qemu/target/i386/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/qapi-events-run-state.h"
  17#include "qapi/error.h"
  18#include "qapi/visitor.h"
  19#include <sys/ioctl.h>
  20#include <sys/utsname.h>
  21#include <sys/syscall.h>
  22
  23#include <linux/kvm.h>
  24#include "standard-headers/asm-x86/kvm_para.h"
  25#include "hw/xen/interface/arch-x86/cpuid.h"
  26
  27#include "cpu.h"
  28#include "host-cpu.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/hw_accel.h"
  31#include "sysemu/kvm_int.h"
  32#include "sysemu/runstate.h"
  33#include "kvm_i386.h"
  34#include "sev.h"
  35#include "xen-emu.h"
  36#include "hyperv.h"
  37#include "hyperv-proto.h"
  38
  39#include "exec/gdbstub.h"
  40#include "qemu/host-utils.h"
  41#include "qemu/main-loop.h"
  42#include "qemu/ratelimit.h"
  43#include "qemu/config-file.h"
  44#include "qemu/error-report.h"
  45#include "qemu/memalign.h"
  46#include "hw/i386/x86.h"
  47#include "hw/i386/kvm/xen_evtchn.h"
  48#include "hw/i386/pc.h"
  49#include "hw/i386/apic.h"
  50#include "hw/i386/apic_internal.h"
  51#include "hw/i386/apic-msidef.h"
  52#include "hw/i386/intel_iommu.h"
  53#include "hw/i386/x86-iommu.h"
  54#include "hw/i386/e820_memory_layout.h"
  55
  56#include "hw/xen/xen.h"
  57
  58#include "hw/pci/pci.h"
  59#include "hw/pci/msi.h"
  60#include "hw/pci/msix.h"
  61#include "migration/blocker.h"
  62#include "exec/memattrs.h"
  63#include "trace.h"
  64
  65#include CONFIG_DEVICES
  66
  67//#define DEBUG_KVM
  68
  69#ifdef DEBUG_KVM
  70#define DPRINTF(fmt, ...) \
  71    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  72#else
  73#define DPRINTF(fmt, ...) \
  74    do { } while (0)
  75#endif
  76
  77/* From arch/x86/kvm/lapic.h */
  78#define KVM_APIC_BUS_CYCLE_NS       1
  79#define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
  80
  81#define MSR_KVM_WALL_CLOCK  0x11
  82#define MSR_KVM_SYSTEM_TIME 0x12
  83
  84/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  85 * 255 kvm_msr_entry structs */
  86#define MSR_BUF_SIZE 4096
  87
  88static void kvm_init_msrs(X86CPU *cpu);
  89
  90const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  91    KVM_CAP_INFO(SET_TSS_ADDR),
  92    KVM_CAP_INFO(EXT_CPUID),
  93    KVM_CAP_INFO(MP_STATE),
  94    KVM_CAP_LAST_INFO
  95};
  96
  97static bool has_msr_star;
  98static bool has_msr_hsave_pa;
  99static bool has_msr_tsc_aux;
 100static bool has_msr_tsc_adjust;
 101static bool has_msr_tsc_deadline;
 102static bool has_msr_feature_control;
 103static bool has_msr_misc_enable;
 104static bool has_msr_smbase;
 105static bool has_msr_bndcfgs;
 106static int lm_capable_kernel;
 107static bool has_msr_hv_hypercall;
 108static bool has_msr_hv_crash;
 109static bool has_msr_hv_reset;
 110static bool has_msr_hv_vpindex;
 111static bool hv_vpindex_settable;
 112static bool has_msr_hv_runtime;
 113static bool has_msr_hv_synic;
 114static bool has_msr_hv_stimer;
 115static bool has_msr_hv_frequencies;
 116static bool has_msr_hv_reenlightenment;
 117static bool has_msr_hv_syndbg_options;
 118static bool has_msr_xss;
 119static bool has_msr_umwait;
 120static bool has_msr_spec_ctrl;
 121static bool has_tsc_scale_msr;
 122static bool has_msr_tsx_ctrl;
 123static bool has_msr_virt_ssbd;
 124static bool has_msr_smi_count;
 125static bool has_msr_arch_capabs;
 126static bool has_msr_core_capabs;
 127static bool has_msr_vmx_vmfunc;
 128static bool has_msr_ucode_rev;
 129static bool has_msr_vmx_procbased_ctls2;
 130static bool has_msr_perf_capabs;
 131static bool has_msr_pkrs;
 132
 133static uint32_t has_architectural_pmu_version;
 134static uint32_t num_architectural_pmu_gp_counters;
 135static uint32_t num_architectural_pmu_fixed_counters;
 136
 137static int has_xsave;
 138static int has_xsave2;
 139static int has_xcrs;
 140static int has_pit_state2;
 141static int has_sregs2;
 142static int has_exception_payload;
 143static int has_triple_fault_event;
 144
 145static bool has_msr_mcg_ext_ctl;
 146
 147static struct kvm_cpuid2 *cpuid_cache;
 148static struct kvm_cpuid2 *hv_cpuid_cache;
 149static struct kvm_msr_list *kvm_feature_msrs;
 150
 151static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
 152
 153#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
 154static RateLimit bus_lock_ratelimit_ctrl;
 155static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
 156
 157int kvm_has_pit_state2(void)
 158{
 159    return has_pit_state2;
 160}
 161
 162bool kvm_has_smm(void)
 163{
 164    return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 165}
 166
 167bool kvm_has_adjust_clock_stable(void)
 168{
 169    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 170
 171    return (ret & KVM_CLOCK_TSC_STABLE);
 172}
 173
 174bool kvm_has_adjust_clock(void)
 175{
 176    return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 177}
 178
 179bool kvm_has_exception_payload(void)
 180{
 181    return has_exception_payload;
 182}
 183
 184static bool kvm_x2apic_api_set_flags(uint64_t flags)
 185{
 186    KVMState *s = KVM_STATE(current_accel());
 187
 188    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 189}
 190
 191#define MEMORIZE(fn, _result) \
 192    ({ \
 193        static bool _memorized; \
 194        \
 195        if (_memorized) { \
 196            return _result; \
 197        } \
 198        _memorized = true; \
 199        _result = fn; \
 200    })
 201
 202static bool has_x2apic_api;
 203
 204bool kvm_has_x2apic_api(void)
 205{
 206    return has_x2apic_api;
 207}
 208
 209bool kvm_enable_x2apic(void)
 210{
 211    return MEMORIZE(
 212             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 213                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 214             has_x2apic_api);
 215}
 216
 217bool kvm_hv_vpindex_settable(void)
 218{
 219    return hv_vpindex_settable;
 220}
 221
 222static int kvm_get_tsc(CPUState *cs)
 223{
 224    X86CPU *cpu = X86_CPU(cs);
 225    CPUX86State *env = &cpu->env;
 226    uint64_t value;
 227    int ret;
 228
 229    if (env->tsc_valid) {
 230        return 0;
 231    }
 232
 233    env->tsc_valid = !runstate_is_running();
 234
 235    ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
 236    if (ret < 0) {
 237        return ret;
 238    }
 239
 240    env->tsc = value;
 241    return 0;
 242}
 243
 244static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 245{
 246    kvm_get_tsc(cpu);
 247}
 248
 249void kvm_synchronize_all_tsc(void)
 250{
 251    CPUState *cpu;
 252
 253    if (kvm_enabled()) {
 254        CPU_FOREACH(cpu) {
 255            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 256        }
 257    }
 258}
 259
 260static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 261{
 262    struct kvm_cpuid2 *cpuid;
 263    int r, size;
 264
 265    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 266    cpuid = g_malloc0(size);
 267    cpuid->nent = max;
 268    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 269    if (r == 0 && cpuid->nent >= max) {
 270        r = -E2BIG;
 271    }
 272    if (r < 0) {
 273        if (r == -E2BIG) {
 274            g_free(cpuid);
 275            return NULL;
 276        } else {
 277            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 278                    strerror(-r));
 279            exit(1);
 280        }
 281    }
 282    return cpuid;
 283}
 284
 285/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 286 * for all entries.
 287 */
 288static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 289{
 290    struct kvm_cpuid2 *cpuid;
 291    int max = 1;
 292
 293    if (cpuid_cache != NULL) {
 294        return cpuid_cache;
 295    }
 296    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 297        max *= 2;
 298    }
 299    cpuid_cache = cpuid;
 300    return cpuid;
 301}
 302
 303static bool host_tsx_broken(void)
 304{
 305    int family, model, stepping;\
 306    char vendor[CPUID_VENDOR_SZ + 1];
 307
 308    host_cpu_vendor_fms(vendor, &family, &model, &stepping);
 309
 310    /* Check if we are running on a Haswell host known to have broken TSX */
 311    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 312           (family == 6) &&
 313           ((model == 63 && stepping < 4) ||
 314            model == 60 || model == 69 || model == 70);
 315}
 316
 317/* Returns the value for a specific register on the cpuid entry
 318 */
 319static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 320{
 321    uint32_t ret = 0;
 322    switch (reg) {
 323    case R_EAX:
 324        ret = entry->eax;
 325        break;
 326    case R_EBX:
 327        ret = entry->ebx;
 328        break;
 329    case R_ECX:
 330        ret = entry->ecx;
 331        break;
 332    case R_EDX:
 333        ret = entry->edx;
 334        break;
 335    }
 336    return ret;
 337}
 338
 339/* Find matching entry for function/index on kvm_cpuid2 struct
 340 */
 341static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 342                                                 uint32_t function,
 343                                                 uint32_t index)
 344{
 345    int i;
 346    for (i = 0; i < cpuid->nent; ++i) {
 347        if (cpuid->entries[i].function == function &&
 348            cpuid->entries[i].index == index) {
 349            return &cpuid->entries[i];
 350        }
 351    }
 352    /* not found: */
 353    return NULL;
 354}
 355
 356uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 357                                      uint32_t index, int reg)
 358{
 359    struct kvm_cpuid2 *cpuid;
 360    uint32_t ret = 0;
 361    uint32_t cpuid_1_edx, unused;
 362    uint64_t bitmask;
 363
 364    cpuid = get_supported_cpuid(s);
 365
 366    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 367    if (entry) {
 368        ret = cpuid_entry_get_reg(entry, reg);
 369    }
 370
 371    /* Fixups for the data returned by KVM, below */
 372
 373    if (function == 1 && reg == R_EDX) {
 374        /* KVM before 2.6.30 misreports the following features */
 375        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 376    } else if (function == 1 && reg == R_ECX) {
 377        /* We can set the hypervisor flag, even if KVM does not return it on
 378         * GET_SUPPORTED_CPUID
 379         */
 380        ret |= CPUID_EXT_HYPERVISOR;
 381        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 382         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 383         * and the irqchip is in the kernel.
 384         */
 385        if (kvm_irqchip_in_kernel() &&
 386                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 387            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 388        }
 389
 390        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 391         * without the in-kernel irqchip
 392         */
 393        if (!kvm_irqchip_in_kernel()) {
 394            ret &= ~CPUID_EXT_X2APIC;
 395        }
 396
 397        if (enable_cpu_pm) {
 398            int disable_exits = kvm_check_extension(s,
 399                                                    KVM_CAP_X86_DISABLE_EXITS);
 400
 401            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 402                ret |= CPUID_EXT_MONITOR;
 403            }
 404        }
 405    } else if (function == 6 && reg == R_EAX) {
 406        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 407    } else if (function == 7 && index == 0 && reg == R_EBX) {
 408        /* Not new instructions, just an optimization.  */
 409        uint32_t ebx;
 410        host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
 411        ret |= ebx & CPUID_7_0_EBX_ERMS;
 412
 413        if (host_tsx_broken()) {
 414            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 415        }
 416    } else if (function == 7 && index == 0 && reg == R_EDX) {
 417        /* Not new instructions, just an optimization.  */
 418        uint32_t edx;
 419        host_cpuid(7, 0, &unused, &unused, &unused, &edx);
 420        ret |= edx & CPUID_7_0_EDX_FSRM;
 421
 422        /*
 423         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 424         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 425         * returned by KVM_GET_MSR_INDEX_LIST.
 426         */
 427        if (!has_msr_arch_capabs) {
 428            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 429        }
 430    } else if (function == 7 && index == 1 && reg == R_EAX) {
 431        /* Not new instructions, just an optimization.  */
 432        uint32_t eax;
 433        host_cpuid(7, 1, &eax, &unused, &unused, &unused);
 434        ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
 435    } else if (function == 7 && index == 2 && reg == R_EDX) {
 436        uint32_t edx;
 437        host_cpuid(7, 2, &unused, &unused, &unused, &edx);
 438        ret |= edx & CPUID_7_2_EDX_MCDT_NO;
 439    } else if (function == 0xd && index == 0 &&
 440               (reg == R_EAX || reg == R_EDX)) {
 441        /*
 442         * The value returned by KVM_GET_SUPPORTED_CPUID does not include
 443         * features that still have to be enabled with the arch_prctl
 444         * system call.  QEMU needs the full value, which is retrieved
 445         * with KVM_GET_DEVICE_ATTR.
 446         */
 447        struct kvm_device_attr attr = {
 448            .group = 0,
 449            .attr = KVM_X86_XCOMP_GUEST_SUPP,
 450            .addr = (unsigned long) &bitmask
 451        };
 452
 453        bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
 454        if (!sys_attr) {
 455            return ret;
 456        }
 457
 458        int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 459        if (rc < 0) {
 460            if (rc != -ENXIO) {
 461                warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
 462                            "error: %d", rc);
 463            }
 464            return ret;
 465        }
 466        ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
 467    } else if (function == 0x80000001 && reg == R_ECX) {
 468        /*
 469         * It's safe to enable TOPOEXT even if it's not returned by
 470         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 471         * us to keep CPU models including TOPOEXT runnable on older kernels.
 472         */
 473        ret |= CPUID_EXT3_TOPOEXT;
 474    } else if (function == 0x80000001 && reg == R_EDX) {
 475        /* On Intel, kvm returns cpuid according to the Intel spec,
 476         * so add missing bits according to the AMD spec:
 477         */
 478        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 479        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 480    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 481        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 482         * be enabled without the in-kernel irqchip
 483         */
 484        if (!kvm_irqchip_in_kernel()) {
 485            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 486        }
 487        if (kvm_irqchip_is_split()) {
 488            ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
 489        }
 490    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 491        ret |= 1U << KVM_HINTS_REALTIME;
 492    }
 493
 494    return ret;
 495}
 496
 497uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 498{
 499    struct {
 500        struct kvm_msrs info;
 501        struct kvm_msr_entry entries[1];
 502    } msr_data = {};
 503    uint64_t value;
 504    uint32_t ret, can_be_one, must_be_one;
 505
 506    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 507        return 0;
 508    }
 509
 510    /* Check if requested MSR is supported feature MSR */
 511    int i;
 512    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 513        if (kvm_feature_msrs->indices[i] == index) {
 514            break;
 515        }
 516    if (i == kvm_feature_msrs->nmsrs) {
 517        return 0; /* if the feature MSR is not supported, simply return 0 */
 518    }
 519
 520    msr_data.info.nmsrs = 1;
 521    msr_data.entries[0].index = index;
 522
 523    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 524    if (ret != 1) {
 525        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 526            index, strerror(-ret));
 527        exit(1);
 528    }
 529
 530    value = msr_data.entries[0].data;
 531    switch (index) {
 532    case MSR_IA32_VMX_PROCBASED_CTLS2:
 533        if (!has_msr_vmx_procbased_ctls2) {
 534            /* KVM forgot to add these bits for some time, do this ourselves. */
 535            if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
 536                CPUID_XSAVE_XSAVES) {
 537                value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
 538            }
 539            if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
 540                CPUID_EXT_RDRAND) {
 541                value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
 542            }
 543            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 544                CPUID_7_0_EBX_INVPCID) {
 545                value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
 546            }
 547            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 548                CPUID_7_0_EBX_RDSEED) {
 549                value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
 550            }
 551            if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
 552                CPUID_EXT2_RDTSCP) {
 553                value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
 554            }
 555        }
 556        /* fall through */
 557    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 558    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 559    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 560    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 561        /*
 562         * Return true for bits that can be one, but do not have to be one.
 563         * The SDM tells us which bits could have a "must be one" setting,
 564         * so we can do the opposite transformation in make_vmx_msr_value.
 565         */
 566        must_be_one = (uint32_t)value;
 567        can_be_one = (uint32_t)(value >> 32);
 568        return can_be_one & ~must_be_one;
 569
 570    default:
 571        return value;
 572    }
 573}
 574
 575static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 576                                     int *max_banks)
 577{
 578    int r;
 579
 580    r = kvm_check_extension(s, KVM_CAP_MCE);
 581    if (r > 0) {
 582        *max_banks = r;
 583        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 584    }
 585    return -ENOSYS;
 586}
 587
 588static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 589{
 590    CPUState *cs = CPU(cpu);
 591    CPUX86State *env = &cpu->env;
 592    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 593                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 594    uint64_t mcg_status = MCG_STATUS_MCIP;
 595    int flags = 0;
 596
 597    if (code == BUS_MCEERR_AR) {
 598        status |= MCI_STATUS_AR | 0x134;
 599        mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
 600    } else {
 601        status |= 0xc0;
 602        mcg_status |= MCG_STATUS_RIPV;
 603    }
 604
 605    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 606    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 607     * guest kernel back into env->mcg_ext_ctl.
 608     */
 609    cpu_synchronize_state(cs);
 610    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 611        mcg_status |= MCG_STATUS_LMCE;
 612        flags = 0;
 613    }
 614
 615    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 616                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 617}
 618
 619static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
 620{
 621    MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
 622
 623    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
 624                                   &mff);
 625}
 626
 627static void hardware_memory_error(void *host_addr)
 628{
 629    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
 630    error_report("QEMU got Hardware memory error at addr %p", host_addr);
 631    exit(1);
 632}
 633
 634void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 635{
 636    X86CPU *cpu = X86_CPU(c);
 637    CPUX86State *env = &cpu->env;
 638    ram_addr_t ram_addr;
 639    hwaddr paddr;
 640
 641    /* If we get an action required MCE, it has been injected by KVM
 642     * while the VM was running.  An action optional MCE instead should
 643     * be coming from the main thread, which qemu_init_sigbus identifies
 644     * as the "early kill" thread.
 645     */
 646    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 647
 648    if ((env->mcg_cap & MCG_SER_P) && addr) {
 649        ram_addr = qemu_ram_addr_from_host(addr);
 650        if (ram_addr != RAM_ADDR_INVALID &&
 651            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 652            kvm_hwpoison_page_add(ram_addr);
 653            kvm_mce_inject(cpu, paddr, code);
 654
 655            /*
 656             * Use different logging severity based on error type.
 657             * If there is additional MCE reporting on the hypervisor, QEMU VA
 658             * could be another source to identify the PA and MCE details.
 659             */
 660            if (code == BUS_MCEERR_AR) {
 661                error_report("Guest MCE Memory Error at QEMU addr %p and "
 662                    "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 663                    addr, paddr, "BUS_MCEERR_AR");
 664            } else {
 665                 warn_report("Guest MCE Memory Error at QEMU addr %p and "
 666                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 667                     addr, paddr, "BUS_MCEERR_AO");
 668            }
 669
 670            return;
 671        }
 672
 673        if (code == BUS_MCEERR_AO) {
 674            warn_report("Hardware memory error at addr %p of type %s "
 675                "for memory used by QEMU itself instead of guest system!",
 676                 addr, "BUS_MCEERR_AO");
 677        }
 678    }
 679
 680    if (code == BUS_MCEERR_AR) {
 681        hardware_memory_error(addr);
 682    }
 683
 684    /* Hope we are lucky for AO MCE, just notify a event */
 685    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
 686}
 687
 688static void kvm_reset_exception(CPUX86State *env)
 689{
 690    env->exception_nr = -1;
 691    env->exception_pending = 0;
 692    env->exception_injected = 0;
 693    env->exception_has_payload = false;
 694    env->exception_payload = 0;
 695}
 696
 697static void kvm_queue_exception(CPUX86State *env,
 698                                int32_t exception_nr,
 699                                uint8_t exception_has_payload,
 700                                uint64_t exception_payload)
 701{
 702    assert(env->exception_nr == -1);
 703    assert(!env->exception_pending);
 704    assert(!env->exception_injected);
 705    assert(!env->exception_has_payload);
 706
 707    env->exception_nr = exception_nr;
 708
 709    if (has_exception_payload) {
 710        env->exception_pending = 1;
 711
 712        env->exception_has_payload = exception_has_payload;
 713        env->exception_payload = exception_payload;
 714    } else {
 715        env->exception_injected = 1;
 716
 717        if (exception_nr == EXCP01_DB) {
 718            assert(exception_has_payload);
 719            env->dr[6] = exception_payload;
 720        } else if (exception_nr == EXCP0E_PAGE) {
 721            assert(exception_has_payload);
 722            env->cr[2] = exception_payload;
 723        } else {
 724            assert(!exception_has_payload);
 725        }
 726    }
 727}
 728
 729static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 730{
 731    CPUX86State *env = &cpu->env;
 732
 733    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 734        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 735        struct kvm_x86_mce mce;
 736
 737        kvm_reset_exception(env);
 738
 739        /*
 740         * There must be at least one bank in use if an MCE is pending.
 741         * Find it and use its values for the event injection.
 742         */
 743        for (bank = 0; bank < bank_num; bank++) {
 744            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 745                break;
 746            }
 747        }
 748        assert(bank < bank_num);
 749
 750        mce.bank = bank;
 751        mce.status = env->mce_banks[bank * 4 + 1];
 752        mce.mcg_status = env->mcg_status;
 753        mce.addr = env->mce_banks[bank * 4 + 2];
 754        mce.misc = env->mce_banks[bank * 4 + 3];
 755
 756        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 757    }
 758    return 0;
 759}
 760
 761static void cpu_update_state(void *opaque, bool running, RunState state)
 762{
 763    CPUX86State *env = opaque;
 764
 765    if (running) {
 766        env->tsc_valid = false;
 767    }
 768}
 769
 770unsigned long kvm_arch_vcpu_id(CPUState *cs)
 771{
 772    X86CPU *cpu = X86_CPU(cs);
 773    return cpu->apic_id;
 774}
 775
 776#ifndef KVM_CPUID_SIGNATURE_NEXT
 777#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 778#endif
 779
 780static bool hyperv_enabled(X86CPU *cpu)
 781{
 782    return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
 783        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
 784         cpu->hyperv_features || cpu->hyperv_passthrough);
 785}
 786
 787/*
 788 * Check whether target_freq is within conservative
 789 * ntp correctable bounds (250ppm) of freq
 790 */
 791static inline bool freq_within_bounds(int freq, int target_freq)
 792{
 793        int max_freq = freq + (freq * 250 / 1000000);
 794        int min_freq = freq - (freq * 250 / 1000000);
 795
 796        if (target_freq >= min_freq && target_freq <= max_freq) {
 797                return true;
 798        }
 799
 800        return false;
 801}
 802
 803static int kvm_arch_set_tsc_khz(CPUState *cs)
 804{
 805    X86CPU *cpu = X86_CPU(cs);
 806    CPUX86State *env = &cpu->env;
 807    int r, cur_freq;
 808    bool set_ioctl = false;
 809
 810    if (!env->tsc_khz) {
 811        return 0;
 812    }
 813
 814    cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 815               kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
 816
 817    /*
 818     * If TSC scaling is supported, attempt to set TSC frequency.
 819     */
 820    if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
 821        set_ioctl = true;
 822    }
 823
 824    /*
 825     * If desired TSC frequency is within bounds of NTP correction,
 826     * attempt to set TSC frequency.
 827     */
 828    if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
 829        set_ioctl = true;
 830    }
 831
 832    r = set_ioctl ?
 833        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 834        -ENOTSUP;
 835
 836    if (r < 0) {
 837        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 838         * TSC frequency doesn't match the one we want.
 839         */
 840        cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 841                   kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 842                   -ENOTSUP;
 843        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 844            warn_report("TSC frequency mismatch between "
 845                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 846                        "and TSC scaling unavailable",
 847                        env->tsc_khz, cur_freq);
 848            return r;
 849        }
 850    }
 851
 852    return 0;
 853}
 854
 855static bool tsc_is_stable_and_known(CPUX86State *env)
 856{
 857    if (!env->tsc_khz) {
 858        return false;
 859    }
 860    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 861        || env->user_tsc_khz;
 862}
 863
 864#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
 865
 866static struct {
 867    const char *desc;
 868    struct {
 869        uint32_t func;
 870        int reg;
 871        uint32_t bits;
 872    } flags[2];
 873    uint64_t dependencies;
 874} kvm_hyperv_properties[] = {
 875    [HYPERV_FEAT_RELAXED] = {
 876        .desc = "relaxed timing (hv-relaxed)",
 877        .flags = {
 878            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 879             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 880        }
 881    },
 882    [HYPERV_FEAT_VAPIC] = {
 883        .desc = "virtual APIC (hv-vapic)",
 884        .flags = {
 885            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 886             .bits = HV_APIC_ACCESS_AVAILABLE}
 887        }
 888    },
 889    [HYPERV_FEAT_TIME] = {
 890        .desc = "clocksources (hv-time)",
 891        .flags = {
 892            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 893             .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
 894        }
 895    },
 896    [HYPERV_FEAT_CRASH] = {
 897        .desc = "crash MSRs (hv-crash)",
 898        .flags = {
 899            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 900             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 901        }
 902    },
 903    [HYPERV_FEAT_RESET] = {
 904        .desc = "reset MSR (hv-reset)",
 905        .flags = {
 906            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 907             .bits = HV_RESET_AVAILABLE}
 908        }
 909    },
 910    [HYPERV_FEAT_VPINDEX] = {
 911        .desc = "VP_INDEX MSR (hv-vpindex)",
 912        .flags = {
 913            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 914             .bits = HV_VP_INDEX_AVAILABLE}
 915        }
 916    },
 917    [HYPERV_FEAT_RUNTIME] = {
 918        .desc = "VP_RUNTIME MSR (hv-runtime)",
 919        .flags = {
 920            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 921             .bits = HV_VP_RUNTIME_AVAILABLE}
 922        }
 923    },
 924    [HYPERV_FEAT_SYNIC] = {
 925        .desc = "synthetic interrupt controller (hv-synic)",
 926        .flags = {
 927            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 928             .bits = HV_SYNIC_AVAILABLE}
 929        }
 930    },
 931    [HYPERV_FEAT_STIMER] = {
 932        .desc = "synthetic timers (hv-stimer)",
 933        .flags = {
 934            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 935             .bits = HV_SYNTIMERS_AVAILABLE}
 936        },
 937        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 938    },
 939    [HYPERV_FEAT_FREQUENCIES] = {
 940        .desc = "frequency MSRs (hv-frequencies)",
 941        .flags = {
 942            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 943             .bits = HV_ACCESS_FREQUENCY_MSRS},
 944            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 945             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 946        }
 947    },
 948    [HYPERV_FEAT_REENLIGHTENMENT] = {
 949        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 950        .flags = {
 951            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 952             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 953        }
 954    },
 955    [HYPERV_FEAT_TLBFLUSH] = {
 956        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 957        .flags = {
 958            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 959             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 960             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 961        },
 962        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 963    },
 964    [HYPERV_FEAT_EVMCS] = {
 965        .desc = "enlightened VMCS (hv-evmcs)",
 966        .flags = {
 967            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 968             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 969        },
 970        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 971    },
 972    [HYPERV_FEAT_IPI] = {
 973        .desc = "paravirtualized IPI (hv-ipi)",
 974        .flags = {
 975            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 976             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 977             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 978        },
 979        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 980    },
 981    [HYPERV_FEAT_STIMER_DIRECT] = {
 982        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 983        .flags = {
 984            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 985             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 986        },
 987        .dependencies = BIT(HYPERV_FEAT_STIMER)
 988    },
 989    [HYPERV_FEAT_AVIC] = {
 990        .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
 991        .flags = {
 992            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 993             .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
 994        }
 995    },
 996#ifdef CONFIG_SYNDBG
 997    [HYPERV_FEAT_SYNDBG] = {
 998        .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
 999        .flags = {
1000            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1001             .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1002        },
1003        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1004    },
1005#endif
1006    [HYPERV_FEAT_MSR_BITMAP] = {
1007        .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1008        .flags = {
1009            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1010             .bits = HV_NESTED_MSR_BITMAP}
1011        }
1012    },
1013    [HYPERV_FEAT_XMM_INPUT] = {
1014        .desc = "XMM fast hypercall input (hv-xmm-input)",
1015        .flags = {
1016            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1017             .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1018        }
1019    },
1020    [HYPERV_FEAT_TLBFLUSH_EXT] = {
1021        .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1022        .flags = {
1023            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1024             .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1025        },
1026        .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1027    },
1028    [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1029        .desc = "direct TLB flush (hv-tlbflush-direct)",
1030        .flags = {
1031            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1032             .bits = HV_NESTED_DIRECT_FLUSH}
1033        },
1034        .dependencies = BIT(HYPERV_FEAT_VAPIC)
1035    },
1036};
1037
1038static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1039                                           bool do_sys_ioctl)
1040{
1041    struct kvm_cpuid2 *cpuid;
1042    int r, size;
1043
1044    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1045    cpuid = g_malloc0(size);
1046    cpuid->nent = max;
1047
1048    if (do_sys_ioctl) {
1049        r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1050    } else {
1051        r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1052    }
1053    if (r == 0 && cpuid->nent >= max) {
1054        r = -E2BIG;
1055    }
1056    if (r < 0) {
1057        if (r == -E2BIG) {
1058            g_free(cpuid);
1059            return NULL;
1060        } else {
1061            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1062                    strerror(-r));
1063            exit(1);
1064        }
1065    }
1066    return cpuid;
1067}
1068
1069/*
1070 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1071 * for all entries.
1072 */
1073static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1074{
1075    struct kvm_cpuid2 *cpuid;
1076    /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1077    int max = 11;
1078    int i;
1079    bool do_sys_ioctl;
1080
1081    do_sys_ioctl =
1082        kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1083
1084    /*
1085     * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1086     * unsupported, kvm_hyperv_expand_features() checks for that.
1087     */
1088    assert(do_sys_ioctl || cs->kvm_state);
1089
1090    /*
1091     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1092     * -E2BIG, however, it doesn't report back the right size. Keep increasing
1093     * it and re-trying until we succeed.
1094     */
1095    while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1096        max++;
1097    }
1098
1099    /*
1100     * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1101     * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1102     * information early, just check for the capability and set the bit
1103     * manually.
1104     */
1105    if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1106                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1107        for (i = 0; i < cpuid->nent; i++) {
1108            if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1109                cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1110            }
1111        }
1112    }
1113
1114    return cpuid;
1115}
1116
1117/*
1118 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1119 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1120 */
1121static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1122{
1123    X86CPU *cpu = X86_CPU(cs);
1124    struct kvm_cpuid2 *cpuid;
1125    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1126
1127    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1128    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1129    cpuid->nent = 2;
1130
1131    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1132    entry_feat = &cpuid->entries[0];
1133    entry_feat->function = HV_CPUID_FEATURES;
1134
1135    entry_recomm = &cpuid->entries[1];
1136    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1137    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1138
1139    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1140        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1141        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1142        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1143        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1144        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1145    }
1146
1147    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1148        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1149        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1150    }
1151
1152    if (has_msr_hv_frequencies) {
1153        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1154        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1155    }
1156
1157    if (has_msr_hv_crash) {
1158        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1159    }
1160
1161    if (has_msr_hv_reenlightenment) {
1162        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1163    }
1164
1165    if (has_msr_hv_reset) {
1166        entry_feat->eax |= HV_RESET_AVAILABLE;
1167    }
1168
1169    if (has_msr_hv_vpindex) {
1170        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1171    }
1172
1173    if (has_msr_hv_runtime) {
1174        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1175    }
1176
1177    if (has_msr_hv_synic) {
1178        unsigned int cap = cpu->hyperv_synic_kvm_only ?
1179            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1180
1181        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1182            entry_feat->eax |= HV_SYNIC_AVAILABLE;
1183        }
1184    }
1185
1186    if (has_msr_hv_stimer) {
1187        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1188    }
1189
1190    if (has_msr_hv_syndbg_options) {
1191        entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1192        entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1193        entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1194    }
1195
1196    if (kvm_check_extension(cs->kvm_state,
1197                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1198        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1199        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1200    }
1201
1202    if (kvm_check_extension(cs->kvm_state,
1203                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1204        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1205    }
1206
1207    if (kvm_check_extension(cs->kvm_state,
1208                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
1209        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1210        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1211    }
1212
1213    return cpuid;
1214}
1215
1216static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1217{
1218    struct kvm_cpuid_entry2 *entry;
1219    struct kvm_cpuid2 *cpuid;
1220
1221    if (hv_cpuid_cache) {
1222        cpuid = hv_cpuid_cache;
1223    } else {
1224        if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1225            cpuid = get_supported_hv_cpuid(cs);
1226        } else {
1227            /*
1228             * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1229             * before KVM context is created but this is only done when
1230             * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1231             * KVM_CAP_HYPERV_CPUID.
1232             */
1233            assert(cs->kvm_state);
1234
1235            cpuid = get_supported_hv_cpuid_legacy(cs);
1236        }
1237        hv_cpuid_cache = cpuid;
1238    }
1239
1240    if (!cpuid) {
1241        return 0;
1242    }
1243
1244    entry = cpuid_find_entry(cpuid, func, 0);
1245    if (!entry) {
1246        return 0;
1247    }
1248
1249    return cpuid_entry_get_reg(entry, reg);
1250}
1251
1252static bool hyperv_feature_supported(CPUState *cs, int feature)
1253{
1254    uint32_t func, bits;
1255    int i, reg;
1256
1257    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1258
1259        func = kvm_hyperv_properties[feature].flags[i].func;
1260        reg = kvm_hyperv_properties[feature].flags[i].reg;
1261        bits = kvm_hyperv_properties[feature].flags[i].bits;
1262
1263        if (!func) {
1264            continue;
1265        }
1266
1267        if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1268            return false;
1269        }
1270    }
1271
1272    return true;
1273}
1274
1275/* Checks that all feature dependencies are enabled */
1276static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1277{
1278    uint64_t deps;
1279    int dep_feat;
1280
1281    deps = kvm_hyperv_properties[feature].dependencies;
1282    while (deps) {
1283        dep_feat = ctz64(deps);
1284        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1285            error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1286                       kvm_hyperv_properties[feature].desc,
1287                       kvm_hyperv_properties[dep_feat].desc);
1288            return false;
1289        }
1290        deps &= ~(1ull << dep_feat);
1291    }
1292
1293    return true;
1294}
1295
1296static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1297{
1298    X86CPU *cpu = X86_CPU(cs);
1299    uint32_t r = 0;
1300    int i, j;
1301
1302    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1303        if (!hyperv_feat_enabled(cpu, i)) {
1304            continue;
1305        }
1306
1307        for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1308            if (kvm_hyperv_properties[i].flags[j].func != func) {
1309                continue;
1310            }
1311            if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1312                continue;
1313            }
1314
1315            r |= kvm_hyperv_properties[i].flags[j].bits;
1316        }
1317    }
1318
1319    /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1320    if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1321        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1322            r |= DEFAULT_EVMCS_VERSION;
1323        }
1324    }
1325
1326    return r;
1327}
1328
1329/*
1330 * Expand Hyper-V CPU features. In partucular, check that all the requested
1331 * features are supported by the host and the sanity of the configuration
1332 * (that all the required dependencies are included). Also, this takes care
1333 * of 'hv_passthrough' mode and fills the environment with all supported
1334 * Hyper-V features.
1335 */
1336bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1337{
1338    CPUState *cs = CPU(cpu);
1339    Error *local_err = NULL;
1340    int feat;
1341
1342    if (!hyperv_enabled(cpu))
1343        return true;
1344
1345    /*
1346     * When kvm_hyperv_expand_features is called at CPU feature expansion
1347     * time per-CPU kvm_state is not available yet so we can only proceed
1348     * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1349     */
1350    if (!cs->kvm_state &&
1351        !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1352        return true;
1353
1354    if (cpu->hyperv_passthrough) {
1355        cpu->hyperv_vendor_id[0] =
1356            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1357        cpu->hyperv_vendor_id[1] =
1358            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1359        cpu->hyperv_vendor_id[2] =
1360            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1361        cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1362                                       sizeof(cpu->hyperv_vendor_id) + 1);
1363        memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1364               sizeof(cpu->hyperv_vendor_id));
1365        cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1366
1367        cpu->hyperv_interface_id[0] =
1368            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1369        cpu->hyperv_interface_id[1] =
1370            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1371        cpu->hyperv_interface_id[2] =
1372            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1373        cpu->hyperv_interface_id[3] =
1374            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1375
1376        cpu->hyperv_ver_id_build =
1377            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1378        cpu->hyperv_ver_id_major =
1379            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1380        cpu->hyperv_ver_id_minor =
1381            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1382        cpu->hyperv_ver_id_sp =
1383            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1384        cpu->hyperv_ver_id_sb =
1385            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1386        cpu->hyperv_ver_id_sn =
1387            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1388
1389        cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1390                                            R_EAX);
1391        cpu->hyperv_limits[0] =
1392            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1393        cpu->hyperv_limits[1] =
1394            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1395        cpu->hyperv_limits[2] =
1396            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1397
1398        cpu->hyperv_spinlock_attempts =
1399            hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1400
1401        /*
1402         * Mark feature as enabled in 'cpu->hyperv_features' as
1403         * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1404         */
1405        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1406            if (hyperv_feature_supported(cs, feat)) {
1407                cpu->hyperv_features |= BIT(feat);
1408            }
1409        }
1410    } else {
1411        /* Check features availability and dependencies */
1412        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1413            /* If the feature was not requested skip it. */
1414            if (!hyperv_feat_enabled(cpu, feat)) {
1415                continue;
1416            }
1417
1418            /* Check if the feature is supported by KVM */
1419            if (!hyperv_feature_supported(cs, feat)) {
1420                error_setg(errp, "Hyper-V %s is not supported by kernel",
1421                           kvm_hyperv_properties[feat].desc);
1422                return false;
1423            }
1424
1425            /* Check dependencies */
1426            if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1427                error_propagate(errp, local_err);
1428                return false;
1429            }
1430        }
1431    }
1432
1433    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1434    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1435        !cpu->hyperv_synic_kvm_only &&
1436        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1437        error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1438                   kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1439                   kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1440        return false;
1441    }
1442
1443    return true;
1444}
1445
1446/*
1447 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1448 */
1449static int hyperv_fill_cpuids(CPUState *cs,
1450                              struct kvm_cpuid_entry2 *cpuid_ent)
1451{
1452    X86CPU *cpu = X86_CPU(cs);
1453    struct kvm_cpuid_entry2 *c;
1454    uint32_t signature[3];
1455    uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1456    uint32_t nested_eax =
1457        hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1458
1459    max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1460        HV_CPUID_IMPLEMENT_LIMITS;
1461
1462    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1463        max_cpuid_leaf =
1464            MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1465    }
1466
1467    c = &cpuid_ent[cpuid_i++];
1468    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1469    c->eax = max_cpuid_leaf;
1470    c->ebx = cpu->hyperv_vendor_id[0];
1471    c->ecx = cpu->hyperv_vendor_id[1];
1472    c->edx = cpu->hyperv_vendor_id[2];
1473
1474    c = &cpuid_ent[cpuid_i++];
1475    c->function = HV_CPUID_INTERFACE;
1476    c->eax = cpu->hyperv_interface_id[0];
1477    c->ebx = cpu->hyperv_interface_id[1];
1478    c->ecx = cpu->hyperv_interface_id[2];
1479    c->edx = cpu->hyperv_interface_id[3];
1480
1481    c = &cpuid_ent[cpuid_i++];
1482    c->function = HV_CPUID_VERSION;
1483    c->eax = cpu->hyperv_ver_id_build;
1484    c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1485        cpu->hyperv_ver_id_minor;
1486    c->ecx = cpu->hyperv_ver_id_sp;
1487    c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1488        (cpu->hyperv_ver_id_sn & 0xffffff);
1489
1490    c = &cpuid_ent[cpuid_i++];
1491    c->function = HV_CPUID_FEATURES;
1492    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1493    c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1494    c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1495
1496    /* Unconditionally required with any Hyper-V enlightenment */
1497    c->eax |= HV_HYPERCALL_AVAILABLE;
1498
1499    /* SynIC and Vmbus devices require messages/signals hypercalls */
1500    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1501        !cpu->hyperv_synic_kvm_only) {
1502        c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1503    }
1504
1505
1506    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1507    c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1508
1509    c = &cpuid_ent[cpuid_i++];
1510    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1511    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1512    c->ebx = cpu->hyperv_spinlock_attempts;
1513
1514    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1515        !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1516        c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1517    }
1518
1519    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1520        c->eax |= HV_NO_NONARCH_CORESHARING;
1521    } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1522        c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1523            HV_NO_NONARCH_CORESHARING;
1524    }
1525
1526    c = &cpuid_ent[cpuid_i++];
1527    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1528    c->eax = cpu->hv_max_vps;
1529    c->ebx = cpu->hyperv_limits[0];
1530    c->ecx = cpu->hyperv_limits[1];
1531    c->edx = cpu->hyperv_limits[2];
1532
1533    if (nested_eax) {
1534        uint32_t function;
1535
1536        /* Create zeroed 0x40000006..0x40000009 leaves */
1537        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1538             function < HV_CPUID_NESTED_FEATURES; function++) {
1539            c = &cpuid_ent[cpuid_i++];
1540            c->function = function;
1541        }
1542
1543        c = &cpuid_ent[cpuid_i++];
1544        c->function = HV_CPUID_NESTED_FEATURES;
1545        c->eax = nested_eax;
1546    }
1547
1548    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1549        c = &cpuid_ent[cpuid_i++];
1550        c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1551        c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1552            HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1553        memcpy(signature, "Microsoft VS", 12);
1554        c->eax = 0;
1555        c->ebx = signature[0];
1556        c->ecx = signature[1];
1557        c->edx = signature[2];
1558
1559        c = &cpuid_ent[cpuid_i++];
1560        c->function = HV_CPUID_SYNDBG_INTERFACE;
1561        memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1562        c->eax = signature[0];
1563        c->ebx = 0;
1564        c->ecx = 0;
1565        c->edx = 0;
1566
1567        c = &cpuid_ent[cpuid_i++];
1568        c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1569        c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1570        c->ebx = 0;
1571        c->ecx = 0;
1572        c->edx = 0;
1573    }
1574
1575    return cpuid_i;
1576}
1577
1578static Error *hv_passthrough_mig_blocker;
1579static Error *hv_no_nonarch_cs_mig_blocker;
1580
1581/* Checks that the exposed eVMCS version range is supported by KVM */
1582static bool evmcs_version_supported(uint16_t evmcs_version,
1583                                    uint16_t supported_evmcs_version)
1584{
1585    uint8_t min_version = evmcs_version & 0xff;
1586    uint8_t max_version = evmcs_version >> 8;
1587    uint8_t min_supported_version = supported_evmcs_version & 0xff;
1588    uint8_t max_supported_version = supported_evmcs_version >> 8;
1589
1590    return (min_version >= min_supported_version) &&
1591        (max_version <= max_supported_version);
1592}
1593
1594static int hyperv_init_vcpu(X86CPU *cpu)
1595{
1596    CPUState *cs = CPU(cpu);
1597    Error *local_err = NULL;
1598    int ret;
1599
1600    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1601        error_setg(&hv_passthrough_mig_blocker,
1602                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1603                   " set of hv-* flags instead");
1604        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1605        if (ret < 0) {
1606            error_report_err(local_err);
1607            return ret;
1608        }
1609    }
1610
1611    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1612        hv_no_nonarch_cs_mig_blocker == NULL) {
1613        error_setg(&hv_no_nonarch_cs_mig_blocker,
1614                   "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1615                   " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1616                   " make sure SMT is disabled and/or that vCPUs are properly"
1617                   " pinned)");
1618        ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1619        if (ret < 0) {
1620            error_report_err(local_err);
1621            return ret;
1622        }
1623    }
1624
1625    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1626        /*
1627         * the kernel doesn't support setting vp_index; assert that its value
1628         * is in sync
1629         */
1630        uint64_t value;
1631
1632        ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1633        if (ret < 0) {
1634            return ret;
1635        }
1636
1637        if (value != hyperv_vp_index(CPU(cpu))) {
1638            error_report("kernel's vp_index != QEMU's vp_index");
1639            return -ENXIO;
1640        }
1641    }
1642
1643    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1644        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1645            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1646        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1647        if (ret < 0) {
1648            error_report("failed to turn on HyperV SynIC in KVM: %s",
1649                         strerror(-ret));
1650            return ret;
1651        }
1652
1653        if (!cpu->hyperv_synic_kvm_only) {
1654            ret = hyperv_x86_synic_add(cpu);
1655            if (ret < 0) {
1656                error_report("failed to create HyperV SynIC: %s",
1657                             strerror(-ret));
1658                return ret;
1659            }
1660        }
1661    }
1662
1663    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1664        uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1665        uint16_t supported_evmcs_version;
1666
1667        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1668                                  (uintptr_t)&supported_evmcs_version);
1669
1670        /*
1671         * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1672         * option sets. Note: we hardcode the maximum supported eVMCS version
1673         * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1674         * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1675         * to be added.
1676         */
1677        if (ret < 0) {
1678            error_report("Hyper-V %s is not supported by kernel",
1679                         kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1680            return ret;
1681        }
1682
1683        if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1684            error_report("eVMCS version range [%d..%d] is not supported by "
1685                         "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1686                         evmcs_version >> 8, supported_evmcs_version & 0xff,
1687                         supported_evmcs_version >> 8);
1688            return -ENOTSUP;
1689        }
1690    }
1691
1692    if (cpu->hyperv_enforce_cpuid) {
1693        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1694        if (ret < 0) {
1695            error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1696                         strerror(-ret));
1697            return ret;
1698        }
1699    }
1700
1701    return 0;
1702}
1703
1704static Error *invtsc_mig_blocker;
1705
1706#define KVM_MAX_CPUID_ENTRIES  100
1707
1708static void kvm_init_xsave(CPUX86State *env)
1709{
1710    if (has_xsave2) {
1711        env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1712    } else if (has_xsave) {
1713        env->xsave_buf_len = sizeof(struct kvm_xsave);
1714    } else {
1715        return;
1716    }
1717
1718    env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1719    memset(env->xsave_buf, 0, env->xsave_buf_len);
1720    /*
1721     * The allocated storage must be large enough for all of the
1722     * possible XSAVE state components.
1723     */
1724    assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1725           env->xsave_buf_len);
1726}
1727
1728static void kvm_init_nested_state(CPUX86State *env)
1729{
1730    struct kvm_vmx_nested_state_hdr *vmx_hdr;
1731    uint32_t size;
1732
1733    if (!env->nested_state) {
1734        return;
1735    }
1736
1737    size = env->nested_state->size;
1738
1739    memset(env->nested_state, 0, size);
1740    env->nested_state->size = size;
1741
1742    if (cpu_has_vmx(env)) {
1743        env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1744        vmx_hdr = &env->nested_state->hdr.vmx;
1745        vmx_hdr->vmxon_pa = -1ull;
1746        vmx_hdr->vmcs12_pa = -1ull;
1747    } else if (cpu_has_svm(env)) {
1748        env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1749    }
1750}
1751
1752int kvm_arch_init_vcpu(CPUState *cs)
1753{
1754    struct {
1755        struct kvm_cpuid2 cpuid;
1756        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1757    } cpuid_data;
1758    /*
1759     * The kernel defines these structs with padding fields so there
1760     * should be no extra padding in our cpuid_data struct.
1761     */
1762    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1763                      sizeof(struct kvm_cpuid2) +
1764                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1765
1766    X86CPU *cpu = X86_CPU(cs);
1767    CPUX86State *env = &cpu->env;
1768    uint32_t limit, i, j, cpuid_i;
1769    uint32_t unused;
1770    struct kvm_cpuid_entry2 *c;
1771    uint32_t signature[3];
1772    int kvm_base = KVM_CPUID_SIGNATURE;
1773    int max_nested_state_len;
1774    int r;
1775    Error *local_err = NULL;
1776
1777    memset(&cpuid_data, 0, sizeof(cpuid_data));
1778
1779    cpuid_i = 0;
1780
1781    has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1782
1783    r = kvm_arch_set_tsc_khz(cs);
1784    if (r < 0) {
1785        return r;
1786    }
1787
1788    /* vcpu's TSC frequency is either specified by user, or following
1789     * the value used by KVM if the former is not present. In the
1790     * latter case, we query it from KVM and record in env->tsc_khz,
1791     * so that vcpu's TSC frequency can be migrated later via this field.
1792     */
1793    if (!env->tsc_khz) {
1794        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1795            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1796            -ENOTSUP;
1797        if (r > 0) {
1798            env->tsc_khz = r;
1799        }
1800    }
1801
1802    env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1803
1804    /*
1805     * kvm_hyperv_expand_features() is called here for the second time in case
1806     * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1807     * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1808     * check which Hyper-V enlightenments are supported and which are not, we
1809     * can still proceed and check/expand Hyper-V enlightenments here so legacy
1810     * behavior is preserved.
1811     */
1812    if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1813        error_report_err(local_err);
1814        return -ENOSYS;
1815    }
1816
1817    if (hyperv_enabled(cpu)) {
1818        r = hyperv_init_vcpu(cpu);
1819        if (r) {
1820            return r;
1821        }
1822
1823        cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1824        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1825        has_msr_hv_hypercall = true;
1826    }
1827
1828    if (cs->kvm_state->xen_version) {
1829#ifdef CONFIG_XEN_EMU
1830        struct kvm_cpuid_entry2 *xen_max_leaf;
1831
1832        memcpy(signature, "XenVMMXenVMM", 12);
1833
1834        xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1835        c->function = kvm_base + XEN_CPUID_SIGNATURE;
1836        c->eax = kvm_base + XEN_CPUID_TIME;
1837        c->ebx = signature[0];
1838        c->ecx = signature[1];
1839        c->edx = signature[2];
1840
1841        c = &cpuid_data.entries[cpuid_i++];
1842        c->function = kvm_base + XEN_CPUID_VENDOR;
1843        c->eax = cs->kvm_state->xen_version;
1844        c->ebx = 0;
1845        c->ecx = 0;
1846        c->edx = 0;
1847
1848        c = &cpuid_data.entries[cpuid_i++];
1849        c->function = kvm_base + XEN_CPUID_HVM_MSR;
1850        /* Number of hypercall-transfer pages */
1851        c->eax = 1;
1852        /* Hypercall MSR base address */
1853        if (hyperv_enabled(cpu)) {
1854            c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1855            kvm_xen_init(cs->kvm_state, c->ebx);
1856        } else {
1857            c->ebx = XEN_HYPERCALL_MSR;
1858        }
1859        c->ecx = 0;
1860        c->edx = 0;
1861
1862        c = &cpuid_data.entries[cpuid_i++];
1863        c->function = kvm_base + XEN_CPUID_TIME;
1864        c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1865            (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1866        /* default=0 (emulate if necessary) */
1867        c->ebx = 0;
1868        /* guest tsc frequency */
1869        c->ecx = env->user_tsc_khz;
1870        /* guest tsc incarnation (migration count) */
1871        c->edx = 0;
1872
1873        c = &cpuid_data.entries[cpuid_i++];
1874        c->function = kvm_base + XEN_CPUID_HVM;
1875        xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1876        if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1877            c->function = kvm_base + XEN_CPUID_HVM;
1878
1879            if (cpu->xen_vapic) {
1880                c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1881                c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1882            }
1883
1884            c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1885
1886            if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1887                c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1888                c->ebx = cs->cpu_index;
1889            }
1890        }
1891
1892        r = kvm_xen_init_vcpu(cs);
1893        if (r) {
1894            return r;
1895        }
1896
1897        kvm_base += 0x100;
1898#else /* CONFIG_XEN_EMU */
1899        /* This should never happen as kvm_arch_init() would have died first. */
1900        fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1901        abort();
1902#endif
1903    } else if (cpu->expose_kvm) {
1904        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1905        c = &cpuid_data.entries[cpuid_i++];
1906        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1907        c->eax = KVM_CPUID_FEATURES | kvm_base;
1908        c->ebx = signature[0];
1909        c->ecx = signature[1];
1910        c->edx = signature[2];
1911
1912        c = &cpuid_data.entries[cpuid_i++];
1913        c->function = KVM_CPUID_FEATURES | kvm_base;
1914        c->eax = env->features[FEAT_KVM];
1915        c->edx = env->features[FEAT_KVM_HINTS];
1916    }
1917
1918    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1919
1920    if (cpu->kvm_pv_enforce_cpuid) {
1921        r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1922        if (r < 0) {
1923            fprintf(stderr,
1924                    "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1925                    strerror(-r));
1926            abort();
1927        }
1928    }
1929
1930    for (i = 0; i <= limit; i++) {
1931        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1932            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1933            abort();
1934        }
1935        c = &cpuid_data.entries[cpuid_i++];
1936
1937        switch (i) {
1938        case 2: {
1939            /* Keep reading function 2 till all the input is received */
1940            int times;
1941
1942            c->function = i;
1943            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1944                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1945            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1946            times = c->eax & 0xff;
1947
1948            for (j = 1; j < times; ++j) {
1949                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1950                    fprintf(stderr, "cpuid_data is full, no space for "
1951                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1952                    abort();
1953                }
1954                c = &cpuid_data.entries[cpuid_i++];
1955                c->function = i;
1956                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1957                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1958            }
1959            break;
1960        }
1961        case 0x1f:
1962            if (env->nr_dies < 2) {
1963                break;
1964            }
1965            /* fallthrough */
1966        case 4:
1967        case 0xb:
1968        case 0xd:
1969            for (j = 0; ; j++) {
1970                if (i == 0xd && j == 64) {
1971                    break;
1972                }
1973
1974                if (i == 0x1f && j == 64) {
1975                    break;
1976                }
1977
1978                c->function = i;
1979                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1980                c->index = j;
1981                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1982
1983                if (i == 4 && c->eax == 0) {
1984                    break;
1985                }
1986                if (i == 0xb && !(c->ecx & 0xff00)) {
1987                    break;
1988                }
1989                if (i == 0x1f && !(c->ecx & 0xff00)) {
1990                    break;
1991                }
1992                if (i == 0xd && c->eax == 0) {
1993                    continue;
1994                }
1995                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1996                    fprintf(stderr, "cpuid_data is full, no space for "
1997                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1998                    abort();
1999                }
2000                c = &cpuid_data.entries[cpuid_i++];
2001            }
2002            break;
2003        case 0x7:
2004        case 0x12:
2005            for (j = 0; ; j++) {
2006                c->function = i;
2007                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2008                c->index = j;
2009                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2010
2011                if (j > 1 && (c->eax & 0xf) != 1) {
2012                    break;
2013                }
2014
2015                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2016                    fprintf(stderr, "cpuid_data is full, no space for "
2017                                "cpuid(eax:0x12,ecx:0x%x)\n", j);
2018                    abort();
2019                }
2020                c = &cpuid_data.entries[cpuid_i++];
2021            }
2022            break;
2023        case 0x14:
2024        case 0x1d:
2025        case 0x1e: {
2026            uint32_t times;
2027
2028            c->function = i;
2029            c->index = 0;
2030            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2031            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2032            times = c->eax;
2033
2034            for (j = 1; j <= times; ++j) {
2035                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2036                    fprintf(stderr, "cpuid_data is full, no space for "
2037                                "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2038                    abort();
2039                }
2040                c = &cpuid_data.entries[cpuid_i++];
2041                c->function = i;
2042                c->index = j;
2043                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2044                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2045            }
2046            break;
2047        }
2048        default:
2049            c->function = i;
2050            c->flags = 0;
2051            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2052            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2053                /*
2054                 * KVM already returns all zeroes if a CPUID entry is missing,
2055                 * so we can omit it and avoid hitting KVM's 80-entry limit.
2056                 */
2057                cpuid_i--;
2058            }
2059            break;
2060        }
2061    }
2062
2063    if (limit >= 0x0a) {
2064        uint32_t eax, edx;
2065
2066        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2067
2068        has_architectural_pmu_version = eax & 0xff;
2069        if (has_architectural_pmu_version > 0) {
2070            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2071
2072            /* Shouldn't be more than 32, since that's the number of bits
2073             * available in EBX to tell us _which_ counters are available.
2074             * Play it safe.
2075             */
2076            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2077                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2078            }
2079
2080            if (has_architectural_pmu_version > 1) {
2081                num_architectural_pmu_fixed_counters = edx & 0x1f;
2082
2083                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2084                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2085                }
2086            }
2087        }
2088    }
2089
2090    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2091
2092    for (i = 0x80000000; i <= limit; i++) {
2093        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2094            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2095            abort();
2096        }
2097        c = &cpuid_data.entries[cpuid_i++];
2098
2099        switch (i) {
2100        case 0x8000001d:
2101            /* Query for all AMD cache information leaves */
2102            for (j = 0; ; j++) {
2103                c->function = i;
2104                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2105                c->index = j;
2106                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2107
2108                if (c->eax == 0) {
2109                    break;
2110                }
2111                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2112                    fprintf(stderr, "cpuid_data is full, no space for "
2113                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2114                    abort();
2115                }
2116                c = &cpuid_data.entries[cpuid_i++];
2117            }
2118            break;
2119        default:
2120            c->function = i;
2121            c->flags = 0;
2122            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2123            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2124                /*
2125                 * KVM already returns all zeroes if a CPUID entry is missing,
2126                 * so we can omit it and avoid hitting KVM's 80-entry limit.
2127                 */
2128                cpuid_i--;
2129            }
2130            break;
2131        }
2132    }
2133
2134    /* Call Centaur's CPUID instructions they are supported. */
2135    if (env->cpuid_xlevel2 > 0) {
2136        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2137
2138        for (i = 0xC0000000; i <= limit; i++) {
2139            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2140                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2141                abort();
2142            }
2143            c = &cpuid_data.entries[cpuid_i++];
2144
2145            c->function = i;
2146            c->flags = 0;
2147            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2148        }
2149    }
2150
2151    cpuid_data.cpuid.nent = cpuid_i;
2152
2153    if (((env->cpuid_version >> 8)&0xF) >= 6
2154        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2155           (CPUID_MCE | CPUID_MCA)
2156        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2157        uint64_t mcg_cap, unsupported_caps;
2158        int banks;
2159        int ret;
2160
2161        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2162        if (ret < 0) {
2163            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2164            return ret;
2165        }
2166
2167        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2168            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2169                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2170            return -ENOTSUP;
2171        }
2172
2173        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2174        if (unsupported_caps) {
2175            if (unsupported_caps & MCG_LMCE_P) {
2176                error_report("kvm: LMCE not supported");
2177                return -ENOTSUP;
2178            }
2179            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2180                        unsupported_caps);
2181        }
2182
2183        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2184        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2185        if (ret < 0) {
2186            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2187            return ret;
2188        }
2189    }
2190
2191    cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2192
2193    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2194    if (c) {
2195        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2196                                  !!(c->ecx & CPUID_EXT_SMX);
2197    }
2198
2199    c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2200    if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2201        has_msr_feature_control = true;
2202    }
2203
2204    if (env->mcg_cap & MCG_LMCE_P) {
2205        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2206    }
2207
2208    if (!env->user_tsc_khz) {
2209        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2210            invtsc_mig_blocker == NULL) {
2211            error_setg(&invtsc_mig_blocker,
2212                       "State blocked by non-migratable CPU device"
2213                       " (invtsc flag)");
2214            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2215            if (r < 0) {
2216                error_report_err(local_err);
2217                return r;
2218            }
2219        }
2220    }
2221
2222    if (cpu->vmware_cpuid_freq
2223        /* Guests depend on 0x40000000 to detect this feature, so only expose
2224         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2225        && cpu->expose_kvm
2226        && kvm_base == KVM_CPUID_SIGNATURE
2227        /* TSC clock must be stable and known for this feature. */
2228        && tsc_is_stable_and_known(env)) {
2229
2230        c = &cpuid_data.entries[cpuid_i++];
2231        c->function = KVM_CPUID_SIGNATURE | 0x10;
2232        c->eax = env->tsc_khz;
2233        c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2234        c->ecx = c->edx = 0;
2235
2236        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2237        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2238    }
2239
2240    cpuid_data.cpuid.nent = cpuid_i;
2241
2242    cpuid_data.cpuid.padding = 0;
2243    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2244    if (r) {
2245        goto fail;
2246    }
2247    kvm_init_xsave(env);
2248
2249    max_nested_state_len = kvm_max_nested_state_length();
2250    if (max_nested_state_len > 0) {
2251        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2252
2253        if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2254            env->nested_state = g_malloc0(max_nested_state_len);
2255            env->nested_state->size = max_nested_state_len;
2256
2257            kvm_init_nested_state(env);
2258        }
2259    }
2260
2261    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2262
2263    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2264        has_msr_tsc_aux = false;
2265    }
2266
2267    kvm_init_msrs(cpu);
2268
2269    return 0;
2270
2271 fail:
2272    migrate_del_blocker(invtsc_mig_blocker);
2273
2274    return r;
2275}
2276
2277int kvm_arch_destroy_vcpu(CPUState *cs)
2278{
2279    X86CPU *cpu = X86_CPU(cs);
2280    CPUX86State *env = &cpu->env;
2281
2282    g_free(env->xsave_buf);
2283
2284    g_free(cpu->kvm_msr_buf);
2285    cpu->kvm_msr_buf = NULL;
2286
2287    g_free(env->nested_state);
2288    env->nested_state = NULL;
2289
2290    qemu_del_vm_change_state_handler(cpu->vmsentry);
2291
2292    return 0;
2293}
2294
2295void kvm_arch_reset_vcpu(X86CPU *cpu)
2296{
2297    CPUX86State *env = &cpu->env;
2298
2299    env->xcr0 = 1;
2300    if (kvm_irqchip_in_kernel()) {
2301        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2302                                          KVM_MP_STATE_UNINITIALIZED;
2303    } else {
2304        env->mp_state = KVM_MP_STATE_RUNNABLE;
2305    }
2306
2307    /* enabled by default */
2308    env->poll_control_msr = 1;
2309
2310    kvm_init_nested_state(env);
2311
2312    sev_es_set_reset_vector(CPU(cpu));
2313}
2314
2315void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2316{
2317    CPUX86State *env = &cpu->env;
2318    int i;
2319
2320    /*
2321     * Reset SynIC after all other devices have been reset to let them remove
2322     * their SINT routes first.
2323     */
2324    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2325        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2326            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2327        }
2328
2329        hyperv_x86_synic_reset(cpu);
2330    }
2331}
2332
2333void kvm_arch_do_init_vcpu(X86CPU *cpu)
2334{
2335    CPUX86State *env = &cpu->env;
2336
2337    /* APs get directly into wait-for-SIPI state.  */
2338    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2339        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2340    }
2341}
2342
2343static int kvm_get_supported_feature_msrs(KVMState *s)
2344{
2345    int ret = 0;
2346
2347    if (kvm_feature_msrs != NULL) {
2348        return 0;
2349    }
2350
2351    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2352        return 0;
2353    }
2354
2355    struct kvm_msr_list msr_list;
2356
2357    msr_list.nmsrs = 0;
2358    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2359    if (ret < 0 && ret != -E2BIG) {
2360        error_report("Fetch KVM feature MSR list failed: %s",
2361            strerror(-ret));
2362        return ret;
2363    }
2364
2365    assert(msr_list.nmsrs > 0);
2366    kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2367                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2368
2369    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2370    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2371
2372    if (ret < 0) {
2373        error_report("Fetch KVM feature MSR list failed: %s",
2374            strerror(-ret));
2375        g_free(kvm_feature_msrs);
2376        kvm_feature_msrs = NULL;
2377        return ret;
2378    }
2379
2380    return 0;
2381}
2382
2383static int kvm_get_supported_msrs(KVMState *s)
2384{
2385    int ret = 0;
2386    struct kvm_msr_list msr_list, *kvm_msr_list;
2387
2388    /*
2389     *  Obtain MSR list from KVM.  These are the MSRs that we must
2390     *  save/restore.
2391     */
2392    msr_list.nmsrs = 0;
2393    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2394    if (ret < 0 && ret != -E2BIG) {
2395        return ret;
2396    }
2397    /*
2398     * Old kernel modules had a bug and could write beyond the provided
2399     * memory. Allocate at least a safe amount of 1K.
2400     */
2401    kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2402                                          msr_list.nmsrs *
2403                                          sizeof(msr_list.indices[0])));
2404
2405    kvm_msr_list->nmsrs = msr_list.nmsrs;
2406    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2407    if (ret >= 0) {
2408        int i;
2409
2410        for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2411            switch (kvm_msr_list->indices[i]) {
2412            case MSR_STAR:
2413                has_msr_star = true;
2414                break;
2415            case MSR_VM_HSAVE_PA:
2416                has_msr_hsave_pa = true;
2417                break;
2418            case MSR_TSC_AUX:
2419                has_msr_tsc_aux = true;
2420                break;
2421            case MSR_TSC_ADJUST:
2422                has_msr_tsc_adjust = true;
2423                break;
2424            case MSR_IA32_TSCDEADLINE:
2425                has_msr_tsc_deadline = true;
2426                break;
2427            case MSR_IA32_SMBASE:
2428                has_msr_smbase = true;
2429                break;
2430            case MSR_SMI_COUNT:
2431                has_msr_smi_count = true;
2432                break;
2433            case MSR_IA32_MISC_ENABLE:
2434                has_msr_misc_enable = true;
2435                break;
2436            case MSR_IA32_BNDCFGS:
2437                has_msr_bndcfgs = true;
2438                break;
2439            case MSR_IA32_XSS:
2440                has_msr_xss = true;
2441                break;
2442            case MSR_IA32_UMWAIT_CONTROL:
2443                has_msr_umwait = true;
2444                break;
2445            case HV_X64_MSR_CRASH_CTL:
2446                has_msr_hv_crash = true;
2447                break;
2448            case HV_X64_MSR_RESET:
2449                has_msr_hv_reset = true;
2450                break;
2451            case HV_X64_MSR_VP_INDEX:
2452                has_msr_hv_vpindex = true;
2453                break;
2454            case HV_X64_MSR_VP_RUNTIME:
2455                has_msr_hv_runtime = true;
2456                break;
2457            case HV_X64_MSR_SCONTROL:
2458                has_msr_hv_synic = true;
2459                break;
2460            case HV_X64_MSR_STIMER0_CONFIG:
2461                has_msr_hv_stimer = true;
2462                break;
2463            case HV_X64_MSR_TSC_FREQUENCY:
2464                has_msr_hv_frequencies = true;
2465                break;
2466            case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2467                has_msr_hv_reenlightenment = true;
2468                break;
2469            case HV_X64_MSR_SYNDBG_OPTIONS:
2470                has_msr_hv_syndbg_options = true;
2471                break;
2472            case MSR_IA32_SPEC_CTRL:
2473                has_msr_spec_ctrl = true;
2474                break;
2475            case MSR_AMD64_TSC_RATIO:
2476                has_tsc_scale_msr = true;
2477                break;
2478            case MSR_IA32_TSX_CTRL:
2479                has_msr_tsx_ctrl = true;
2480                break;
2481            case MSR_VIRT_SSBD:
2482                has_msr_virt_ssbd = true;
2483                break;
2484            case MSR_IA32_ARCH_CAPABILITIES:
2485                has_msr_arch_capabs = true;
2486                break;
2487            case MSR_IA32_CORE_CAPABILITY:
2488                has_msr_core_capabs = true;
2489                break;
2490            case MSR_IA32_PERF_CAPABILITIES:
2491                has_msr_perf_capabs = true;
2492                break;
2493            case MSR_IA32_VMX_VMFUNC:
2494                has_msr_vmx_vmfunc = true;
2495                break;
2496            case MSR_IA32_UCODE_REV:
2497                has_msr_ucode_rev = true;
2498                break;
2499            case MSR_IA32_VMX_PROCBASED_CTLS2:
2500                has_msr_vmx_procbased_ctls2 = true;
2501                break;
2502            case MSR_IA32_PKRS:
2503                has_msr_pkrs = true;
2504                break;
2505            }
2506        }
2507    }
2508
2509    g_free(kvm_msr_list);
2510
2511    return ret;
2512}
2513
2514static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2515                                        uint64_t *val)
2516{
2517    CPUState *cs = CPU(cpu);
2518
2519    *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2520    *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2521
2522    return true;
2523}
2524
2525static Notifier smram_machine_done;
2526static KVMMemoryListener smram_listener;
2527static AddressSpace smram_address_space;
2528static MemoryRegion smram_as_root;
2529static MemoryRegion smram_as_mem;
2530
2531static void register_smram_listener(Notifier *n, void *unused)
2532{
2533    MemoryRegion *smram =
2534        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2535
2536    /* Outer container... */
2537    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2538    memory_region_set_enabled(&smram_as_root, true);
2539
2540    /* ... with two regions inside: normal system memory with low
2541     * priority, and...
2542     */
2543    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2544                             get_system_memory(), 0, ~0ull);
2545    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2546    memory_region_set_enabled(&smram_as_mem, true);
2547
2548    if (smram) {
2549        /* ... SMRAM with higher priority */
2550        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2551        memory_region_set_enabled(smram, true);
2552    }
2553
2554    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2555    kvm_memory_listener_register(kvm_state, &smram_listener,
2556                                 &smram_address_space, 1, "kvm-smram");
2557}
2558
2559int kvm_arch_init(MachineState *ms, KVMState *s)
2560{
2561    uint64_t identity_base = 0xfffbc000;
2562    uint64_t shadow_mem;
2563    int ret;
2564    struct utsname utsname;
2565    Error *local_err = NULL;
2566
2567    /*
2568     * Initialize SEV context, if required
2569     *
2570     * If no memory encryption is requested (ms->cgs == NULL) this is
2571     * a no-op.
2572     *
2573     * It's also a no-op if a non-SEV confidential guest support
2574     * mechanism is selected.  SEV is the only mechanism available to
2575     * select on x86 at present, so this doesn't arise, but if new
2576     * mechanisms are supported in future (e.g. TDX), they'll need
2577     * their own initialization either here or elsewhere.
2578     */
2579    ret = sev_kvm_init(ms->cgs, &local_err);
2580    if (ret < 0) {
2581        error_report_err(local_err);
2582        return ret;
2583    }
2584
2585    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2586        error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2587        return -ENOTSUP;
2588    }
2589
2590    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2591    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2592    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2593    has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2594
2595    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2596
2597    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2598    if (has_exception_payload) {
2599        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2600        if (ret < 0) {
2601            error_report("kvm: Failed to enable exception payload cap: %s",
2602                         strerror(-ret));
2603            return ret;
2604        }
2605    }
2606
2607    has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2608    if (has_triple_fault_event) {
2609        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2610        if (ret < 0) {
2611            error_report("kvm: Failed to enable triple fault event cap: %s",
2612                         strerror(-ret));
2613            return ret;
2614        }
2615    }
2616
2617    if (s->xen_version) {
2618#ifdef CONFIG_XEN_EMU
2619        if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2620            error_report("kvm: Xen support only available in PC machine");
2621            return -ENOTSUP;
2622        }
2623        /* hyperv_enabled() doesn't work yet. */
2624        uint32_t msr = XEN_HYPERCALL_MSR;
2625        ret = kvm_xen_init(s, msr);
2626        if (ret < 0) {
2627            return ret;
2628        }
2629#else
2630        error_report("kvm: Xen support not enabled in qemu");
2631        return -ENOTSUP;
2632#endif
2633    }
2634
2635    ret = kvm_get_supported_msrs(s);
2636    if (ret < 0) {
2637        return ret;
2638    }
2639
2640    kvm_get_supported_feature_msrs(s);
2641
2642    uname(&utsname);
2643    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2644
2645    /*
2646     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2647     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2648     * Since these must be part of guest physical memory, we need to allocate
2649     * them, both by setting their start addresses in the kernel and by
2650     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2651     *
2652     * Older KVM versions may not support setting the identity map base. In
2653     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2654     * size.
2655     */
2656    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2657        /* Allows up to 16M BIOSes. */
2658        identity_base = 0xfeffc000;
2659
2660        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2661        if (ret < 0) {
2662            return ret;
2663        }
2664    }
2665
2666    /* Set TSS base one page after EPT identity map. */
2667    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2668    if (ret < 0) {
2669        return ret;
2670    }
2671
2672    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2673    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2674    if (ret < 0) {
2675        fprintf(stderr, "e820_add_entry() table is full\n");
2676        return ret;
2677    }
2678
2679    shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2680    if (shadow_mem != -1) {
2681        shadow_mem /= 4096;
2682        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2683        if (ret < 0) {
2684            return ret;
2685        }
2686    }
2687
2688    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2689        object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2690        x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2691        smram_machine_done.notify = register_smram_listener;
2692        qemu_add_machine_init_done_notifier(&smram_machine_done);
2693    }
2694
2695    if (enable_cpu_pm) {
2696        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2697        int ret;
2698
2699/* Work around for kernel header with a typo. TODO: fix header and drop. */
2700#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2701#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2702#endif
2703        if (disable_exits) {
2704            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2705                              KVM_X86_DISABLE_EXITS_HLT |
2706                              KVM_X86_DISABLE_EXITS_PAUSE |
2707                              KVM_X86_DISABLE_EXITS_CSTATE);
2708        }
2709
2710        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2711                                disable_exits);
2712        if (ret < 0) {
2713            error_report("kvm: guest stopping CPU not supported: %s",
2714                         strerror(-ret));
2715        }
2716    }
2717
2718    if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2719        X86MachineState *x86ms = X86_MACHINE(ms);
2720
2721        if (x86ms->bus_lock_ratelimit > 0) {
2722            ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2723            if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2724                error_report("kvm: bus lock detection unsupported");
2725                return -ENOTSUP;
2726            }
2727            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2728                                    KVM_BUS_LOCK_DETECTION_EXIT);
2729            if (ret < 0) {
2730                error_report("kvm: Failed to enable bus lock detection cap: %s",
2731                             strerror(-ret));
2732                return ret;
2733            }
2734            ratelimit_init(&bus_lock_ratelimit_ctrl);
2735            ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2736                                x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2737        }
2738    }
2739
2740    if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2741        kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2742            uint64_t notify_window_flags =
2743                ((uint64_t)s->notify_window << 32) |
2744                KVM_X86_NOTIFY_VMEXIT_ENABLED |
2745                KVM_X86_NOTIFY_VMEXIT_USER;
2746            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2747                                    notify_window_flags);
2748            if (ret < 0) {
2749                error_report("kvm: Failed to enable notify vmexit cap: %s",
2750                             strerror(-ret));
2751                return ret;
2752            }
2753    }
2754    if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2755        bool r;
2756
2757        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2758                                KVM_MSR_EXIT_REASON_FILTER);
2759        if (ret) {
2760            error_report("Could not enable user space MSRs: %s",
2761                         strerror(-ret));
2762            exit(1);
2763        }
2764
2765        r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2766                           kvm_rdmsr_core_thread_count, NULL);
2767        if (!r) {
2768            error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2769                         strerror(-ret));
2770            exit(1);
2771        }
2772    }
2773
2774    return 0;
2775}
2776
2777static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2778{
2779    lhs->selector = rhs->selector;
2780    lhs->base = rhs->base;
2781    lhs->limit = rhs->limit;
2782    lhs->type = 3;
2783    lhs->present = 1;
2784    lhs->dpl = 3;
2785    lhs->db = 0;
2786    lhs->s = 1;
2787    lhs->l = 0;
2788    lhs->g = 0;
2789    lhs->avl = 0;
2790    lhs->unusable = 0;
2791}
2792
2793static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2794{
2795    unsigned flags = rhs->flags;
2796    lhs->selector = rhs->selector;
2797    lhs->base = rhs->base;
2798    lhs->limit = rhs->limit;
2799    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2800    lhs->present = (flags & DESC_P_MASK) != 0;
2801    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2802    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2803    lhs->s = (flags & DESC_S_MASK) != 0;
2804    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2805    lhs->g = (flags & DESC_G_MASK) != 0;
2806    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2807    lhs->unusable = !lhs->present;
2808    lhs->padding = 0;
2809}
2810
2811static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2812{
2813    lhs->selector = rhs->selector;
2814    lhs->base = rhs->base;
2815    lhs->limit = rhs->limit;
2816    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2817                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2818                 (rhs->dpl << DESC_DPL_SHIFT) |
2819                 (rhs->db << DESC_B_SHIFT) |
2820                 (rhs->s * DESC_S_MASK) |
2821                 (rhs->l << DESC_L_SHIFT) |
2822                 (rhs->g * DESC_G_MASK) |
2823                 (rhs->avl * DESC_AVL_MASK);
2824}
2825
2826static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2827{
2828    if (set) {
2829        *kvm_reg = *qemu_reg;
2830    } else {
2831        *qemu_reg = *kvm_reg;
2832    }
2833}
2834
2835static int kvm_getput_regs(X86CPU *cpu, int set)
2836{
2837    CPUX86State *env = &cpu->env;
2838    struct kvm_regs regs;
2839    int ret = 0;
2840
2841    if (!set) {
2842        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2843        if (ret < 0) {
2844            return ret;
2845        }
2846    }
2847
2848    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2849    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2850    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2851    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2852    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2853    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2854    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2855    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2856#ifdef TARGET_X86_64
2857    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2858    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2859    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2860    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2861    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2862    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2863    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2864    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2865#endif
2866
2867    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2868    kvm_getput_reg(&regs.rip, &env->eip, set);
2869
2870    if (set) {
2871        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2872    }
2873
2874    return ret;
2875}
2876
2877static int kvm_put_fpu(X86CPU *cpu)
2878{
2879    CPUX86State *env = &cpu->env;
2880    struct kvm_fpu fpu;
2881    int i;
2882
2883    memset(&fpu, 0, sizeof fpu);
2884    fpu.fsw = env->fpus & ~(7 << 11);
2885    fpu.fsw |= (env->fpstt & 7) << 11;
2886    fpu.fcw = env->fpuc;
2887    fpu.last_opcode = env->fpop;
2888    fpu.last_ip = env->fpip;
2889    fpu.last_dp = env->fpdp;
2890    for (i = 0; i < 8; ++i) {
2891        fpu.ftwx |= (!env->fptags[i]) << i;
2892    }
2893    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2894    for (i = 0; i < CPU_NB_REGS; i++) {
2895        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2896        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2897    }
2898    fpu.mxcsr = env->mxcsr;
2899
2900    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2901}
2902
2903static int kvm_put_xsave(X86CPU *cpu)
2904{
2905    CPUX86State *env = &cpu->env;
2906    void *xsave = env->xsave_buf;
2907
2908    if (!has_xsave) {
2909        return kvm_put_fpu(cpu);
2910    }
2911    x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2912
2913    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2914}
2915
2916static int kvm_put_xcrs(X86CPU *cpu)
2917{
2918    CPUX86State *env = &cpu->env;
2919    struct kvm_xcrs xcrs = {};
2920
2921    if (!has_xcrs) {
2922        return 0;
2923    }
2924
2925    xcrs.nr_xcrs = 1;
2926    xcrs.flags = 0;
2927    xcrs.xcrs[0].xcr = 0;
2928    xcrs.xcrs[0].value = env->xcr0;
2929    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2930}
2931
2932static int kvm_put_sregs(X86CPU *cpu)
2933{
2934    CPUX86State *env = &cpu->env;
2935    struct kvm_sregs sregs;
2936
2937    /*
2938     * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2939     * always followed by KVM_SET_VCPU_EVENTS.
2940     */
2941    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2942
2943    if ((env->eflags & VM_MASK)) {
2944        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2945        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2946        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2947        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2948        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2949        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2950    } else {
2951        set_seg(&sregs.cs, &env->segs[R_CS]);
2952        set_seg(&sregs.ds, &env->segs[R_DS]);
2953        set_seg(&sregs.es, &env->segs[R_ES]);
2954        set_seg(&sregs.fs, &env->segs[R_FS]);
2955        set_seg(&sregs.gs, &env->segs[R_GS]);
2956        set_seg(&sregs.ss, &env->segs[R_SS]);
2957    }
2958
2959    set_seg(&sregs.tr, &env->tr);
2960    set_seg(&sregs.ldt, &env->ldt);
2961
2962    sregs.idt.limit = env->idt.limit;
2963    sregs.idt.base = env->idt.base;
2964    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2965    sregs.gdt.limit = env->gdt.limit;
2966    sregs.gdt.base = env->gdt.base;
2967    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2968
2969    sregs.cr0 = env->cr[0];
2970    sregs.cr2 = env->cr[2];
2971    sregs.cr3 = env->cr[3];
2972    sregs.cr4 = env->cr[4];
2973
2974    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2975    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2976
2977    sregs.efer = env->efer;
2978
2979    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2980}
2981
2982static int kvm_put_sregs2(X86CPU *cpu)
2983{
2984    CPUX86State *env = &cpu->env;
2985    struct kvm_sregs2 sregs;
2986    int i;
2987
2988    sregs.flags = 0;
2989
2990    if ((env->eflags & VM_MASK)) {
2991        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2992        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2993        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2994        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2995        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2996        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2997    } else {
2998        set_seg(&sregs.cs, &env->segs[R_CS]);
2999        set_seg(&sregs.ds, &env->segs[R_DS]);
3000        set_seg(&sregs.es, &env->segs[R_ES]);
3001        set_seg(&sregs.fs, &env->segs[R_FS]);
3002        set_seg(&sregs.gs, &env->segs[R_GS]);
3003        set_seg(&sregs.ss, &env->segs[R_SS]);
3004    }
3005
3006    set_seg(&sregs.tr, &env->tr);
3007    set_seg(&sregs.ldt, &env->ldt);
3008
3009    sregs.idt.limit = env->idt.limit;
3010    sregs.idt.base = env->idt.base;
3011    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3012    sregs.gdt.limit = env->gdt.limit;
3013    sregs.gdt.base = env->gdt.base;
3014    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3015
3016    sregs.cr0 = env->cr[0];
3017    sregs.cr2 = env->cr[2];
3018    sregs.cr3 = env->cr[3];
3019    sregs.cr4 = env->cr[4];
3020
3021    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3022    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3023
3024    sregs.efer = env->efer;
3025
3026    if (env->pdptrs_valid) {
3027        for (i = 0; i < 4; i++) {
3028            sregs.pdptrs[i] = env->pdptrs[i];
3029        }
3030        sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3031    }
3032
3033    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3034}
3035
3036
3037static void kvm_msr_buf_reset(X86CPU *cpu)
3038{
3039    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3040}
3041
3042static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3043{
3044    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3045    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3046    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3047
3048    assert((void *)(entry + 1) <= limit);
3049
3050    entry->index = index;
3051    entry->reserved = 0;
3052    entry->data = value;
3053    msrs->nmsrs++;
3054}
3055
3056static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3057{
3058    kvm_msr_buf_reset(cpu);
3059    kvm_msr_entry_add(cpu, index, value);
3060
3061    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3062}
3063
3064static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3065{
3066    int ret;
3067    struct {
3068        struct kvm_msrs info;
3069        struct kvm_msr_entry entries[1];
3070    } msr_data = {
3071        .info.nmsrs = 1,
3072        .entries[0].index = index,
3073    };
3074
3075    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3076    if (ret < 0) {
3077        return ret;
3078    }
3079    assert(ret == 1);
3080    *value = msr_data.entries[0].data;
3081    return ret;
3082}
3083void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3084{
3085    int ret;
3086
3087    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3088    assert(ret == 1);
3089}
3090
3091static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3092{
3093    CPUX86State *env = &cpu->env;
3094    int ret;
3095
3096    if (!has_msr_tsc_deadline) {
3097        return 0;
3098    }
3099
3100    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3101    if (ret < 0) {
3102        return ret;
3103    }
3104
3105    assert(ret == 1);
3106    return 0;
3107}
3108
3109/*
3110 * Provide a separate write service for the feature control MSR in order to
3111 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3112 * before writing any other state because forcibly leaving nested mode
3113 * invalidates the VCPU state.
3114 */
3115static int kvm_put_msr_feature_control(X86CPU *cpu)
3116{
3117    int ret;
3118
3119    if (!has_msr_feature_control) {
3120        return 0;
3121    }
3122
3123    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3124                          cpu->env.msr_ia32_feature_control);
3125    if (ret < 0) {
3126        return ret;
3127    }
3128
3129    assert(ret == 1);
3130    return 0;
3131}
3132
3133static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3134{
3135    uint32_t default1, can_be_one, can_be_zero;
3136    uint32_t must_be_one;
3137
3138    switch (index) {
3139    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3140        default1 = 0x00000016;
3141        break;
3142    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3143        default1 = 0x0401e172;
3144        break;
3145    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3146        default1 = 0x000011ff;
3147        break;
3148    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3149        default1 = 0x00036dff;
3150        break;
3151    case MSR_IA32_VMX_PROCBASED_CTLS2:
3152        default1 = 0;
3153        break;
3154    default:
3155        abort();
3156    }
3157
3158    /* If a feature bit is set, the control can be either set or clear.
3159     * Otherwise the value is limited to either 0 or 1 by default1.
3160     */
3161    can_be_one = features | default1;
3162    can_be_zero = features | ~default1;
3163    must_be_one = ~can_be_zero;
3164
3165    /*
3166     * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3167     * Bit 32:63 -> 1 if the control bit can be one.
3168     */
3169    return must_be_one | (((uint64_t)can_be_one) << 32);
3170}
3171
3172static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3173{
3174    uint64_t kvm_vmx_basic =
3175        kvm_arch_get_supported_msr_feature(kvm_state,
3176                                           MSR_IA32_VMX_BASIC);
3177
3178    if (!kvm_vmx_basic) {
3179        /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3180         * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3181         */
3182        return;
3183    }
3184
3185    uint64_t kvm_vmx_misc =
3186        kvm_arch_get_supported_msr_feature(kvm_state,
3187                                           MSR_IA32_VMX_MISC);
3188    uint64_t kvm_vmx_ept_vpid =
3189        kvm_arch_get_supported_msr_feature(kvm_state,
3190                                           MSR_IA32_VMX_EPT_VPID_CAP);
3191
3192    /*
3193     * If the guest is 64-bit, a value of 1 is allowed for the host address
3194     * space size vmexit control.
3195     */
3196    uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3197        ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3198
3199    /*
3200     * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3201     * not change them for backwards compatibility.
3202     */
3203    uint64_t fixed_vmx_basic = kvm_vmx_basic &
3204        (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3205         MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3206         MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3207
3208    /*
3209     * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3210     * change in the future but are always zero for now, clear them to be
3211     * future proof.  Bits 32-63 in theory could change, though KVM does
3212     * not support dual-monitor treatment and probably never will; mask
3213     * them out as well.
3214     */
3215    uint64_t fixed_vmx_misc = kvm_vmx_misc &
3216        (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3217         MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3218
3219    /*
3220     * EPT memory types should not change either, so we do not bother
3221     * adding features for them.
3222     */
3223    uint64_t fixed_vmx_ept_mask =
3224            (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3225             MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3226    uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3227
3228    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3229                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3230                                         f[FEAT_VMX_PROCBASED_CTLS]));
3231    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3232                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3233                                         f[FEAT_VMX_PINBASED_CTLS]));
3234    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3235                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3236                                         f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3237    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3238                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3239                                         f[FEAT_VMX_ENTRY_CTLS]));
3240    kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3241                      make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3242                                         f[FEAT_VMX_SECONDARY_CTLS]));
3243    kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3244                      f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3245    kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3246                      f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3247    kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3248                      f[FEAT_VMX_MISC] | fixed_vmx_misc);
3249    if (has_msr_vmx_vmfunc) {
3250        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3251    }
3252
3253    /*
3254     * Just to be safe, write these with constant values.  The CRn_FIXED1
3255     * MSRs are generated by KVM based on the vCPU's CPUID.
3256     */
3257    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3258                      CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3259    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3260                      CR4_VMXE_MASK);
3261
3262    if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3263        /* TSC multiplier (0x2032).  */
3264        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3265    } else {
3266        /* Preemption timer (0x482E).  */
3267        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3268    }
3269}
3270
3271static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3272{
3273    uint64_t kvm_perf_cap =
3274        kvm_arch_get_supported_msr_feature(kvm_state,
3275                                           MSR_IA32_PERF_CAPABILITIES);
3276
3277    if (kvm_perf_cap) {
3278        kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3279                        kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3280    }
3281}
3282
3283static int kvm_buf_set_msrs(X86CPU *cpu)
3284{
3285    int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3286    if (ret < 0) {
3287        return ret;
3288    }
3289
3290    if (ret < cpu->kvm_msr_buf->nmsrs) {
3291        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3292        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3293                     (uint32_t)e->index, (uint64_t)e->data);
3294    }
3295
3296    assert(ret == cpu->kvm_msr_buf->nmsrs);
3297    return 0;
3298}
3299
3300static void kvm_init_msrs(X86CPU *cpu)
3301{
3302    CPUX86State *env = &cpu->env;
3303
3304    kvm_msr_buf_reset(cpu);
3305    if (has_msr_arch_capabs) {
3306        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3307                          env->features[FEAT_ARCH_CAPABILITIES]);
3308    }
3309
3310    if (has_msr_core_capabs) {
3311        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3312                          env->features[FEAT_CORE_CAPABILITY]);
3313    }
3314
3315    if (has_msr_perf_capabs && cpu->enable_pmu) {
3316        kvm_msr_entry_add_perf(cpu, env->features);
3317    }
3318
3319    if (has_msr_ucode_rev) {
3320        kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3321    }
3322
3323    /*
3324     * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3325     * all kernels with MSR features should have them.
3326     */
3327    if (kvm_feature_msrs && cpu_has_vmx(env)) {
3328        kvm_msr_entry_add_vmx(cpu, env->features);
3329    }
3330
3331    assert(kvm_buf_set_msrs(cpu) == 0);
3332}
3333
3334static int kvm_put_msrs(X86CPU *cpu, int level)
3335{
3336    CPUX86State *env = &cpu->env;
3337    int i;
3338
3339    kvm_msr_buf_reset(cpu);
3340
3341    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3342    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3343    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3344    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3345    if (has_msr_star) {
3346        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3347    }
3348    if (has_msr_hsave_pa) {
3349        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3350    }
3351    if (has_msr_tsc_aux) {
3352        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3353    }
3354    if (has_msr_tsc_adjust) {
3355        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3356    }
3357    if (has_msr_misc_enable) {
3358        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3359                          env->msr_ia32_misc_enable);
3360    }
3361    if (has_msr_smbase) {
3362        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3363    }
3364    if (has_msr_smi_count) {
3365        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3366    }
3367    if (has_msr_pkrs) {
3368        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3369    }
3370    if (has_msr_bndcfgs) {
3371        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3372    }
3373    if (has_msr_xss) {
3374        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3375    }
3376    if (has_msr_umwait) {
3377        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3378    }
3379    if (has_msr_spec_ctrl) {
3380        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3381    }
3382    if (has_tsc_scale_msr) {
3383        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3384    }
3385
3386    if (has_msr_tsx_ctrl) {
3387        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3388    }
3389    if (has_msr_virt_ssbd) {
3390        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3391    }
3392
3393#ifdef TARGET_X86_64
3394    if (lm_capable_kernel) {
3395        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3396        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3397        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3398        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3399    }
3400#endif
3401
3402    /*
3403     * The following MSRs have side effects on the guest or are too heavy
3404     * for normal writeback. Limit them to reset or full state updates.
3405     */
3406    if (level >= KVM_PUT_RESET_STATE) {
3407        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3408        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3409        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3410        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3411            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3412        }
3413        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3414            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3415        }
3416        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3417            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3418        }
3419        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3420            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3421        }
3422
3423        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3424            kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3425        }
3426
3427        if (has_architectural_pmu_version > 0) {
3428            if (has_architectural_pmu_version > 1) {
3429                /* Stop the counter.  */
3430                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3431                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3432            }
3433
3434            /* Set the counter values.  */
3435            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3436                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3437                                  env->msr_fixed_counters[i]);
3438            }
3439            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3440                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3441                                  env->msr_gp_counters[i]);
3442                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3443                                  env->msr_gp_evtsel[i]);
3444            }
3445            if (has_architectural_pmu_version > 1) {
3446                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3447                                  env->msr_global_status);
3448                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3449                                  env->msr_global_ovf_ctrl);
3450
3451                /* Now start the PMU.  */
3452                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3453                                  env->msr_fixed_ctr_ctrl);
3454                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3455                                  env->msr_global_ctrl);
3456            }
3457        }
3458        /*
3459         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3460         * only sync them to KVM on the first cpu
3461         */
3462        if (current_cpu == first_cpu) {
3463            if (has_msr_hv_hypercall) {
3464                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3465                                  env->msr_hv_guest_os_id);
3466                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3467                                  env->msr_hv_hypercall);
3468            }
3469            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3470                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3471                                  env->msr_hv_tsc);
3472            }
3473            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3474                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3475                                  env->msr_hv_reenlightenment_control);
3476                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3477                                  env->msr_hv_tsc_emulation_control);
3478                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3479                                  env->msr_hv_tsc_emulation_status);
3480            }
3481#ifdef CONFIG_SYNDBG
3482            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3483                has_msr_hv_syndbg_options) {
3484                kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3485                                  hyperv_syndbg_query_options());
3486            }
3487#endif
3488        }
3489        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3490            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3491                              env->msr_hv_vapic);
3492        }
3493        if (has_msr_hv_crash) {
3494            int j;
3495
3496            for (j = 0; j < HV_CRASH_PARAMS; j++)
3497                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3498                                  env->msr_hv_crash_params[j]);
3499
3500            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3501        }
3502        if (has_msr_hv_runtime) {
3503            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3504        }
3505        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3506            && hv_vpindex_settable) {
3507            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3508                              hyperv_vp_index(CPU(cpu)));
3509        }
3510        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3511            int j;
3512
3513            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3514
3515            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3516                              env->msr_hv_synic_control);
3517            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3518                              env->msr_hv_synic_evt_page);
3519            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3520                              env->msr_hv_synic_msg_page);
3521
3522            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3523                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3524                                  env->msr_hv_synic_sint[j]);
3525            }
3526        }
3527        if (has_msr_hv_stimer) {
3528            int j;
3529
3530            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3531                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3532                                env->msr_hv_stimer_config[j]);
3533            }
3534
3535            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3536                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3537                                env->msr_hv_stimer_count[j]);
3538            }
3539        }
3540        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3541            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3542
3543            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3544            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3545            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3546            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3547            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3548            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3549            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3550            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3551            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3552            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3553            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3554            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3555            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3556                /* The CPU GPs if we write to a bit above the physical limit of
3557                 * the host CPU (and KVM emulates that)
3558                 */
3559                uint64_t mask = env->mtrr_var[i].mask;
3560                mask &= phys_mask;
3561
3562                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3563                                  env->mtrr_var[i].base);
3564                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3565            }
3566        }
3567        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3568            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3569                                                    0x14, 1, R_EAX) & 0x7;
3570
3571            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3572                            env->msr_rtit_ctrl);
3573            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3574                            env->msr_rtit_status);
3575            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3576                            env->msr_rtit_output_base);
3577            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3578                            env->msr_rtit_output_mask);
3579            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3580                            env->msr_rtit_cr3_match);
3581            for (i = 0; i < addr_num; i++) {
3582                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3583                            env->msr_rtit_addrs[i]);
3584            }
3585        }
3586
3587        if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3588            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3589                              env->msr_ia32_sgxlepubkeyhash[0]);
3590            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3591                              env->msr_ia32_sgxlepubkeyhash[1]);
3592            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3593                              env->msr_ia32_sgxlepubkeyhash[2]);
3594            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3595                              env->msr_ia32_sgxlepubkeyhash[3]);
3596        }
3597
3598        if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3599            kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3600                              env->msr_xfd);
3601            kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3602                              env->msr_xfd_err);
3603        }
3604
3605        if (kvm_enabled() && cpu->enable_pmu &&
3606            (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3607            uint64_t depth;
3608            int i, ret;
3609
3610            /*
3611             * Only migrate Arch LBR states when the host Arch LBR depth
3612             * equals that of source guest's, this is to avoid mismatch
3613             * of guest/host config for the msr hence avoid unexpected
3614             * misbehavior.
3615             */
3616            ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3617
3618            if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3619                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3620                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3621
3622                for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3623                    if (!env->lbr_records[i].from) {
3624                        continue;
3625                    }
3626                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3627                                      env->lbr_records[i].from);
3628                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3629                                      env->lbr_records[i].to);
3630                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3631                                      env->lbr_records[i].info);
3632                }
3633            }
3634        }
3635
3636        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3637         *       kvm_put_msr_feature_control. */
3638    }
3639
3640    if (env->mcg_cap) {
3641        int i;
3642
3643        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3644        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3645        if (has_msr_mcg_ext_ctl) {
3646            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3647        }
3648        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3649            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3650        }
3651    }
3652
3653    return kvm_buf_set_msrs(cpu);
3654}
3655
3656
3657static int kvm_get_fpu(X86CPU *cpu)
3658{
3659    CPUX86State *env = &cpu->env;
3660    struct kvm_fpu fpu;
3661    int i, ret;
3662
3663    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3664    if (ret < 0) {
3665        return ret;
3666    }
3667
3668    env->fpstt = (fpu.fsw >> 11) & 7;
3669    env->fpus = fpu.fsw;
3670    env->fpuc = fpu.fcw;
3671    env->fpop = fpu.last_opcode;
3672    env->fpip = fpu.last_ip;
3673    env->fpdp = fpu.last_dp;
3674    for (i = 0; i < 8; ++i) {
3675        env->fptags[i] = !((fpu.ftwx >> i) & 1);
3676    }
3677    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3678    for (i = 0; i < CPU_NB_REGS; i++) {
3679        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3680        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3681    }
3682    env->mxcsr = fpu.mxcsr;
3683
3684    return 0;
3685}
3686
3687static int kvm_get_xsave(X86CPU *cpu)
3688{
3689    CPUX86State *env = &cpu->env;
3690    void *xsave = env->xsave_buf;
3691    int type, ret;
3692
3693    if (!has_xsave) {
3694        return kvm_get_fpu(cpu);
3695    }
3696
3697    type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3698    ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3699    if (ret < 0) {
3700        return ret;
3701    }
3702    x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3703
3704    return 0;
3705}
3706
3707static int kvm_get_xcrs(X86CPU *cpu)
3708{
3709    CPUX86State *env = &cpu->env;
3710    int i, ret;
3711    struct kvm_xcrs xcrs;
3712
3713    if (!has_xcrs) {
3714        return 0;
3715    }
3716
3717    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3718    if (ret < 0) {
3719        return ret;
3720    }
3721
3722    for (i = 0; i < xcrs.nr_xcrs; i++) {
3723        /* Only support xcr0 now */
3724        if (xcrs.xcrs[i].xcr == 0) {
3725            env->xcr0 = xcrs.xcrs[i].value;
3726            break;
3727        }
3728    }
3729    return 0;
3730}
3731
3732static int kvm_get_sregs(X86CPU *cpu)
3733{
3734    CPUX86State *env = &cpu->env;
3735    struct kvm_sregs sregs;
3736    int ret;
3737
3738    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3739    if (ret < 0) {
3740        return ret;
3741    }
3742
3743    /*
3744     * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3745     * always preceded by KVM_GET_VCPU_EVENTS.
3746     */
3747
3748    get_seg(&env->segs[R_CS], &sregs.cs);
3749    get_seg(&env->segs[R_DS], &sregs.ds);
3750    get_seg(&env->segs[R_ES], &sregs.es);
3751    get_seg(&env->segs[R_FS], &sregs.fs);
3752    get_seg(&env->segs[R_GS], &sregs.gs);
3753    get_seg(&env->segs[R_SS], &sregs.ss);
3754
3755    get_seg(&env->tr, &sregs.tr);
3756    get_seg(&env->ldt, &sregs.ldt);
3757
3758    env->idt.limit = sregs.idt.limit;
3759    env->idt.base = sregs.idt.base;
3760    env->gdt.limit = sregs.gdt.limit;
3761    env->gdt.base = sregs.gdt.base;
3762
3763    env->cr[0] = sregs.cr0;
3764    env->cr[2] = sregs.cr2;
3765    env->cr[3] = sregs.cr3;
3766    env->cr[4] = sregs.cr4;
3767
3768    env->efer = sregs.efer;
3769
3770    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3771    x86_update_hflags(env);
3772
3773    return 0;
3774}
3775
3776static int kvm_get_sregs2(X86CPU *cpu)
3777{
3778    CPUX86State *env = &cpu->env;
3779    struct kvm_sregs2 sregs;
3780    int i, ret;
3781
3782    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3783    if (ret < 0) {
3784        return ret;
3785    }
3786
3787    get_seg(&env->segs[R_CS], &sregs.cs);
3788    get_seg(&env->segs[R_DS], &sregs.ds);
3789    get_seg(&env->segs[R_ES], &sregs.es);
3790    get_seg(&env->segs[R_FS], &sregs.fs);
3791    get_seg(&env->segs[R_GS], &sregs.gs);
3792    get_seg(&env->segs[R_SS], &sregs.ss);
3793
3794    get_seg(&env->tr, &sregs.tr);
3795    get_seg(&env->ldt, &sregs.ldt);
3796
3797    env->idt.limit = sregs.idt.limit;
3798    env->idt.base = sregs.idt.base;
3799    env->gdt.limit = sregs.gdt.limit;
3800    env->gdt.base = sregs.gdt.base;
3801
3802    env->cr[0] = sregs.cr0;
3803    env->cr[2] = sregs.cr2;
3804    env->cr[3] = sregs.cr3;
3805    env->cr[4] = sregs.cr4;
3806
3807    env->efer = sregs.efer;
3808
3809    env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3810
3811    if (env->pdptrs_valid) {
3812        for (i = 0; i < 4; i++) {
3813            env->pdptrs[i] = sregs.pdptrs[i];
3814        }
3815    }
3816
3817    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3818    x86_update_hflags(env);
3819
3820    return 0;
3821}
3822
3823static int kvm_get_msrs(X86CPU *cpu)
3824{
3825    CPUX86State *env = &cpu->env;
3826    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3827    int ret, i;
3828    uint64_t mtrr_top_bits;
3829
3830    kvm_msr_buf_reset(cpu);
3831
3832    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3833    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3834    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3835    kvm_msr_entry_add(cpu, MSR_PAT, 0);
3836    if (has_msr_star) {
3837        kvm_msr_entry_add(cpu, MSR_STAR, 0);
3838    }
3839    if (has_msr_hsave_pa) {
3840        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3841    }
3842    if (has_msr_tsc_aux) {
3843        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3844    }
3845    if (has_msr_tsc_adjust) {
3846        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3847    }
3848    if (has_msr_tsc_deadline) {
3849        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3850    }
3851    if (has_msr_misc_enable) {
3852        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3853    }
3854    if (has_msr_smbase) {
3855        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3856    }
3857    if (has_msr_smi_count) {
3858        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3859    }
3860    if (has_msr_feature_control) {
3861        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3862    }
3863    if (has_msr_pkrs) {
3864        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3865    }
3866    if (has_msr_bndcfgs) {
3867        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3868    }
3869    if (has_msr_xss) {
3870        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3871    }
3872    if (has_msr_umwait) {
3873        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3874    }
3875    if (has_msr_spec_ctrl) {
3876        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3877    }
3878    if (has_tsc_scale_msr) {
3879        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3880    }
3881
3882    if (has_msr_tsx_ctrl) {
3883        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3884    }
3885    if (has_msr_virt_ssbd) {
3886        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3887    }
3888    if (!env->tsc_valid) {
3889        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3890        env->tsc_valid = !runstate_is_running();
3891    }
3892
3893#ifdef TARGET_X86_64
3894    if (lm_capable_kernel) {
3895        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3896        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3897        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3898        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3899    }
3900#endif
3901    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3902    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3903    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3904        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3905    }
3906    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3907        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3908    }
3909    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3910        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3911    }
3912    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3913        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3914    }
3915    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3916        kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3917    }
3918    if (has_architectural_pmu_version > 0) {
3919        if (has_architectural_pmu_version > 1) {
3920            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3921            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3922            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3923            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3924        }
3925        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3926            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3927        }
3928        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3929            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3930            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3931        }
3932    }
3933
3934    if (env->mcg_cap) {
3935        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3936        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3937        if (has_msr_mcg_ext_ctl) {
3938            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3939        }
3940        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3941            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3942        }
3943    }
3944
3945    if (has_msr_hv_hypercall) {
3946        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3947        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3948    }
3949    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3950        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3951    }
3952    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3953        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3954    }
3955    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3956        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3957        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3958        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3959    }
3960    if (has_msr_hv_syndbg_options) {
3961        kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3962    }
3963    if (has_msr_hv_crash) {
3964        int j;
3965
3966        for (j = 0; j < HV_CRASH_PARAMS; j++) {
3967            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3968        }
3969    }
3970    if (has_msr_hv_runtime) {
3971        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3972    }
3973    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3974        uint32_t msr;
3975
3976        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3977        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3978        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3979        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3980            kvm_msr_entry_add(cpu, msr, 0);
3981        }
3982    }
3983    if (has_msr_hv_stimer) {
3984        uint32_t msr;
3985
3986        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3987             msr++) {
3988            kvm_msr_entry_add(cpu, msr, 0);
3989        }
3990    }
3991    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3992        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3993        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3994        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3995        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3996        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3997        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3998        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3999        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4000        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4001        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4002        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4003        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4004        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4005            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4006            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4007        }
4008    }
4009
4010    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4011        int addr_num =
4012            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4013
4014        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4015        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4016        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4017        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4018        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4019        for (i = 0; i < addr_num; i++) {
4020            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4021        }
4022    }
4023
4024    if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4025        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4026        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4027        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4028        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4029    }
4030
4031    if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4032        kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4033        kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4034    }
4035
4036    if (kvm_enabled() && cpu->enable_pmu &&
4037        (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4038        uint64_t depth;
4039        int i, ret;
4040
4041        ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4042        if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4043            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4044            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4045
4046            for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4047                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4048                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4049                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4050            }
4051        }
4052    }
4053
4054    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4055    if (ret < 0) {
4056        return ret;
4057    }
4058
4059    if (ret < cpu->kvm_msr_buf->nmsrs) {
4060        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4061        error_report("error: failed to get MSR 0x%" PRIx32,
4062                     (uint32_t)e->index);
4063    }
4064
4065    assert(ret == cpu->kvm_msr_buf->nmsrs);
4066    /*
4067     * MTRR masks: Each mask consists of 5 parts
4068     * a  10..0: must be zero
4069     * b  11   : valid bit
4070     * c n-1.12: actual mask bits
4071     * d  51..n: reserved must be zero
4072     * e  63.52: reserved must be zero
4073     *
4074     * 'n' is the number of physical bits supported by the CPU and is
4075     * apparently always <= 52.   We know our 'n' but don't know what
4076     * the destinations 'n' is; it might be smaller, in which case
4077     * it masks (c) on loading. It might be larger, in which case
4078     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4079     * we're migrating to.
4080     */
4081
4082    if (cpu->fill_mtrr_mask) {
4083        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4084        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4085        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4086    } else {
4087        mtrr_top_bits = 0;
4088    }
4089
4090    for (i = 0; i < ret; i++) {
4091        uint32_t index = msrs[i].index;
4092        switch (index) {
4093        case MSR_IA32_SYSENTER_CS:
4094            env->sysenter_cs = msrs[i].data;
4095            break;
4096        case MSR_IA32_SYSENTER_ESP:
4097            env->sysenter_esp = msrs[i].data;
4098            break;
4099        case MSR_IA32_SYSENTER_EIP:
4100            env->sysenter_eip = msrs[i].data;
4101            break;
4102        case MSR_PAT:
4103            env->pat = msrs[i].data;
4104            break;
4105        case MSR_STAR:
4106            env->star = msrs[i].data;
4107            break;
4108#ifdef TARGET_X86_64
4109        case MSR_CSTAR:
4110            env->cstar = msrs[i].data;
4111            break;
4112        case MSR_KERNELGSBASE:
4113            env->kernelgsbase = msrs[i].data;
4114            break;
4115        case MSR_FMASK:
4116            env->fmask = msrs[i].data;
4117            break;
4118        case MSR_LSTAR:
4119            env->lstar = msrs[i].data;
4120            break;
4121#endif
4122        case MSR_IA32_TSC:
4123            env->tsc = msrs[i].data;
4124            break;
4125        case MSR_TSC_AUX:
4126            env->tsc_aux = msrs[i].data;
4127            break;
4128        case MSR_TSC_ADJUST:
4129            env->tsc_adjust = msrs[i].data;
4130            break;
4131        case MSR_IA32_TSCDEADLINE:
4132            env->tsc_deadline = msrs[i].data;
4133            break;
4134        case MSR_VM_HSAVE_PA:
4135            env->vm_hsave = msrs[i].data;
4136            break;
4137        case MSR_KVM_SYSTEM_TIME:
4138            env->system_time_msr = msrs[i].data;
4139            break;
4140        case MSR_KVM_WALL_CLOCK:
4141            env->wall_clock_msr = msrs[i].data;
4142            break;
4143        case MSR_MCG_STATUS:
4144            env->mcg_status = msrs[i].data;
4145            break;
4146        case MSR_MCG_CTL:
4147            env->mcg_ctl = msrs[i].data;
4148            break;
4149        case MSR_MCG_EXT_CTL:
4150            env->mcg_ext_ctl = msrs[i].data;
4151            break;
4152        case MSR_IA32_MISC_ENABLE:
4153            env->msr_ia32_misc_enable = msrs[i].data;
4154            break;
4155        case MSR_IA32_SMBASE:
4156            env->smbase = msrs[i].data;
4157            break;
4158        case MSR_SMI_COUNT:
4159            env->msr_smi_count = msrs[i].data;
4160            break;
4161        case MSR_IA32_FEATURE_CONTROL:
4162            env->msr_ia32_feature_control = msrs[i].data;
4163            break;
4164        case MSR_IA32_BNDCFGS:
4165            env->msr_bndcfgs = msrs[i].data;
4166            break;
4167        case MSR_IA32_XSS:
4168            env->xss = msrs[i].data;
4169            break;
4170        case MSR_IA32_UMWAIT_CONTROL:
4171            env->umwait = msrs[i].data;
4172            break;
4173        case MSR_IA32_PKRS:
4174            env->pkrs = msrs[i].data;
4175            break;
4176        default:
4177            if (msrs[i].index >= MSR_MC0_CTL &&
4178                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4179                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4180            }
4181            break;
4182        case MSR_KVM_ASYNC_PF_EN:
4183            env->async_pf_en_msr = msrs[i].data;
4184            break;
4185        case MSR_KVM_ASYNC_PF_INT:
4186            env->async_pf_int_msr = msrs[i].data;
4187            break;
4188        case MSR_KVM_PV_EOI_EN:
4189            env->pv_eoi_en_msr = msrs[i].data;
4190            break;
4191        case MSR_KVM_STEAL_TIME:
4192            env->steal_time_msr = msrs[i].data;
4193            break;
4194        case MSR_KVM_POLL_CONTROL: {
4195            env->poll_control_msr = msrs[i].data;
4196            break;
4197        }
4198        case MSR_CORE_PERF_FIXED_CTR_CTRL:
4199            env->msr_fixed_ctr_ctrl = msrs[i].data;
4200            break;
4201        case MSR_CORE_PERF_GLOBAL_CTRL:
4202            env->msr_global_ctrl = msrs[i].data;
4203            break;
4204        case MSR_CORE_PERF_GLOBAL_STATUS:
4205            env->msr_global_status = msrs[i].data;
4206            break;
4207        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4208            env->msr_global_ovf_ctrl = msrs[i].data;
4209            break;
4210        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4211            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4212            break;
4213        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4214            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4215            break;
4216        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4217            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4218            break;
4219        case HV_X64_MSR_HYPERCALL:
4220            env->msr_hv_hypercall = msrs[i].data;
4221            break;
4222        case HV_X64_MSR_GUEST_OS_ID:
4223            env->msr_hv_guest_os_id = msrs[i].data;
4224            break;
4225        case HV_X64_MSR_APIC_ASSIST_PAGE:
4226            env->msr_hv_vapic = msrs[i].data;
4227            break;
4228        case HV_X64_MSR_REFERENCE_TSC:
4229            env->msr_hv_tsc = msrs[i].data;
4230            break;
4231        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4232            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4233            break;
4234        case HV_X64_MSR_VP_RUNTIME:
4235            env->msr_hv_runtime = msrs[i].data;
4236            break;
4237        case HV_X64_MSR_SCONTROL:
4238            env->msr_hv_synic_control = msrs[i].data;
4239            break;
4240        case HV_X64_MSR_SIEFP:
4241            env->msr_hv_synic_evt_page = msrs[i].data;
4242            break;
4243        case HV_X64_MSR_SIMP:
4244            env->msr_hv_synic_msg_page = msrs[i].data;
4245            break;
4246        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4247            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4248            break;
4249        case HV_X64_MSR_STIMER0_CONFIG:
4250        case HV_X64_MSR_STIMER1_CONFIG:
4251        case HV_X64_MSR_STIMER2_CONFIG:
4252        case HV_X64_MSR_STIMER3_CONFIG:
4253            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4254                                msrs[i].data;
4255            break;
4256        case HV_X64_MSR_STIMER0_COUNT:
4257        case HV_X64_MSR_STIMER1_COUNT:
4258        case HV_X64_MSR_STIMER2_COUNT:
4259        case HV_X64_MSR_STIMER3_COUNT:
4260            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4261                                msrs[i].data;
4262            break;
4263        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4264            env->msr_hv_reenlightenment_control = msrs[i].data;
4265            break;
4266        case HV_X64_MSR_TSC_EMULATION_CONTROL:
4267            env->msr_hv_tsc_emulation_control = msrs[i].data;
4268            break;
4269        case HV_X64_MSR_TSC_EMULATION_STATUS:
4270            env->msr_hv_tsc_emulation_status = msrs[i].data;
4271            break;
4272        case HV_X64_MSR_SYNDBG_OPTIONS:
4273            env->msr_hv_syndbg_options = msrs[i].data;
4274            break;
4275        case MSR_MTRRdefType:
4276            env->mtrr_deftype = msrs[i].data;
4277            break;
4278        case MSR_MTRRfix64K_00000:
4279            env->mtrr_fixed[0] = msrs[i].data;
4280            break;
4281        case MSR_MTRRfix16K_80000:
4282            env->mtrr_fixed[1] = msrs[i].data;
4283            break;
4284        case MSR_MTRRfix16K_A0000:
4285            env->mtrr_fixed[2] = msrs[i].data;
4286            break;
4287        case MSR_MTRRfix4K_C0000:
4288            env->mtrr_fixed[3] = msrs[i].data;
4289            break;
4290        case MSR_MTRRfix4K_C8000:
4291            env->mtrr_fixed[4] = msrs[i].data;
4292            break;
4293        case MSR_MTRRfix4K_D0000:
4294            env->mtrr_fixed[5] = msrs[i].data;
4295            break;
4296        case MSR_MTRRfix4K_D8000:
4297            env->mtrr_fixed[6] = msrs[i].data;
4298            break;
4299        case MSR_MTRRfix4K_E0000:
4300            env->mtrr_fixed[7] = msrs[i].data;
4301            break;
4302        case MSR_MTRRfix4K_E8000:
4303            env->mtrr_fixed[8] = msrs[i].data;
4304            break;
4305        case MSR_MTRRfix4K_F0000:
4306            env->mtrr_fixed[9] = msrs[i].data;
4307            break;
4308        case MSR_MTRRfix4K_F8000:
4309            env->mtrr_fixed[10] = msrs[i].data;
4310            break;
4311        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4312            if (index & 1) {
4313                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4314                                                               mtrr_top_bits;
4315            } else {
4316                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4317            }
4318            break;
4319        case MSR_IA32_SPEC_CTRL:
4320            env->spec_ctrl = msrs[i].data;
4321            break;
4322        case MSR_AMD64_TSC_RATIO:
4323            env->amd_tsc_scale_msr = msrs[i].data;
4324            break;
4325        case MSR_IA32_TSX_CTRL:
4326            env->tsx_ctrl = msrs[i].data;
4327            break;
4328        case MSR_VIRT_SSBD:
4329            env->virt_ssbd = msrs[i].data;
4330            break;
4331        case MSR_IA32_RTIT_CTL:
4332            env->msr_rtit_ctrl = msrs[i].data;
4333            break;
4334        case MSR_IA32_RTIT_STATUS:
4335            env->msr_rtit_status = msrs[i].data;
4336            break;
4337        case MSR_IA32_RTIT_OUTPUT_BASE:
4338            env->msr_rtit_output_base = msrs[i].data;
4339            break;
4340        case MSR_IA32_RTIT_OUTPUT_MASK:
4341            env->msr_rtit_output_mask = msrs[i].data;
4342            break;
4343        case MSR_IA32_RTIT_CR3_MATCH:
4344            env->msr_rtit_cr3_match = msrs[i].data;
4345            break;
4346        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4347            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4348            break;
4349        case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4350            env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4351                           msrs[i].data;
4352            break;
4353        case MSR_IA32_XFD:
4354            env->msr_xfd = msrs[i].data;
4355            break;
4356        case MSR_IA32_XFD_ERR:
4357            env->msr_xfd_err = msrs[i].data;
4358            break;
4359        case MSR_ARCH_LBR_CTL:
4360            env->msr_lbr_ctl = msrs[i].data;
4361            break;
4362        case MSR_ARCH_LBR_DEPTH:
4363            env->msr_lbr_depth = msrs[i].data;
4364            break;
4365        case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4366            env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4367            break;
4368        case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4369            env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4370            break;
4371        case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4372            env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4373            break;
4374        }
4375    }
4376
4377    return 0;
4378}
4379
4380static int kvm_put_mp_state(X86CPU *cpu)
4381{
4382    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4383
4384    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4385}
4386
4387static int kvm_get_mp_state(X86CPU *cpu)
4388{
4389    CPUState *cs = CPU(cpu);
4390    CPUX86State *env = &cpu->env;
4391    struct kvm_mp_state mp_state;
4392    int ret;
4393
4394    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4395    if (ret < 0) {
4396        return ret;
4397    }
4398    env->mp_state = mp_state.mp_state;
4399    if (kvm_irqchip_in_kernel()) {
4400        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4401    }
4402    return 0;
4403}
4404
4405static int kvm_get_apic(X86CPU *cpu)
4406{
4407    DeviceState *apic = cpu->apic_state;
4408    struct kvm_lapic_state kapic;
4409    int ret;
4410
4411    if (apic && kvm_irqchip_in_kernel()) {
4412        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4413        if (ret < 0) {
4414            return ret;
4415        }
4416
4417        kvm_get_apic_state(apic, &kapic);
4418    }
4419    return 0;
4420}
4421
4422static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4423{
4424    CPUState *cs = CPU(cpu);
4425    CPUX86State *env = &cpu->env;
4426    struct kvm_vcpu_events events = {};
4427
4428    if (!kvm_has_vcpu_events()) {
4429        return 0;
4430    }
4431
4432    events.flags = 0;
4433
4434    if (has_exception_payload) {
4435        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4436        events.exception.pending = env->exception_pending;
4437        events.exception_has_payload = env->exception_has_payload;
4438        events.exception_payload = env->exception_payload;
4439    }
4440    events.exception.nr = env->exception_nr;
4441    events.exception.injected = env->exception_injected;
4442    events.exception.has_error_code = env->has_error_code;
4443    events.exception.error_code = env->error_code;
4444
4445    events.interrupt.injected = (env->interrupt_injected >= 0);
4446    events.interrupt.nr = env->interrupt_injected;
4447    events.interrupt.soft = env->soft_interrupt;
4448
4449    events.nmi.injected = env->nmi_injected;
4450    events.nmi.pending = env->nmi_pending;
4451    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4452
4453    events.sipi_vector = env->sipi_vector;
4454
4455    if (has_msr_smbase) {
4456        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4457        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4458        if (kvm_irqchip_in_kernel()) {
4459            /* As soon as these are moved to the kernel, remove them
4460             * from cs->interrupt_request.
4461             */
4462            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4463            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4464            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4465        } else {
4466            /* Keep these in cs->interrupt_request.  */
4467            events.smi.pending = 0;
4468            events.smi.latched_init = 0;
4469        }
4470        /* Stop SMI delivery on old machine types to avoid a reboot
4471         * on an inward migration of an old VM.
4472         */
4473        if (!cpu->kvm_no_smi_migration) {
4474            events.flags |= KVM_VCPUEVENT_VALID_SMM;
4475        }
4476    }
4477
4478    if (level >= KVM_PUT_RESET_STATE) {
4479        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4480        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4481            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4482        }
4483    }
4484
4485    if (has_triple_fault_event) {
4486        events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4487        events.triple_fault.pending = env->triple_fault_pending;
4488    }
4489
4490    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4491}
4492
4493static int kvm_get_vcpu_events(X86CPU *cpu)
4494{
4495    CPUX86State *env = &cpu->env;
4496    struct kvm_vcpu_events events;
4497    int ret;
4498
4499    if (!kvm_has_vcpu_events()) {
4500        return 0;
4501    }
4502
4503    memset(&events, 0, sizeof(events));
4504    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4505    if (ret < 0) {
4506       return ret;
4507    }
4508
4509    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4510        env->exception_pending = events.exception.pending;
4511        env->exception_has_payload = events.exception_has_payload;
4512        env->exception_payload = events.exception_payload;
4513    } else {
4514        env->exception_pending = 0;
4515        env->exception_has_payload = false;
4516    }
4517    env->exception_injected = events.exception.injected;
4518    env->exception_nr =
4519        (env->exception_pending || env->exception_injected) ?
4520        events.exception.nr : -1;
4521    env->has_error_code = events.exception.has_error_code;
4522    env->error_code = events.exception.error_code;
4523
4524    env->interrupt_injected =
4525        events.interrupt.injected ? events.interrupt.nr : -1;
4526    env->soft_interrupt = events.interrupt.soft;
4527
4528    env->nmi_injected = events.nmi.injected;
4529    env->nmi_pending = events.nmi.pending;
4530    if (events.nmi.masked) {
4531        env->hflags2 |= HF2_NMI_MASK;
4532    } else {
4533        env->hflags2 &= ~HF2_NMI_MASK;
4534    }
4535
4536    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4537        if (events.smi.smm) {
4538            env->hflags |= HF_SMM_MASK;
4539        } else {
4540            env->hflags &= ~HF_SMM_MASK;
4541        }
4542        if (events.smi.pending) {
4543            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4544        } else {
4545            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4546        }
4547        if (events.smi.smm_inside_nmi) {
4548            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4549        } else {
4550            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4551        }
4552        if (events.smi.latched_init) {
4553            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4554        } else {
4555            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4556        }
4557    }
4558
4559    if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4560        env->triple_fault_pending = events.triple_fault.pending;
4561    }
4562
4563    env->sipi_vector = events.sipi_vector;
4564
4565    return 0;
4566}
4567
4568static int kvm_guest_debug_workarounds(X86CPU *cpu)
4569{
4570    CPUState *cs = CPU(cpu);
4571    CPUX86State *env = &cpu->env;
4572    int ret = 0;
4573    unsigned long reinject_trap = 0;
4574
4575    if (!kvm_has_vcpu_events()) {
4576        if (env->exception_nr == EXCP01_DB) {
4577            reinject_trap = KVM_GUESTDBG_INJECT_DB;
4578        } else if (env->exception_injected == EXCP03_INT3) {
4579            reinject_trap = KVM_GUESTDBG_INJECT_BP;
4580        }
4581        kvm_reset_exception(env);
4582    }
4583
4584    /*
4585     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4586     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4587     * by updating the debug state once again if single-stepping is on.
4588     * Another reason to call kvm_update_guest_debug here is a pending debug
4589     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4590     * reinject them via SET_GUEST_DEBUG.
4591     */
4592    if (reinject_trap ||
4593        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4594        ret = kvm_update_guest_debug(cs, reinject_trap);
4595    }
4596    return ret;
4597}
4598
4599static int kvm_put_debugregs(X86CPU *cpu)
4600{
4601    CPUX86State *env = &cpu->env;
4602    struct kvm_debugregs dbgregs;
4603    int i;
4604
4605    if (!kvm_has_debugregs()) {
4606        return 0;
4607    }
4608
4609    memset(&dbgregs, 0, sizeof(dbgregs));
4610    for (i = 0; i < 4; i++) {
4611        dbgregs.db[i] = env->dr[i];
4612    }
4613    dbgregs.dr6 = env->dr[6];
4614    dbgregs.dr7 = env->dr[7];
4615    dbgregs.flags = 0;
4616
4617    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4618}
4619
4620static int kvm_get_debugregs(X86CPU *cpu)
4621{
4622    CPUX86State *env = &cpu->env;
4623    struct kvm_debugregs dbgregs;
4624    int i, ret;
4625
4626    if (!kvm_has_debugregs()) {
4627        return 0;
4628    }
4629
4630    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4631    if (ret < 0) {
4632        return ret;
4633    }
4634    for (i = 0; i < 4; i++) {
4635        env->dr[i] = dbgregs.db[i];
4636    }
4637    env->dr[4] = env->dr[6] = dbgregs.dr6;
4638    env->dr[5] = env->dr[7] = dbgregs.dr7;
4639
4640    return 0;
4641}
4642
4643static int kvm_put_nested_state(X86CPU *cpu)
4644{
4645    CPUX86State *env = &cpu->env;
4646    int max_nested_state_len = kvm_max_nested_state_length();
4647
4648    if (!env->nested_state) {
4649        return 0;
4650    }
4651
4652    /*
4653     * Copy flags that are affected by reset from env->hflags and env->hflags2.
4654     */
4655    if (env->hflags & HF_GUEST_MASK) {
4656        env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4657    } else {
4658        env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4659    }
4660
4661    /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4662    if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4663        env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4664    } else {
4665        env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4666    }
4667
4668    assert(env->nested_state->size <= max_nested_state_len);
4669    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4670}
4671
4672static int kvm_get_nested_state(X86CPU *cpu)
4673{
4674    CPUX86State *env = &cpu->env;
4675    int max_nested_state_len = kvm_max_nested_state_length();
4676    int ret;
4677
4678    if (!env->nested_state) {
4679        return 0;
4680    }
4681
4682    /*
4683     * It is possible that migration restored a smaller size into
4684     * nested_state->hdr.size than what our kernel support.
4685     * We preserve migration origin nested_state->hdr.size for
4686     * call to KVM_SET_NESTED_STATE but wish that our next call
4687     * to KVM_GET_NESTED_STATE will use max size our kernel support.
4688     */
4689    env->nested_state->size = max_nested_state_len;
4690
4691    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4692    if (ret < 0) {
4693        return ret;
4694    }
4695
4696    /*
4697     * Copy flags that are affected by reset to env->hflags and env->hflags2.
4698     */
4699    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4700        env->hflags |= HF_GUEST_MASK;
4701    } else {
4702        env->hflags &= ~HF_GUEST_MASK;
4703    }
4704
4705    /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4706    if (cpu_has_svm(env)) {
4707        if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4708            env->hflags2 |= HF2_GIF_MASK;
4709        } else {
4710            env->hflags2 &= ~HF2_GIF_MASK;
4711        }
4712    }
4713
4714    return ret;
4715}
4716
4717int kvm_arch_put_registers(CPUState *cpu, int level)
4718{
4719    X86CPU *x86_cpu = X86_CPU(cpu);
4720    int ret;
4721
4722    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4723
4724    /*
4725     * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4726     * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4727     * preceed kvm_put_nested_state() when 'real' nested state is set.
4728     */
4729    if (level >= KVM_PUT_RESET_STATE) {
4730        ret = kvm_put_msr_feature_control(x86_cpu);
4731        if (ret < 0) {
4732            return ret;
4733        }
4734    }
4735
4736    /* must be before kvm_put_nested_state so that EFER.SVME is set */
4737    ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4738    if (ret < 0) {
4739        return ret;
4740    }
4741
4742    if (level >= KVM_PUT_RESET_STATE) {
4743        ret = kvm_put_nested_state(x86_cpu);
4744        if (ret < 0) {
4745            return ret;
4746        }
4747    }
4748
4749    if (level == KVM_PUT_FULL_STATE) {
4750        /* We don't check for kvm_arch_set_tsc_khz() errors here,
4751         * because TSC frequency mismatch shouldn't abort migration,
4752         * unless the user explicitly asked for a more strict TSC
4753         * setting (e.g. using an explicit "tsc-freq" option).
4754         */
4755        kvm_arch_set_tsc_khz(cpu);
4756    }
4757
4758#ifdef CONFIG_XEN_EMU
4759    if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4760        ret = kvm_put_xen_state(cpu);
4761        if (ret < 0) {
4762            return ret;
4763        }
4764    }
4765#endif
4766
4767    ret = kvm_getput_regs(x86_cpu, 1);
4768    if (ret < 0) {
4769        return ret;
4770    }
4771    ret = kvm_put_xsave(x86_cpu);
4772    if (ret < 0) {
4773        return ret;
4774    }
4775    ret = kvm_put_xcrs(x86_cpu);
4776    if (ret < 0) {
4777        return ret;
4778    }
4779    /* must be before kvm_put_msrs */
4780    ret = kvm_inject_mce_oldstyle(x86_cpu);
4781    if (ret < 0) {
4782        return ret;
4783    }
4784    ret = kvm_put_msrs(x86_cpu, level);
4785    if (ret < 0) {
4786        return ret;
4787    }
4788    ret = kvm_put_vcpu_events(x86_cpu, level);
4789    if (ret < 0) {
4790        return ret;
4791    }
4792    if (level >= KVM_PUT_RESET_STATE) {
4793        ret = kvm_put_mp_state(x86_cpu);
4794        if (ret < 0) {
4795            return ret;
4796        }
4797    }
4798
4799    ret = kvm_put_tscdeadline_msr(x86_cpu);
4800    if (ret < 0) {
4801        return ret;
4802    }
4803    ret = kvm_put_debugregs(x86_cpu);
4804    if (ret < 0) {
4805        return ret;
4806    }
4807    /* must be last */
4808    ret = kvm_guest_debug_workarounds(x86_cpu);
4809    if (ret < 0) {
4810        return ret;
4811    }
4812    return 0;
4813}
4814
4815int kvm_arch_get_registers(CPUState *cs)
4816{
4817    X86CPU *cpu = X86_CPU(cs);
4818    int ret;
4819
4820    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4821
4822    ret = kvm_get_vcpu_events(cpu);
4823    if (ret < 0) {
4824        goto out;
4825    }
4826    /*
4827     * KVM_GET_MPSTATE can modify CS and RIP, call it before
4828     * KVM_GET_REGS and KVM_GET_SREGS.
4829     */
4830    ret = kvm_get_mp_state(cpu);
4831    if (ret < 0) {
4832        goto out;
4833    }
4834    ret = kvm_getput_regs(cpu, 0);
4835    if (ret < 0) {
4836        goto out;
4837    }
4838    ret = kvm_get_xsave(cpu);
4839    if (ret < 0) {
4840        goto out;
4841    }
4842    ret = kvm_get_xcrs(cpu);
4843    if (ret < 0) {
4844        goto out;
4845    }
4846    ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4847    if (ret < 0) {
4848        goto out;
4849    }
4850    ret = kvm_get_msrs(cpu);
4851    if (ret < 0) {
4852        goto out;
4853    }
4854    ret = kvm_get_apic(cpu);
4855    if (ret < 0) {
4856        goto out;
4857    }
4858    ret = kvm_get_debugregs(cpu);
4859    if (ret < 0) {
4860        goto out;
4861    }
4862    ret = kvm_get_nested_state(cpu);
4863    if (ret < 0) {
4864        goto out;
4865    }
4866#ifdef CONFIG_XEN_EMU
4867    if (xen_mode == XEN_EMULATE) {
4868        ret = kvm_get_xen_state(cs);
4869        if (ret < 0) {
4870            goto out;
4871        }
4872    }
4873#endif
4874    ret = 0;
4875 out:
4876    cpu_sync_bndcs_hflags(&cpu->env);
4877    return ret;
4878}
4879
4880void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4881{
4882    X86CPU *x86_cpu = X86_CPU(cpu);
4883    CPUX86State *env = &x86_cpu->env;
4884    int ret;
4885
4886    /* Inject NMI */
4887    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4888        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4889            qemu_mutex_lock_iothread();
4890            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4891            qemu_mutex_unlock_iothread();
4892            DPRINTF("injected NMI\n");
4893            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4894            if (ret < 0) {
4895                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4896                        strerror(-ret));
4897            }
4898        }
4899        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4900            qemu_mutex_lock_iothread();
4901            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4902            qemu_mutex_unlock_iothread();
4903            DPRINTF("injected SMI\n");
4904            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4905            if (ret < 0) {
4906                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4907                        strerror(-ret));
4908            }
4909        }
4910    }
4911
4912    if (!kvm_pic_in_kernel()) {
4913        qemu_mutex_lock_iothread();
4914    }
4915
4916    /* Force the VCPU out of its inner loop to process any INIT requests
4917     * or (for userspace APIC, but it is cheap to combine the checks here)
4918     * pending TPR access reports.
4919     */
4920    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4921        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4922            !(env->hflags & HF_SMM_MASK)) {
4923            cpu->exit_request = 1;
4924        }
4925        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4926            cpu->exit_request = 1;
4927        }
4928    }
4929
4930    if (!kvm_pic_in_kernel()) {
4931        /* Try to inject an interrupt if the guest can accept it */
4932        if (run->ready_for_interrupt_injection &&
4933            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4934            (env->eflags & IF_MASK)) {
4935            int irq;
4936
4937            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4938            irq = cpu_get_pic_interrupt(env);
4939            if (irq >= 0) {
4940                struct kvm_interrupt intr;
4941
4942                intr.irq = irq;
4943                DPRINTF("injected interrupt %d\n", irq);
4944                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4945                if (ret < 0) {
4946                    fprintf(stderr,
4947                            "KVM: injection failed, interrupt lost (%s)\n",
4948                            strerror(-ret));
4949                }
4950            }
4951        }
4952
4953        /* If we have an interrupt but the guest is not ready to receive an
4954         * interrupt, request an interrupt window exit.  This will
4955         * cause a return to userspace as soon as the guest is ready to
4956         * receive interrupts. */
4957        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4958            run->request_interrupt_window = 1;
4959        } else {
4960            run->request_interrupt_window = 0;
4961        }
4962
4963        DPRINTF("setting tpr\n");
4964        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4965
4966        qemu_mutex_unlock_iothread();
4967    }
4968}
4969
4970static void kvm_rate_limit_on_bus_lock(void)
4971{
4972    uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4973
4974    if (delay_ns) {
4975        g_usleep(delay_ns / SCALE_US);
4976    }
4977}
4978
4979MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4980{
4981    X86CPU *x86_cpu = X86_CPU(cpu);
4982    CPUX86State *env = &x86_cpu->env;
4983
4984    if (run->flags & KVM_RUN_X86_SMM) {
4985        env->hflags |= HF_SMM_MASK;
4986    } else {
4987        env->hflags &= ~HF_SMM_MASK;
4988    }
4989    if (run->if_flag) {
4990        env->eflags |= IF_MASK;
4991    } else {
4992        env->eflags &= ~IF_MASK;
4993    }
4994    if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4995        kvm_rate_limit_on_bus_lock();
4996    }
4997
4998#ifdef CONFIG_XEN_EMU    
4999    /*
5000     * If the callback is asserted as a GSI (or PCI INTx) then check if
5001     * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5002     * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5003     * EOI and only resample then, exactly how the VFIO eventfd pairs
5004     * are designed to work for level triggered interrupts.
5005     */
5006    if (x86_cpu->env.xen_callback_asserted) {
5007        kvm_xen_maybe_deassert_callback(cpu);
5008    }
5009#endif
5010
5011    /* We need to protect the apic state against concurrent accesses from
5012     * different threads in case the userspace irqchip is used. */
5013    if (!kvm_irqchip_in_kernel()) {
5014        qemu_mutex_lock_iothread();
5015    }
5016    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5017    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5018    if (!kvm_irqchip_in_kernel()) {
5019        qemu_mutex_unlock_iothread();
5020    }
5021    return cpu_get_mem_attrs(env);
5022}
5023
5024int kvm_arch_process_async_events(CPUState *cs)
5025{
5026    X86CPU *cpu = X86_CPU(cs);
5027    CPUX86State *env = &cpu->env;
5028
5029    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5030        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5031        assert(env->mcg_cap);
5032
5033        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5034
5035        kvm_cpu_synchronize_state(cs);
5036
5037        if (env->exception_nr == EXCP08_DBLE) {
5038            /* this means triple fault */
5039            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5040            cs->exit_request = 1;
5041            return 0;
5042        }
5043        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5044        env->has_error_code = 0;
5045
5046        cs->halted = 0;
5047        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5048            env->mp_state = KVM_MP_STATE_RUNNABLE;
5049        }
5050    }
5051
5052    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5053        !(env->hflags & HF_SMM_MASK)) {
5054        kvm_cpu_synchronize_state(cs);
5055        do_cpu_init(cpu);
5056    }
5057
5058    if (kvm_irqchip_in_kernel()) {
5059        return 0;
5060    }
5061
5062    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5063        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5064        apic_poll_irq(cpu->apic_state);
5065    }
5066    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5067         (env->eflags & IF_MASK)) ||
5068        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5069        cs->halted = 0;
5070    }
5071    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5072        kvm_cpu_synchronize_state(cs);
5073        do_cpu_sipi(cpu);
5074    }
5075    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5076        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5077        kvm_cpu_synchronize_state(cs);
5078        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5079                                      env->tpr_access_type);
5080    }
5081
5082    return cs->halted;
5083}
5084
5085static int kvm_handle_halt(X86CPU *cpu)
5086{
5087    CPUState *cs = CPU(cpu);
5088    CPUX86State *env = &cpu->env;
5089
5090    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5091          (env->eflags & IF_MASK)) &&
5092        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5093        cs->halted = 1;
5094        return EXCP_HLT;
5095    }
5096
5097    return 0;
5098}
5099
5100static int kvm_handle_tpr_access(X86CPU *cpu)
5101{
5102    CPUState *cs = CPU(cpu);
5103    struct kvm_run *run = cs->kvm_run;
5104
5105    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5106                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
5107                                                           : TPR_ACCESS_READ);
5108    return 1;
5109}
5110
5111int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5112{
5113    static const uint8_t int3 = 0xcc;
5114
5115    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5116        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5117        return -EINVAL;
5118    }
5119    return 0;
5120}
5121
5122int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5123{
5124    uint8_t int3;
5125
5126    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5127        return -EINVAL;
5128    }
5129    if (int3 != 0xcc) {
5130        return 0;
5131    }
5132    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5133        return -EINVAL;
5134    }
5135    return 0;
5136}
5137
5138static struct {
5139    target_ulong addr;
5140    int len;
5141    int type;
5142} hw_breakpoint[4];
5143
5144static int nb_hw_breakpoint;
5145
5146static int find_hw_breakpoint(target_ulong addr, int len, int type)
5147{
5148    int n;
5149
5150    for (n = 0; n < nb_hw_breakpoint; n++) {
5151        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5152            (hw_breakpoint[n].len == len || len == -1)) {
5153            return n;
5154        }
5155    }
5156    return -1;
5157}
5158
5159int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5160                                  target_ulong len, int type)
5161{
5162    switch (type) {
5163    case GDB_BREAKPOINT_HW:
5164        len = 1;
5165        break;
5166    case GDB_WATCHPOINT_WRITE:
5167    case GDB_WATCHPOINT_ACCESS:
5168        switch (len) {
5169        case 1:
5170            break;
5171        case 2:
5172        case 4:
5173        case 8:
5174            if (addr & (len - 1)) {
5175                return -EINVAL;
5176            }
5177            break;
5178        default:
5179            return -EINVAL;
5180        }
5181        break;
5182    default:
5183        return -ENOSYS;
5184    }
5185
5186    if (nb_hw_breakpoint == 4) {
5187        return -ENOBUFS;
5188    }
5189    if (find_hw_breakpoint(addr, len, type) >= 0) {
5190        return -EEXIST;
5191    }
5192    hw_breakpoint[nb_hw_breakpoint].addr = addr;
5193    hw_breakpoint[nb_hw_breakpoint].len = len;
5194    hw_breakpoint[nb_hw_breakpoint].type = type;
5195    nb_hw_breakpoint++;
5196
5197    return 0;
5198}
5199
5200int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5201                                  target_ulong len, int type)
5202{
5203    int n;
5204
5205    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5206    if (n < 0) {
5207        return -ENOENT;
5208    }
5209    nb_hw_breakpoint--;
5210    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5211
5212    return 0;
5213}
5214
5215void kvm_arch_remove_all_hw_breakpoints(void)
5216{
5217    nb_hw_breakpoint = 0;
5218}
5219
5220static CPUWatchpoint hw_watchpoint;
5221
5222static int kvm_handle_debug(X86CPU *cpu,
5223                            struct kvm_debug_exit_arch *arch_info)
5224{
5225    CPUState *cs = CPU(cpu);
5226    CPUX86State *env = &cpu->env;
5227    int ret = 0;
5228    int n;
5229
5230    if (arch_info->exception == EXCP01_DB) {
5231        if (arch_info->dr6 & DR6_BS) {
5232            if (cs->singlestep_enabled) {
5233                ret = EXCP_DEBUG;
5234            }
5235        } else {
5236            for (n = 0; n < 4; n++) {
5237                if (arch_info->dr6 & (1 << n)) {
5238                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5239                    case 0x0:
5240                        ret = EXCP_DEBUG;
5241                        break;
5242                    case 0x1:
5243                        ret = EXCP_DEBUG;
5244                        cs->watchpoint_hit = &hw_watchpoint;
5245                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5246                        hw_watchpoint.flags = BP_MEM_WRITE;
5247                        break;
5248                    case 0x3:
5249                        ret = EXCP_DEBUG;
5250                        cs->watchpoint_hit = &hw_watchpoint;
5251                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5252                        hw_watchpoint.flags = BP_MEM_ACCESS;
5253                        break;
5254                    }
5255                }
5256            }
5257        }
5258    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5259        ret = EXCP_DEBUG;
5260    }
5261    if (ret == 0) {
5262        cpu_synchronize_state(cs);
5263        assert(env->exception_nr == -1);
5264
5265        /* pass to guest */
5266        kvm_queue_exception(env, arch_info->exception,
5267                            arch_info->exception == EXCP01_DB,
5268                            arch_info->dr6);
5269        env->has_error_code = 0;
5270    }
5271
5272    return ret;
5273}
5274
5275void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5276{
5277    const uint8_t type_code[] = {
5278        [GDB_BREAKPOINT_HW] = 0x0,
5279        [GDB_WATCHPOINT_WRITE] = 0x1,
5280        [GDB_WATCHPOINT_ACCESS] = 0x3
5281    };
5282    const uint8_t len_code[] = {
5283        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5284    };
5285    int n;
5286
5287    if (kvm_sw_breakpoints_active(cpu)) {
5288        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5289    }
5290    if (nb_hw_breakpoint > 0) {
5291        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5292        dbg->arch.debugreg[7] = 0x0600;
5293        for (n = 0; n < nb_hw_breakpoint; n++) {
5294            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5295            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5296                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5297                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5298        }
5299    }
5300}
5301
5302static bool kvm_install_msr_filters(KVMState *s)
5303{
5304    uint64_t zero = 0;
5305    struct kvm_msr_filter filter = {
5306        .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5307    };
5308    int r, i, j = 0;
5309
5310    for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5311        KVMMSRHandlers *handler = &msr_handlers[i];
5312        if (handler->msr) {
5313            struct kvm_msr_filter_range *range = &filter.ranges[j++];
5314
5315            *range = (struct kvm_msr_filter_range) {
5316                .flags = 0,
5317                .nmsrs = 1,
5318                .base = handler->msr,
5319                .bitmap = (__u8 *)&zero,
5320            };
5321
5322            if (handler->rdmsr) {
5323                range->flags |= KVM_MSR_FILTER_READ;
5324            }
5325
5326            if (handler->wrmsr) {
5327                range->flags |= KVM_MSR_FILTER_WRITE;
5328            }
5329        }
5330    }
5331
5332    r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5333    if (r) {
5334        return false;
5335    }
5336
5337    return true;
5338}
5339
5340bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5341                    QEMUWRMSRHandler *wrmsr)
5342{
5343    int i;
5344
5345    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5346        if (!msr_handlers[i].msr) {
5347            msr_handlers[i] = (KVMMSRHandlers) {
5348                .msr = msr,
5349                .rdmsr = rdmsr,
5350                .wrmsr = wrmsr,
5351            };
5352
5353            if (!kvm_install_msr_filters(s)) {
5354                msr_handlers[i] = (KVMMSRHandlers) { };
5355                return false;
5356            }
5357
5358            return true;
5359        }
5360    }
5361
5362    return false;
5363}
5364
5365static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5366{
5367    int i;
5368    bool r;
5369
5370    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5371        KVMMSRHandlers *handler = &msr_handlers[i];
5372        if (run->msr.index == handler->msr) {
5373            if (handler->rdmsr) {
5374                r = handler->rdmsr(cpu, handler->msr,
5375                                   (uint64_t *)&run->msr.data);
5376                run->msr.error = r ? 0 : 1;
5377                return 0;
5378            }
5379        }
5380    }
5381
5382    assert(false);
5383}
5384
5385static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5386{
5387    int i;
5388    bool r;
5389
5390    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5391        KVMMSRHandlers *handler = &msr_handlers[i];
5392        if (run->msr.index == handler->msr) {
5393            if (handler->wrmsr) {
5394                r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5395                run->msr.error = r ? 0 : 1;
5396                return 0;
5397            }
5398        }
5399    }
5400
5401    assert(false);
5402}
5403
5404static bool has_sgx_provisioning;
5405
5406static bool __kvm_enable_sgx_provisioning(KVMState *s)
5407{
5408    int fd, ret;
5409
5410    if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5411        return false;
5412    }
5413
5414    fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5415    if (fd < 0) {
5416        return false;
5417    }
5418
5419    ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5420    if (ret) {
5421        error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5422        exit(1);
5423    }
5424    close(fd);
5425    return true;
5426}
5427
5428bool kvm_enable_sgx_provisioning(KVMState *s)
5429{
5430    return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5431}
5432
5433static bool host_supports_vmx(void)
5434{
5435    uint32_t ecx, unused;
5436
5437    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5438    return ecx & CPUID_EXT_VMX;
5439}
5440
5441#define VMX_INVALID_GUEST_STATE 0x80000021
5442
5443int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5444{
5445    X86CPU *cpu = X86_CPU(cs);
5446    uint64_t code;
5447    int ret;
5448    bool ctx_invalid;
5449    char str[256];
5450    KVMState *state;
5451
5452    switch (run->exit_reason) {
5453    case KVM_EXIT_HLT:
5454        DPRINTF("handle_hlt\n");
5455        qemu_mutex_lock_iothread();
5456        ret = kvm_handle_halt(cpu);
5457        qemu_mutex_unlock_iothread();
5458        break;
5459    case KVM_EXIT_SET_TPR:
5460        ret = 0;
5461        break;
5462    case KVM_EXIT_TPR_ACCESS:
5463        qemu_mutex_lock_iothread();
5464        ret = kvm_handle_tpr_access(cpu);
5465        qemu_mutex_unlock_iothread();
5466        break;
5467    case KVM_EXIT_FAIL_ENTRY:
5468        code = run->fail_entry.hardware_entry_failure_reason;
5469        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5470                code);
5471        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5472            fprintf(stderr,
5473                    "\nIf you're running a guest on an Intel machine without "
5474                        "unrestricted mode\n"
5475                    "support, the failure can be most likely due to the guest "
5476                        "entering an invalid\n"
5477                    "state for Intel VT. For example, the guest maybe running "
5478                        "in big real mode\n"
5479                    "which is not supported on less recent Intel processors."
5480                        "\n\n");
5481        }
5482        ret = -1;
5483        break;
5484    case KVM_EXIT_EXCEPTION:
5485        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5486                run->ex.exception, run->ex.error_code);
5487        ret = -1;
5488        break;
5489    case KVM_EXIT_DEBUG:
5490        DPRINTF("kvm_exit_debug\n");
5491        qemu_mutex_lock_iothread();
5492        ret = kvm_handle_debug(cpu, &run->debug.arch);
5493        qemu_mutex_unlock_iothread();
5494        break;
5495    case KVM_EXIT_HYPERV:
5496        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5497        break;
5498    case KVM_EXIT_IOAPIC_EOI:
5499        ioapic_eoi_broadcast(run->eoi.vector);
5500        ret = 0;
5501        break;
5502    case KVM_EXIT_X86_BUS_LOCK:
5503        /* already handled in kvm_arch_post_run */
5504        ret = 0;
5505        break;
5506    case KVM_EXIT_NOTIFY:
5507        ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5508        state = KVM_STATE(current_accel());
5509        sprintf(str, "Encounter a notify exit with %svalid context in"
5510                     " guest. There can be possible misbehaves in guest."
5511                     " Please have a look.", ctx_invalid ? "in" : "");
5512        if (ctx_invalid ||
5513            state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5514            warn_report("KVM internal error: %s", str);
5515            ret = -1;
5516        } else {
5517            warn_report_once("KVM: %s", str);
5518            ret = 0;
5519        }
5520        break;
5521    case KVM_EXIT_X86_RDMSR:
5522        /* We only enable MSR filtering, any other exit is bogus */
5523        assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5524        ret = kvm_handle_rdmsr(cpu, run);
5525        break;
5526    case KVM_EXIT_X86_WRMSR:
5527        /* We only enable MSR filtering, any other exit is bogus */
5528        assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5529        ret = kvm_handle_wrmsr(cpu, run);
5530        break;
5531#ifdef CONFIG_XEN_EMU
5532    case KVM_EXIT_XEN:
5533        ret = kvm_xen_handle_exit(cpu, &run->xen);
5534        break;
5535#endif
5536    default:
5537        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5538        ret = -1;
5539        break;
5540    }
5541
5542    return ret;
5543}
5544
5545bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5546{
5547    X86CPU *cpu = X86_CPU(cs);
5548    CPUX86State *env = &cpu->env;
5549
5550    kvm_cpu_synchronize_state(cs);
5551    return !(env->cr[0] & CR0_PE_MASK) ||
5552           ((env->segs[R_CS].selector  & 3) != 3);
5553}
5554
5555void kvm_arch_init_irq_routing(KVMState *s)
5556{
5557    /* We know at this point that we're using the in-kernel
5558     * irqchip, so we can use irqfds, and on x86 we know
5559     * we can use msi via irqfd and GSI routing.
5560     */
5561    kvm_msi_via_irqfd_allowed = true;
5562    kvm_gsi_routing_allowed = true;
5563
5564    if (kvm_irqchip_is_split()) {
5565        KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5566        int i;
5567
5568        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5569           MSI routes for signaling interrupts to the local apics. */
5570        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5571            if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5572                error_report("Could not enable split IRQ mode.");
5573                exit(1);
5574            }
5575        }
5576        kvm_irqchip_commit_route_changes(&c);
5577    }
5578}
5579
5580int kvm_arch_irqchip_create(KVMState *s)
5581{
5582    int ret;
5583    if (kvm_kernel_irqchip_split()) {
5584        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5585        if (ret) {
5586            error_report("Could not enable split irqchip mode: %s",
5587                         strerror(-ret));
5588            exit(1);
5589        } else {
5590            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5591            kvm_split_irqchip = true;
5592            return 1;
5593        }
5594    } else {
5595        return 0;
5596    }
5597}
5598
5599uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5600{
5601    CPUX86State *env;
5602    uint64_t ext_id;
5603
5604    if (!first_cpu) {
5605        return address;
5606    }
5607    env = &X86_CPU(first_cpu)->env;
5608    if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5609        return address;
5610    }
5611
5612    /*
5613     * If the remappable format bit is set, or the upper bits are
5614     * already set in address_hi, or the low extended bits aren't
5615     * there anyway, do nothing.
5616     */
5617    ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5618    if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5619        return address;
5620    }
5621
5622    address &= ~ext_id;
5623    address |= ext_id << 35;
5624    return address;
5625}
5626
5627int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5628                             uint64_t address, uint32_t data, PCIDevice *dev)
5629{
5630    X86IOMMUState *iommu = x86_iommu_get_default();
5631
5632    if (iommu) {
5633        X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5634
5635        if (class->int_remap) {
5636            int ret;
5637            MSIMessage src, dst;
5638
5639            src.address = route->u.msi.address_hi;
5640            src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5641            src.address |= route->u.msi.address_lo;
5642            src.data = route->u.msi.data;
5643
5644            ret = class->int_remap(iommu, &src, &dst, dev ?     \
5645                                   pci_requester_id(dev) :      \
5646                                   X86_IOMMU_SID_INVALID);
5647            if (ret) {
5648                trace_kvm_x86_fixup_msi_error(route->gsi);
5649                return 1;
5650            }
5651
5652            /*
5653             * Handled untranslated compatibilty format interrupt with
5654             * extended destination ID in the low bits 11-5. */
5655            dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5656
5657            route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5658            route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5659            route->u.msi.data = dst.data;
5660            return 0;
5661        }
5662    }
5663
5664#ifdef CONFIG_XEN_EMU
5665    if (xen_mode == XEN_EMULATE) {
5666        int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5667
5668        /*
5669         * If it was a PIRQ and successfully routed (handled == 0) or it was
5670         * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5671         */
5672        if (handled <= 0) {
5673            return handled;
5674        }
5675    }
5676#endif
5677
5678    address = kvm_swizzle_msi_ext_dest_id(address);
5679    route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5680    route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5681    return 0;
5682}
5683
5684typedef struct MSIRouteEntry MSIRouteEntry;
5685
5686struct MSIRouteEntry {
5687    PCIDevice *dev;             /* Device pointer */
5688    int vector;                 /* MSI/MSIX vector index */
5689    int virq;                   /* Virtual IRQ index */
5690    QLIST_ENTRY(MSIRouteEntry) list;
5691};
5692
5693/* List of used GSI routes */
5694static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5695    QLIST_HEAD_INITIALIZER(msi_route_list);
5696
5697void kvm_update_msi_routes_all(void *private, bool global,
5698                               uint32_t index, uint32_t mask)
5699{
5700    int cnt = 0, vector;
5701    MSIRouteEntry *entry;
5702    MSIMessage msg;
5703    PCIDevice *dev;
5704
5705    /* TODO: explicit route update */
5706    QLIST_FOREACH(entry, &msi_route_list, list) {
5707        cnt++;
5708        vector = entry->vector;
5709        dev = entry->dev;
5710        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5711            msg = msix_get_message(dev, vector);
5712        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5713            msg = msi_get_message(dev, vector);
5714        } else {
5715            /*
5716             * Either MSI/MSIX is disabled for the device, or the
5717             * specific message was masked out.  Skip this one.
5718             */
5719            continue;
5720        }
5721        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5722    }
5723    kvm_irqchip_commit_routes(kvm_state);
5724    trace_kvm_x86_update_msi_routes(cnt);
5725}
5726
5727int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5728                                int vector, PCIDevice *dev)
5729{
5730    static bool notify_list_inited = false;
5731    MSIRouteEntry *entry;
5732
5733    if (!dev) {
5734        /* These are (possibly) IOAPIC routes only used for split
5735         * kernel irqchip mode, while what we are housekeeping are
5736         * PCI devices only. */
5737        return 0;
5738    }
5739
5740    entry = g_new0(MSIRouteEntry, 1);
5741    entry->dev = dev;
5742    entry->vector = vector;
5743    entry->virq = route->gsi;
5744    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5745
5746    trace_kvm_x86_add_msi_route(route->gsi);
5747
5748    if (!notify_list_inited) {
5749        /* For the first time we do add route, add ourselves into
5750         * IOMMU's IEC notify list if needed. */
5751        X86IOMMUState *iommu = x86_iommu_get_default();
5752        if (iommu) {
5753            x86_iommu_iec_register_notifier(iommu,
5754                                            kvm_update_msi_routes_all,
5755                                            NULL);
5756        }
5757        notify_list_inited = true;
5758    }
5759    return 0;
5760}
5761
5762int kvm_arch_release_virq_post(int virq)
5763{
5764    MSIRouteEntry *entry, *next;
5765    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5766        if (entry->virq == virq) {
5767            trace_kvm_x86_remove_msi_route(virq);
5768            QLIST_REMOVE(entry, list);
5769            g_free(entry);
5770            break;
5771        }
5772    }
5773    return 0;
5774}
5775
5776int kvm_arch_msi_data_to_gsi(uint32_t data)
5777{
5778    abort();
5779}
5780
5781bool kvm_has_waitpkg(void)
5782{
5783    return has_msr_umwait;
5784}
5785
5786bool kvm_arch_cpu_check_are_resettable(void)
5787{
5788    return !sev_es_enabled();
5789}
5790
5791#define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5792
5793void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5794{
5795    KVMState *s = kvm_state;
5796    uint64_t supported;
5797
5798    mask &= XSTATE_DYNAMIC_MASK;
5799    if (!mask) {
5800        return;
5801    }
5802    /*
5803     * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5804     * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5805     * about them already because they are not supported features.
5806     */
5807    supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5808    supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5809    mask &= supported;
5810
5811    while (mask) {
5812        int bit = ctz64(mask);
5813        int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5814        if (rc) {
5815            /*
5816             * Older kernel version (<5.17) do not support
5817             * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5818             * any dynamic feature from kvm_arch_get_supported_cpuid.
5819             */
5820            warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5821                        "for feature bit %d", bit);
5822        }
5823        mask &= ~BIT_ULL(bit);
5824    }
5825}
5826
5827static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5828{
5829    KVMState *s = KVM_STATE(obj);
5830    return s->notify_vmexit;
5831}
5832
5833static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5834{
5835    KVMState *s = KVM_STATE(obj);
5836
5837    if (s->fd != -1) {
5838        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5839        return;
5840    }
5841
5842    s->notify_vmexit = value;
5843}
5844
5845static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5846                                       const char *name, void *opaque,
5847                                       Error **errp)
5848{
5849    KVMState *s = KVM_STATE(obj);
5850    uint32_t value = s->notify_window;
5851
5852    visit_type_uint32(v, name, &value, errp);
5853}
5854
5855static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5856                                       const char *name, void *opaque,
5857                                       Error **errp)
5858{
5859    KVMState *s = KVM_STATE(obj);
5860    uint32_t value;
5861
5862    if (s->fd != -1) {
5863        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5864        return;
5865    }
5866
5867    if (!visit_type_uint32(v, name, &value, errp)) {
5868        return;
5869    }
5870
5871    s->notify_window = value;
5872}
5873
5874static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5875                                     const char *name, void *opaque,
5876                                     Error **errp)
5877{
5878    KVMState *s = KVM_STATE(obj);
5879    uint32_t value = s->xen_version;
5880
5881    visit_type_uint32(v, name, &value, errp);
5882}
5883
5884static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5885                                     const char *name, void *opaque,
5886                                     Error **errp)
5887{
5888    KVMState *s = KVM_STATE(obj);
5889    Error *error = NULL;
5890    uint32_t value;
5891
5892    visit_type_uint32(v, name, &value, &error);
5893    if (error) {
5894        error_propagate(errp, error);
5895        return;
5896    }
5897
5898    s->xen_version = value;
5899    if (value && xen_mode == XEN_DISABLED) {
5900        xen_mode = XEN_EMULATE;
5901    }
5902}
5903
5904static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5905                                               const char *name, void *opaque,
5906                                               Error **errp)
5907{
5908    KVMState *s = KVM_STATE(obj);
5909    uint16_t value = s->xen_gnttab_max_frames;
5910
5911    visit_type_uint16(v, name, &value, errp);
5912}
5913
5914static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5915                                               const char *name, void *opaque,
5916                                               Error **errp)
5917{
5918    KVMState *s = KVM_STATE(obj);
5919    Error *error = NULL;
5920    uint16_t value;
5921
5922    visit_type_uint16(v, name, &value, &error);
5923    if (error) {
5924        error_propagate(errp, error);
5925        return;
5926    }
5927
5928    s->xen_gnttab_max_frames = value;
5929}
5930
5931static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5932                                             const char *name, void *opaque,
5933                                             Error **errp)
5934{
5935    KVMState *s = KVM_STATE(obj);
5936    uint16_t value = s->xen_evtchn_max_pirq;
5937
5938    visit_type_uint16(v, name, &value, errp);
5939}
5940
5941static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5942                                             const char *name, void *opaque,
5943                                             Error **errp)
5944{
5945    KVMState *s = KVM_STATE(obj);
5946    Error *error = NULL;
5947    uint16_t value;
5948
5949    visit_type_uint16(v, name, &value, &error);
5950    if (error) {
5951        error_propagate(errp, error);
5952        return;
5953    }
5954
5955    s->xen_evtchn_max_pirq = value;
5956}
5957
5958void kvm_arch_accel_class_init(ObjectClass *oc)
5959{
5960    object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5961                                   &NotifyVmexitOption_lookup,
5962                                   kvm_arch_get_notify_vmexit,
5963                                   kvm_arch_set_notify_vmexit);
5964    object_class_property_set_description(oc, "notify-vmexit",
5965                                          "Enable notify VM exit");
5966
5967    object_class_property_add(oc, "notify-window", "uint32",
5968                              kvm_arch_get_notify_window,
5969                              kvm_arch_set_notify_window,
5970                              NULL, NULL);
5971    object_class_property_set_description(oc, "notify-window",
5972                                          "Clock cycles without an event window "
5973                                          "after which a notification VM exit occurs");
5974
5975    object_class_property_add(oc, "xen-version", "uint32",
5976                              kvm_arch_get_xen_version,
5977                              kvm_arch_set_xen_version,
5978                              NULL, NULL);
5979    object_class_property_set_description(oc, "xen-version",
5980                                          "Xen version to be emulated "
5981                                          "(in XENVER_version form "
5982                                          "e.g. 0x4000a for 4.10)");
5983
5984    object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5985                              kvm_arch_get_xen_gnttab_max_frames,
5986                              kvm_arch_set_xen_gnttab_max_frames,
5987                              NULL, NULL);
5988    object_class_property_set_description(oc, "xen-gnttab-max-frames",
5989                                          "Maximum number of grant table frames");
5990
5991    object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5992                              kvm_arch_get_xen_evtchn_max_pirq,
5993                              kvm_arch_set_xen_evtchn_max_pirq,
5994                              NULL, NULL);
5995    object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5996                                          "Maximum number of Xen PIRQs");
5997}
5998
5999void kvm_set_max_apic_id(uint32_t max_apic_id)
6000{
6001    kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6002}
6003