg(s, rd, tcg_rd);
9914    }
9915
9916    if (is_fcvt) {
9917        gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9918    }
9919}
9920
9921/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9922static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9923                                 int immh, int immb, int opcode, int rn, int rd)
9924{
9925    int size = 32 - clz32(immh) - 1;
9926    int immhb = immh << 3 | immb;
9927    int shift = 2 * (8 << size) - immhb;
9928    GVecGen2iFn *gvec_fn;
9929
9930    if (extract32(immh, 3, 1) && !is_q) {
9931        unallocated_encoding(s);
9932        return;
9933    }
9934    tcg_debug_assert(size <= 3);
9935
9936    if (!fp_access_check(s)) {
9937        return;
9938    }
9939
9940    switch (opcode) {
9941    case 0x02: /* SSRA / USRA (accumulate) */
9942        gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
9943        break;
9944
9945    case 0x08: /* SRI */
9946        gvec_fn = gen_gvec_sri;
9947        break;
9948
9949    case 0x00: /* SSHR / USHR */
9950        if (is_u) {
9951            if (shift == 8 << size) {
9952                /* Shift count the same size as element size produces zero.  */
9953                tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
9954                                     is_q ? 16 : 8, vec_full_reg_size(s), 0);
9955                return;
9956            }
9957            gvec_fn = tcg_gen_gvec_shri;
9958        } else {
9959            /* Shift count the same size as element size produces all sign.  */
9960            if (shift == 8 << size) {
9961                shift -= 1;
9962            }
9963            gvec_fn = tcg_gen_gvec_sari;
9964        }
9965        break;
9966
9967    case 0x04: /* SRSHR / URSHR (rounding) */
9968        gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
9969        break;
9970
9971    case 0x06: /* SRSRA / URSRA (accum + rounding) */
9972        gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
9973        break;
9974
9975    default:
9976        g_assert_not_reached();
9977    }
9978
9979    gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
9980}
9981
9982/* SHL/SLI - Vector shift left */
9983static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9984                                 int immh, int immb, int opcode, int rn, int rd)
9985{
9986    int size = 32 - clz32(immh) - 1;
9987    int immhb = immh << 3 | immb;
9988    int shift = immhb - (8 << size);
9989
9990    /* Range of size is limited by decode: immh is a non-zero 4 bit field */
9991    assert(size >= 0 && size <= 3);
9992
9993    if (extract32(immh, 3, 1) && !is_q) {
9994        unallocated_encoding(s);
9995        return;
9996    }
9997
9998    if (!fp_access_check(s)) {
9999        return;
10000    }
10001
10002    if (insert) {
10003        gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10004    } else {
10005        gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10006    }
10007}
10008
10009/* USHLL/SHLL - Vector shift left with widening */
10010static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10011                                 int immh, int immb, int opcode, int rn, int rd)
10012{
10013    int size = 32 - clz32(immh) - 1;
10014    int immhb = immh << 3 | immb;
10015    int shift = immhb - (8 << size);
10016    int dsize = 64;
10017    int esize = 8 << size;
10018    int elements = dsize/esize;
10019    TCGv_i64 tcg_rn = tcg_temp_new_i64();
10020    TCGv_i64 tcg_rd = tcg_temp_new_i64();
10021    int i;
10022
10023    if (size >= 3) {
10024        unallocated_encoding(s);
10025        return;
10026    }
10027
10028    if (!fp_access_check(s)) {
10029        return;
10030    }
10031
10032    /* For the LL variants the store is larger than the load,
10033     * so if rd == rn we would overwrite parts of our input.
10034     * So load everything right now and use shifts in the main loop.
10035     */
10036    read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10037
10038    for (i = 0; i < elements; i++) {
10039        tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10040        ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10041        tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10042        write_vec_element(s, tcg_rd, rd, i, size + 1);
10043    }
10044}
10045
10046/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10047static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10048                                 int immh, int immb, int opcode, int rn, int rd)
10049{
10050    int immhb = immh << 3 | immb;
10051    int size = 32 - clz32(immh) - 1;
10052    int dsize = 64;
10053    int esize = 8 << size;
10054    int elements = dsize/esize;
10055    int shift = (2 * esize) - immhb;
10056    bool round = extract32(opcode, 0, 1);
10057    TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10058    TCGv_i64 tcg_round;
10059    int i;
10060
10061    if (extract32(immh, 3, 1)) {
10062        unallocated_encoding(s);
10063        return;
10064    }
10065
10066    if (!fp_access_check(s)) {
10067        return;
10068    }
10069
10070    tcg_rn = tcg_temp_new_i64();
10071    tcg_rd = tcg_temp_new_i64();
10072    tcg_final = tcg_temp_new_i64();
10073    read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10074
10075    if (round) {
10076        tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10077    } else {
10078        tcg_round = NULL;
10079    }
10080
10081    for (i = 0; i < elements; i++) {
10082        read_vec_element(s, tcg_rn, rn, i, size+1);
10083        handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10084                                false, true, size+1, shift);
10085
10086        tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10087    }
10088
10089    if (!is_q) {
10090        write_vec_element(s, tcg_final, rd, 0, MO_64);
10091    } else {
10092        write_vec_element(s, tcg_final, rd, 1, MO_64);
10093    }
10094
10095    clear_vec_high(s, is_q, rd);
10096}
10097
10098
10099/* AdvSIMD shift by immediate
10100 *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10101 * +---+---+---+-------------+------+------+--------+---+------+------+
10102 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10103 * +---+---+---+-------------+------+------+--------+---+------+------+
10104 */
10105static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10106{
10107    int rd = extract32(insn, 0, 5);
10108    int rn = extract32(insn, 5, 5);
10109    int opcode = extract32(insn, 11, 5);
10110    int immb = extract32(insn, 16, 3);
10111    int immh = extract32(insn, 19, 4);
10112    bool is_u = extract32(insn, 29, 1);
10113    bool is_q = extract32(insn, 30, 1);
10114
10115    /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10116    assert(immh != 0);
10117
10118    switch (opcode) {
10119    case 0x08: /* SRI */
10120        if (!is_u) {
10121            unallocated_encoding(s);
10122            return;
10123        }
10124        /* fall through */
10125    case 0x00: /* SSHR / USHR */
10126    case 0x02: /* SSRA / USRA (accumulate) */
10127    case 0x04: /* SRSHR / URSHR (rounding) */
10128    case 0x06: /* SRSRA / URSRA (accum + rounding) */
10129        handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10130        break;
10131    case 0x0a: /* SHL / SLI */
10132        handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10133        break;
10134    case 0x10: /* SHRN */
10135    case 0x11: /* RSHRN / SQRSHRUN */
10136        if (is_u) {
10137            handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10138                                   opcode, rn, rd);
10139        } else {
10140            handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10141        }
10142        break;
10143    case 0x12: /* SQSHRN / UQSHRN */
10144    case 0x13: /* SQRSHRN / UQRSHRN */
10145        handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10146                               opcode, rn, rd);
10147        break;
10148    case 0x14: /* SSHLL / USHLL */
10149        handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10150        break;
10151    case 0x1c: /* SCVTF / UCVTF */
10152        handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10153                                     opcode, rn, rd);
10154        break;
10155    case 0xc: /* SQSHLU */
10156        if (!is_u) {
10157            unallocated_encoding(s);
10158            return;
10159        }
10160        handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10161        break;
10162    case 0xe: /* SQSHL, UQSHL */
10163        handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10164        break;
10165    case 0x1f: /* FCVTZS/ FCVTZU */
10166        handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10167        return;
10168    default:
10169        unallocated_encoding(s);
10170        return;
10171    }
10172}
10173
10174/* Generate code to do a "long" addition or subtraction, ie one done in
10175 * TCGv_i64 on vector lanes twice the width specified by size.
10176 */
10177static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10178                          TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10179{
10180    static NeonGenTwo64OpFn * const fns[3][2] = {
10181        { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10182        { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10183        { tcg_gen_add_i64, tcg_gen_sub_i64 },
10184    };
10185    NeonGenTwo64OpFn *genfn;
10186    assert(size < 3);
10187
10188    genfn = fns[size][is_sub];
10189    genfn(tcg_res, tcg_op1, tcg_op2);
10190}
10191
10192static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10193                                int opcode, int rd, int rn, int rm)
10194{
10195    /* 3-reg-different widening insns: 64 x 64 -> 128 */
10196    TCGv_i64 tcg_res[2];
10197    int pass, accop;
10198
10199    tcg_res[0] = tcg_temp_new_i64();
10200    tcg_res[1] = tcg_temp_new_i64();
10201
10202    /* Does this op do an adding accumulate, a subtracting accumulate,
10203     * or no accumulate at all?
10204     */
10205    switch (opcode) {
10206    case 5:
10207    case 8:
10208    case 9:
10209        accop = 1;
10210        break;
10211    case 10:
10212    case 11:
10213        accop = -1;
10214        break;
10215    default:
10216        accop = 0;
10217        break;
10218    }
10219
10220    if (accop != 0) {
10221        read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10222        read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10223    }
10224
10225    /* size == 2 means two 32x32->64 operations; this is worth special
10226     * casing because we can generally handle it inline.
10227     */
10228    if (size == 2) {
10229        for (pass = 0; pass < 2; pass++) {
10230            TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10231            TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10232            TCGv_i64 tcg_passres;
10233            MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10234
10235            int elt = pass + is_q * 2;
10236
10237            read_vec_element(s, tcg_op1, rn, elt, memop);
10238            read_vec_element(s, tcg_op2, rm, elt, memop);
10239
10240            if (accop == 0) {
10241                tcg_passres = tcg_res[pass];
10242            } else {
10243                tcg_passres = tcg_temp_new_i64();
10244            }
10245
10246            switch (opcode) {
10247            case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10248                tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10249                break;
10250            case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10251                tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10252                break;
10253            case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10254            case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10255            {
10256                TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10257                TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10258
10259                tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10260                tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10261                tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10262                                    tcg_passres,
10263                                    tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10264                break;
10265            }
10266            case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10267            case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10268            case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10269                tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10270                break;
10271            case 9: /* SQDMLAL, SQDMLAL2 */
10272            case 11: /* SQDMLSL, SQDMLSL2 */
10273            case 13: /* SQDMULL, SQDMULL2 */
10274                tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10275                gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10276                                                  tcg_passres, tcg_passres);
10277                break;
10278            default:
10279                g_assert_not_reached();
10280            }
10281
10282            if (opcode == 9 || opcode == 11) {
10283                /* saturating accumulate ops */
10284                if (accop < 0) {
10285                    tcg_gen_neg_i64(tcg_passres, tcg_passres);
10286                }
10287                gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10288                                                  tcg_res[pass], tcg_passres);
10289            } else if (accop > 0) {
10290                tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10291            } else if (accop < 0) {
10292                tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10293            }
10294        }
10295    } else {
10296        /* size 0 or 1, generally helper functions */
10297        for (pass = 0; pass < 2; pass++) {
10298            TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10299            TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10300            TCGv_i64 tcg_passres;
10301            int elt = pass + is_q * 2;
10302
10303            read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10304            read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10305
10306            if (accop == 0) {
10307                tcg_passres = tcg_res[pass];
10308            } else {
10309                tcg_passres = tcg_temp_new_i64();
10310            }
10311
10312            switch (opcode) {
10313            case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10314            case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10315            {
10316                TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10317                static NeonGenWidenFn * const widenfns[2][2] = {
10318                    { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10319                    { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10320                };
10321                NeonGenWidenFn *widenfn = widenfns[size][is_u];
10322
10323                widenfn(tcg_op2_64, tcg_op2);
10324                widenfn(tcg_passres, tcg_op1);
10325                gen_neon_addl(size, (opcode == 2), tcg_passres,
10326                              tcg_passres, tcg_op2_64);
10327                break;
10328            }
10329            case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10330            case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10331                if (size == 0) {
10332                    if (is_u) {
10333                        gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10334                    } else {
10335                        gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10336                    }
10337                } else {
10338                    if (is_u) {
10339                        gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10340                    } else {
10341                        gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10342                    }
10343                }
10344                break;
10345            case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10346            case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10347            case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10348                if (size == 0) {
10349                    if (is_u) {
10350                        gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10351                    } else {
10352                        gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10353                    }
10354                } else {
10355                    if (is_u) {
10356                        gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10357                    } else {
10358                        gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10359                    }
10360                }
10361                break;
10362            case 9: /* SQDMLAL, SQDMLAL2 */
10363            case 11: /* SQDMLSL, SQDMLSL2 */
10364            case 13: /* SQDMULL, SQDMULL2 */
10365                assert(size == 1);
10366                gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10367                gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10368                                                  tcg_passres, tcg_passres);
10369                break;
10370            default:
10371                g_assert_not_reached();
10372            }
10373
10374            if (accop != 0) {
10375                if (opcode == 9 || opcode == 11) {
10376                    /* saturating accumulate ops */
10377                    if (accop < 0) {
10378                        gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10379                    }
10380                    gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10381                                                      tcg_res[pass],
10382                                                      tcg_passres);
10383                } else {
10384                    gen_neon_addl(size, (accop < 0), tcg_res[pass],
10385                                  tcg_res[pass], tcg_passres);
10386                }
10387            }
10388        }
10389    }
10390
10391    write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10392    write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10393}
10394
10395static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10396                            int opcode, int rd, int rn, int rm)
10397{
10398    TCGv_i64 tcg_res[2];
10399    int part = is_q ? 2 : 0;
10400    int pass;
10401
10402    for (pass = 0; pass < 2; pass++) {
10403        TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10404        TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10405        TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10406        static NeonGenWidenFn * const widenfns[3][2] = {
10407            { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10408            { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10409            { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10410        };
10411        NeonGenWidenFn *widenfn = widenfns[size][is_u];
10412
10413        read_vec_element(s, tcg_op1, rn, pass, MO_64);
10414        read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10415        widenfn(tcg_op2_wide, tcg_op2);
10416        tcg_res[pass] = tcg_temp_new_i64();
10417        gen_neon_addl(size, (opcode == 3),
10418                      tcg_res[pass], tcg_op1, tcg_op2_wide);
10419    }
10420
10421    for (pass = 0; pass < 2; pass++) {
10422        write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10423    }
10424}
10425
10426static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10427{
10428    tcg_gen_addi_i64(in, in, 1U << 31);
10429    tcg_gen_extrh_i64_i32(res, in);
10430}
10431
10432static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10433                                 int opcode, int rd, int rn, int rm)
10434{
10435    TCGv_i32 tcg_res[2];
10436    int part = is_q ? 2 : 0;
10437    int pass;
10438
10439    for (pass = 0; pass < 2; pass++) {
10440        TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10441        TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10442        TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10443        static NeonGenNarrowFn * const narrowfns[3][2] = {
10444            { gen_helper_neon_narrow_high_u8,
10445              gen_helper_neon_narrow_round_high_u8 },
10446            { gen_helper_neon_narrow_high_u16,
10447              gen_helper_neon_narrow_round_high_u16 },
10448            { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10449        };
10450        NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10451
10452        read_vec_element(s, tcg_op1, rn, pass, MO_64);
10453        read_vec_element(s, tcg_op2, rm, pass, MO_64);
10454
10455        gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10456
10457        tcg_res[pass] = tcg_temp_new_i32();
10458        gennarrow(tcg_res[pass], tcg_wideres);
10459    }
10460
10461    for (pass = 0; pass < 2; pass++) {
10462        write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10463    }
10464    clear_vec_high(s, is_q, rd);
10465}
10466
10467/* AdvSIMD three different
10468 *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10469 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10470 * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10471 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10472 */
10473static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10474{
10475    /* Instructions in this group fall into three basic classes
10476     * (in each case with the operation working on each element in
10477     * the input vectors):
10478     * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10479     *     128 bit input)
10480     * (2) wide 64 x 128 -> 128
10481     * (3) narrowing 128 x 128 -> 64
10482     * Here we do initial decode, catch unallocated cases and
10483     * dispatch to separate functions for each class.
10484     */
10485    int is_q = extract32(insn, 30, 1);
10486    int is_u = extract32(insn, 29, 1);
10487    int size = extract32(insn, 22, 2);
10488    int opcode = extract32(insn, 12, 4);
10489    int rm = extract32(insn, 16, 5);
10490    int rn = extract32(insn, 5, 5);
10491    int rd = extract32(insn, 0, 5);
10492
10493    switch (opcode) {
10494    case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10495    case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10496        /* 64 x 128 -> 128 */
10497        if (size == 3) {
10498            unallocated_encoding(s);
10499            return;
10500        }
10501        if (!fp_access_check(s)) {
10502            return;
10503        }
10504        handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10505        break;
10506    case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10507    case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10508        /* 128 x 128 -> 64 */
10509        if (size == 3) {
10510            unallocated_encoding(s);
10511            return;
10512        }
10513        if (!fp_access_check(s)) {
10514            return;
10515        }
10516        handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10517        break;
10518    case 14: /* PMULL, PMULL2 */
10519        if (is_u) {
10520            unallocated_encoding(s);
10521            return;
10522        }
10523        switch (size) {
10524        case 0: /* PMULL.P8 */
10525            if (!fp_access_check(s)) {
10526                return;
10527            }
10528            /* The Q field specifies lo/hi half input for this insn.  */
10529            gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10530                             gen_helper_neon_pmull_h);
10531            break;
10532
10533        case 3: /* PMULL.P64 */
10534            if (!dc_isar_feature(aa64_pmull, s)) {
10535                unallocated_encoding(s);
10536                return;
10537            }
10538            if (!fp_access_check(s)) {
10539                return;
10540            }
10541            /* The Q field specifies lo/hi half input for this insn.  */
10542            gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10543                             gen_helper_gvec_pmull_q);
10544            break;
10545
10546        default:
10547            unallocated_encoding(s);
10548            break;
10549        }
10550        return;
10551    case 9: /* SQDMLAL, SQDMLAL2 */
10552    case 11: /* SQDMLSL, SQDMLSL2 */
10553    case 13: /* SQDMULL, SQDMULL2 */
10554        if (is_u || size == 0) {
10555            unallocated_encoding(s);
10556            return;
10557        }
10558        /* fall through */
10559    case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10560    case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10561    case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10562    case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10563    case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10564    case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10565    case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10566        /* 64 x 64 -> 128 */
10567        if (size == 3) {
10568            unallocated_encoding(s);
10569            return;
10570        }
10571        if (!fp_access_check(s)) {
10572            return;
10573        }
10574
10575        handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10576        break;
10577    default:
10578        /* opcode 15 not allocated */
10579        unallocated_encoding(s);
10580        break;
10581    }
10582}
10583
10584/* Logic op (opcode == 3) subgroup of C3.6.16. */
10585static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10586{
10587    int rd = extract32(insn, 0, 5);
10588    int rn = extract32(insn, 5, 5);
10589    int rm = extract32(insn, 16, 5);
10590    int size = extract32(insn, 22, 2);
10591    bool is_u = extract32(insn, 29, 1);
10592    bool is_q = extract32(insn, 30, 1);
10593
10594    if (!fp_access_check(s)) {
10595        return;
10596    }
10597
10598    switch (size + 4 * is_u) {
10599    case 0: /* AND */
10600        gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10601        return;
10602    case 1: /* BIC */
10603        gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10604        return;
10605    case 2: /* ORR */
10606        gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10607        return;
10608    case 3: /* ORN */
10609        gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10610        return;
10611    case 4: /* EOR */
10612        gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10613        return;
10614
10615    case 5: /* BSL bitwise select */
10616        gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10617        return;
10618    case 6: /* BIT, bitwise insert if true */
10619        gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10620        return;
10621    case 7: /* BIF, bitwise insert if false */
10622        gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10623        return;
10624
10625    default:
10626        g_assert_not_reached();
10627    }
10628}
10629
10630/* Pairwise op subgroup of C3.6.16.
10631 *
10632 * This is called directly or via the handle_3same_float for float pairwise
10633 * operations where the opcode and size are calculated differently.
10634 */
10635static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10636                                   int size, int rn, int rm, int rd)
10637{
10638    TCGv_ptr fpst;
10639    int pass;
10640
10641    /* Floating point operations need fpst */
10642    if (opcode >= 0x58) {
10643        fpst = fpstatus_ptr(FPST_FPCR);
10644    } else {
10645        fpst = NULL;
10646    }
10647
10648    if (!fp_access_check(s)) {
10649        return;
10650    }
10651
10652    /* These operations work on the concatenated rm:rn, with each pair of
10653     * adjacent elements being operated on to produce an element in the result.
10654     */
10655    if (size == 3) {
10656        TCGv_i64 tcg_res[2];
10657
10658        for (pass = 0; pass < 2; pass++) {
10659            TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10660            TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10661            int passreg = (pass == 0) ? rn : rm;
10662
10663            read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10664            read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10665            tcg_res[pass] = tcg_temp_new_i64();
10666
10667            switch (opcode) {
10668            case 0x17: /* ADDP */
10669                tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10670                break;
10671            case 0x58: /* FMAXNMP */
10672                gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10673                break;
10674            case 0x5a: /* FADDP */
10675                gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10676                break;
10677            case 0x5e: /* FMAXP */
10678                gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10679                break;
10680            case 0x78: /* FMINNMP */
10681                gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10682                break;
10683            case 0x7e: /* FMINP */
10684                gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10685                break;
10686            default:
10687                g_assert_not_reached();
10688            }
10689        }
10690
10691        for (pass = 0; pass < 2; pass++) {
10692            write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10693        }
10694    } else {
10695        int maxpass = is_q ? 4 : 2;
10696        TCGv_i32 tcg_res[4];
10697
10698        for (pass = 0; pass < maxpass; pass++) {
10699            TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10700            TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10701            NeonGenTwoOpFn *genfn = NULL;
10702            int passreg = pass < (maxpass / 2) ? rn : rm;
10703            int passelt = (is_q && (pass & 1)) ? 2 : 0;
10704
10705            read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10706            read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10707            tcg_res[pass] = tcg_temp_new_i32();
10708
10709            switch (opcode) {
10710            case 0x17: /* ADDP */
10711            {
10712                static NeonGenTwoOpFn * const fns[3] = {
10713                    gen_helper_neon_padd_u8,
10714                    gen_helper_neon_padd_u16,
10715                    tcg_gen_add_i32,
10716                };
10717                genfn = fns[size];
10718                break;
10719            }
10720            case 0x14: /* SMAXP, UMAXP */
10721            {
10722                static NeonGenTwoOpFn * const fns[3][2] = {
10723                    { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10724                    { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10725                    { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10726                };
10727                genfn = fns[size][u];
10728                break;
10729            }
10730            case 0x15: /* SMINP, UMINP */
10731            {
10732                static NeonGenTwoOpFn * const fns[3][2] = {
10733                    { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10734                    { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10735                    { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10736                };
10737                genfn = fns[size][u];
10738                break;
10739            }
10740            /* The FP operations are all on single floats (32 bit) */
10741            case 0x58: /* FMAXNMP */
10742                gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10743                break;
10744            case 0x5a: /* FADDP */
10745                gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10746                break;
10747            case 0x5e: /* FMAXP */
10748                gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10749                break;
10750            case 0x78: /* FMINNMP */
10751                gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10752                break;
10753            case 0x7e: /* FMINP */
10754                gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10755                break;
10756            default:
10757                g_assert_not_reached();
10758            }
10759
10760            /* FP ops called directly, otherwise call now */
10761            if (genfn) {
10762                genfn(tcg_res[pass], tcg_op1, tcg_op2);
10763            }
10764        }
10765
10766        for (pass = 0; pass < maxpass; pass++) {
10767            write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10768        }
10769        clear_vec_high(s, is_q, rd);
10770    }
10771}
10772
10773/* Floating point op subgroup of C3.6.16. */
10774static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10775{
10776    /* For floating point ops, the U, size[1] and opcode bits
10777     * together indicate the operation. size[0] indicates single
10778     * or double.
10779     */
10780    int fpopcode = extract32(insn, 11, 5)
10781        | (extract32(insn, 23, 1) << 5)
10782        | (extract32(insn, 29, 1) << 6);
10783    int is_q = extract32(insn, 30, 1);
10784    int size = extract32(insn, 22, 1);
10785    int rm = extract32(insn, 16, 5);
10786    int rn = extract32(insn, 5, 5);
10787    int rd = extract32(insn, 0, 5);
10788
10789    int datasize = is_q ? 128 : 64;
10790    int esize = 32 << size;
10791    int elements = datasize / esize;
10792
10793    if (size == 1 && !is_q) {
10794        unallocated_encoding(s);
10795        return;
10796    }
10797
10798    switch (fpopcode) {
10799    case 0x58: /* FMAXNMP */
10800    case 0x5a: /* FADDP */
10801    case 0x5e: /* FMAXP */
10802    case 0x78: /* FMINNMP */
10803    case 0x7e: /* FMINP */
10804        if (size && !is_q) {
10805            unallocated_encoding(s);
10806            return;
10807        }
10808        handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10809                               rn, rm, rd);
10810        return;
10811    case 0x1b: /* FMULX */
10812    case 0x1f: /* FRECPS */
10813    case 0x3f: /* FRSQRTS */
10814    case 0x5d: /* FACGE */
10815    case 0x7d: /* FACGT */
10816    case 0x19: /* FMLA */
10817    case 0x39: /* FMLS */
10818    case 0x18: /* FMAXNM */
10819    case 0x1a: /* FADD */
10820    case 0x1c: /* FCMEQ */
10821    case 0x1e: /* FMAX */
10822    case 0x38: /* FMINNM */
10823    case 0x3a: /* FSUB */
10824    case 0x3e: /* FMIN */
10825    case 0x5b: /* FMUL */
10826    case 0x5c: /* FCMGE */
10827    case 0x5f: /* FDIV */
10828    case 0x7a: /* FABD */
10829    case 0x7c: /* FCMGT */
10830        if (!fp_access_check(s)) {
10831            return;
10832        }
10833        handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10834        return;
10835
10836    case 0x1d: /* FMLAL  */
10837    case 0x3d: /* FMLSL  */
10838    case 0x59: /* FMLAL2 */
10839    case 0x79: /* FMLSL2 */
10840        if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
10841            unallocated_encoding(s);
10842            return;
10843        }
10844        if (fp_access_check(s)) {
10845            int is_s = extract32(insn, 23, 1);
10846            int is_2 = extract32(insn, 29, 1);
10847            int data = (is_2 << 1) | is_s;
10848            tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
10849                               vec_full_reg_offset(s, rn),
10850                               vec_full_reg_offset(s, rm), cpu_env,
10851                               is_q ? 16 : 8, vec_full_reg_size(s),
10852                               data, gen_helper_gvec_fmlal_a64);
10853        }
10854        return;
10855
10856    default:
10857        unallocated_encoding(s);
10858        return;
10859    }
10860}
10861
10862/* Integer op subgroup of C3.6.16. */
10863static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10864{
10865    int is_q = extract32(insn, 30, 1);
10866    int u = extract32(insn, 29, 1);
10867    int size = extract32(insn, 22, 2);
10868    int opcode = extract32(insn, 11, 5);
10869    int rm = extract32(insn, 16, 5);
10870    int rn = extract32(insn, 5, 5);
10871    int rd = extract32(insn, 0, 5);
10872    int pass;
10873    TCGCond cond;
10874
10875    switch (opcode) {
10876    case 0x13: /* MUL, PMUL */
10877        if (u && size != 0) {
10878            unallocated_encoding(s);
10879            return;
10880        }
10881        /* fall through */
10882    case 0x0: /* SHADD, UHADD */
10883    case 0x2: /* SRHADD, URHADD */
10884    case 0x4: /* SHSUB, UHSUB */
10885    case 0xc: /* SMAX, UMAX */
10886    case 0xd: /* SMIN, UMIN */
10887    case 0xe: /* SABD, UABD */
10888    case 0xf: /* SABA, UABA */
10889    case 0x12: /* MLA, MLS */
10890        if (size == 3) {
10891            unallocated_encoding(s);
10892            return;
10893        }
10894        break;
10895    case 0x16: /* SQDMULH, SQRDMULH */
10896        if (size == 0 || size == 3) {
10897            unallocated_encoding(s);
10898            return;
10899        }
10900        break;
10901    default:
10902        if (size == 3 && !is_q) {
10903            unallocated_encoding(s);
10904            return;
10905        }
10906        break;
10907    }
10908
10909    if (!fp_access_check(s)) {
10910        return;
10911    }
10912
10913    switch (opcode) {
10914    case 0x01: /* SQADD, UQADD */
10915        if (u) {
10916            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
10917        } else {
10918            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
10919        }
10920        return;
10921    case 0x05: /* SQSUB, UQSUB */
10922        if (u) {
10923            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
10924        } else {
10925            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
10926        }
10927        return;
10928    case 0x08: /* SSHL, USHL */
10929        if (u) {
10930            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
10931        } else {
10932            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
10933        }
10934        return;
10935    case 0x0c: /* SMAX, UMAX */
10936        if (u) {
10937            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
10938        } else {
10939            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
10940        }
10941        return;
10942    case 0x0d: /* SMIN, UMIN */
10943        if (u) {
10944            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
10945        } else {
10946            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
10947        }
10948        return;
10949    case 0xe: /* SABD, UABD */
10950        if (u) {
10951            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
10952        } else {
10953            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
10954        }
10955        return;
10956    case 0xf: /* SABA, UABA */
10957        if (u) {
10958            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
10959        } else {
10960            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
10961        }
10962        return;
10963    case 0x10: /* ADD, SUB */
10964        if (u) {
10965            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10966        } else {
10967            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10968        }
10969        return;
10970    case 0x13: /* MUL, PMUL */
10971        if (!u) { /* MUL */
10972            gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10973        } else {  /* PMUL */
10974            gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
10975        }
10976        return;
10977    case 0x12: /* MLA, MLS */
10978        if (u) {
10979            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
10980        } else {
10981            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
10982        }
10983        return;
10984    case 0x16: /* SQDMULH, SQRDMULH */
10985        {
10986            static gen_helper_gvec_3_ptr * const fns[2][2] = {
10987                { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
10988                { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
10989            };
10990            gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
10991        }
10992        return;
10993    case 0x11:
10994        if (!u) { /* CMTST */
10995            gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
10996            return;
10997        }
10998        /* else CMEQ */
10999        cond = TCG_COND_EQ;
11000        goto do_gvec_cmp;
11001    case 0x06: /* CMGT, CMHI */
11002        cond = u ? TCG_COND_GTU : TCG_COND_GT;
11003        goto do_gvec_cmp;
11004    case 0x07: /* CMGE, CMHS */
11005        cond = u ? TCG_COND_GEU : TCG_COND_GE;
11006    do_gvec_cmp:
11007        tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11008                         vec_full_reg_offset(s, rn),
11009                         vec_full_reg_offset(s, rm),
11010                         is_q ? 16 : 8, vec_full_reg_size(s));
11011        return;
11012    }
11013
11014    if (size == 3) {
11015        assert(is_q);
11016        for (pass = 0; pass < 2; pass++) {
11017            TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11018            TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11019            TCGv_i64 tcg_res = tcg_temp_new_i64();
11020
11021            read_vec_element(s, tcg_op1, rn, pass, MO_64);
11022            read_vec_element(s, tcg_op2, rm, pass, MO_64);
11023
11024            handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11025
11026            write_vec_element(s, tcg_res, rd, pass, MO_64);
11027        }
11028    } else {
11029        for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11030            TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11031            TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11032            TCGv_i32 tcg_res = tcg_temp_new_i32();
11033            NeonGenTwoOpFn *genfn = NULL;
11034            NeonGenTwoOpEnvFn *genenvfn = NULL;
11035
11036            read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11037            read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11038
11039            switch (opcode) {
11040            case 0x0: /* SHADD, UHADD */
11041            {
11042                static NeonGenTwoOpFn * const fns[3][2] = {
11043                    { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11044                    { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11045                    { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11046                };
11047                genfn = fns[size][u];
11048                break;
11049            }
11050            case 0x2: /* SRHADD, URHADD */
11051            {
11052                static NeonGenTwoOpFn * const fns[3][2] = {
11053                    { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11054                    { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11055                    { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11056                };
11057                genfn = fns[size][u];
11058                break;
11059            }
11060            case 0x4: /* SHSUB, UHSUB */
11061            {
11062                static NeonGenTwoOpFn * const fns[3][2] = {
11063                    { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11064                    { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11065                    { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11066                };
11067                genfn = fns[size][u];
11068                break;
11069            }
11070            case 0x9: /* SQSHL, UQSHL */
11071            {
11072                static NeonGenTwoOpEnvFn * const fns[3][2] = {
11073                    { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11074                    { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11075                    { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11076                };
11077                genenvfn = fns[size][u];
11078                break;
11079            }
11080            case 0xa: /* SRSHL, URSHL */
11081            {
11082                static NeonGenTwoOpFn * const fns[3][2] = {
11083                    { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11084                    { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11085                    { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11086                };
11087                genfn = fns[size][u];
11088                break;
11089            }
11090            case 0xb: /* SQRSHL, UQRSHL */
11091            {
11092                static NeonGenTwoOpEnvFn * const fns[3][2] = {
11093                    { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11094                    { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11095                    { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11096                };
11097                genenvfn = fns[size][u];
11098                break;
11099            }
11100            default:
11101                g_assert_not_reached();
11102            }
11103
11104            if (genenvfn) {
11105                genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11106            } else {
11107                genfn(tcg_res, tcg_op1, tcg_op2);
11108            }
11109
11110            write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11111        }
11112    }
11113    clear_vec_high(s, is_q, rd);
11114}
11115
11116/* AdvSIMD three same
11117 *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11118 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11119 * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11120 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11121 */
11122static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11123{
11124    int opcode = extract32(insn, 11, 5);
11125
11126    switch (opcode) {
11127    case 0x3: /* logic ops */
11128        disas_simd_3same_logic(s, insn);
11129        break;
11130    case 0x17: /* ADDP */
11131    case 0x14: /* SMAXP, UMAXP */
11132    case 0x15: /* SMINP, UMINP */
11133    {
11134        /* Pairwise operations */
11135        int is_q = extract32(insn, 30, 1);
11136        int u = extract32(insn, 29, 1);
11137        int size = extract32(insn, 22, 2);
11138        int rm = extract32(insn, 16, 5);
11139        int rn = extract32(insn, 5, 5);
11140        int rd = extract32(insn, 0, 5);
11141        if (opcode == 0x17) {
11142            if (u || (size == 3 && !is_q)) {
11143                unallocated_encoding(s);
11144                return;
11145            }
11146        } else {
11147            if (size == 3) {
11148                unallocated_encoding(s);
11149                return;
11150            }
11151        }
11152        handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11153        break;
11154    }
11155    case 0x18 ... 0x31:
11156        /* floating point ops, sz[1] and U are part of opcode */
11157        disas_simd_3same_float(s, insn);
11158        break;
11159    default:
11160        disas_simd_3same_int(s, insn);
11161        break;
11162    }
11163}
11164
11165/*
11166 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11167 *
11168 *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11169 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11170 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11171 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11172 *
11173 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11174 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11175 *
11176 */
11177static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11178{
11179    int opcode = extract32(insn, 11, 3);
11180    int u = extract32(insn, 29, 1);
11181    int a = extract32(insn, 23, 1);
11182    int is_q = extract32(insn, 30, 1);
11183    int rm = extract32(insn, 16, 5);
11184    int rn = extract32(insn, 5, 5);
11185    int rd = extract32(insn, 0, 5);
11186    /*
11187     * For these floating point ops, the U, a and opcode bits
11188     * together indicate the operation.
11189     */
11190    int fpopcode = opcode | (a << 3) | (u << 4);
11191    int datasize = is_q ? 128 : 64;
11192    int elements = datasize / 16;
11193    bool pairwise;
11194    TCGv_ptr fpst;
11195    int pass;
11196
11197    switch (fpopcode) {
11198    case 0x0: /* FMAXNM */
11199    case 0x1: /* FMLA */
11200    case 0x2: /* FADD */
11201    case 0x3: /* FMULX */
11202    case 0x4: /* FCMEQ */
11203    case 0x6: /* FMAX */
11204    case 0x7: /* FRECPS */
11205    case 0x8: /* FMINNM */
11206    case 0x9: /* FMLS */
11207    case 0xa: /* FSUB */
11208    case 0xe: /* FMIN */
11209    case 0xf: /* FRSQRTS */
11210    case 0x13: /* FMUL */
11211    case 0x14: /* FCMGE */
11212    case 0x15: /* FACGE */
11213    case 0x17: /* FDIV */
11214    case 0x1a: /* FABD */
11215    case 0x1c: /* FCMGT */
11216    case 0x1d: /* FACGT */
11217        pairwise = false;
11218        break;
11219    case 0x10: /* FMAXNMP */
11220    case 0x12: /* FADDP */
11221    case 0x16: /* FMAXP */
11222    case 0x18: /* FMINNMP */
11223    case 0x1e: /* FMINP */
11224        pairwise = true;
11225        break;
11226    default:
11227        unallocated_encoding(s);
11228        return;
11229    }
11230
11231    if (!dc_isar_feature(aa64_fp16, s)) {
11232        unallocated_encoding(s);
11233        return;
11234    }
11235
11236    if (!fp_access_check(s)) {
11237        return;
11238    }
11239
11240    fpst = fpstatus_ptr(FPST_FPCR_F16);
11241
11242    if (pairwise) {
11243        int maxpass = is_q ? 8 : 4;
11244        TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11245        TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11246        TCGv_i32 tcg_res[8];
11247
11248        for (pass = 0; pass < maxpass; pass++) {
11249            int passreg = pass < (maxpass / 2) ? rn : rm;
11250            int passelt = (pass << 1) & (maxpass - 1);
11251
11252            read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11253            read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11254            tcg_res[pass] = tcg_temp_new_i32();
11255
11256            switch (fpopcode) {
11257            case 0x10: /* FMAXNMP */
11258                gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11259                                           fpst);
11260                break;
11261            case 0x12: /* FADDP */
11262                gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11263                break;
11264            case 0x16: /* FMAXP */
11265                gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11266                break;
11267            case 0x18: /* FMINNMP */
11268                gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11269                                           fpst);
11270                break;
11271            case 0x1e: /* FMINP */
11272                gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11273                break;
11274            default:
11275                g_assert_not_reached();
11276            }
11277        }
11278
11279        for (pass = 0; pass < maxpass; pass++) {
11280            write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11281        }
11282    } else {
11283        for (pass = 0; pass < elements; pass++) {
11284            TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11285            TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11286            TCGv_i32 tcg_res = tcg_temp_new_i32();
11287
11288            read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11289            read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11290
11291            switch (fpopcode) {
11292            case 0x0: /* FMAXNM */
11293                gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11294                break;
11295            case 0x1: /* FMLA */
11296                read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11297                gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11298                                           fpst);
11299                break;
11300            case 0x2: /* FADD */
11301                gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11302                break;
11303            case 0x3: /* FMULX */
11304                gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11305                break;
11306            case 0x4: /* FCMEQ */
11307                gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11308                break;
11309            case 0x6: /* FMAX */
11310                gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11311                break;
11312            case 0x7: /* FRECPS */
11313                gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11314                break;
11315            case 0x8: /* FMINNM */
11316                gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11317                break;
11318            case 0x9: /* FMLS */
11319                /* As usual for ARM, separate negation for fused multiply-add */
11320                tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11321                read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11322                gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11323                                           fpst);
11324                break;
11325            case 0xa: /* FSUB */
11326                gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11327                break;
11328            case 0xe: /* FMIN */
11329                gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11330                break;
11331            case 0xf: /* FRSQRTS */
11332                gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11333                break;
11334            case 0x13: /* FMUL */
11335                gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11336                break;
11337            case 0x14: /* FCMGE */
11338                gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11339                break;
11340            case 0x15: /* FACGE */
11341                gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11342                break;
11343            case 0x17: /* FDIV */
11344                gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11345                break;
11346            case 0x1a: /* FABD */
11347                gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11348                tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11349                break;
11350            case 0x1c: /* FCMGT */
11351                gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11352                break;
11353            case 0x1d: /* FACGT */
11354                gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11355                break;
11356            default:
11357                g_assert_not_reached();
11358            }
11359
11360            write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11361        }
11362    }
11363
11364    clear_vec_high(s, is_q, rd);
11365}
11366
11367/* AdvSIMD three same extra
11368 *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11369 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11370 * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11371 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11372 */
11373static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11374{
11375    int rd = extract32(insn, 0, 5);
11376    int rn = extract32(insn, 5, 5);
11377    int opcode = extract32(insn, 11, 4);
11378    int rm = extract32(insn, 16, 5);
11379    int size = extract32(insn, 22, 2);
11380    bool u = extract32(insn, 29, 1);
11381    bool is_q = extract32(insn, 30, 1);
11382    bool feature;
11383    int rot;
11384
11385    switch (u * 16 + opcode) {
11386    case 0x10: /* SQRDMLAH (vector) */
11387    case 0x11: /* SQRDMLSH (vector) */
11388        if (size != 1 && size != 2) {
11389            unallocated_encoding(s);
11390            return;
11391        }
11392        feature = dc_isar_feature(aa64_rdm, s);
11393        break;
11394    case 0x02: /* SDOT (vector) */
11395    case 0x12: /* UDOT (vector) */
11396        if (size != MO_32) {
11397            unallocated_encoding(s);
11398            return;
11399        }
11400        feature = dc_isar_feature(aa64_dp, s);
11401        break;
11402    case 0x03: /* USDOT */
11403        if (size != MO_32) {
11404            unallocated_encoding(s);
11405            return;
11406        }
11407        feature = dc_isar_feature(aa64_i8mm, s);
11408        break;
11409    case 0x04: /* SMMLA */
11410    case 0x14: /* UMMLA */
11411    case 0x05: /* USMMLA */
11412        if (!is_q || size != MO_32) {
11413            unallocated_encoding(s);
11414            return;
11415        }
11416        feature = dc_isar_feature(aa64_i8mm, s);
11417        break;
11418    case 0x18: /* FCMLA, #0 */
11419    case 0x19: /* FCMLA, #90 */
11420    case 0x1a: /* FCMLA, #180 */
11421    case 0x1b: /* FCMLA, #270 */
11422    case 0x1c: /* FCADD, #90 */
11423    case 0x1e: /* FCADD, #270 */
11424        if (size == 0
11425            || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11426            || (size == 3 && !is_q)) {
11427            unallocated_encoding(s);
11428            return;
11429        }
11430        feature = dc_isar_feature(aa64_fcma, s);
11431        break;
11432    case 0x1d: /* BFMMLA */
11433        if (size != MO_16 || !is_q) {
11434            unallocated_encoding(s);
11435            return;
11436        }
11437        feature = dc_isar_feature(aa64_bf16, s);
11438        break;
11439    case 0x1f:
11440        switch (size) {
11441        case 1: /* BFDOT */
11442        case 3: /* BFMLAL{B,T} */
11443            feature = dc_isar_feature(aa64_bf16, s);
11444            break;
11445        default:
11446            unallocated_encoding(s);
11447            return;
11448        }
11449        break;
11450    default:
11451        unallocated_encoding(s);
11452        return;
11453    }
11454    if (!feature) {
11455        unallocated_encoding(s);
11456        return;
11457    }
11458    if (!fp_access_check(s)) {
11459        return;
11460    }
11461
11462    switch (opcode) {
11463    case 0x0: /* SQRDMLAH (vector) */
11464        gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11465        return;
11466
11467    case 0x1: /* SQRDMLSH (vector) */
11468        gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11469        return;
11470
11471    case 0x2: /* SDOT / UDOT */
11472        gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11473                         u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11474        return;
11475
11476    case 0x3: /* USDOT */
11477        gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11478        return;
11479
11480    case 0x04: /* SMMLA, UMMLA */
11481        gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11482                         u ? gen_helper_gvec_ummla_b
11483                         : gen_helper_gvec_smmla_b);
11484        return;
11485    case 0x05: /* USMMLA */
11486        gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11487        return;
11488
11489    case 0x8: /* FCMLA, #0 */
11490    case 0x9: /* FCMLA, #90 */
11491    case 0xa: /* FCMLA, #180 */
11492    case 0xb: /* FCMLA, #270 */
11493        rot = extract32(opcode, 0, 2);
11494        switch (size) {
11495        case 1:
11496            gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11497                              gen_helper_gvec_fcmlah);
11498            break;
11499        case 2:
11500            gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11501                              gen_helper_gvec_fcmlas);
11502            break;
11503        case 3:
11504            gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11505                              gen_helper_gvec_fcmlad);
11506            break;
11507        default:
11508            g_assert_not_reached();
11509        }
11510        return;
11511
11512    case 0xc: /* FCADD, #90 */
11513    case 0xe: /* FCADD, #270 */
11514        rot = extract32(opcode, 1, 1);
11515        switch (size) {
11516        case 1:
11517            gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11518                              gen_helper_gvec_fcaddh);
11519            break;
11520        case 2:
11521            gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11522                              gen_helper_gvec_fcadds);
11523            break;
11524        case 3:
11525            gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11526                              gen_helper_gvec_fcaddd);
11527            break;
11528        default:
11529            g_assert_not_reached();
11530        }
11531        return;
11532
11533    case 0xd: /* BFMMLA */
11534        gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11535        return;
11536    case 0xf:
11537        switch (size) {
11538        case 1: /* BFDOT */
11539            gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11540            break;
11541        case 3: /* BFMLAL{B,T} */
11542            gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11543                              gen_helper_gvec_bfmlal);
11544            break;
11545        default:
11546            g_assert_not_reached();
11547        }
11548        return;
11549
11550    default:
11551        g_assert_not_reached();
11552    }
11553}
11554
11555static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11556                                  int size, int rn, int rd)
11557{
11558    /* Handle 2-reg-misc ops which are widening (so each size element
11559     * in the source becomes a 2*size element in the destination.
11560     * The only instruction like this is FCVTL.
11561     */
11562    int pass;
11563
11564    if (size == 3) {
11565        /* 32 -> 64 bit fp conversion */
11566        TCGv_i64 tcg_res[2];
11567        int srcelt = is_q ? 2 : 0;
11568
11569        for (pass = 0; pass < 2; pass++) {
11570            TCGv_i32 tcg_op = tcg_temp_new_i32();
11571            tcg_res[pass] = tcg_temp_new_i64();
11572
11573            read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11574            gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11575        }
11576        for (pass = 0; pass < 2; pass++) {
11577            write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11578        }
11579    } else {
11580        /* 16 -> 32 bit fp conversion */
11581        int srcelt = is_q ? 4 : 0;
11582        TCGv_i32 tcg_res[4];
11583        TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11584        TCGv_i32 ahp = get_ahp_flag();
11585
11586        for (pass = 0; pass < 4; pass++) {
11587            tcg_res[pass] = tcg_temp_new_i32();
11588
11589            read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11590            gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11591                                           fpst, ahp);
11592        }
11593        for (pass = 0; pass < 4; pass++) {
11594            write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11595        }
11596    }
11597}
11598
11599static void handle_rev(DisasContext *s, int opcode, bool u,
11600                       bool is_q, int size, int rn, int rd)
11601{
11602    int op = (opcode << 1) | u;
11603    int opsz = op + size;
11604    int grp_size = 3 - opsz;
11605    int dsize = is_q ? 128 : 64;
11606    int i;
11607
11608    if (opsz >= 3) {
11609        unallocated_encoding(s);
11610        return;
11611    }
11612
11613    if (!fp_access_check(s)) {
11614        return;
11615    }
11616
11617    if (size == 0) {
11618        /* Special case bytes, use bswap op on each group of elements */
11619        int groups = dsize / (8 << grp_size);
11620
11621        for (i = 0; i < groups; i++) {
11622            TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11623
11624            read_vec_element(s, tcg_tmp, rn, i, grp_size);
11625            switch (grp_size) {
11626            case MO_16:
11627                tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11628                break;
11629            case MO_32:
11630                tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11631                break;
11632            case MO_64:
11633                tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11634                break;
11635            default:
11636                g_assert_not_reached();
11637            }
11638            write_vec_element(s, tcg_tmp, rd, i, grp_size);
11639        }
11640        clear_vec_high(s, is_q, rd);
11641    } else {
11642        int revmask = (1 << grp_size) - 1;
11643        int esize = 8 << size;
11644        int elements = dsize / esize;
11645        TCGv_i64 tcg_rn = tcg_temp_new_i64();
11646        TCGv_i64 tcg_rd[2];
11647
11648        for (i = 0; i < 2; i++) {
11649            tcg_rd[i] = tcg_temp_new_i64();
11650            tcg_gen_movi_i64(tcg_rd[i], 0);
11651        }
11652
11653        for (i = 0; i < elements; i++) {
11654            int e_rev = (i & 0xf) ^ revmask;
11655            int w = (e_rev * esize) / 64;
11656            int o = (e_rev * esize) % 64;
11657
11658            read_vec_element(s, tcg_rn, rn, i, size);
11659            tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11660        }
11661
11662        for (i = 0; i < 2; i++) {
11663            write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11664        }
11665        clear_vec_high(s, true, rd);
11666    }
11667}
11668
11669static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11670                                  bool is_q, int size, int rn, int rd)
11671{
11672    /* Implement the pairwise operations from 2-misc:
11673     * SADDLP, UADDLP, SADALP, UADALP.
11674     * These all add pairs of elements in the input to produce a
11675     * double-width result element in the output (possibly accumulating).
11676     */
11677    bool accum = (opcode == 0x6);
11678    int maxpass = is_q ? 2 : 1;
11679    int pass;
11680    TCGv_i64 tcg_res[2];
11681
11682    if (size == 2) {
11683        /* 32 + 32 -> 64 op */
11684        MemOp memop = size + (u ? 0 : MO_SIGN);
11685
11686        for (pass = 0; pass < maxpass; pass++) {
11687            TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11688            TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11689
11690            tcg_res[pass] = tcg_temp_new_i64();
11691
11692            read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11693            read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11694            tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11695            if (accum) {
11696                read_vec_element(s, tcg_op1, rd, pass, MO_64);
11697                tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11698            }
11699        }
11700    } else {
11701        for (pass = 0; pass < maxpass; pass++) {
11702            TCGv_i64 tcg_op = tcg_temp_new_i64();
11703            NeonGenOne64OpFn *genfn;
11704            static NeonGenOne64OpFn * const fns[2][2] = {
11705                { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11706                { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11707            };
11708
11709            genfn = fns[size][u];
11710
11711            tcg_res[pass] = tcg_temp_new_i64();
11712
11713            read_vec_element(s, tcg_op, rn, pass, MO_64);
11714            genfn(tcg_res[pass], tcg_op);
11715
11716            if (accum) {
11717                read_vec_element(s, tcg_op, rd, pass, MO_64);
11718                if (size == 0) {
11719                    gen_helper_neon_addl_u16(tcg_res[pass],
11720                                             tcg_res[pass], tcg_op);
11721                } else {
11722                    gen_helper_neon_addl_u32(tcg_res[pass],
11723                                             tcg_res[pass], tcg_op);
11724                }
11725            }
11726        }
11727    }
11728    if (!is_q) {
11729        tcg_res[1] = tcg_constant_i64(0);
11730    }
11731    for (pass = 0; pass < 2; pass++) {
11732        write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11733    }
11734}
11735
11736static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11737{
11738    /* Implement SHLL and SHLL2 */
11739    int pass;
11740    int part = is_q ? 2 : 0;
11741    TCGv_i64 tcg_res[2];
11742
11743    for (pass = 0; pass < 2; pass++) {
11744        static NeonGenWidenFn * const widenfns[3] = {
11745            gen_helper_neon_widen_u8,
11746            gen_helper_neon_widen_u16,
11747            tcg_gen_extu_i32_i64,
11748        };
11749        NeonGenWidenFn *widenfn = widenfns[size];
11750        TCGv_i32 tcg_op = tcg_temp_new_i32();
11751
11752        read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11753        tcg_res[pass] = tcg_temp_new_i64();
11754        widenfn(tcg_res[pass], tcg_op);
11755        tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11756    }
11757
11758    for (pass = 0; pass < 2; pass++) {
11759        write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11760    }
11761}
11762
11763/* AdvSIMD two reg misc
11764 *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11765 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11766 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11767 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11768 */
11769static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11770{
11771    int size = extract32(insn, 22, 2);
11772    int opcode = extract32(insn, 12, 5);
11773    bool u = extract32(insn, 29, 1);
11774    bool is_q = extract32(insn, 30, 1);
11775    int rn = extract32(insn, 5, 5);
11776    int rd = extract32(insn, 0, 5);
11777    bool need_fpstatus = false;
11778    int rmode = -1;
11779    TCGv_i32 tcg_rmode;
11780    TCGv_ptr tcg_fpstatus;
11781
11782    switch (opcode) {
11783    case 0x0: /* REV64, REV32 */
11784    case 0x1: /* REV16 */
11785        handle_rev(s, opcode, u, is_q, size, rn, rd);
11786        return;
11787    case 0x5: /* CNT, NOT, RBIT */
11788        if (u && size == 0) {
11789            /* NOT */
11790            break;
11791        } else if (u && size == 1) {
11792            /* RBIT */
11793            break;
11794        } else if (!u && size == 0) {
11795            /* CNT */
11796            break;
11797        }
11798        unallocated_encoding(s);
11799        return;
11800    case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11801    case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11802        if (size == 3) {
11803            unallocated_encoding(s);
11804            return;
11805        }
11806        if (!fp_access_check(s)) {
11807            return;
11808        }
11809
11810        handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11811        return;
11812    case 0x4: /* CLS, CLZ */
11813        if (size == 3) {
11814            unallocated_encoding(s);
11815            return;
11816        }
11817        break;
11818    case 0x2: /* SADDLP, UADDLP */
11819    case 0x6: /* SADALP, UADALP */
11820        if (size == 3) {
11821            unallocated_encoding(s);
11822            return;
11823        }
11824        if (!fp_access_check(s)) {
11825            return;
11826        }
11827        handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11828        return;
11829    case 0x13: /* SHLL, SHLL2 */
11830        if (u == 0 || size == 3) {
11831            unallocated_encoding(s);
11832            return;
11833        }
11834        if (!fp_access_check(s)) {
11835            return;
11836        }
11837        handle_shll(s, is_q, size, rn, rd);
11838        return;
11839    case 0xa: /* CMLT */
11840        if (u == 1) {
11841            unallocated_encoding(s);
11842            return;
11843        }
11844        /* fall through */
11845    case 0x8: /* CMGT, CMGE */
11846    case 0x9: /* CMEQ, CMLE */
11847    case 0xb: /* ABS, NEG */
11848        if (size == 3 && !is_q) {
11849            unallocated_encoding(s);
11850            return;
11851        }
11852        break;
11853    case 0x3: /* SUQADD, USQADD */
11854        if (size == 3 && !is_q) {
11855            unallocated_encoding(s);
11856            return;
11857        }
11858        if (!fp_access_check(s)) {
11859            return;
11860        }
11861        handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11862        return;
11863    case 0x7: /* SQABS, SQNEG */
11864        if (size == 3 && !is_q) {
11865            unallocated_encoding(s);
11866            return;
11867        }
11868        break;
11869    case 0xc ... 0xf:
11870    case 0x16 ... 0x1f:
11871    {
11872        /* Floating point: U, size[1] and opcode indicate operation;
11873         * size[0] indicates single or double precision.
11874         */
11875        int is_double = extract32(size, 0, 1);
11876        opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11877        size = is_double ? 3 : 2;
11878        switch (opcode) {
11879        case 0x2f: /* FABS */
11880        case 0x6f: /* FNEG */
11881            if (size == 3 && !is_q) {
11882                unallocated_encoding(s);
11883                return;
11884            }
11885            break;
11886        case 0x1d: /* SCVTF */
11887        case 0x5d: /* UCVTF */
11888        {
11889            bool is_signed = (opcode == 0x1d) ? true : false;
11890            int elements = is_double ? 2 : is_q ? 4 : 2;
11891            if (is_double && !is_q) {
11892                unallocated_encoding(s);
11893                return;
11894            }
11895            if (!fp_access_check(s)) {
11896                return;
11897            }
11898            handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11899            return;
11900        }
11901        case 0x2c: /* FCMGT (zero) */
11902        case 0x2d: /* FCMEQ (zero) */
11903        case 0x2e: /* FCMLT (zero) */
11904        case 0x6c: /* FCMGE (zero) */
11905        case 0x6d: /* FCMLE (zero) */
11906            if (size == 3 && !is_q) {
11907                unallocated_encoding(s);
11908                return;
11909            }
11910            handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11911            return;
11912        case 0x7f: /* FSQRT */
11913            if (size == 3 && !is_q) {
11914                unallocated_encoding(s);
11915                return;
11916            }
11917            break;
11918        case 0x1a: /* FCVTNS */
11919        case 0x1b: /* FCVTMS */
11920        case 0x3a: /* FCVTPS */
11921        case 0x3b: /* FCVTZS */
11922        case 0x5a: /* FCVTNU */
11923        case 0x5b: /* FCVTMU */
11924        case 0x7a: /* FCVTPU */
11925        case 0x7b: /* FCVTZU */
11926            need_fpstatus = true;
11927            rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11928            if (size == 3 && !is_q) {
11929                unallocated_encoding(s);
11930                return;
11931            }
11932            break;
11933        case 0x5c: /* FCVTAU */
11934        case 0x1c: /* FCVTAS */
11935            need_fpstatus = true;
11936            rmode = FPROUNDING_TIEAWAY;
11937            if (size == 3 && !is_q) {
11938                unallocated_encoding(s);
11939                return;
11940            }
11941            break;
11942        case 0x3c: /* URECPE */
11943            if (size == 3) {
11944                unallocated_encoding(s);
11945                return;
11946            }
11947            /* fall through */
11948        case 0x3d: /* FRECPE */
11949        case 0x7d: /* FRSQRTE */
11950            if (size == 3 && !is_q) {
11951                unallocated_encoding(s);
11952                return;
11953            }
11954            if (!fp_access_check(s)) {
11955                return;
11956            }
11957            handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11958            return;
11959        case 0x56: /* FCVTXN, FCVTXN2 */
11960            if (size == 2) {
11961                unallocated_encoding(s);
11962                return;
11963            }
11964            /* fall through */
11965        case 0x16: /* FCVTN, FCVTN2 */
11966            /* handle_2misc_narrow does a 2*size -> size operation, but these
11967             * instructions encode the source size rather than dest size.
11968             */
11969            if (!fp_access_check(s)) {
11970                return;
11971            }
11972            handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11973            return;
11974        case 0x36: /* BFCVTN, BFCVTN2 */
11975            if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11976                unallocated_encoding(s);
11977                return;
11978            }
11979            if (!fp_access_check(s)) {
11980                return;
11981            }
11982            handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11983            return;
11984        case 0x17: /* FCVTL, FCVTL2 */
11985            if (!fp_access_check(s)) {
11986                return;
11987            }
11988            handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11989            return;
11990        case 0x18: /* FRINTN */
11991        case 0x19: /* FRINTM */
11992        case 0x38: /* FRINTP */
11993        case 0x39: /* FRINTZ */
11994            rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11995            /* fall through */
11996        case 0x59: /* FRINTX */
11997        case 0x79: /* FRINTI */
11998            need_fpstatus = true;
11999            if (size == 3 && !is_q) {
12000                unallocated_encoding(s);
12001                return;
12002            }
12003            break;
12004        case 0x58: /* FRINTA */
12005            rmode = FPROUNDING_TIEAWAY;
12006            need_fpstatus = true;
12007            if (size == 3 && !is_q) {
12008                unallocated_encoding(s);
12009                return;
12010            }
12011            break;
12012        case 0x7c: /* URSQRTE */
12013            if (size == 3) {
12014                unallocated_encoding(s);
12015                return;
12016            }
12017            break;
12018        case 0x1e: /* FRINT32Z */
12019        case 0x1f: /* FRINT64Z */
12020            rmode = FPROUNDING_ZERO;
12021            /* fall through */
12022        case 0x5e: /* FRINT32X */
12023        case 0x5f: /* FRINT64X */
12024            need_fpstatus = true;
12025            if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12026                unallocated_encoding(s);
12027                return;
12028            }
12029            break;
12030        default:
12031            unallocated_encoding(s);
12032            return;
12033        }
12034        break;
12035    }
12036    default:
12037        unallocated_encoding(s);
12038        return;
12039    }
12040
12041    if (!fp_access_check(s)) {
12042        return;
12043    }
12044
12045    if (need_fpstatus || rmode >= 0) {
12046        tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12047    } else {
12048        tcg_fpstatus = NULL;
12049    }
12050    if (rmode >= 0) {
12051        tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12052    } else {
12053        tcg_rmode = NULL;
12054    }
12055
12056    switch (opcode) {
12057    case 0x5:
12058        if (u && size == 0) { /* NOT */
12059            gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12060            return;
12061        }
12062        break;
12063    case 0x8: /* CMGT, CMGE */
12064        if (u) {
12065            gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12066        } else {
12067            gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12068        }
12069        return;
12070    case 0x9: /* CMEQ, CMLE */
12071        if (u) {
12072            gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12073        } else {
12074            gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12075        }
12076        return;
12077    case 0xa: /* CMLT */
12078        gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12079        return;
12080    case 0xb:
12081        if (u) { /* ABS, NEG */
12082            gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12083        } else {
12084            gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12085        }
12086        return;
12087    }
12088
12089    if (size == 3) {
12090        /* All 64-bit element operations can be shared with scalar 2misc */
12091        int pass;
12092
12093        /* Coverity claims (size == 3 && !is_q) has been eliminated
12094         * from all paths leading to here.
12095         */
12096        tcg_debug_assert(is_q);
12097        for (pass = 0; pass < 2; pass++) {
12098            TCGv_i64 tcg_op = tcg_temp_new_i64();
12099            TCGv_i64 tcg_res = tcg_temp_new_i64();
12100
12101            read_vec_element(s, tcg_op, rn, pass, MO_64);
12102
12103            handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12104                            tcg_rmode, tcg_fpstatus);
12105
12106            write_vec_element(s, tcg_res, rd, pass, MO_64);
12107        }
12108    } else {
12109        int pass;
12110
12111        for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12112            TCGv_i32 tcg_op = tcg_temp_new_i32();
12113            TCGv_i32 tcg_res = tcg_temp_new_i32();
12114
12115            read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12116
12117            if (size == 2) {
12118                /* Special cases for 32 bit elements */
12119                switch (opcode) {
12120                case 0x4: /* CLS */
12121                    if (u) {
12122                        tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12123                    } else {
12124                        tcg_gen_clrsb_i32(tcg_res, tcg_op);
12125                    }
12126                    break;
12127                case 0x7: /* SQABS, SQNEG */
12128                    if (u) {
12129                        gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12130                    } else {
12131                        gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12132                    }
12133                    break;
12134                case 0x2f: /* FABS */
12135                    gen_helper_vfp_abss(tcg_res, tcg_op);
12136                    break;
12137                case 0x6f: /* FNEG */
12138                    gen_helper_vfp_negs(tcg_res, tcg_op);
12139                    break;
12140                case 0x7f: /* FSQRT */
12141                    gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12142                    break;
12143                case 0x1a: /* FCVTNS */
12144                case 0x1b: /* FCVTMS */
12145                case 0x1c: /* FCVTAS */
12146                case 0x3a: /* FCVTPS */
12147                case 0x3b: /* FCVTZS */
12148                    gen_helper_vfp_tosls(tcg_res, tcg_op,
12149                                         tcg_constant_i32(0), tcg_fpstatus);
12150                    break;
12151                case 0x5a: /* FCVTNU */
12152                case 0x5b: /* FCVTMU */
12153                case 0x5c: /* FCVTAU */
12154                case 0x7a: /* FCVTPU */
12155                case 0x7b: /* FCVTZU */
12156                    gen_helper_vfp_touls(tcg_res, tcg_op,
12157                                         tcg_constant_i32(0), tcg_fpstatus);
12158                    break;
12159                case 0x18: /* FRINTN */
12160                case 0x19: /* FRINTM */
12161                case 0x38: /* FRINTP */
12162                case 0x39: /* FRINTZ */
12163                case 0x58: /* FRINTA */
12164                case 0x79: /* FRINTI */
12165                    gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12166                    break;
12167                case 0x59: /* FRINTX */
12168                    gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12169                    break;
12170                case 0x7c: /* URSQRTE */
12171                    gen_helper_rsqrte_u32(tcg_res, tcg_op);
12172                    break;
12173                case 0x1e: /* FRINT32Z */
12174                case 0x5e: /* FRINT32X */
12175                    gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12176                    break;
12177                case 0x1f: /* FRINT64Z */
12178                case 0x5f: /* FRINT64X */
12179                    gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12180                    break;
12181                default:
12182                    g_assert_not_reached();
12183                }
12184            } else {
12185                /* Use helpers for 8 and 16 bit elements */
12186                switch (opcode) {
12187                case 0x5: /* CNT, RBIT */
12188                    /* For these two insns size is part of the opcode specifier
12189                     * (handled earlier); they always operate on byte elements.
12190                     */
12191                    if (u) {
12192                        gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12193                    } else {
12194                        gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12195                    }
12196                    break;
12197                case 0x7: /* SQABS, SQNEG */
12198                {
12199                    NeonGenOneOpEnvFn *genfn;
12200                    static NeonGenOneOpEnvFn * const fns[2][2] = {
12201                        { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12202                        { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12203                    };
12204                    genfn = fns[size][u];
12205                    genfn(tcg_res, cpu_env, tcg_op);
12206                    break;
12207                }
12208                case 0x4: /* CLS, CLZ */
12209                    if (u) {
12210                        if (size == 0) {
12211                            gen_helper_neon_clz_u8(tcg_res, tcg_op);
12212                        } else {
12213                            gen_helper_neon_clz_u16(tcg_res, tcg_op);
12214                        }
12215                    } else {
12216                        if (size == 0) {
12217                            gen_helper_neon_cls_s8(tcg_res, tcg_op);
12218                        } else {
12219                            gen_helper_neon_cls_s16(tcg_res, tcg_op);
12220                        }
12221                    }
12222                    break;
12223                default:
12224                    g_assert_not_reached();
12225                }
12226            }
12227
12228            write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12229        }
12230    }
12231    clear_vec_high(s, is_q, rd);
12232
12233    if (tcg_rmode) {
12234        gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12235    }
12236}
12237
12238/* AdvSIMD [scalar] two register miscellaneous (FP16)
12239 *
12240 *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12241 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12242 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12243 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12244 *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12245 *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12246 *
12247 * This actually covers two groups where scalar access is governed by
12248 * bit 28. A bunch of the instructions (float to integral) only exist
12249 * in the vector form and are un-allocated for the scalar decode. Also
12250 * in the scalar decode Q is always 1.
12251 */
12252static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12253{
12254    int fpop, opcode, a, u;
12255    int rn, rd;
12256    bool is_q;
12257    bool is_scalar;
12258    bool only_in_vector = false;
12259
12260    int pass;
12261    TCGv_i32 tcg_rmode = NULL;
12262    TCGv_ptr tcg_fpstatus = NULL;
12263    bool need_fpst = true;
12264    int rmode = -1;
12265
12266    if (!dc_isar_feature(aa64_fp16, s)) {
12267        unallocated_encoding(s);
12268        return;
12269    }
12270
12271    rd = extract32(insn, 0, 5);
12272    rn = extract32(insn, 5, 5);
12273
12274    a = extract32(insn, 23, 1);
12275    u = extract32(insn, 29, 1);
12276    is_scalar = extract32(insn, 28, 1);
12277    is_q = extract32(insn, 30, 1);
12278
12279    opcode = extract32(insn, 12, 5);
12280    fpop = deposit32(opcode, 5, 1, a);
12281    fpop = deposit32(fpop, 6, 1, u);
12282
12283    switch (fpop) {
12284    case 0x1d: /* SCVTF */
12285    case 0x5d: /* UCVTF */
12286    {
12287        int elements;
12288
12289        if (is_scalar) {
12290            elements = 1;
12291        } else {
12292            elements = (is_q ? 8 : 4);
12293        }
12294
12295        if (!fp_access_check(s)) {
12296            return;
12297        }
12298        handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12299        return;
12300    }
12301    break;
12302    case 0x2c: /* FCMGT (zero) */
12303    case 0x2d: /* FCMEQ (zero) */
12304    case 0x2e: /* FCMLT (zero) */
12305    case 0x6c: /* FCMGE (zero) */
12306    case 0x6d: /* FCMLE (zero) */
12307        handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12308        return;
12309    case 0x3d: /* FRECPE */
12310    case 0x3f: /* FRECPX */
12311        break;
12312    case 0x18: /* FRINTN */
12313        only_in_vector = true;
12314        rmode = FPROUNDING_TIEEVEN;
12315        break;
12316    case 0x19: /* FRINTM */
12317        only_in_vector = true;
12318        rmode = FPROUNDING_NEGINF;
12319        break;
12320    case 0x38: /* FRINTP */
12321        only_in_vector = true;
12322        rmode = FPROUNDING_POSINF;
12323        break;
12324    case 0x39: /* FRINTZ */
12325        only_in_vector = true;
12326        rmode = FPROUNDING_ZERO;
12327        break;
12328    case 0x58: /* FRINTA */
12329        only_in_vector = true;
12330        rmode = FPROUNDING_TIEAWAY;
12331        break;
12332    case 0x59: /* FRINTX */
12333    case 0x79: /* FRINTI */
12334        only_in_vector = true;
12335        /* current rounding mode */
12336        break;
12337    case 0x1a: /* FCVTNS */
12338        rmode = FPROUNDING_TIEEVEN;
12339        break;
12340    case 0x1b: /* FCVTMS */
12341        rmode = FPROUNDING_NEGINF;
12342        break;
12343    case 0x1c: /* FCVTAS */
12344        rmode = FPROUNDING_TIEAWAY;
12345        break;
12346    case 0x3a: /* FCVTPS */
12347        rmode = FPROUNDING_POSINF;
12348        break;
12349    case 0x3b: /* FCVTZS */
12350        rmode = FPROUNDING_ZERO;
12351        break;
12352    case 0x5a: /* FCVTNU */
12353        rmode = FPROUNDING_TIEEVEN;
12354        break;
12355    case 0x5b: /* FCVTMU */
12356        rmode = FPROUNDING_NEGINF;
12357        break;
12358    case 0x5c: /* FCVTAU */
12359        rmode = FPROUNDING_TIEAWAY;
12360        break;
12361    case 0x7a: /* FCVTPU */
12362        rmode = FPROUNDING_POSINF;
12363        break;
12364    case 0x7b: /* FCVTZU */
12365        rmode = FPROUNDING_ZERO;
12366        break;
12367    case 0x2f: /* FABS */
12368    case 0x6f: /* FNEG */
12369        need_fpst = false;
12370        break;
12371    case 0x7d: /* FRSQRTE */
12372    case 0x7f: /* FSQRT (vector) */
12373        break;
12374    default:
12375        unallocated_encoding(s);
12376        return;
12377    }
12378
12379
12380    /* Check additional constraints for the scalar encoding */
12381    if (is_scalar) {
12382        if (!is_q) {
12383            unallocated_encoding(s);
12384            return;
12385        }
12386        /* FRINTxx is only in the vector form */
12387        if (only_in_vector) {
12388            unallocated_encoding(s);
12389            return;
12390        }
12391    }
12392
12393    if (!fp_access_check(s)) {
12394        return;
12395    }
12396
12397    if (rmode >= 0 || need_fpst) {
12398        tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12399    }
12400
12401    if (rmode >= 0) {
12402        tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12403    }
12404
12405    if (is_scalar) {
12406        TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12407        TCGv_i32 tcg_res = tcg_temp_new_i32();
12408
12409        switch (fpop) {
12410        case 0x1a: /* FCVTNS */
12411        case 0x1b: /* FCVTMS */
12412        case 0x1c: /* FCVTAS */
12413        case 0x3a: /* FCVTPS */
12414        case 0x3b: /* FCVTZS */
12415            gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12416            break;
12417        case 0x3d: /* FRECPE */
12418            gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12419            break;
12420        case 0x3f: /* FRECPX */
12421            gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12422            break;
12423        case 0x5a: /* FCVTNU */
12424        case 0x5b: /* FCVTMU */
12425        case 0x5c: /* FCVTAU */
12426        case 0x7a: /* FCVTPU */
12427        case 0x7b: /* FCVTZU */
12428            gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12429            break;
12430        case 0x6f: /* FNEG */
12431            tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12432            break;
12433        case 0x7d: /* FRSQRTE */
12434            gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12435            break;
12436        default:
12437            g_assert_not_reached();
12438        }
12439
12440        /* limit any sign extension going on */
12441        tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12442        write_fp_sreg(s, rd, tcg_res);
12443    } else {
12444        for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12445            TCGv_i32 tcg_op = tcg_temp_new_i32();
12446            TCGv_i32 tcg_res = tcg_temp_new_i32();
12447
12448            read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12449
12450            switch (fpop) {
12451            case 0x1a: /* FCVTNS */
12452            case 0x1b: /* FCVTMS */
12453            case 0x1c: /* FCVTAS */
12454            case 0x3a: /* FCVTPS */
12455            case 0x3b: /* FCVTZS */
12456                gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12457                break;
12458            case 0x3d: /* FRECPE */
12459                gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12460                break;
12461            case 0x5a: /* FCVTNU */
12462            case 0x5b: /* FCVTMU */
12463            case 0x5c: /* FCVTAU */
12464            case 0x7a: /* FCVTPU */
12465            case 0x7b: /* FCVTZU */
12466                gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12467                break;
12468            case 0x18: /* FRINTN */
12469            case 0x19: /* FRINTM */
12470            case 0x38: /* FRINTP */
12471            case 0x39: /* FRINTZ */
12472            case 0x58: /* FRINTA */
12473            case 0x79: /* FRINTI */
12474                gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12475                break;
12476            case 0x59: /* FRINTX */
12477                gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12478                break;
12479            case 0x2f: /* FABS */
12480                tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12481                break;
12482            case 0x6f: /* FNEG */
12483                tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12484                break;
12485            case 0x7d: /* FRSQRTE */
12486                gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12487                break;
12488            case 0x7f: /* FSQRT */
12489                gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12490                break;
12491            default:
12492                g_assert_not_reached();
12493            }
12494
12495            write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12496        }
12497
12498        clear_vec_high(s, is_q, rd);
12499    }
12500
12501    if (tcg_rmode) {
12502        gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12503    }
12504}
12505
12506/* AdvSIMD scalar x indexed element
12507 *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12508 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12509 * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12510 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12511 * AdvSIMD vector x indexed element
12512 *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12513 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12514 * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12515 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12516 */
12517static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12518{
12519    /* This encoding has two kinds of instruction:
12520     *  normal, where we perform elt x idxelt => elt for each
12521     *     element in the vector
12522     *  long, where we perform elt x idxelt and generate a result of
12523     *     double the width of the input element
12524     * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12525     */
12526    bool is_scalar = extract32(insn, 28, 1);
12527    bool is_q = extract32(insn, 30, 1);
12528    bool u = extract32(insn, 29, 1);
12529    int size = extract32(insn, 22, 2);
12530    int l = extract32(insn, 21, 1);
12531    int m = extract32(insn, 20, 1);
12532    /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12533    int rm = extract32(insn, 16, 4);
12534    int opcode = extract32(insn, 12, 4);
12535    int h = extract32(insn, 11, 1);
12536    int rn = extract32(insn, 5, 5);
12537    int rd = extract32(insn, 0, 5);
12538    bool is_long = false;
12539    int is_fp = 0;
12540    bool is_fp16 = false;
12541    int index;
12542    TCGv_ptr fpst;
12543
12544    switch (16 * u + opcode) {
12545    case 0x08: /* MUL */
12546    case 0x10: /* MLA */
12547    case 0x14: /* MLS */
12548        if (is_scalar) {
12549            unallocated_encoding(s);
12550            return;
12551        }
12552        break;
12553    case 0x02: /* SMLAL, SMLAL2 */
12554    case 0x12: /* UMLAL, UMLAL2 */
12555    case 0x06: /* SMLSL, SMLSL2 */
12556    case 0x16: /* UMLSL, UMLSL2 */
12557    case 0x0a: /* SMULL, SMULL2 */
12558    case 0x1a: /* UMULL, UMULL2 */
12559        if (is_scalar) {
12560            unallocated_encoding(s);
12561            return;
12562        }
12563        is_long = true;
12564        break;
12565    case 0x03: /* SQDMLAL, SQDMLAL2 */
12566    case 0x07: /* SQDMLSL, SQDMLSL2 */
12567    case 0x0b: /* SQDMULL, SQDMULL2 */
12568        is_long = true;
12569        break;
12570    case 0x0c: /* SQDMULH */
12571    case 0x0d: /* SQRDMULH */
12572        break;
12573    case 0x01: /* FMLA */
12574    case 0x05: /* FMLS */
12575    case 0x09: /* FMUL */
12576    case 0x19: /* FMULX */
12577        is_fp = 1;
12578        break;
12579    case 0x1d: /* SQRDMLAH */
12580    case 0x1f: /* SQRDMLSH */
12581        if (!dc_isar_feature(aa64_rdm, s)) {
12582            unallocated_encoding(s);
12583            return;
12584        }
12585        break;
12586    case 0x0e: /* SDOT */
12587    case 0x1e: /* UDOT */
12588        if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12589            unallocated_encoding(s);
12590            return;
12591        }
12592        break;
12593    case 0x0f:
12594        switch (size) {
12595        case 0: /* SUDOT */
12596        case 2: /* USDOT */
12597            if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12598                unallocated_encoding(s);
12599                return;
12600            }
12601            size = MO_32;
12602            break;
12603        case 1: /* BFDOT */
12604            if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12605                unallocated_encoding(s);
12606                return;
12607            }
12608            size = MO_32;
12609            break;
12610        case 3: /* BFMLAL{B,T} */
12611            if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12612                unallocated_encoding(s);
12613                return;
12614            }
12615            /* can't set is_fp without other incorrect size checks */
12616            size = MO_16;
12617            break;
12618        default:
12619            unallocated_encoding(s);
12620            return;
12621        }
12622        break;
12623    case 0x11: /* FCMLA #0 */
12624    case 0x13: /* FCMLA #90 */
12625    case 0x15: /* FCMLA #180 */
12626    case 0x17: /* FCMLA #270 */
12627        if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12628            unallocated_encoding(s);
12629            return;
12630        }
12631        is_fp = 2;
12632        break;
12633    case 0x00: /* FMLAL */
12634    case 0x04: /* FMLSL */
12635    case 0x18: /* FMLAL2 */
12636    case 0x1c: /* FMLSL2 */
12637        if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12638            unallocated_encoding(s);
12639            return;
12640        }
12641        size = MO_16;
12642        /* is_fp, but we pass cpu_env not fp_status.  */
12643        break;
12644    default:
12645        unallocated_encoding(s);
12646        return;
12647    }
12648
12649    switch (is_fp) {
12650    case 1: /* normal fp */
12651        /* convert insn encoded size to MemOp size */
12652        switch (size) {
12653        case 0: /* half-precision */
12654            size = MO_16;
12655            is_fp16 = true;
12656            break;
12657        case MO_32: /* single precision */
12658        case MO_64: /* double precision */
12659            break;
12660        default:
12661            unallocated_encoding(s);
12662            return;
12663        }
12664        break;
12665
12666    case 2: /* complex fp */
12667        /* Each indexable element is a complex pair.  */
12668        size += 1;
12669        switch (size) {
12670        case MO_32:
12671            if (h && !is_q) {
12672                unallocated_encoding(s);
12673                return;
12674            }
12675            is_fp16 = true;
12676            break;
12677        case MO_64:
12678            break;
12679        default:
12680            unallocated_encoding(s);
12681            return;
12682        }
12683        break;
12684
12685    default: /* integer */
12686        switch (size) {
12687        case MO_8:
12688        case MO_64:
12689            unallocated_encoding(s);
12690            return;
12691        }
12692        break;
12693    }
12694    if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12695        unallocated_encoding(s);
12696        return;
12697    }
12698
12699    /* Given MemOp size, adjust register and indexing.  */
12700    switch (size) {
12701    case MO_16:
12702        index = h << 2 | l << 1 | m;
12703        break;
12704    case MO_32:
12705        index = h << 1 | l;
12706        rm |= m << 4;
12707        break;
12708    case MO_64:
12709        if (l || !is_q) {
12710            unallocated_encoding(s);
12711            return;
12712        }
12713        index = h;
12714        rm |= m << 4;
12715        break;
12716    default:
12717        g_assert_not_reached();
12718    }
12719
12720    if (!fp_access_check(s)) {
12721        return;
12722    }
12723
12724    if (is_fp) {
12725        fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12726    } else {
12727        fpst = NULL;
12728    }
12729
12730    switch (16 * u + opcode) {
12731    case 0x0e: /* SDOT */
12732    case 0x1e: /* UDOT */
12733        gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12734                         u ? gen_helper_gvec_udot_idx_b
12735                         : gen_helper_gvec_sdot_idx_b);
12736        return;
12737    case 0x0f:
12738        switch (extract32(insn, 22, 2)) {
12739        case 0: /* SUDOT */
12740            gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12741                             gen_helper_gvec_sudot_idx_b);
12742            return;
12743        case 1: /* BFDOT */
12744            gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12745                             gen_helper_gvec_bfdot_idx);
12746            return;
12747        case 2: /* USDOT */
12748            gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12749                             gen_helper_gvec_usdot_idx_b);
12750            return;
12751        case 3: /* BFMLAL{B,T} */
12752            gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12753                              gen_helper_gvec_bfmlal_idx);
12754            return;
12755        }
12756        g_assert_not_reached();
12757    case 0x11: /* FCMLA #0 */
12758    case 0x13: /* FCMLA #90 */
12759    case 0x15: /* FCMLA #180 */
12760    case 0x17: /* FCMLA #270 */
12761        {
12762            int rot = extract32(insn, 13, 2);
12763            int data = (index << 2) | rot;
12764            tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12765                               vec_full_reg_offset(s, rn),
12766                               vec_full_reg_offset(s, rm),
12767                               vec_full_reg_offset(s, rd), fpst,
12768                               is_q ? 16 : 8, vec_full_reg_size(s), data,
12769                               size == MO_64
12770                               ? gen_helper_gvec_fcmlas_idx
12771                               : gen_helper_gvec_fcmlah_idx);
12772        }
12773        return;
12774
12775    case 0x00: /* FMLAL */
12776    case 0x04: /* FMLSL */
12777    case 0x18: /* FMLAL2 */
12778    case 0x1c: /* FMLSL2 */
12779        {
12780            int is_s = extract32(opcode, 2, 1);
12781            int is_2 = u;
12782            int data = (index << 2) | (is_2 << 1) | is_s;
12783            tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12784                               vec_full_reg_offset(s, rn),
12785                               vec_full_reg_offset(s, rm), cpu_env,
12786                               is_q ? 16 : 8, vec_full_reg_size(s),
12787                               data, gen_helper_gvec_fmlal_idx_a64);
12788        }
12789        return;
12790
12791    case 0x08: /* MUL */
12792        if (!is_long && !is_scalar) {
12793            static gen_helper_gvec_3 * const fns[3] = {
12794                gen_helper_gvec_mul_idx_h,
12795                gen_helper_gvec_mul_idx_s,
12796                gen_helper_gvec_mul_idx_d,
12797            };
12798            tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12799                               vec_full_reg_offset(s, rn),
12800                               vec_full_reg_offset(s, rm),
12801                               is_q ? 16 : 8, vec_full_reg_size(s),
12802                               index, fns[size - 1]);
12803            return;
12804        }
12805        break;
12806
12807    case 0x10: /* MLA */
12808        if (!is_long && !is_scalar) {
12809            static gen_helper_gvec_4 * const fns[3] = {
12810                gen_helper_gvec_mla_idx_h,
12811                gen_helper_gvec_mla_idx_s,
12812                gen_helper_gvec_mla_idx_d,
12813            };
12814            tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12815                               vec_full_reg_offset(s, rn),
12816                               vec_full_reg_offset(s, rm),
12817                               vec_full_reg_offset(s, rd),
12818                               is_q ? 16 : 8, vec_full_reg_size(s),
12819                               index, fns[size - 1]);
12820            return;
12821        }
12822        break;
12823
12824    case 0x14: /* MLS */
12825        if (!is_long && !is_scalar) {
12826            static gen_helper_gvec_4 * const fns[3] = {
12827                gen_helper_gvec_mls_idx_h,
12828                gen_helper_gvec_mls_idx_s,
12829                gen_helper_gvec_mls_idx_d,
12830            };
12831            tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12832                               vec_full_reg_offset(s, rn),
12833                               vec_full_reg_offset(s, rm),
12834                               vec_full_reg_offset(s, rd),
12835                               is_q ? 16 : 8, vec_full_reg_size(s),
12836                               index, fns[size - 1]);
12837            return;
12838        }
12839        break;
12840    }
12841
12842    if (size == 3) {
12843        TCGv_i64 tcg_idx = tcg_temp_new_i64();
12844        int pass;
12845
12846        assert(is_fp && is_q && !is_long);
12847
12848        read_vec_element(s, tcg_idx, rm, index, MO_64);
12849
12850        for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12851            TCGv_i64 tcg_op = tcg_temp_new_i64();
12852            TCGv_i64 tcg_res = tcg_temp_new_i64();
12853
12854            read_vec_element(s, tcg_op, rn, pass, MO_64);
12855
12856            switch (16 * u + opcode) {
12857            case 0x05: /* FMLS */
12858                /* As usual for ARM, separate negation for fused multiply-add */
12859                gen_helper_vfp_negd(tcg_op, tcg_op);
12860                /* fall through */
12861            case 0x01: /* FMLA */
12862                read_vec_element(s, tcg_res, rd, pass, MO_64);
12863                gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12864                break;
12865            case 0x09: /* FMUL */
12866                gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12867                break;
12868            case 0x19: /* FMULX */
12869                gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12870                break;
12871            default:
12872                g_assert_not_reached();
12873            }
12874
12875            write_vec_element(s, tcg_res, rd, pass, MO_64);
12876        }
12877
12878        clear_vec_high(s, !is_scalar, rd);
12879    } else if (!is_long) {
12880        /* 32 bit floating point, or 16 or 32 bit integer.
12881         * For the 16 bit scalar case we use the usual Neon helpers and
12882         * rely on the fact that 0 op 0 == 0 with no side effects.
12883         */
12884        TCGv_i32 tcg_idx = tcg_temp_new_i32();
12885        int pass, maxpasses;
12886
12887        if (is_scalar) {
12888            maxpasses = 1;
12889        } else {
12890            maxpasses = is_q ? 4 : 2;
12891        }
12892
12893        read_vec_element_i32(s, tcg_idx, rm, index, size);
12894
12895        if (size == 1 && !is_scalar) {
12896            /* The simplest way to handle the 16x16 indexed ops is to duplicate
12897             * the index into both halves of the 32 bit tcg_idx and then use
12898             * the usual Neon helpers.
12899             */
12900            tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12901        }
12902
12903        for (pass = 0; pass < maxpasses; pass++) {
12904            TCGv_i32 tcg_op = tcg_temp_new_i32();
12905            TCGv_i32 tcg_res = tcg_temp_new_i32();
12906
12907            read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12908
12909            switch (16 * u + opcode) {
12910            case 0x08: /* MUL */
12911            case 0x10: /* MLA */
12912            case 0x14: /* MLS */
12913            {
12914                static NeonGenTwoOpFn * const fns[2][2] = {
12915                    { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12916                    { tcg_gen_add_i32, tcg_gen_sub_i32 },
12917                };
12918                NeonGenTwoOpFn *genfn;
12919                bool is_sub = opcode == 0x4;
12920
12921                if (size == 1) {
12922                    gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12923                } else {
12924                    tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12925                }
12926                if (opcode == 0x8) {
12927                    break;
12928                }
12929                read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12930                genfn = fns[size - 1][is_sub];
12931                genfn(tcg_res, tcg_op, tcg_res);
12932                break;
12933            }
12934            case 0x05: /* FMLS */
12935            case 0x01: /* FMLA */
12936                read_vec_element_i32(s, tcg_res, rd, pass,
12937                                     is_scalar ? size : MO_32);
12938                switch (size) {
12939                case 1:
12940                    if (opcode == 0x5) {
12941                        /* As usual for ARM, separate negation for fused
12942                         * multiply-add */
12943                        tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12944                    }
12945                    if (is_scalar) {
12946                        gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12947                                                   tcg_res, fpst);
12948                    } else {
12949                        gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12950                                                    tcg_res, fpst);
12951                    }
12952                    break;
12953                case 2:
12954                    if (opcode == 0x5) {
12955                        /* As usual for ARM, separate negation for
12956                         * fused multiply-add */
12957                        tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12958                    }
12959                    gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12960                                           tcg_res, fpst);
12961                    break;
12962                default:
12963                    g_assert_not_reached();
12964                }
12965                break;
12966            case 0x09: /* FMUL */
12967                switch (size) {
12968                case 1:
12969                    if (is_scalar) {
12970                        gen_helper_advsimd_mulh(tcg_res, tcg_op,
12971                                                tcg_idx, fpst);
12972                    } else {
12973                        gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12974                                                 tcg_idx, fpst);
12975                    }
12976                    break;
12977                case 2:
12978                    gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12979                    break;
12980                default:
12981                    g_assert_not_reached();
12982                }
12983                break;
12984            case 0x19: /* FMULX */
12985                switch (size) {
12986                case 1:
12987                    if (is_scalar) {
12988                        gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12989                                                 tcg_idx, fpst);
12990                    } else {
12991                        gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12992                                                  tcg_idx, fpst);
12993                    }
12994                    break;
12995                case 2:
12996                    gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12997                    break;
12998                default:
12999                    g_assert_not_reached();
13000                }
13001                break;
13002            case 0x0c: /* SQDMULH */
13003                if (size == 1) {
13004                    gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13005                                               tcg_op, tcg_idx);
13006                } else {
13007                    gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13008                                               tcg_op, tcg_idx);
13009                }
13010                break;
13011            case 0x0d: /* SQRDMULH */
13012                if (size == 1) {
13013                    gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13014                                                tcg_op, tcg_idx);
13015                } else {
13016                    gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13017                                                tcg_op, tcg_idx);
13018                }
13019                break;
13020            case 0x1d: /* SQRDMLAH */
13021                read_vec_element_i32(s, tcg_res, rd, pass,
13022                                     is_scalar ? size : MO_32);
13023                if (size == 1) {
13024                    gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13025                                                tcg_op, tcg_idx, tcg_res);
13026                } else {
13027                    gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13028                                                tcg_op, tcg_idx, tcg_res);
13029                }
13030                break;
13031            case 0x1f: /* SQRDMLSH */
13032                read_vec_element_i32(s, tcg_res, rd, pass,
13033                                     is_scalar ? size : MO_32);
13034                if (size == 1) {
13035                    gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13036                                                tcg_op, tcg_idx, tcg_res);
13037                } else {
13038                    gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13039                                                tcg_op, tcg_idx, tcg_res);
13040                }
13041                break;
13042            default:
13043                g_assert_not_reached();
13044            }
13045
13046            if (is_scalar) {
13047                write_fp_sreg(s, rd, tcg_res);
13048            } else {
13049                write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13050            }
13051        }
13052
13053        clear_vec_high(s, is_q, rd);
13054    } else {
13055        /* long ops: 16x16->32 or 32x32->64 */
13056        TCGv_i64 tcg_res[2];
13057        int pass;
13058        bool satop = extract32(opcode, 0, 1);
13059        MemOp memop = MO_32;
13060
13061        if (satop || !u) {
13062            memop |= MO_SIGN;
13063        }
13064
13065        if (size == 2) {
13066            TCGv_i64 tcg_idx = tcg_temp_new_i64();
13067
13068            read_vec_element(s, tcg_idx, rm, index, memop);
13069
13070            for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13071                TCGv_i64 tcg_op = tcg_temp_new_i64();
13072                TCGv_i64 tcg_passres;
13073                int passelt;
13074
13075                if (is_scalar) {
13076                    passelt = 0;
13077                } else {
13078                    passelt = pass + (is_q * 2);
13079                }
13080
13081                read_vec_element(s, tcg_op, rn, passelt, memop);
13082
13083                tcg_res[pass] = tcg_temp_new_i64();
13084
13085                if (opcode == 0xa || opcode == 0xb) {
13086                    /* Non-accumulating ops */
13087                    tcg_passres = tcg_res[pass];
13088                } else {
13089                    tcg_passres = tcg_temp_new_i64();
13090                }
13091
13092                tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13093
13094                if (satop) {
13095                    /* saturating, doubling */
13096                    gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13097                                                      tcg_passres, tcg_passres);
13098                }
13099
13100                if (opcode == 0xa || opcode == 0xb) {
13101                    continue;
13102                }
13103
13104                /* Accumulating op: handle accumulate step */
13105                read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13106
13107                switch (opcode) {
13108                case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13109                    tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13110                    break;
13111                case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13112                    tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13113                    break;
13114                case 0x7: /* SQDMLSL, SQDMLSL2 */
13115                    tcg_gen_neg_i64(tcg_passres, tcg_passres);
13116                    /* fall through */
13117                case 0x3: /* SQDMLAL, SQDMLAL2 */
13118                    gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13119                                                      tcg_res[pass],
13120                                                      tcg_passres);
13121                    break;
13122                default:
13123                    g_assert_not_reached();
13124                }
13125            }
13126
13127            clear_vec_high(s, !is_scalar, rd);
13128        } else {
13129            TCGv_i32 tcg_idx = tcg_temp_new_i32();
13130
13131            assert(size == 1);
13132            read_vec_element_i32(s, tcg_idx, rm, index, size);
13133
13134            if (!is_scalar) {
13135                /* The simplest way to handle the 16x16 indexed ops is to
13136                 * duplicate the index into both halves of the 32 bit tcg_idx
13137                 * and then use the usual Neon helpers.
13138                 */
13139                tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13140            }
13141
13142            for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13143                TCGv_i32 tcg_op = tcg_temp_new_i32();
13144                TCGv_i64 tcg_passres;
13145
13146                if (is_scalar) {
13147                    read_vec_element_i32(s, tcg_op, rn, pass, size);
13148                } else {
13149                    read_vec_element_i32(s, tcg_op, rn,
13150                                         pass + (is_q * 2), MO_32);
13151                }
13152
13153                tcg_res[pass] = tcg_temp_new_i64();
13154
13155                if (opcode == 0xa || opcode == 0xb) {
13156                    /* Non-accumulating ops */
13157                    tcg_passres = tcg_res[pass];
13158                } else {
13159                    tcg_passres = tcg_temp_new_i64();
13160                }
13161
13162                if (memop & MO_SIGN) {
13163                    gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13164                } else {
13165                    gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13166                }
13167                if (satop) {
13168                    gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13169                                                      tcg_passres, tcg_passres);
13170                }
13171
13172                if (opcode == 0xa || opcode == 0xb) {
13173                    continue;
13174                }
13175
13176                /* Accumulating op: handle accumulate step */
13177                read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13178
13179                switch (opcode) {
13180                case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13181                    gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13182                                             tcg_passres);
13183                    break;
13184                case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13185                    gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13186                                             tcg_passres);
13187                    break;
13188                case 0x7: /* SQDMLSL, SQDMLSL2 */
13189                    gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13190                    /* fall through */
13191                case 0x3: /* SQDMLAL, SQDMLAL2 */
13192                    gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13193                                                      tcg_res[pass],
13194                                                      tcg_passres);
13195                    break;
13196                default:
13197                    g_assert_not_reached();
13198                }
13199            }
13200
13201            if (is_scalar) {
13202                tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13203            }
13204        }
13205
13206        if (is_scalar) {
13207            tcg_res[1] = tcg_constant_i64(0);
13208        }
13209
13210        for (pass = 0; pass < 2; pass++) {
13211            write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13212        }
13213    }
13214}
13215
13216/* Crypto AES
13217 *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13218 * +-----------------+------+-----------+--------+-----+------+------+
13219 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13220 * +-----------------+------+-----------+--------+-----+------+------+
13221 */
13222static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13223{
13224    int size = extract32(insn, 22, 2);
13225    int opcode = extract32(insn, 12, 5);
13226    int rn = extract32(insn, 5, 5);
13227    int rd = extract32(insn, 0, 5);
13228    gen_helper_gvec_2 *genfn2 = NULL;
13229    gen_helper_gvec_3 *genfn3 = NULL;
13230
13231    if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13232        unallocated_encoding(s);
13233        return;
13234    }
13235
13236    switch (opcode) {
13237    case 0x4: /* AESE */
13238        genfn3 = gen_helper_crypto_aese;
13239        break;
13240    case 0x6: /* AESMC */
13241        genfn2 = gen_helper_crypto_aesmc;
13242        break;
13243    case 0x5: /* AESD */
13244        genfn3 = gen_helper_crypto_aesd;
13245        break;
13246    case 0x7: /* AESIMC */
13247        genfn2 = gen_helper_crypto_aesimc;
13248        break;
13249    default:
13250        unallocated_encoding(s);
13251        return;
13252    }
13253
13254    if (!fp_access_check(s)) {
13255        return;
13256    }
13257    if (genfn2) {
13258        gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13259    } else {
13260        gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13261    }
13262}
13263
13264/* Crypto three-reg SHA
13265 *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13266 * +-----------------+------+---+------+---+--------+-----+------+------+
13267 * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13268 * +-----------------+------+---+------+---+--------+-----+------+------+
13269 */
13270static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13271{
13272    int size = extract32(insn, 22, 2);
13273    int opcode = extract32(insn, 12, 3);
13274    int rm = extract32(insn, 16, 5);
13275    int rn = extract32(insn, 5, 5);
13276    int rd = extract32(insn, 0, 5);
13277    gen_helper_gvec_3 *genfn;
13278    bool feature;
13279
13280    if (size != 0) {
13281        unallocated_encoding(s);
13282        return;
13283    }
13284
13285    switch (opcode) {
13286    case 0: /* SHA1C */
13287        genfn = gen_helper_crypto_sha1c;
13288        feature = dc_isar_feature(aa64_sha1, s);
13289        break;
13290    case 1: /* SHA1P */
13291        genfn = gen_helper_crypto_sha1p;
13292        feature = dc_isar_feature(aa64_sha1, s);
13293        break;
13294    case 2: /* SHA1M */
13295        genfn = gen_helper_crypto_sha1m;
13296        feature = dc_isar_feature(aa64_sha1, s);
13297        break;
13298    case 3: /* SHA1SU0 */
13299        genfn = gen_helper_crypto_sha1su0;
13300        feature = dc_isar_feature(aa64_sha1, s);
13301        break;
13302    case 4: /* SHA256H */
13303        genfn = gen_helper_crypto_sha256h;
13304        feature = dc_isar_feature(aa64_sha256, s);
13305        break;
13306    case 5: /* SHA256H2 */
13307        genfn = gen_helper_crypto_sha256h2;
13308        feature = dc_isar_feature(aa64_sha256, s);
13309        break;
13310    case 6: /* SHA256SU1 */
13311        genfn = gen_helper_crypto_sha256su1;
13312        feature = dc_isar_feature(aa64_sha256, s);
13313        break;
13314    default:
13315        unallocated_encoding(s);
13316        return;
13317    }
13318
13319    if (!feature) {
13320        unallocated_encoding(s);
13321        return;
13322    }
13323
13324    if (!fp_access_check(s)) {
13325        return;
13326    }
13327    gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13328}
13329
13330/* Crypto two-reg SHA
13331 *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13332 * +-----------------+------+-----------+--------+-----+------+------+
13333 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13334 * +-----------------+------+-----------+--------+-----+------+------+
13335 */
13336static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13337{
13338    int size = extract32(insn, 22, 2);
13339    int opcode = extract32(insn, 12, 5);
13340    int rn = extract32(insn, 5, 5);
13341    int rd = extract32(insn, 0, 5);
13342    gen_helper_gvec_2 *genfn;
13343    bool feature;
13344
13345    if (size != 0) {
13346        unallocated_encoding(s);
13347        return;
13348    }
13349
13350    switch (opcode) {
13351    case 0: /* SHA1H */
13352        feature = dc_isar_feature(aa64_sha1, s);
13353        genfn = gen_helper_crypto_sha1h;
13354        break;
13355    case 1: /* SHA1SU1 */
13356        feature = dc_isar_feature(aa64_sha1, s);
13357        genfn = gen_helper_crypto_sha1su1;
13358        break;
13359    case 2: /* SHA256SU0 */
13360        feature = dc_isar_feature(aa64_sha256, s);
13361        genfn = gen_helper_crypto_sha256su0;
13362        break;
13363    default:
13364        unallocated_encoding(s);
13365        return;
13366    }
13367
13368    if (!feature) {
13369        unallocated_encoding(s);
13370        return;
13371    }
13372
13373    if (!fp_access_check(s)) {
13374        return;
13375    }
13376    gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13377}
13378
13379static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13380{
13381    tcg_gen_rotli_i64(d, m, 1);
13382    tcg_gen_xor_i64(d, d, n);
13383}
13384
13385static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13386{
13387    tcg_gen_rotli_vec(vece, d, m, 1);
13388    tcg_gen_xor_vec(vece, d, d, n);
13389}
13390
13391void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13392                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13393{
13394    static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13395    static const GVecGen3 op = {
13396        .fni8 = gen_rax1_i64,
13397        .fniv = gen_rax1_vec,
13398        .opt_opc = vecop_list,
13399        .fno = gen_helper_crypto_rax1,
13400        .vece = MO_64,
13401    };
13402    tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13403}
13404
13405/* Crypto three-reg SHA512
13406 *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13407 * +-----------------------+------+---+---+-----+--------+------+------+
13408 * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13409 * +-----------------------+------+---+---+-----+--------+------+------+
13410 */
13411static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13412{
13413    int opcode = extract32(insn, 10, 2);
13414    int o =  extract32(insn, 14, 1);
13415    int rm = extract32(insn, 16, 5);
13416    int rn = extract32(insn, 5, 5);
13417    int rd = extract32(insn, 0, 5);
13418    bool feature;
13419    gen_helper_gvec_3 *oolfn = NULL;
13420    GVecGen3Fn *gvecfn = NULL;
13421
13422    if (o == 0) {
13423        switch (opcode) {
13424        case 0: /* SHA512H */
13425            feature = dc_isar_feature(aa64_sha512, s);
13426            oolfn = gen_helper_crypto_sha512h;
13427            break;
13428        case 1: /* SHA512H2 */
13429            feature = dc_isar_feature(aa64_sha512, s);
13430            oolfn = gen_helper_crypto_sha512h2;
13431            break;
13432        case 2: /* SHA512SU1 */
13433            feature = dc_isar_feature(aa64_sha512, s);
13434            oolfn = gen_helper_crypto_sha512su1;
13435            break;
13436        case 3: /* RAX1 */
13437            feature = dc_isar_feature(aa64_sha3, s);
13438            gvecfn = gen_gvec_rax1;
13439            break;
13440        default:
13441            g_assert_not_reached();
13442        }
13443    } else {
13444        switch (opcode) {
13445        case 0: /* SM3PARTW1 */
13446            feature = dc_isar_feature(aa64_sm3, s);
13447            oolfn = gen_helper_crypto_sm3partw1;
13448            break;
13449        case 1: /* SM3PARTW2 */
13450            feature = dc_isar_feature(aa64_sm3, s);
13451            oolfn = gen_helper_crypto_sm3partw2;
13452            break;
13453        case 2: /* SM4EKEY */
13454            feature = dc_isar_feature(aa64_sm4, s);
13455            oolfn = gen_helper_crypto_sm4ekey;
13456            break;
13457        default:
13458            unallocated_encoding(s);
13459            return;
13460        }
13461    }
13462
13463    if (!feature) {
13464        unallocated_encoding(s);
13465        return;
13466    }
13467
13468    if (!fp_access_check(s)) {
13469        return;
13470    }
13471
13472    if (oolfn) {
13473        gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13474    } else {
13475        gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13476    }
13477}
13478
13479/* Crypto two-reg SHA512
13480 *  31                                     12  11  10  9    5 4    0
13481 * +-----------------------------------------+--------+------+------+
13482 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13483 * +-----------------------------------------+--------+------+------+
13484 */
13485static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13486{
13487    int opcode = extract32(insn, 10, 2);
13488    int rn = extract32(insn, 5, 5);
13489    int rd = extract32(insn, 0, 5);
13490    bool feature;
13491
13492    switch (opcode) {
13493    case 0: /* SHA512SU0 */
13494        feature = dc_isar_feature(aa64_sha512, s);
13495        break;
13496    case 1: /* SM4E */
13497        feature = dc_isar_feature(aa64_sm4, s);
13498        break;
13499    default:
13500        unallocated_encoding(s);
13501        return;
13502    }
13503
13504    if (!feature) {
13505        unallocated_encoding(s);
13506        return;
13507    }
13508
13509    if (!fp_access_check(s)) {
13510        return;
13511    }
13512
13513    switch (opcode) {
13514    case 0: /* SHA512SU0 */
13515        gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13516        break;
13517    case 1: /* SM4E */
13518        gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13519        break;
13520    default:
13521        g_assert_not_reached();
13522    }
13523}
13524
13525/* Crypto four-register
13526 *  31               23 22 21 20  16 15  14  10 9    5 4    0
13527 * +-------------------+-----+------+---+------+------+------+
13528 * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13529 * +-------------------+-----+------+---+------+------+------+
13530 */
13531static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13532{
13533    int op0 = extract32(insn, 21, 2);
13534    int rm = extract32(insn, 16, 5);
13535    int ra = extract32(insn, 10, 5);
13536    int rn = extract32(insn, 5, 5);
13537    int rd = extract32(insn, 0, 5);
13538    bool feature;
13539
13540    switch (op0) {
13541    case 0: /* EOR3 */
13542    case 1: /* BCAX */
13543        feature = dc_isar_feature(aa64_sha3, s);
13544        break;
13545    case 2: /* SM3SS1 */
13546        feature = dc_isar_feature(aa64_sm3, s);
13547        break;
13548    default:
13549        unallocated_encoding(s);
13550        return;
13551    }
13552
13553    if (!feature) {
13554        unallocated_encoding(s);
13555        return;
13556    }
13557
13558    if (!fp_access_check(s)) {
13559        return;
13560    }
13561
13562    if (op0 < 2) {
13563        TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13564        int pass;
13565
13566        tcg_op1 = tcg_temp_new_i64();
13567        tcg_op2 = tcg_temp_new_i64();
13568        tcg_op3 = tcg_temp_new_i64();
13569        tcg_res[0] = tcg_temp_new_i64();
13570        tcg_res[1] = tcg_temp_new_i64();
13571
13572        for (pass = 0; pass < 2; pass++) {
13573            read_vec_element(s, tcg_op1, rn, pass, MO_64);
13574            read_vec_element(s, tcg_op2, rm, pass, MO_64);
13575            read_vec_element(s, tcg_op3, ra, pass, MO_64);
13576
13577            if (op0 == 0) {
13578                /* EOR3 */
13579                tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13580            } else {
13581                /* BCAX */
13582                tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13583            }
13584            tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13585        }
13586        write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13587        write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13588    } else {
13589        TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13590
13591        tcg_op1 = tcg_temp_new_i32();
13592        tcg_op2 = tcg_temp_new_i32();
13593        tcg_op3 = tcg_temp_new_i32();
13594        tcg_res = tcg_temp_new_i32();
13595        tcg_zero = tcg_constant_i32(0);
13596
13597        read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13598        read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13599        read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13600
13601        tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13602        tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13603        tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13604        tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13605
13606        write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13607        write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13608        write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13609        write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13610    }
13611}
13612
13613/* Crypto XAR
13614 *  31                   21 20  16 15    10 9    5 4    0
13615 * +-----------------------+------+--------+------+------+
13616 * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13617 * +-----------------------+------+--------+------+------+
13618 */
13619static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13620{
13621    int rm = extract32(insn, 16, 5);
13622    int imm6 = extract32(insn, 10, 6);
13623    int rn = extract32(insn, 5, 5);
13624    int rd = extract32(insn, 0, 5);
13625
13626    if (!dc_isar_feature(aa64_sha3, s)) {
13627        unallocated_encoding(s);
13628        return;
13629    }
13630
13631    if (!fp_access_check(s)) {
13632        return;
13633    }
13634
13635    gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13636                 vec_full_reg_offset(s, rn),
13637                 vec_full_reg_offset(s, rm), imm6, 16,
13638                 vec_full_reg_size(s));
13639}
13640
13641/* Crypto three-reg imm2
13642 *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13643 * +-----------------------+------+-----+------+--------+------+------+
13644 * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13645 * +-----------------------+------+-----+------+--------+------+------+
13646 */
13647static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13648{
13649    static gen_helper_gvec_3 * const fns[4] = {
13650        gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13651        gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13652    };
13653    int opcode = extract32(insn, 10, 2);
13654    int imm2 = extract32(insn, 12, 2);
13655    int rm = extract32(insn, 16, 5);
13656    int rn = extract32(insn, 5, 5);
13657    int rd = extract32(insn, 0, 5);
13658
13659    if (!dc_isar_feature(aa64_sm3, s)) {
13660        unallocated_encoding(s);
13661        return;
13662    }
13663
13664    if (!fp_access_check(s)) {
13665        return;
13666    }
13667
13668    gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13669}
13670
13671/* C3.6 Data processing - SIMD, inc Crypto
13672 *
13673 * As the decode gets a little complex we are using a table based
13674 * approach for this part of the decode.
13675 */
13676static const AArch64DecodeTable data_proc_simd[] = {
13677    /* pattern  ,  mask     ,  fn                        */
13678    { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13679    { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13680    { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13681    { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13682    { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13683    { 0x0e000400, 0x9fe08400, disas_simd_copy },
13684    { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13685    /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13686    { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13687    { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13688    { 0x0e000000, 0xbf208c00, disas_simd_tb },
13689    { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13690    { 0x2e000000, 0xbf208400, disas_simd_ext },
13691    { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13692    { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13693    { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13694    { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13695    { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13696    { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13697    { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13698    { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13699    { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13700    { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13701    { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13702    { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13703    { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13704    { 0xce000000, 0xff808000, disas_crypto_four_reg },
13705    { 0xce800000, 0xffe00000, disas_crypto_xar },
13706    { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13707    { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13708    { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13709    { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13710    { 0x00000000, 0x00000000, NULL }
13711};
13712
13713static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13714{
13715    /* Note that this is called with all non-FP cases from
13716     * table C3-6 so it must UNDEF for entries not specifically
13717     * allocated to instructions in that table.
13718     */
13719    AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13720    if (fn) {
13721        fn(s, insn);
13722    } else {
13723        unallocated_encoding(s);
13724    }
13725}
13726
13727/* C3.6 Data processing - SIMD and floating point */
13728static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13729{
13730    if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13731        disas_data_proc_fp(s, insn);
13732    } else {
13733        /* SIMD, including crypto */
13734        disas_data_proc_simd(s, insn);
13735    }
13736}
13737
13738static bool trans_OK(DisasContext *s, arg_OK *a)
13739{
13740    return true;
13741}
13742
13743static bool trans_FAIL(DisasContext *s, arg_OK *a)
13744{
13745    s->is_nonstreaming = true;
13746    return true;
13747}
13748
13749/**
13750 * is_guarded_page:
13751 * @env: The cpu environment
13752 * @s: The DisasContext
13753 *
13754 * Return true if the page is guarded.
13755 */
13756static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13757{
13758    uint64_t addr = s->base.pc_first;
13759#ifdef CONFIG_USER_ONLY
13760    return page_get_flags(addr) & PAGE_BTI;
13761#else
13762    CPUTLBEntryFull *full;
13763    void *host;
13764    int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13765    int flags;
13766
13767    /*
13768     * We test this immediately after reading an insn, which means
13769     * that the TLB entry must be present and valid, and thus this
13770     * access will never raise an exception.
13771     */
13772    flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13773                              false, &host, &full, 0);
13774    assert(!(flags & TLB_INVALID_MASK));
13775
13776    return full->guarded;
13777#endif
13778}
13779
13780/**
13781 * btype_destination_ok:
13782 * @insn: The instruction at the branch destination
13783 * @bt: SCTLR_ELx.BT
13784 * @btype: PSTATE.BTYPE, and is non-zero
13785 *
13786 * On a guarded page, there are a limited number of insns
13787 * that may be present at the branch target:
13788 *   - branch target identifiers,
13789 *   - paciasp, pacibsp,
13790 *   - BRK insn
13791 *   - HLT insn
13792 * Anything else causes a Branch Target Exception.
13793 *
13794 * Return true if the branch is compatible, false to raise BTITRAP.
13795 */
13796static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13797{
13798    if ((insn & 0xfffff01fu) == 0xd503201fu) {
13799        /* HINT space */
13800        switch (extract32(insn, 5, 7)) {
13801        case 0b011001: /* PACIASP */
13802        case 0b011011: /* PACIBSP */
13803            /*
13804             * If SCTLR_ELx.BT, then PACI*SP are not compatible
13805             * with btype == 3.  Otherwise all btype are ok.
13806             */
13807            return !bt || btype != 3;
13808        case 0b100000: /* BTI */
13809            /* Not compatible with any btype.  */
13810            return false;
13811        case 0b100010: /* BTI c */
13812            /* Not compatible with btype == 3 */
13813            return btype != 3;
13814        case 0b100100: /* BTI j */
13815            /* Not compatible with btype == 2 */
13816            return btype != 2;
13817        case 0b100110: /* BTI jc */
13818            /* Compatible with any btype.  */
13819            return true;
13820        }
13821    } else {
13822        switch (insn & 0xffe0001fu) {
13823        case 0xd4200000u: /* BRK */
13824        case 0xd4400000u: /* HLT */
13825            /* Give priority to the breakpoint exception.  */
13826            return true;
13827        }
13828    }
13829    return false;
13830}
13831
13832/* C3.1 A64 instruction index by encoding */
13833static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13834{
13835    switch (extract32(insn, 25, 4)) {
13836    case 0x5:
13837    case 0xd:      /* Data processing - register */
13838        disas_data_proc_reg(s, insn);
13839        break;
13840    case 0x7:
13841    case 0xf:      /* Data processing - SIMD and floating point */
13842        disas_data_proc_simd_fp(s, insn);
13843        break;
13844    default:
13845        unallocated_encoding(s);
13846        break;
13847    }
13848}
13849
13850static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13851                                          CPUState *cpu)
13852{
13853    DisasContext *dc = container_of(dcbase, DisasContext, base);
13854    CPUARMState *env = cpu->env_ptr;
13855    ARMCPU *arm_cpu = env_archcpu(env);
13856    CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13857    int bound, core_mmu_idx;
13858
13859    dc->isar = &arm_cpu->isar;
13860    dc->condjmp = 0;
13861    dc->pc_save = dc->base.pc_first;
13862    dc->aarch64 = true;
13863    dc->thumb = false;
13864    dc->sctlr_b = 0;
13865    dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13866    dc->condexec_mask = 0;
13867    dc->condexec_cond = 0;
13868    core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13869    dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13870    dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13871    dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13872    dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13873    dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13874#if !defined(CONFIG_USER_ONLY)
13875    dc->user = (dc->current_el == 0);
13876#endif
13877    dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13878    dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13879    dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13880    dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13881    dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13882    dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
13883    dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13884    dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13885    dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13886    dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13887    dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13888    dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13889    dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13890    dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13891    dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
13892    dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13893    dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13894    dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13895    dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13896    dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13897    dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13898    dc->vec_len = 0;
13899    dc->vec_stride = 0;
13900    dc->cp_regs = arm_cpu->cp_regs;
13901    dc->features = env->features;
13902    dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13903
13904#ifdef CONFIG_USER_ONLY
13905    /* In sve_probe_page, we assume TBI is enabled. */
13906    tcg_debug_assert(dc->tbid & 1);
13907#endif
13908
13909    dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13910
13911    /* Single step state. The code-generation logic here is:
13912     *  SS_ACTIVE == 0:
13913     *   generate code with no special handling for single-stepping (except
13914     *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13915     *   this happens anyway because those changes are all system register or
13916     *   PSTATE writes).
13917     *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13918     *   emit code for one insn
13919     *   emit code to clear PSTATE.SS
13920     *   emit code to generate software step exception for completed step
13921     *   end TB (as usual for having generated an exception)
13922     *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13923     *   emit code to generate a software step exception
13924     *   end the TB
13925     */
13926    dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13927    dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13928    dc->is_ldex = false;
13929
13930    /* Bound the number of insns to execute to those left on the page.  */
13931    bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13932
13933    /* If architectural single step active, limit to 1.  */
13934    if (dc->ss_active) {
13935        bound = 1;
13936    }
13937    dc->base.max_insns = MIN(dc->base.max_insns, bound);
13938}
13939
13940static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13941{
13942}
13943
13944static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13945{
13946    DisasContext *dc = container_of(dcbase, DisasContext, base);
13947    target_ulong pc_arg = dc->base.pc_next;
13948
13949    if (tb_cflags(dcbase->tb) & CF_PCREL) {
13950        pc_arg &= ~TARGET_PAGE_MASK;
13951    }
13952    tcg_gen_insn_start(pc_arg, 0, 0);
13953    dc->insn_start = tcg_last_op();
13954}
13955
13956static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13957{
13958    DisasContext *s = container_of(dcbase, DisasContext, base);
13959    CPUARMState *env = cpu->env_ptr;
13960    uint64_t pc = s->base.pc_next;
13961    uint32_t insn;
13962
13963    /* Singlestep exceptions have the highest priority. */
13964    if (s->ss_active && !s->pstate_ss) {
13965        /* Singlestep state is Active-pending.
13966         * If we're in this state at the start of a TB then either
13967         *  a) we just took an exception to an EL which is being debugged
13968         *     and this is the first insn in the exception handler
13969         *  b) debug exceptions were masked and we just unmasked them
13970         *     without changing EL (eg by clearing PSTATE.D)
13971         * In either case we're going to take a swstep exception in the
13972         * "did not step an insn" case, and so the syndrome ISV and EX
13973         * bits should be zero.
13974         */
13975        assert(s->base.num_insns == 1);
13976        gen_swstep_exception(s, 0, 0);
13977        s->base.is_jmp = DISAS_NORETURN;
13978        s->base.pc_next = pc + 4;
13979        return;
13980    }
13981
13982    if (pc & 3) {
13983        /*
13984         * PC alignment fault.  This has priority over the instruction abort
13985         * that we would receive from a translation fault via arm_ldl_code.
13986         * This should only be possible after an indirect branch, at the
13987         * start of the TB.
13988         */
13989        assert(s->base.num_insns == 1);
13990        gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
13991        s->base.is_jmp = DISAS_NORETURN;
13992        s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13993        return;
13994    }
13995
13996    s->pc_curr = pc;
13997    insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13998    s->insn = insn;
13999    s->base.pc_next = pc + 4;
14000
14001    s->fp_access_checked = false;
14002    s->sve_access_checked = false;
14003
14004    if (s->pstate_il) {
14005        /*
14006         * Illegal execution state. This has priority over BTI
14007         * exceptions, but comes after instruction abort exceptions.
14008         */
14009        gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14010        return;
14011    }
14012
14013    if (dc_isar_feature(aa64_bti, s)) {
14014        if (s->base.num_insns == 1) {
14015            /*
14016             * At the first insn of the TB, compute s->guarded_page.
14017             * We delayed computing this until successfully reading
14018             * the first insn of the TB, above.  This (mostly) ensures
14019             * that the softmmu tlb entry has been populated, and the
14020             * page table GP bit is available.
14021             *
14022             * Note that we need to compute this even if btype == 0,
14023             * because this value is used for BR instructions later
14024             * where ENV is not available.
14025             */
14026            s->guarded_page = is_guarded_page(env, s);
14027
14028            /* First insn can have btype set to non-zero.  */
14029            tcg_debug_assert(s->btype >= 0);
14030
14031            /*
14032             * Note that the Branch Target Exception has fairly high
14033             * priority -- below debugging exceptions but above most
14034             * everything else.  This allows us to handle this now
14035             * instead of waiting until the insn is otherwise decoded.
14036             */
14037            if (s->btype != 0
14038                && s->guarded_page
14039                && !btype_destination_ok(insn, s->bt, s->btype)) {
14040                gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14041                return;
14042            }
14043        } else {
14044            /* Not the first insn: btype must be 0.  */
14045            tcg_debug_assert(s->btype == 0);
14046        }
14047    }
14048
14049    s->is_nonstreaming = false;
14050    if (s->sme_trap_nonstreaming) {
14051        disas_sme_fa64(s, insn);
14052    }
14053
14054    if (!disas_a64(s, insn) &&
14055        !disas_sme(s, insn) &&
14056        !disas_sve(s, insn)) {
14057        disas_a64_legacy(s, insn);
14058    }
14059
14060    /*
14061     * After execution of most insns, btype is reset to 0.
14062     * Note that we set btype == -1 when the insn sets btype.
14063     */
14064    if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14065        reset_btype(s);
14066    }
14067}
14068
14069static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14070{
14071    DisasContext *dc = container_of(dcbase, DisasContext, base);
14072
14073    if (unlikely(dc->ss_active)) {
14074        /* Note that this means single stepping WFI doesn't halt the CPU.
14075         * For conditional branch insns this is harmless unreachable code as
14076         * gen_goto_tb() has already handled emitting the debug exception
14077         * (and thus a tb-jump is not possible when singlestepping).
14078         */
14079        switch (dc->base.is_jmp) {
14080        default:
14081            gen_a64_update_pc(dc, 4);
14082            /* fall through */
14083        case DISAS_EXIT:
14084        case DISAS_JUMP:
14085            gen_step_complete_exception(dc);
14086            break;
14087        case DISAS_NORETURN:
14088            break;
14089        }
14090    } else {
14091        switch (dc->base.is_jmp) {
14092        case DISAS_NEXT:
14093        case DISAS_TOO_MANY:
14094            gen_goto_tb(dc, 1, 4);
14095            break;
14096        default:
14097        case DISAS_UPDATE_EXIT:
14098            gen_a64_update_pc(dc, 4);
14099            /* fall through */
14100        case DISAS_EXIT:
14101            tcg_gen_exit_tb(NULL, 0);
14102            break;
14103        case DISAS_UPDATE_NOCHAIN:
14104            gen_a64_update_pc(dc, 4);
14105            /* fall through */
14106        case DISAS_JUMP:
14107            tcg_gen_lookup_and_goto_ptr();
14108            break;
14109        case DISAS_NORETURN:
14110        case DISAS_SWI:
14111            break;
14112        case DISAS_WFE:
14113            gen_a64_update_pc(dc, 4);
14114            gen_helper_wfe(cpu_env);
14115            break;
14116        case DISAS_YIELD:
14117            gen_a64_update_pc(dc, 4);
14118            gen_helper_yield(cpu_env);
14119            break;
14120        case DISAS_WFI:
14121            /*
14122             * This is a special case because we don't want to just halt
14123             * the CPU if trying to debug across a WFI.
14124             */
14125            gen_a64_update_pc(dc, 4);
14126            gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14127            /*
14128             * The helper doesn't necessarily throw an exception, but we
14129             * must go back to the main loop to check for interrupts anyway.
14130             */
14131            tcg_gen_exit_tb(NULL, 0);
14132            break;
14133        }
14134    }
14135}
14136
14137static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14138                                 CPUState *cpu, FILE *logfile)
14139{
14140    DisasContext *dc = container_of(dcbase, DisasContext, base);
14141
14142    fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14143    target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14144}
14145
14146const TranslatorOps aarch64_translator_ops = {
14147    .init_disas_context = aarch64_tr_init_disas_context,
14148    .tb_start           = aarch64_tr_tb_start,
14149    .insn_start         = aarch64_tr_insn_start,
14150    .translate_insn     = aarch64_tr_translate_insn,
14151    .tb_stop            = aarch64_tr_tb_stop,
14152    .disas_log          = aarch64_tr_disas_log,
14153};
14154