1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#include "qemu/osdep.h"
16#include "qapi/qapi-events-run-state.h"
17#include "qapi/error.h"
18#include "qapi/visitor.h"
19#include <sys/ioctl.h>
20#include <sys/utsname.h>
21#include <sys/syscall.h>
22
23#include <linux/kvm.h>
24#include "standard-headers/asm-x86/kvm_para.h"
25#include "hw/xen/interface/arch-x86/cpuid.h"
26
27#include "cpu.h"
28#include "host-cpu.h"
29#include "sysemu/sysemu.h"
30#include "sysemu/hw_accel.h"
31#include "sysemu/kvm_int.h"
32#include "sysemu/runstate.h"
33#include "kvm_i386.h"
34#include "sev.h"
35#include "xen-emu.h"
36#include "hyperv.h"
37#include "hyperv-proto.h"
38
39#include "exec/gdbstub.h"
40#include "qemu/host-utils.h"
41#include "qemu/main-loop.h"
42#include "qemu/ratelimit.h"
43#include "qemu/config-file.h"
44#include "qemu/error-report.h"
45#include "qemu/memalign.h"
46#include "hw/i386/x86.h"
47#include "hw/i386/kvm/xen_evtchn.h"
48#include "hw/i386/pc.h"
49#include "hw/i386/apic.h"
50#include "hw/i386/apic_internal.h"
51#include "hw/i386/apic-msidef.h"
52#include "hw/i386/intel_iommu.h"
53#include "hw/i386/x86-iommu.h"
54#include "hw/i386/e820_memory_layout.h"
55
56#include "hw/xen/xen.h"
57
58#include "hw/pci/pci.h"
59#include "hw/pci/msi.h"
60#include "hw/pci/msix.h"
61#include "migration/blocker.h"
62#include "exec/memattrs.h"
63#include "trace.h"
64
65#include CONFIG_DEVICES
66
67
68
69#ifdef DEBUG_KVM
70#define DPRINTF(fmt, ...) \
71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72#else
73#define DPRINTF(fmt, ...) \
74 do { } while (0)
75#endif
76
77
78#define KVM_APIC_BUS_CYCLE_NS 1
79#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
80
81#define MSR_KVM_WALL_CLOCK 0x11
82#define MSR_KVM_SYSTEM_TIME 0x12
83
84
85
86#define MSR_BUF_SIZE 4096
87
88static void kvm_init_msrs(X86CPU *cpu);
89
90const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91 KVM_CAP_INFO(SET_TSS_ADDR),
92 KVM_CAP_INFO(EXT_CPUID),
93 KVM_CAP_INFO(MP_STATE),
94 KVM_CAP_LAST_INFO
95};
96
97static bool has_msr_star;
98static bool has_msr_hsave_pa;
99static bool has_msr_tsc_aux;
100static bool has_msr_tsc_adjust;
101static bool has_msr_tsc_deadline;
102static bool has_msr_feature_control;
103static bool has_msr_misc_enable;
104static bool has_msr_smbase;
105static bool has_msr_bndcfgs;
106static int lm_capable_kernel;
107static bool has_msr_hv_hypercall;
108static bool has_msr_hv_crash;
109static bool has_msr_hv_reset;
110static bool has_msr_hv_vpindex;
111static bool hv_vpindex_settable;
112static bool has_msr_hv_runtime;
113static bool has_msr_hv_synic;
114static bool has_msr_hv_stimer;
115static bool has_msr_hv_frequencies;
116static bool has_msr_hv_reenlightenment;
117static bool has_msr_hv_syndbg_options;
118static bool has_msr_xss;
119static bool has_msr_umwait;
120static bool has_msr_spec_ctrl;
121static bool has_tsc_scale_msr;
122static bool has_msr_tsx_ctrl;
123static bool has_msr_virt_ssbd;
124static bool has_msr_smi_count;
125static bool has_msr_arch_capabs;
126static bool has_msr_core_capabs;
127static bool has_msr_vmx_vmfunc;
128static bool has_msr_ucode_rev;
129static bool has_msr_vmx_procbased_ctls2;
130static bool has_msr_perf_capabs;
131static bool has_msr_pkrs;
132
133static uint32_t has_architectural_pmu_version;
134static uint32_t num_architectural_pmu_gp_counters;
135static uint32_t num_architectural_pmu_fixed_counters;
136
137static int has_xsave;
138static int has_xsave2;
139static int has_xcrs;
140static int has_pit_state2;
141static int has_sregs2;
142static int has_exception_payload;
143static int has_triple_fault_event;
144
145static bool has_msr_mcg_ext_ctl;
146
147static struct kvm_cpuid2 *cpuid_cache;
148static struct kvm_cpuid2 *hv_cpuid_cache;
149static struct kvm_msr_list *kvm_feature_msrs;
150
151static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
152
153#define BUS_LOCK_SLICE_TIME 1000000000ULL
154static RateLimit bus_lock_ratelimit_ctrl;
155static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
156
157int kvm_has_pit_state2(void)
158{
159 return has_pit_state2;
160}
161
162bool kvm_has_smm(void)
163{
164 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
165}
166
167bool kvm_has_adjust_clock_stable(void)
168{
169 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
170
171 return (ret & KVM_CLOCK_TSC_STABLE);
172}
173
174bool kvm_has_adjust_clock(void)
175{
176 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
177}
178
179bool kvm_has_exception_payload(void)
180{
181 return has_exception_payload;
182}
183
184static bool kvm_x2apic_api_set_flags(uint64_t flags)
185{
186 KVMState *s = KVM_STATE(current_accel());
187
188 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
189}
190
191#define MEMORIZE(fn, _result) \
192 ({ \
193 static bool _memorized; \
194 \
195 if (_memorized) { \
196 return _result; \
197 } \
198 _memorized = true; \
199 _result = fn; \
200 })
201
202static bool has_x2apic_api;
203
204bool kvm_has_x2apic_api(void)
205{
206 return has_x2apic_api;
207}
208
209bool kvm_enable_x2apic(void)
210{
211 return MEMORIZE(
212 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
213 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
214 has_x2apic_api);
215}
216
217bool kvm_hv_vpindex_settable(void)
218{
219 return hv_vpindex_settable;
220}
221
222static int kvm_get_tsc(CPUState *cs)
223{
224 X86CPU *cpu = X86_CPU(cs);
225 CPUX86State *env = &cpu->env;
226 uint64_t value;
227 int ret;
228
229 if (env->tsc_valid) {
230 return 0;
231 }
232
233 env->tsc_valid = !runstate_is_running();
234
235 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
236 if (ret < 0) {
237 return ret;
238 }
239
240 env->tsc = value;
241 return 0;
242}
243
244static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
245{
246 kvm_get_tsc(cpu);
247}
248
249void kvm_synchronize_all_tsc(void)
250{
251 CPUState *cpu;
252
253 if (kvm_enabled()) {
254 CPU_FOREACH(cpu) {
255 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
256 }
257 }
258}
259
260static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
261{
262 struct kvm_cpuid2 *cpuid;
263 int r, size;
264
265 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
266 cpuid = g_malloc0(size);
267 cpuid->nent = max;
268 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
269 if (r == 0 && cpuid->nent >= max) {
270 r = -E2BIG;
271 }
272 if (r < 0) {
273 if (r == -E2BIG) {
274 g_free(cpuid);
275 return NULL;
276 } else {
277 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
278 strerror(-r));
279 exit(1);
280 }
281 }
282 return cpuid;
283}
284
285
286
287
288static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
289{
290 struct kvm_cpuid2 *cpuid;
291 int max = 1;
292
293 if (cpuid_cache != NULL) {
294 return cpuid_cache;
295 }
296 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
297 max *= 2;
298 }
299 cpuid_cache = cpuid;
300 return cpuid;
301}
302
303static bool host_tsx_broken(void)
304{
305 int family, model, stepping;\
306 char vendor[CPUID_VENDOR_SZ + 1];
307
308 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
309
310
311 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
312 (family == 6) &&
313 ((model == 63 && stepping < 4) ||
314 model == 60 || model == 69 || model == 70);
315}
316
317
318
319static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
320{
321 uint32_t ret = 0;
322 switch (reg) {
323 case R_EAX:
324 ret = entry->eax;
325 break;
326 case R_EBX:
327 ret = entry->ebx;
328 break;
329 case R_ECX:
330 ret = entry->ecx;
331 break;
332 case R_EDX:
333 ret = entry->edx;
334 break;
335 }
336 return ret;
337}
338
339
340
341static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
342 uint32_t function,
343 uint32_t index)
344{
345 int i;
346 for (i = 0; i < cpuid->nent; ++i) {
347 if (cpuid->entries[i].function == function &&
348 cpuid->entries[i].index == index) {
349 return &cpuid->entries[i];
350 }
351 }
352
353 return NULL;
354}
355
356uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
357 uint32_t index, int reg)
358{
359 struct kvm_cpuid2 *cpuid;
360 uint32_t ret = 0;
361 uint32_t cpuid_1_edx, unused;
362 uint64_t bitmask;
363
364 cpuid = get_supported_cpuid(s);
365
366 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
367 if (entry) {
368 ret = cpuid_entry_get_reg(entry, reg);
369 }
370
371
372
373 if (function == 1 && reg == R_EDX) {
374
375 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
376 } else if (function == 1 && reg == R_ECX) {
377
378
379
380 ret |= CPUID_EXT_HYPERVISOR;
381
382
383
384
385 if (kvm_irqchip_in_kernel() &&
386 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
387 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
388 }
389
390
391
392
393 if (!kvm_irqchip_in_kernel()) {
394 ret &= ~CPUID_EXT_X2APIC;
395 }
396
397 if (enable_cpu_pm) {
398 int disable_exits = kvm_check_extension(s,
399 KVM_CAP_X86_DISABLE_EXITS);
400
401 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
402 ret |= CPUID_EXT_MONITOR;
403 }
404 }
405 } else if (function == 6 && reg == R_EAX) {
406 ret |= CPUID_6_EAX_ARAT;
407 } else if (function == 7 && index == 0 && reg == R_EBX) {
408
409 uint32_t ebx;
410 host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
411 ret |= ebx & CPUID_7_0_EBX_ERMS;
412
413 if (host_tsx_broken()) {
414 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
415 }
416 } else if (function == 7 && index == 0 && reg == R_EDX) {
417
418 uint32_t edx;
419 host_cpuid(7, 0, &unused, &unused, &unused, &edx);
420 ret |= edx & CPUID_7_0_EDX_FSRM;
421
422
423
424
425
426
427 if (!has_msr_arch_capabs) {
428 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
429 }
430 } else if (function == 7 && index == 1 && reg == R_EAX) {
431
432 uint32_t eax;
433 host_cpuid(7, 1, &eax, &unused, &unused, &unused);
434 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
435 } else if (function == 7 && index == 2 && reg == R_EDX) {
436 uint32_t edx;
437 host_cpuid(7, 2, &unused, &unused, &unused, &edx);
438 ret |= edx & CPUID_7_2_EDX_MCDT_NO;
439 } else if (function == 0xd && index == 0 &&
440 (reg == R_EAX || reg == R_EDX)) {
441
442
443
444
445
446
447 struct kvm_device_attr attr = {
448 .group = 0,
449 .attr = KVM_X86_XCOMP_GUEST_SUPP,
450 .addr = (unsigned long) &bitmask
451 };
452
453 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
454 if (!sys_attr) {
455 return ret;
456 }
457
458 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
459 if (rc < 0) {
460 if (rc != -ENXIO) {
461 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
462 "error: %d", rc);
463 }
464 return ret;
465 }
466 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
467 } else if (function == 0x80000001 && reg == R_ECX) {
468
469
470
471
472
473 ret |= CPUID_EXT3_TOPOEXT;
474 } else if (function == 0x80000001 && reg == R_EDX) {
475
476
477
478 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
479 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
480 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
481
482
483
484 if (!kvm_irqchip_in_kernel()) {
485 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
486 }
487 if (kvm_irqchip_is_split()) {
488 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
489 }
490 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
491 ret |= 1U << KVM_HINTS_REALTIME;
492 }
493
494 return ret;
495}
496
497uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
498{
499 struct {
500 struct kvm_msrs info;
501 struct kvm_msr_entry entries[1];
502 } msr_data = {};
503 uint64_t value;
504 uint32_t ret, can_be_one, must_be_one;
505
506 if (kvm_feature_msrs == NULL) {
507 return 0;
508 }
509
510
511 int i;
512 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
513 if (kvm_feature_msrs->indices[i] == index) {
514 break;
515 }
516 if (i == kvm_feature_msrs->nmsrs) {
517 return 0;
518 }
519
520 msr_data.info.nmsrs = 1;
521 msr_data.entries[0].index = index;
522
523 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
524 if (ret != 1) {
525 error_report("KVM get MSR (index=0x%x) feature failed, %s",
526 index, strerror(-ret));
527 exit(1);
528 }
529
530 value = msr_data.entries[0].data;
531 switch (index) {
532 case MSR_IA32_VMX_PROCBASED_CTLS2:
533 if (!has_msr_vmx_procbased_ctls2) {
534
535 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
536 CPUID_XSAVE_XSAVES) {
537 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
538 }
539 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
540 CPUID_EXT_RDRAND) {
541 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
542 }
543 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
544 CPUID_7_0_EBX_INVPCID) {
545 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
546 }
547 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
548 CPUID_7_0_EBX_RDSEED) {
549 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
550 }
551 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
552 CPUID_EXT2_RDTSCP) {
553 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
554 }
555 }
556
557 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
558 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
559 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
560 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
561
562
563
564
565
566 must_be_one = (uint32_t)value;
567 can_be_one = (uint32_t)(value >> 32);
568 return can_be_one & ~must_be_one;
569
570 default:
571 return value;
572 }
573}
574
575static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
576 int *max_banks)
577{
578 int r;
579
580 r = kvm_check_extension(s, KVM_CAP_MCE);
581 if (r > 0) {
582 *max_banks = r;
583 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
584 }
585 return -ENOSYS;
586}
587
588static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
589{
590 CPUState *cs = CPU(cpu);
591 CPUX86State *env = &cpu->env;
592 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
593 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
594 uint64_t mcg_status = MCG_STATUS_MCIP;
595 int flags = 0;
596
597 if (code == BUS_MCEERR_AR) {
598 status |= MCI_STATUS_AR | 0x134;
599 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
600 } else {
601 status |= 0xc0;
602 mcg_status |= MCG_STATUS_RIPV;
603 }
604
605 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
606
607
608
609 cpu_synchronize_state(cs);
610 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
611 mcg_status |= MCG_STATUS_LMCE;
612 flags = 0;
613 }
614
615 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
616 (MCM_ADDR_PHYS << 6) | 0xc, flags);
617}
618
619static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
620{
621 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
622
623 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
624 &mff);
625}
626
627static void hardware_memory_error(void *host_addr)
628{
629 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
630 error_report("QEMU got Hardware memory error at addr %p", host_addr);
631 exit(1);
632}
633
634void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
635{
636 X86CPU *cpu = X86_CPU(c);
637 CPUX86State *env = &cpu->env;
638 ram_addr_t ram_addr;
639 hwaddr paddr;
640
641
642
643
644
645
646 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
647
648 if ((env->mcg_cap & MCG_SER_P) && addr) {
649 ram_addr = qemu_ram_addr_from_host(addr);
650 if (ram_addr != RAM_ADDR_INVALID &&
651 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
652 kvm_hwpoison_page_add(ram_addr);
653 kvm_mce_inject(cpu, paddr, code);
654
655
656
657
658
659
660 if (code == BUS_MCEERR_AR) {
661 error_report("Guest MCE Memory Error at QEMU addr %p and "
662 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
663 addr, paddr, "BUS_MCEERR_AR");
664 } else {
665 warn_report("Guest MCE Memory Error at QEMU addr %p and "
666 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
667 addr, paddr, "BUS_MCEERR_AO");
668 }
669
670 return;
671 }
672
673 if (code == BUS_MCEERR_AO) {
674 warn_report("Hardware memory error at addr %p of type %s "
675 "for memory used by QEMU itself instead of guest system!",
676 addr, "BUS_MCEERR_AO");
677 }
678 }
679
680 if (code == BUS_MCEERR_AR) {
681 hardware_memory_error(addr);
682 }
683
684
685 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
686}
687
688static void kvm_reset_exception(CPUX86State *env)
689{
690 env->exception_nr = -1;
691 env->exception_pending = 0;
692 env->exception_injected = 0;
693 env->exception_has_payload = false;
694 env->exception_payload = 0;
695}
696
697static void kvm_queue_exception(CPUX86State *env,
698 int32_t exception_nr,
699 uint8_t exception_has_payload,
700 uint64_t exception_payload)
701{
702 assert(env->exception_nr == -1);
703 assert(!env->exception_pending);
704 assert(!env->exception_injected);
705 assert(!env->exception_has_payload);
706
707 env->exception_nr = exception_nr;
708
709 if (has_exception_payload) {
710 env->exception_pending = 1;
711
712 env->exception_has_payload = exception_has_payload;
713 env->exception_payload = exception_payload;
714 } else {
715 env->exception_injected = 1;
716
717 if (exception_nr == EXCP01_DB) {
718 assert(exception_has_payload);
719 env->dr[6] = exception_payload;
720 } else if (exception_nr == EXCP0E_PAGE) {
721 assert(exception_has_payload);
722 env->cr[2] = exception_payload;
723 } else {
724 assert(!exception_has_payload);
725 }
726 }
727}
728
729static int kvm_inject_mce_oldstyle(X86CPU *cpu)
730{
731 CPUX86State *env = &cpu->env;
732
733 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
734 unsigned int bank, bank_num = env->mcg_cap & 0xff;
735 struct kvm_x86_mce mce;
736
737 kvm_reset_exception(env);
738
739
740
741
742
743 for (bank = 0; bank < bank_num; bank++) {
744 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
745 break;
746 }
747 }
748 assert(bank < bank_num);
749
750 mce.bank = bank;
751 mce.status = env->mce_banks[bank * 4 + 1];
752 mce.mcg_status = env->mcg_status;
753 mce.addr = env->mce_banks[bank * 4 + 2];
754 mce.misc = env->mce_banks[bank * 4 + 3];
755
756 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
757 }
758 return 0;
759}
760
761static void cpu_update_state(void *opaque, bool running, RunState state)
762{
763 CPUX86State *env = opaque;
764
765 if (running) {
766 env->tsc_valid = false;
767 }
768}
769
770unsigned long kvm_arch_vcpu_id(CPUState *cs)
771{
772 X86CPU *cpu = X86_CPU(cs);
773 return cpu->apic_id;
774}
775
776#ifndef KVM_CPUID_SIGNATURE_NEXT
777#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
778#endif
779
780static bool hyperv_enabled(X86CPU *cpu)
781{
782 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
783 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
784 cpu->hyperv_features || cpu->hyperv_passthrough);
785}
786
787
788
789
790
791static inline bool freq_within_bounds(int freq, int target_freq)
792{
793 int max_freq = freq + (freq * 250 / 1000000);
794 int min_freq = freq - (freq * 250 / 1000000);
795
796 if (target_freq >= min_freq && target_freq <= max_freq) {
797 return true;
798 }
799
800 return false;
801}
802
803static int kvm_arch_set_tsc_khz(CPUState *cs)
804{
805 X86CPU *cpu = X86_CPU(cs);
806 CPUX86State *env = &cpu->env;
807 int r, cur_freq;
808 bool set_ioctl = false;
809
810 if (!env->tsc_khz) {
811 return 0;
812 }
813
814 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
815 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
816
817
818
819
820 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
821 set_ioctl = true;
822 }
823
824
825
826
827
828 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
829 set_ioctl = true;
830 }
831
832 r = set_ioctl ?
833 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
834 -ENOTSUP;
835
836 if (r < 0) {
837
838
839
840 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
841 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
842 -ENOTSUP;
843 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
844 warn_report("TSC frequency mismatch between "
845 "VM (%" PRId64 " kHz) and host (%d kHz), "
846 "and TSC scaling unavailable",
847 env->tsc_khz, cur_freq);
848 return r;
849 }
850 }
851
852 return 0;
853}
854
855static bool tsc_is_stable_and_known(CPUX86State *env)
856{
857 if (!env->tsc_khz) {
858 return false;
859 }
860 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
861 || env->user_tsc_khz;
862}
863
864#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
865
866static struct {
867 const char *desc;
868 struct {
869 uint32_t func;
870 int reg;
871 uint32_t bits;
872 } flags[2];
873 uint64_t dependencies;
874} kvm_hyperv_properties[] = {
875 [HYPERV_FEAT_RELAXED] = {
876 .desc = "relaxed timing (hv-relaxed)",
877 .flags = {
878 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
879 .bits = HV_RELAXED_TIMING_RECOMMENDED}
880 }
881 },
882 [HYPERV_FEAT_VAPIC] = {
883 .desc = "virtual APIC (hv-vapic)",
884 .flags = {
885 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
886 .bits = HV_APIC_ACCESS_AVAILABLE}
887 }
888 },
889 [HYPERV_FEAT_TIME] = {
890 .desc = "clocksources (hv-time)",
891 .flags = {
892 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
893 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
894 }
895 },
896 [HYPERV_FEAT_CRASH] = {
897 .desc = "crash MSRs (hv-crash)",
898 .flags = {
899 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
900 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
901 }
902 },
903 [HYPERV_FEAT_RESET] = {
904 .desc = "reset MSR (hv-reset)",
905 .flags = {
906 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
907 .bits = HV_RESET_AVAILABLE}
908 }
909 },
910 [HYPERV_FEAT_VPINDEX] = {
911 .desc = "VP_INDEX MSR (hv-vpindex)",
912 .flags = {
913 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
914 .bits = HV_VP_INDEX_AVAILABLE}
915 }
916 },
917 [HYPERV_FEAT_RUNTIME] = {
918 .desc = "VP_RUNTIME MSR (hv-runtime)",
919 .flags = {
920 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
921 .bits = HV_VP_RUNTIME_AVAILABLE}
922 }
923 },
924 [HYPERV_FEAT_SYNIC] = {
925 .desc = "synthetic interrupt controller (hv-synic)",
926 .flags = {
927 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
928 .bits = HV_SYNIC_AVAILABLE}
929 }
930 },
931 [HYPERV_FEAT_STIMER] = {
932 .desc = "synthetic timers (hv-stimer)",
933 .flags = {
934 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
935 .bits = HV_SYNTIMERS_AVAILABLE}
936 },
937 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
938 },
939 [HYPERV_FEAT_FREQUENCIES] = {
940 .desc = "frequency MSRs (hv-frequencies)",
941 .flags = {
942 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
943 .bits = HV_ACCESS_FREQUENCY_MSRS},
944 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
945 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
946 }
947 },
948 [HYPERV_FEAT_REENLIGHTENMENT] = {
949 .desc = "reenlightenment MSRs (hv-reenlightenment)",
950 .flags = {
951 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
952 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
953 }
954 },
955 [HYPERV_FEAT_TLBFLUSH] = {
956 .desc = "paravirtualized TLB flush (hv-tlbflush)",
957 .flags = {
958 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
959 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
960 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
961 },
962 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
963 },
964 [HYPERV_FEAT_EVMCS] = {
965 .desc = "enlightened VMCS (hv-evmcs)",
966 .flags = {
967 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
968 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
969 },
970 .dependencies = BIT(HYPERV_FEAT_VAPIC)
971 },
972 [HYPERV_FEAT_IPI] = {
973 .desc = "paravirtualized IPI (hv-ipi)",
974 .flags = {
975 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
976 .bits = HV_CLUSTER_IPI_RECOMMENDED |
977 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
978 },
979 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
980 },
981 [HYPERV_FEAT_STIMER_DIRECT] = {
982 .desc = "direct mode synthetic timers (hv-stimer-direct)",
983 .flags = {
984 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
985 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
986 },
987 .dependencies = BIT(HYPERV_FEAT_STIMER)
988 },
989 [HYPERV_FEAT_AVIC] = {
990 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
991 .flags = {
992 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
993 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
994 }
995 },
996#ifdef CONFIG_SYNDBG
997 [HYPERV_FEAT_SYNDBG] = {
998 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
999 .flags = {
1000 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1001 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1002 },
1003 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1004 },
1005#endif
1006 [HYPERV_FEAT_MSR_BITMAP] = {
1007 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1008 .flags = {
1009 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1010 .bits = HV_NESTED_MSR_BITMAP}
1011 }
1012 },
1013 [HYPERV_FEAT_XMM_INPUT] = {
1014 .desc = "XMM fast hypercall input (hv-xmm-input)",
1015 .flags = {
1016 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1017 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1018 }
1019 },
1020 [HYPERV_FEAT_TLBFLUSH_EXT] = {
1021 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1022 .flags = {
1023 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1024 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1025 },
1026 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1027 },
1028 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1029 .desc = "direct TLB flush (hv-tlbflush-direct)",
1030 .flags = {
1031 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1032 .bits = HV_NESTED_DIRECT_FLUSH}
1033 },
1034 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1035 },
1036};
1037
1038static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1039 bool do_sys_ioctl)
1040{
1041 struct kvm_cpuid2 *cpuid;
1042 int r, size;
1043
1044 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1045 cpuid = g_malloc0(size);
1046 cpuid->nent = max;
1047
1048 if (do_sys_ioctl) {
1049 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1050 } else {
1051 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1052 }
1053 if (r == 0 && cpuid->nent >= max) {
1054 r = -E2BIG;
1055 }
1056 if (r < 0) {
1057 if (r == -E2BIG) {
1058 g_free(cpuid);
1059 return NULL;
1060 } else {
1061 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1062 strerror(-r));
1063 exit(1);
1064 }
1065 }
1066 return cpuid;
1067}
1068
1069
1070
1071
1072
1073static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1074{
1075 struct kvm_cpuid2 *cpuid;
1076
1077 int max = 11;
1078 int i;
1079 bool do_sys_ioctl;
1080
1081 do_sys_ioctl =
1082 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1083
1084
1085
1086
1087
1088 assert(do_sys_ioctl || cs->kvm_state);
1089
1090
1091
1092
1093
1094
1095 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1096 max++;
1097 }
1098
1099
1100
1101
1102
1103
1104
1105 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1106 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1107 for (i = 0; i < cpuid->nent; i++) {
1108 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1109 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1110 }
1111 }
1112 }
1113
1114 return cpuid;
1115}
1116
1117
1118
1119
1120
1121static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1122{
1123 X86CPU *cpu = X86_CPU(cs);
1124 struct kvm_cpuid2 *cpuid;
1125 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1126
1127
1128 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1129 cpuid->nent = 2;
1130
1131
1132 entry_feat = &cpuid->entries[0];
1133 entry_feat->function = HV_CPUID_FEATURES;
1134
1135 entry_recomm = &cpuid->entries[1];
1136 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1137 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1138
1139 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1140 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1141 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1142 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1143 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1144 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1145 }
1146
1147 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1148 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1149 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1150 }
1151
1152 if (has_msr_hv_frequencies) {
1153 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1154 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1155 }
1156
1157 if (has_msr_hv_crash) {
1158 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1159 }
1160
1161 if (has_msr_hv_reenlightenment) {
1162 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1163 }
1164
1165 if (has_msr_hv_reset) {
1166 entry_feat->eax |= HV_RESET_AVAILABLE;
1167 }
1168
1169 if (has_msr_hv_vpindex) {
1170 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1171 }
1172
1173 if (has_msr_hv_runtime) {
1174 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1175 }
1176
1177 if (has_msr_hv_synic) {
1178 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1179 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1180
1181 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1182 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1183 }
1184 }
1185
1186 if (has_msr_hv_stimer) {
1187 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1188 }
1189
1190 if (has_msr_hv_syndbg_options) {
1191 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1192 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1193 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1194 }
1195
1196 if (kvm_check_extension(cs->kvm_state,
1197 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1198 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1199 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1200 }
1201
1202 if (kvm_check_extension(cs->kvm_state,
1203 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1204 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1205 }
1206
1207 if (kvm_check_extension(cs->kvm_state,
1208 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1209 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1210 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1211 }
1212
1213 return cpuid;
1214}
1215
1216static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1217{
1218 struct kvm_cpuid_entry2 *entry;
1219 struct kvm_cpuid2 *cpuid;
1220
1221 if (hv_cpuid_cache) {
1222 cpuid = hv_cpuid_cache;
1223 } else {
1224 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1225 cpuid = get_supported_hv_cpuid(cs);
1226 } else {
1227
1228
1229
1230
1231
1232
1233 assert(cs->kvm_state);
1234
1235 cpuid = get_supported_hv_cpuid_legacy(cs);
1236 }
1237 hv_cpuid_cache = cpuid;
1238 }
1239
1240 if (!cpuid) {
1241 return 0;
1242 }
1243
1244 entry = cpuid_find_entry(cpuid, func, 0);
1245 if (!entry) {
1246 return 0;
1247 }
1248
1249 return cpuid_entry_get_reg(entry, reg);
1250}
1251
1252static bool hyperv_feature_supported(CPUState *cs, int feature)
1253{
1254 uint32_t func, bits;
1255 int i, reg;
1256
1257 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1258
1259 func = kvm_hyperv_properties[feature].flags[i].func;
1260 reg = kvm_hyperv_properties[feature].flags[i].reg;
1261 bits = kvm_hyperv_properties[feature].flags[i].bits;
1262
1263 if (!func) {
1264 continue;
1265 }
1266
1267 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1268 return false;
1269 }
1270 }
1271
1272 return true;
1273}
1274
1275
1276static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1277{
1278 uint64_t deps;
1279 int dep_feat;
1280
1281 deps = kvm_hyperv_properties[feature].dependencies;
1282 while (deps) {
1283 dep_feat = ctz64(deps);
1284 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1285 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1286 kvm_hyperv_properties[feature].desc,
1287 kvm_hyperv_properties[dep_feat].desc);
1288 return false;
1289 }
1290 deps &= ~(1ull << dep_feat);
1291 }
1292
1293 return true;
1294}
1295
1296static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1297{
1298 X86CPU *cpu = X86_CPU(cs);
1299 uint32_t r = 0;
1300 int i, j;
1301
1302 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1303 if (!hyperv_feat_enabled(cpu, i)) {
1304 continue;
1305 }
1306
1307 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1308 if (kvm_hyperv_properties[i].flags[j].func != func) {
1309 continue;
1310 }
1311 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1312 continue;
1313 }
1314
1315 r |= kvm_hyperv_properties[i].flags[j].bits;
1316 }
1317 }
1318
1319
1320 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1322 r |= DEFAULT_EVMCS_VERSION;
1323 }
1324 }
1325
1326 return r;
1327}
1328
1329
1330
1331
1332
1333
1334
1335
1336bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1337{
1338 CPUState *cs = CPU(cpu);
1339 Error *local_err = NULL;
1340 int feat;
1341
1342 if (!hyperv_enabled(cpu))
1343 return true;
1344
1345
1346
1347
1348
1349
1350 if (!cs->kvm_state &&
1351 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1352 return true;
1353
1354 if (cpu->hyperv_passthrough) {
1355 cpu->hyperv_vendor_id[0] =
1356 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1357 cpu->hyperv_vendor_id[1] =
1358 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1359 cpu->hyperv_vendor_id[2] =
1360 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1361 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1362 sizeof(cpu->hyperv_vendor_id) + 1);
1363 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1364 sizeof(cpu->hyperv_vendor_id));
1365 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1366
1367 cpu->hyperv_interface_id[0] =
1368 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1369 cpu->hyperv_interface_id[1] =
1370 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1371 cpu->hyperv_interface_id[2] =
1372 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1373 cpu->hyperv_interface_id[3] =
1374 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1375
1376 cpu->hyperv_ver_id_build =
1377 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1378 cpu->hyperv_ver_id_major =
1379 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1380 cpu->hyperv_ver_id_minor =
1381 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1382 cpu->hyperv_ver_id_sp =
1383 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1384 cpu->hyperv_ver_id_sb =
1385 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1386 cpu->hyperv_ver_id_sn =
1387 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1388
1389 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1390 R_EAX);
1391 cpu->hyperv_limits[0] =
1392 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1393 cpu->hyperv_limits[1] =
1394 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1395 cpu->hyperv_limits[2] =
1396 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1397
1398 cpu->hyperv_spinlock_attempts =
1399 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1400
1401
1402
1403
1404
1405 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1406 if (hyperv_feature_supported(cs, feat)) {
1407 cpu->hyperv_features |= BIT(feat);
1408 }
1409 }
1410 } else {
1411
1412 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1413
1414 if (!hyperv_feat_enabled(cpu, feat)) {
1415 continue;
1416 }
1417
1418
1419 if (!hyperv_feature_supported(cs, feat)) {
1420 error_setg(errp, "Hyper-V %s is not supported by kernel",
1421 kvm_hyperv_properties[feat].desc);
1422 return false;
1423 }
1424
1425
1426 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1427 error_propagate(errp, local_err);
1428 return false;
1429 }
1430 }
1431 }
1432
1433
1434 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1435 !cpu->hyperv_synic_kvm_only &&
1436 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1437 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1438 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1439 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1440 return false;
1441 }
1442
1443 return true;
1444}
1445
1446
1447
1448
1449static int hyperv_fill_cpuids(CPUState *cs,
1450 struct kvm_cpuid_entry2 *cpuid_ent)
1451{
1452 X86CPU *cpu = X86_CPU(cs);
1453 struct kvm_cpuid_entry2 *c;
1454 uint32_t signature[3];
1455 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1456 uint32_t nested_eax =
1457 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1458
1459 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1460 HV_CPUID_IMPLEMENT_LIMITS;
1461
1462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1463 max_cpuid_leaf =
1464 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1465 }
1466
1467 c = &cpuid_ent[cpuid_i++];
1468 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1469 c->eax = max_cpuid_leaf;
1470 c->ebx = cpu->hyperv_vendor_id[0];
1471 c->ecx = cpu->hyperv_vendor_id[1];
1472 c->edx = cpu->hyperv_vendor_id[2];
1473
1474 c = &cpuid_ent[cpuid_i++];
1475 c->function = HV_CPUID_INTERFACE;
1476 c->eax = cpu->hyperv_interface_id[0];
1477 c->ebx = cpu->hyperv_interface_id[1];
1478 c->ecx = cpu->hyperv_interface_id[2];
1479 c->edx = cpu->hyperv_interface_id[3];
1480
1481 c = &cpuid_ent[cpuid_i++];
1482 c->function = HV_CPUID_VERSION;
1483 c->eax = cpu->hyperv_ver_id_build;
1484 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1485 cpu->hyperv_ver_id_minor;
1486 c->ecx = cpu->hyperv_ver_id_sp;
1487 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1488 (cpu->hyperv_ver_id_sn & 0xffffff);
1489
1490 c = &cpuid_ent[cpuid_i++];
1491 c->function = HV_CPUID_FEATURES;
1492 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1493 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1494 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1495
1496
1497 c->eax |= HV_HYPERCALL_AVAILABLE;
1498
1499
1500 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1501 !cpu->hyperv_synic_kvm_only) {
1502 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1503 }
1504
1505
1506
1507 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1508
1509 c = &cpuid_ent[cpuid_i++];
1510 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1511 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1512 c->ebx = cpu->hyperv_spinlock_attempts;
1513
1514 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1515 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1516 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1517 }
1518
1519 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1520 c->eax |= HV_NO_NONARCH_CORESHARING;
1521 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1522 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1523 HV_NO_NONARCH_CORESHARING;
1524 }
1525
1526 c = &cpuid_ent[cpuid_i++];
1527 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1528 c->eax = cpu->hv_max_vps;
1529 c->ebx = cpu->hyperv_limits[0];
1530 c->ecx = cpu->hyperv_limits[1];
1531 c->edx = cpu->hyperv_limits[2];
1532
1533 if (nested_eax) {
1534 uint32_t function;
1535
1536
1537 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1538 function < HV_CPUID_NESTED_FEATURES; function++) {
1539 c = &cpuid_ent[cpuid_i++];
1540 c->function = function;
1541 }
1542
1543 c = &cpuid_ent[cpuid_i++];
1544 c->function = HV_CPUID_NESTED_FEATURES;
1545 c->eax = nested_eax;
1546 }
1547
1548 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1549 c = &cpuid_ent[cpuid_i++];
1550 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1551 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1552 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1553 memcpy(signature, "Microsoft VS", 12);
1554 c->eax = 0;
1555 c->ebx = signature[0];
1556 c->ecx = signature[1];
1557 c->edx = signature[2];
1558
1559 c = &cpuid_ent[cpuid_i++];
1560 c->function = HV_CPUID_SYNDBG_INTERFACE;
1561 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1562 c->eax = signature[0];
1563 c->ebx = 0;
1564 c->ecx = 0;
1565 c->edx = 0;
1566
1567 c = &cpuid_ent[cpuid_i++];
1568 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1569 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1570 c->ebx = 0;
1571 c->ecx = 0;
1572 c->edx = 0;
1573 }
1574
1575 return cpuid_i;
1576}
1577
1578static Error *hv_passthrough_mig_blocker;
1579static Error *hv_no_nonarch_cs_mig_blocker;
1580
1581
1582static bool evmcs_version_supported(uint16_t evmcs_version,
1583 uint16_t supported_evmcs_version)
1584{
1585 uint8_t min_version = evmcs_version & 0xff;
1586 uint8_t max_version = evmcs_version >> 8;
1587 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1588 uint8_t max_supported_version = supported_evmcs_version >> 8;
1589
1590 return (min_version >= min_supported_version) &&
1591 (max_version <= max_supported_version);
1592}
1593
1594static int hyperv_init_vcpu(X86CPU *cpu)
1595{
1596 CPUState *cs = CPU(cpu);
1597 Error *local_err = NULL;
1598 int ret;
1599
1600 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1601 error_setg(&hv_passthrough_mig_blocker,
1602 "'hv-passthrough' CPU flag prevents migration, use explicit"
1603 " set of hv-* flags instead");
1604 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1605 if (ret < 0) {
1606 error_report_err(local_err);
1607 return ret;
1608 }
1609 }
1610
1611 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1612 hv_no_nonarch_cs_mig_blocker == NULL) {
1613 error_setg(&hv_no_nonarch_cs_mig_blocker,
1614 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1615 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1616 " make sure SMT is disabled and/or that vCPUs are properly"
1617 " pinned)");
1618 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1619 if (ret < 0) {
1620 error_report_err(local_err);
1621 return ret;
1622 }
1623 }
1624
1625 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1626
1627
1628
1629
1630 uint64_t value;
1631
1632 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1633 if (ret < 0) {
1634 return ret;
1635 }
1636
1637 if (value != hyperv_vp_index(CPU(cpu))) {
1638 error_report("kernel's vp_index != QEMU's vp_index");
1639 return -ENXIO;
1640 }
1641 }
1642
1643 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1644 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1645 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1646 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1647 if (ret < 0) {
1648 error_report("failed to turn on HyperV SynIC in KVM: %s",
1649 strerror(-ret));
1650 return ret;
1651 }
1652
1653 if (!cpu->hyperv_synic_kvm_only) {
1654 ret = hyperv_x86_synic_add(cpu);
1655 if (ret < 0) {
1656 error_report("failed to create HyperV SynIC: %s",
1657 strerror(-ret));
1658 return ret;
1659 }
1660 }
1661 }
1662
1663 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1664 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1665 uint16_t supported_evmcs_version;
1666
1667 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1668 (uintptr_t)&supported_evmcs_version);
1669
1670
1671
1672
1673
1674
1675
1676
1677 if (ret < 0) {
1678 error_report("Hyper-V %s is not supported by kernel",
1679 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1680 return ret;
1681 }
1682
1683 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1684 error_report("eVMCS version range [%d..%d] is not supported by "
1685 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1686 evmcs_version >> 8, supported_evmcs_version & 0xff,
1687 supported_evmcs_version >> 8);
1688 return -ENOTSUP;
1689 }
1690 }
1691
1692 if (cpu->hyperv_enforce_cpuid) {
1693 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1694 if (ret < 0) {
1695 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1696 strerror(-ret));
1697 return ret;
1698 }
1699 }
1700
1701 return 0;
1702}
1703
1704static Error *invtsc_mig_blocker;
1705
1706#define KVM_MAX_CPUID_ENTRIES 100
1707
1708static void kvm_init_xsave(CPUX86State *env)
1709{
1710 if (has_xsave2) {
1711 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1712 } else if (has_xsave) {
1713 env->xsave_buf_len = sizeof(struct kvm_xsave);
1714 } else {
1715 return;
1716 }
1717
1718 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1719 memset(env->xsave_buf, 0, env->xsave_buf_len);
1720
1721
1722
1723
1724 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1725 env->xsave_buf_len);
1726}
1727
1728static void kvm_init_nested_state(CPUX86State *env)
1729{
1730 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1731 uint32_t size;
1732
1733 if (!env->nested_state) {
1734 return;
1735 }
1736
1737 size = env->nested_state->size;
1738
1739 memset(env->nested_state, 0, size);
1740 env->nested_state->size = size;
1741
1742 if (cpu_has_vmx(env)) {
1743 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1744 vmx_hdr = &env->nested_state->hdr.vmx;
1745 vmx_hdr->vmxon_pa = -1ull;
1746 vmx_hdr->vmcs12_pa = -1ull;
1747 } else if (cpu_has_svm(env)) {
1748 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1749 }
1750}
1751
1752int kvm_arch_init_vcpu(CPUState *cs)
1753{
1754 struct {
1755 struct kvm_cpuid2 cpuid;
1756 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1757 } cpuid_data;
1758
1759
1760
1761
1762 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1763 sizeof(struct kvm_cpuid2) +
1764 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1765
1766 X86CPU *cpu = X86_CPU(cs);
1767 CPUX86State *env = &cpu->env;
1768 uint32_t limit, i, j, cpuid_i;
1769 uint32_t unused;
1770 struct kvm_cpuid_entry2 *c;
1771 uint32_t signature[3];
1772 int kvm_base = KVM_CPUID_SIGNATURE;
1773 int max_nested_state_len;
1774 int r;
1775 Error *local_err = NULL;
1776
1777 memset(&cpuid_data, 0, sizeof(cpuid_data));
1778
1779 cpuid_i = 0;
1780
1781 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1782
1783 r = kvm_arch_set_tsc_khz(cs);
1784 if (r < 0) {
1785 return r;
1786 }
1787
1788
1789
1790
1791
1792
1793 if (!env->tsc_khz) {
1794 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1795 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1796 -ENOTSUP;
1797 if (r > 0) {
1798 env->tsc_khz = r;
1799 }
1800 }
1801
1802 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1813 error_report_err(local_err);
1814 return -ENOSYS;
1815 }
1816
1817 if (hyperv_enabled(cpu)) {
1818 r = hyperv_init_vcpu(cpu);
1819 if (r) {
1820 return r;
1821 }
1822
1823 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1824 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1825 has_msr_hv_hypercall = true;
1826 }
1827
1828 if (cs->kvm_state->xen_version) {
1829#ifdef CONFIG_XEN_EMU
1830 struct kvm_cpuid_entry2 *xen_max_leaf;
1831
1832 memcpy(signature, "XenVMMXenVMM", 12);
1833
1834 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1835 c->function = kvm_base + XEN_CPUID_SIGNATURE;
1836 c->eax = kvm_base + XEN_CPUID_TIME;
1837 c->ebx = signature[0];
1838 c->ecx = signature[1];
1839 c->edx = signature[2];
1840
1841 c = &cpuid_data.entries[cpuid_i++];
1842 c->function = kvm_base + XEN_CPUID_VENDOR;
1843 c->eax = cs->kvm_state->xen_version;
1844 c->ebx = 0;
1845 c->ecx = 0;
1846 c->edx = 0;
1847
1848 c = &cpuid_data.entries[cpuid_i++];
1849 c->function = kvm_base + XEN_CPUID_HVM_MSR;
1850
1851 c->eax = 1;
1852
1853 if (hyperv_enabled(cpu)) {
1854 c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1855 kvm_xen_init(cs->kvm_state, c->ebx);
1856 } else {
1857 c->ebx = XEN_HYPERCALL_MSR;
1858 }
1859 c->ecx = 0;
1860 c->edx = 0;
1861
1862 c = &cpuid_data.entries[cpuid_i++];
1863 c->function = kvm_base + XEN_CPUID_TIME;
1864 c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1865 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1866
1867 c->ebx = 0;
1868
1869 c->ecx = env->user_tsc_khz;
1870
1871 c->edx = 0;
1872
1873 c = &cpuid_data.entries[cpuid_i++];
1874 c->function = kvm_base + XEN_CPUID_HVM;
1875 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1876 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1877 c->function = kvm_base + XEN_CPUID_HVM;
1878
1879 if (cpu->xen_vapic) {
1880 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1881 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1882 }
1883
1884 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1885
1886 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1887 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1888 c->ebx = cs->cpu_index;
1889 }
1890 }
1891
1892 r = kvm_xen_init_vcpu(cs);
1893 if (r) {
1894 return r;
1895 }
1896
1897 kvm_base += 0x100;
1898#else
1899
1900 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1901 abort();
1902#endif
1903 } else if (cpu->expose_kvm) {
1904 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1905 c = &cpuid_data.entries[cpuid_i++];
1906 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1907 c->eax = KVM_CPUID_FEATURES | kvm_base;
1908 c->ebx = signature[0];
1909 c->ecx = signature[1];
1910 c->edx = signature[2];
1911
1912 c = &cpuid_data.entries[cpuid_i++];
1913 c->function = KVM_CPUID_FEATURES | kvm_base;
1914 c->eax = env->features[FEAT_KVM];
1915 c->edx = env->features[FEAT_KVM_HINTS];
1916 }
1917
1918 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1919
1920 if (cpu->kvm_pv_enforce_cpuid) {
1921 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1922 if (r < 0) {
1923 fprintf(stderr,
1924 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1925 strerror(-r));
1926 abort();
1927 }
1928 }
1929
1930 for (i = 0; i <= limit; i++) {
1931 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1932 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1933 abort();
1934 }
1935 c = &cpuid_data.entries[cpuid_i++];
1936
1937 switch (i) {
1938 case 2: {
1939
1940 int times;
1941
1942 c->function = i;
1943 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1944 KVM_CPUID_FLAG_STATE_READ_NEXT;
1945 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1946 times = c->eax & 0xff;
1947
1948 for (j = 1; j < times; ++j) {
1949 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1950 fprintf(stderr, "cpuid_data is full, no space for "
1951 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1952 abort();
1953 }
1954 c = &cpuid_data.entries[cpuid_i++];
1955 c->function = i;
1956 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1957 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1958 }
1959 break;
1960 }
1961 case 0x1f:
1962 if (env->nr_dies < 2) {
1963 break;
1964 }
1965
1966 case 4:
1967 case 0xb:
1968 case 0xd:
1969 for (j = 0; ; j++) {
1970 if (i == 0xd && j == 64) {
1971 break;
1972 }
1973
1974 if (i == 0x1f && j == 64) {
1975 break;
1976 }
1977
1978 c->function = i;
1979 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1980 c->index = j;
1981 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1982
1983 if (i == 4 && c->eax == 0) {
1984 break;
1985 }
1986 if (i == 0xb && !(c->ecx & 0xff00)) {
1987 break;
1988 }
1989 if (i == 0x1f && !(c->ecx & 0xff00)) {
1990 break;
1991 }
1992 if (i == 0xd && c->eax == 0) {
1993 continue;
1994 }
1995 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1996 fprintf(stderr, "cpuid_data is full, no space for "
1997 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1998 abort();
1999 }
2000 c = &cpuid_data.entries[cpuid_i++];
2001 }
2002 break;
2003 case 0x7:
2004 case 0x12:
2005 for (j = 0; ; j++) {
2006 c->function = i;
2007 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2008 c->index = j;
2009 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2010
2011 if (j > 1 && (c->eax & 0xf) != 1) {
2012 break;
2013 }
2014
2015 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2016 fprintf(stderr, "cpuid_data is full, no space for "
2017 "cpuid(eax:0x12,ecx:0x%x)\n", j);
2018 abort();
2019 }
2020 c = &cpuid_data.entries[cpuid_i++];
2021 }
2022 break;
2023 case 0x14:
2024 case 0x1d:
2025 case 0x1e: {
2026 uint32_t times;
2027
2028 c->function = i;
2029 c->index = 0;
2030 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2031 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2032 times = c->eax;
2033
2034 for (j = 1; j <= times; ++j) {
2035 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2036 fprintf(stderr, "cpuid_data is full, no space for "
2037 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2038 abort();
2039 }
2040 c = &cpuid_data.entries[cpuid_i++];
2041 c->function = i;
2042 c->index = j;
2043 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2044 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2045 }
2046 break;
2047 }
2048 default:
2049 c->function = i;
2050 c->flags = 0;
2051 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2052 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2053
2054
2055
2056
2057 cpuid_i--;
2058 }
2059 break;
2060 }
2061 }
2062
2063 if (limit >= 0x0a) {
2064 uint32_t eax, edx;
2065
2066 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2067
2068 has_architectural_pmu_version = eax & 0xff;
2069 if (has_architectural_pmu_version > 0) {
2070 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2071
2072
2073
2074
2075
2076 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2077 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2078 }
2079
2080 if (has_architectural_pmu_version > 1) {
2081 num_architectural_pmu_fixed_counters = edx & 0x1f;
2082
2083 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2084 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2085 }
2086 }
2087 }
2088 }
2089
2090 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2091
2092 for (i = 0x80000000; i <= limit; i++) {
2093 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2094 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2095 abort();
2096 }
2097 c = &cpuid_data.entries[cpuid_i++];
2098
2099 switch (i) {
2100 case 0x8000001d:
2101
2102 for (j = 0; ; j++) {
2103 c->function = i;
2104 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2105 c->index = j;
2106 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2107
2108 if (c->eax == 0) {
2109 break;
2110 }
2111 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2112 fprintf(stderr, "cpuid_data is full, no space for "
2113 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2114 abort();
2115 }
2116 c = &cpuid_data.entries[cpuid_i++];
2117 }
2118 break;
2119 default:
2120 c->function = i;
2121 c->flags = 0;
2122 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2123 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2124
2125
2126
2127
2128 cpuid_i--;
2129 }
2130 break;
2131 }
2132 }
2133
2134
2135 if (env->cpuid_xlevel2 > 0) {
2136 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2137
2138 for (i = 0xC0000000; i <= limit; i++) {
2139 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2140 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2141 abort();
2142 }
2143 c = &cpuid_data.entries[cpuid_i++];
2144
2145 c->function = i;
2146 c->flags = 0;
2147 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2148 }
2149 }
2150
2151 cpuid_data.cpuid.nent = cpuid_i;
2152
2153 if (((env->cpuid_version >> 8)&0xF) >= 6
2154 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2155 (CPUID_MCE | CPUID_MCA)
2156 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2157 uint64_t mcg_cap, unsupported_caps;
2158 int banks;
2159 int ret;
2160
2161 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2162 if (ret < 0) {
2163 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2164 return ret;
2165 }
2166
2167 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2168 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2169 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2170 return -ENOTSUP;
2171 }
2172
2173 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2174 if (unsupported_caps) {
2175 if (unsupported_caps & MCG_LMCE_P) {
2176 error_report("kvm: LMCE not supported");
2177 return -ENOTSUP;
2178 }
2179 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2180 unsupported_caps);
2181 }
2182
2183 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2184 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2185 if (ret < 0) {
2186 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2187 return ret;
2188 }
2189 }
2190
2191 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2192
2193 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2194 if (c) {
2195 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2196 !!(c->ecx & CPUID_EXT_SMX);
2197 }
2198
2199 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2200 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2201 has_msr_feature_control = true;
2202 }
2203
2204 if (env->mcg_cap & MCG_LMCE_P) {
2205 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2206 }
2207
2208 if (!env->user_tsc_khz) {
2209 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2210 invtsc_mig_blocker == NULL) {
2211 error_setg(&invtsc_mig_blocker,
2212 "State blocked by non-migratable CPU device"
2213 " (invtsc flag)");
2214 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2215 if (r < 0) {
2216 error_report_err(local_err);
2217 return r;
2218 }
2219 }
2220 }
2221
2222 if (cpu->vmware_cpuid_freq
2223
2224
2225 && cpu->expose_kvm
2226 && kvm_base == KVM_CPUID_SIGNATURE
2227
2228 && tsc_is_stable_and_known(env)) {
2229
2230 c = &cpuid_data.entries[cpuid_i++];
2231 c->function = KVM_CPUID_SIGNATURE | 0x10;
2232 c->eax = env->tsc_khz;
2233 c->ebx = env->apic_bus_freq / 1000;
2234 c->ecx = c->edx = 0;
2235
2236 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2237 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2238 }
2239
2240 cpuid_data.cpuid.nent = cpuid_i;
2241
2242 cpuid_data.cpuid.padding = 0;
2243 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2244 if (r) {
2245 goto fail;
2246 }
2247 kvm_init_xsave(env);
2248
2249 max_nested_state_len = kvm_max_nested_state_length();
2250 if (max_nested_state_len > 0) {
2251 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2252
2253 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2254 env->nested_state = g_malloc0(max_nested_state_len);
2255 env->nested_state->size = max_nested_state_len;
2256
2257 kvm_init_nested_state(env);
2258 }
2259 }
2260
2261 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2262
2263 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2264 has_msr_tsc_aux = false;
2265 }
2266
2267 kvm_init_msrs(cpu);
2268
2269 return 0;
2270
2271 fail:
2272 migrate_del_blocker(invtsc_mig_blocker);
2273
2274 return r;
2275}
2276
2277int kvm_arch_destroy_vcpu(CPUState *cs)
2278{
2279 X86CPU *cpu = X86_CPU(cs);
2280 CPUX86State *env = &cpu->env;
2281
2282 g_free(env->xsave_buf);
2283
2284 g_free(cpu->kvm_msr_buf);
2285 cpu->kvm_msr_buf = NULL;
2286
2287 g_free(env->nested_state);
2288 env->nested_state = NULL;
2289
2290 qemu_del_vm_change_state_handler(cpu->vmsentry);
2291
2292 return 0;
2293}
2294
2295void kvm_arch_reset_vcpu(X86CPU *cpu)
2296{
2297 CPUX86State *env = &cpu->env;
2298
2299 env->xcr0 = 1;
2300 if (kvm_irqchip_in_kernel()) {
2301 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2302 KVM_MP_STATE_UNINITIALIZED;
2303 } else {
2304 env->mp_state = KVM_MP_STATE_RUNNABLE;
2305 }
2306
2307
2308 env->poll_control_msr = 1;
2309
2310 kvm_init_nested_state(env);
2311
2312 sev_es_set_reset_vector(CPU(cpu));
2313}
2314
2315void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2316{
2317 CPUX86State *env = &cpu->env;
2318 int i;
2319
2320
2321
2322
2323
2324 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2325 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2326 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2327 }
2328
2329 hyperv_x86_synic_reset(cpu);
2330 }
2331}
2332
2333void kvm_arch_do_init_vcpu(X86CPU *cpu)
2334{
2335 CPUX86State *env = &cpu->env;
2336
2337
2338 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2339 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2340 }
2341}
2342
2343static int kvm_get_supported_feature_msrs(KVMState *s)
2344{
2345 int ret = 0;
2346
2347 if (kvm_feature_msrs != NULL) {
2348 return 0;
2349 }
2350
2351 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2352 return 0;
2353 }
2354
2355 struct kvm_msr_list msr_list;
2356
2357 msr_list.nmsrs = 0;
2358 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2359 if (ret < 0 && ret != -E2BIG) {
2360 error_report("Fetch KVM feature MSR list failed: %s",
2361 strerror(-ret));
2362 return ret;
2363 }
2364
2365 assert(msr_list.nmsrs > 0);
2366 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2367 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2368
2369 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2370 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2371
2372 if (ret < 0) {
2373 error_report("Fetch KVM feature MSR list failed: %s",
2374 strerror(-ret));
2375 g_free(kvm_feature_msrs);
2376 kvm_feature_msrs = NULL;
2377 return ret;
2378 }
2379
2380 return 0;
2381}
2382
2383static int kvm_get_supported_msrs(KVMState *s)
2384{
2385 int ret = 0;
2386 struct kvm_msr_list msr_list, *kvm_msr_list;
2387
2388
2389
2390
2391
2392 msr_list.nmsrs = 0;
2393 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2394 if (ret < 0 && ret != -E2BIG) {
2395 return ret;
2396 }
2397
2398
2399
2400
2401 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2402 msr_list.nmsrs *
2403 sizeof(msr_list.indices[0])));
2404
2405 kvm_msr_list->nmsrs = msr_list.nmsrs;
2406 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2407 if (ret >= 0) {
2408 int i;
2409
2410 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2411 switch (kvm_msr_list->indices[i]) {
2412 case MSR_STAR:
2413 has_msr_star = true;
2414 break;
2415 case MSR_VM_HSAVE_PA:
2416 has_msr_hsave_pa = true;
2417 break;
2418 case MSR_TSC_AUX:
2419 has_msr_tsc_aux = true;
2420 break;
2421 case MSR_TSC_ADJUST:
2422 has_msr_tsc_adjust = true;
2423 break;
2424 case MSR_IA32_TSCDEADLINE:
2425 has_msr_tsc_deadline = true;
2426 break;
2427 case MSR_IA32_SMBASE:
2428 has_msr_smbase = true;
2429 break;
2430 case MSR_SMI_COUNT:
2431 has_msr_smi_count = true;
2432 break;
2433 case MSR_IA32_MISC_ENABLE:
2434 has_msr_misc_enable = true;
2435 break;
2436 case MSR_IA32_BNDCFGS:
2437 has_msr_bndcfgs = true;
2438 break;
2439 case MSR_IA32_XSS:
2440 has_msr_xss = true;
2441 break;
2442 case MSR_IA32_UMWAIT_CONTROL:
2443 has_msr_umwait = true;
2444 break;
2445 case HV_X64_MSR_CRASH_CTL:
2446 has_msr_hv_crash = true;
2447 break;
2448 case HV_X64_MSR_RESET:
2449 has_msr_hv_reset = true;
2450 break;
2451 case HV_X64_MSR_VP_INDEX:
2452 has_msr_hv_vpindex = true;
2453 break;
2454 case HV_X64_MSR_VP_RUNTIME:
2455 has_msr_hv_runtime = true;
2456 break;
2457 case HV_X64_MSR_SCONTROL:
2458 has_msr_hv_synic = true;
2459 break;
2460 case HV_X64_MSR_STIMER0_CONFIG:
2461 has_msr_hv_stimer = true;
2462 break;
2463 case HV_X64_MSR_TSC_FREQUENCY:
2464 has_msr_hv_frequencies = true;
2465 break;
2466 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2467 has_msr_hv_reenlightenment = true;
2468 break;
2469 case HV_X64_MSR_SYNDBG_OPTIONS:
2470 has_msr_hv_syndbg_options = true;
2471 break;
2472 case MSR_IA32_SPEC_CTRL:
2473 has_msr_spec_ctrl = true;
2474 break;
2475 case MSR_AMD64_TSC_RATIO:
2476 has_tsc_scale_msr = true;
2477 break;
2478 case MSR_IA32_TSX_CTRL:
2479 has_msr_tsx_ctrl = true;
2480 break;
2481 case MSR_VIRT_SSBD:
2482 has_msr_virt_ssbd = true;
2483 break;
2484 case MSR_IA32_ARCH_CAPABILITIES:
2485 has_msr_arch_capabs = true;
2486 break;
2487 case MSR_IA32_CORE_CAPABILITY:
2488 has_msr_core_capabs = true;
2489 break;
2490 case MSR_IA32_PERF_CAPABILITIES:
2491 has_msr_perf_capabs = true;
2492 break;
2493 case MSR_IA32_VMX_VMFUNC:
2494 has_msr_vmx_vmfunc = true;
2495 break;
2496 case MSR_IA32_UCODE_REV:
2497 has_msr_ucode_rev = true;
2498 break;
2499 case MSR_IA32_VMX_PROCBASED_CTLS2:
2500 has_msr_vmx_procbased_ctls2 = true;
2501 break;
2502 case MSR_IA32_PKRS:
2503 has_msr_pkrs = true;
2504 break;
2505 }
2506 }
2507 }
2508
2509 g_free(kvm_msr_list);
2510
2511 return ret;
2512}
2513
2514static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2515 uint64_t *val)
2516{
2517 CPUState *cs = CPU(cpu);
2518
2519 *val = cs->nr_threads * cs->nr_cores;
2520 *val |= ((uint32_t)cs->nr_cores << 16);
2521
2522 return true;
2523}
2524
2525static Notifier smram_machine_done;
2526static KVMMemoryListener smram_listener;
2527static AddressSpace smram_address_space;
2528static MemoryRegion smram_as_root;
2529static MemoryRegion smram_as_mem;
2530
2531static void register_smram_listener(Notifier *n, void *unused)
2532{
2533 MemoryRegion *smram =
2534 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2535
2536
2537 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2538 memory_region_set_enabled(&smram_as_root, true);
2539
2540
2541
2542
2543 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2544 get_system_memory(), 0, ~0ull);
2545 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2546 memory_region_set_enabled(&smram_as_mem, true);
2547
2548 if (smram) {
2549
2550 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2551 memory_region_set_enabled(smram, true);
2552 }
2553
2554 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2555 kvm_memory_listener_register(kvm_state, &smram_listener,
2556 &smram_address_space, 1, "kvm-smram");
2557}
2558
2559int kvm_arch_init(MachineState *ms, KVMState *s)
2560{
2561 uint64_t identity_base = 0xfffbc000;
2562 uint64_t shadow_mem;
2563 int ret;
2564 struct utsname utsname;
2565 Error *local_err = NULL;
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579 ret = sev_kvm_init(ms->cgs, &local_err);
2580 if (ret < 0) {
2581 error_report_err(local_err);
2582 return ret;
2583 }
2584
2585 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2586 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2587 return -ENOTSUP;
2588 }
2589
2590 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2591 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2592 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2593 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2594
2595 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2596
2597 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2598 if (has_exception_payload) {
2599 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2600 if (ret < 0) {
2601 error_report("kvm: Failed to enable exception payload cap: %s",
2602 strerror(-ret));
2603 return ret;
2604 }
2605 }
2606
2607 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2608 if (has_triple_fault_event) {
2609 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2610 if (ret < 0) {
2611 error_report("kvm: Failed to enable triple fault event cap: %s",
2612 strerror(-ret));
2613 return ret;
2614 }
2615 }
2616
2617 if (s->xen_version) {
2618#ifdef CONFIG_XEN_EMU
2619 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2620 error_report("kvm: Xen support only available in PC machine");
2621 return -ENOTSUP;
2622 }
2623
2624 uint32_t msr = XEN_HYPERCALL_MSR;
2625 ret = kvm_xen_init(s, msr);
2626 if (ret < 0) {
2627 return ret;
2628 }
2629#else
2630 error_report("kvm: Xen support not enabled in qemu");
2631 return -ENOTSUP;
2632#endif
2633 }
2634
2635 ret = kvm_get_supported_msrs(s);
2636 if (ret < 0) {
2637 return ret;
2638 }
2639
2640 kvm_get_supported_feature_msrs(s);
2641
2642 uname(&utsname);
2643 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2657
2658 identity_base = 0xfeffc000;
2659
2660 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2661 if (ret < 0) {
2662 return ret;
2663 }
2664 }
2665
2666
2667 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2668 if (ret < 0) {
2669 return ret;
2670 }
2671
2672
2673 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2674 if (ret < 0) {
2675 fprintf(stderr, "e820_add_entry() table is full\n");
2676 return ret;
2677 }
2678
2679 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2680 if (shadow_mem != -1) {
2681 shadow_mem /= 4096;
2682 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2683 if (ret < 0) {
2684 return ret;
2685 }
2686 }
2687
2688 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2689 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2690 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2691 smram_machine_done.notify = register_smram_listener;
2692 qemu_add_machine_init_done_notifier(&smram_machine_done);
2693 }
2694
2695 if (enable_cpu_pm) {
2696 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2697 int ret;
2698
2699
2700#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2701#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2702#endif
2703 if (disable_exits) {
2704 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2705 KVM_X86_DISABLE_EXITS_HLT |
2706 KVM_X86_DISABLE_EXITS_PAUSE |
2707 KVM_X86_DISABLE_EXITS_CSTATE);
2708 }
2709
2710 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2711 disable_exits);
2712 if (ret < 0) {
2713 error_report("kvm: guest stopping CPU not supported: %s",
2714 strerror(-ret));
2715 }
2716 }
2717
2718 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2719 X86MachineState *x86ms = X86_MACHINE(ms);
2720
2721 if (x86ms->bus_lock_ratelimit > 0) {
2722 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2723 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2724 error_report("kvm: bus lock detection unsupported");
2725 return -ENOTSUP;
2726 }
2727 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2728 KVM_BUS_LOCK_DETECTION_EXIT);
2729 if (ret < 0) {
2730 error_report("kvm: Failed to enable bus lock detection cap: %s",
2731 strerror(-ret));
2732 return ret;
2733 }
2734 ratelimit_init(&bus_lock_ratelimit_ctrl);
2735 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2736 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2737 }
2738 }
2739
2740 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2741 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2742 uint64_t notify_window_flags =
2743 ((uint64_t)s->notify_window << 32) |
2744 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2745 KVM_X86_NOTIFY_VMEXIT_USER;
2746 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2747 notify_window_flags);
2748 if (ret < 0) {
2749 error_report("kvm: Failed to enable notify vmexit cap: %s",
2750 strerror(-ret));
2751 return ret;
2752 }
2753 }
2754 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2755 bool r;
2756
2757 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2758 KVM_MSR_EXIT_REASON_FILTER);
2759 if (ret) {
2760 error_report("Could not enable user space MSRs: %s",
2761 strerror(-ret));
2762 exit(1);
2763 }
2764
2765 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2766 kvm_rdmsr_core_thread_count, NULL);
2767 if (!r) {
2768 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2769 strerror(-ret));
2770 exit(1);
2771 }
2772 }
2773
2774 return 0;
2775}
2776
2777static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2778{
2779 lhs->selector = rhs->selector;
2780 lhs->base = rhs->base;
2781 lhs->limit = rhs->limit;
2782 lhs->type = 3;
2783 lhs->present = 1;
2784 lhs->dpl = 3;
2785 lhs->db = 0;
2786 lhs->s = 1;
2787 lhs->l = 0;
2788 lhs->g = 0;
2789 lhs->avl = 0;
2790 lhs->unusable = 0;
2791}
2792
2793static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2794{
2795 unsigned flags = rhs->flags;
2796 lhs->selector = rhs->selector;
2797 lhs->base = rhs->base;
2798 lhs->limit = rhs->limit;
2799 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2800 lhs->present = (flags & DESC_P_MASK) != 0;
2801 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2802 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2803 lhs->s = (flags & DESC_S_MASK) != 0;
2804 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2805 lhs->g = (flags & DESC_G_MASK) != 0;
2806 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2807 lhs->unusable = !lhs->present;
2808 lhs->padding = 0;
2809}
2810
2811static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2812{
2813 lhs->selector = rhs->selector;
2814 lhs->base = rhs->base;
2815 lhs->limit = rhs->limit;
2816 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2817 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2818 (rhs->dpl << DESC_DPL_SHIFT) |
2819 (rhs->db << DESC_B_SHIFT) |
2820 (rhs->s * DESC_S_MASK) |
2821 (rhs->l << DESC_L_SHIFT) |
2822 (rhs->g * DESC_G_MASK) |
2823 (rhs->avl * DESC_AVL_MASK);
2824}
2825
2826static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2827{
2828 if (set) {
2829 *kvm_reg = *qemu_reg;
2830 } else {
2831 *qemu_reg = *kvm_reg;
2832 }
2833}
2834
2835static int kvm_getput_regs(X86CPU *cpu, int set)
2836{
2837 CPUX86State *env = &cpu->env;
2838 struct kvm_regs regs;
2839 int ret = 0;
2840
2841 if (!set) {
2842 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s);
2843 if (ret < 0) {
2844 return ret;
2845 }
2846 }
2847
2848 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
2849 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
2850 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
2851 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
2852 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
2853 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
2854 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
2855 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
2856#ifdef TARGET_X86_64
2857 kvm_getput_reg(®s.r8, &env->regs[8], set);
2858 kvm_getput_reg(®s.r9, &env->regs[9], set);
2859 kvm_getput_reg(®s.r10, &env->regs[10], set);
2860 kvm_getput_reg(®s.r11, &env->regs[11], set);
2861 kvm_getput_reg(®s.r12, &env->regs[12], set);
2862 kvm_getput_reg(®s.r13, &env->regs[13], set);
2863 kvm_getput_reg(®s.r14, &env->regs[14], set);
2864 kvm_getput_reg(®s.r15, &env->regs[15], set);
2865#endif
2866
2867 kvm_getput_reg(®s.rflags, &env->eflags, set);
2868 kvm_getput_reg(®s.rip, &env->eip, set);
2869
2870 if (set) {
2871 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s);
2872 }
2873
2874 return ret;
2875}
2876
2877static int kvm_put_fpu(X86CPU *cpu)
2878{
2879 CPUX86State *env = &cpu->env;
2880 struct kvm_fpu fpu;
2881 int i;
2882
2883 memset(&fpu, 0, sizeof fpu);
2884 fpu.fsw = env->fpus & ~(7 << 11);
2885 fpu.fsw |= (env->fpstt & 7) << 11;
2886 fpu.fcw = env->fpuc;
2887 fpu.last_opcode = env->fpop;
2888 fpu.last_ip = env->fpip;
2889 fpu.last_dp = env->fpdp;
2890 for (i = 0; i < 8; ++i) {
2891 fpu.ftwx |= (!env->fptags[i]) << i;
2892 }
2893 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2894 for (i = 0; i < CPU_NB_REGS; i++) {
2895 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2896 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2897 }
2898 fpu.mxcsr = env->mxcsr;
2899
2900 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2901}
2902
2903static int kvm_put_xsave(X86CPU *cpu)
2904{
2905 CPUX86State *env = &cpu->env;
2906 void *xsave = env->xsave_buf;
2907
2908 if (!has_xsave) {
2909 return kvm_put_fpu(cpu);
2910 }
2911 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2912
2913 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2914}
2915
2916static int kvm_put_xcrs(X86CPU *cpu)
2917{
2918 CPUX86State *env = &cpu->env;
2919 struct kvm_xcrs xcrs = {};
2920
2921 if (!has_xcrs) {
2922 return 0;
2923 }
2924
2925 xcrs.nr_xcrs = 1;
2926 xcrs.flags = 0;
2927 xcrs.xcrs[0].xcr = 0;
2928 xcrs.xcrs[0].value = env->xcr0;
2929 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2930}
2931
2932static int kvm_put_sregs(X86CPU *cpu)
2933{
2934 CPUX86State *env = &cpu->env;
2935 struct kvm_sregs sregs;
2936
2937
2938
2939
2940
2941 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2942
2943 if ((env->eflags & VM_MASK)) {
2944 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2945 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2946 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2947 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2948 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2949 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2950 } else {
2951 set_seg(&sregs.cs, &env->segs[R_CS]);
2952 set_seg(&sregs.ds, &env->segs[R_DS]);
2953 set_seg(&sregs.es, &env->segs[R_ES]);
2954 set_seg(&sregs.fs, &env->segs[R_FS]);
2955 set_seg(&sregs.gs, &env->segs[R_GS]);
2956 set_seg(&sregs.ss, &env->segs[R_SS]);
2957 }
2958
2959 set_seg(&sregs.tr, &env->tr);
2960 set_seg(&sregs.ldt, &env->ldt);
2961
2962 sregs.idt.limit = env->idt.limit;
2963 sregs.idt.base = env->idt.base;
2964 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2965 sregs.gdt.limit = env->gdt.limit;
2966 sregs.gdt.base = env->gdt.base;
2967 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2968
2969 sregs.cr0 = env->cr[0];
2970 sregs.cr2 = env->cr[2];
2971 sregs.cr3 = env->cr[3];
2972 sregs.cr4 = env->cr[4];
2973
2974 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2975 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2976
2977 sregs.efer = env->efer;
2978
2979 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2980}
2981
2982static int kvm_put_sregs2(X86CPU *cpu)
2983{
2984 CPUX86State *env = &cpu->env;
2985 struct kvm_sregs2 sregs;
2986 int i;
2987
2988 sregs.flags = 0;
2989
2990 if ((env->eflags & VM_MASK)) {
2991 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2992 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2993 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2994 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2995 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2996 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2997 } else {
2998 set_seg(&sregs.cs, &env->segs[R_CS]);
2999 set_seg(&sregs.ds, &env->segs[R_DS]);
3000 set_seg(&sregs.es, &env->segs[R_ES]);
3001 set_seg(&sregs.fs, &env->segs[R_FS]);
3002 set_seg(&sregs.gs, &env->segs[R_GS]);
3003 set_seg(&sregs.ss, &env->segs[R_SS]);
3004 }
3005
3006 set_seg(&sregs.tr, &env->tr);
3007 set_seg(&sregs.ldt, &env->ldt);
3008
3009 sregs.idt.limit = env->idt.limit;
3010 sregs.idt.base = env->idt.base;
3011 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3012 sregs.gdt.limit = env->gdt.limit;
3013 sregs.gdt.base = env->gdt.base;
3014 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3015
3016 sregs.cr0 = env->cr[0];
3017 sregs.cr2 = env->cr[2];
3018 sregs.cr3 = env->cr[3];
3019 sregs.cr4 = env->cr[4];
3020
3021 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3022 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3023
3024 sregs.efer = env->efer;
3025
3026 if (env->pdptrs_valid) {
3027 for (i = 0; i < 4; i++) {
3028 sregs.pdptrs[i] = env->pdptrs[i];
3029 }
3030 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3031 }
3032
3033 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3034}
3035
3036
3037static void kvm_msr_buf_reset(X86CPU *cpu)
3038{
3039 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3040}
3041
3042static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3043{
3044 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3045 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3046 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3047
3048 assert((void *)(entry + 1) <= limit);
3049
3050 entry->index = index;
3051 entry->reserved = 0;
3052 entry->data = value;
3053 msrs->nmsrs++;
3054}
3055
3056static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3057{
3058 kvm_msr_buf_reset(cpu);
3059 kvm_msr_entry_add(cpu, index, value);
3060
3061 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3062}
3063
3064static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3065{
3066 int ret;
3067 struct {
3068 struct kvm_msrs info;
3069 struct kvm_msr_entry entries[1];
3070 } msr_data = {
3071 .info.nmsrs = 1,
3072 .entries[0].index = index,
3073 };
3074
3075 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3076 if (ret < 0) {
3077 return ret;
3078 }
3079 assert(ret == 1);
3080 *value = msr_data.entries[0].data;
3081 return ret;
3082}
3083void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3084{
3085 int ret;
3086
3087 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3088 assert(ret == 1);
3089}
3090
3091static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3092{
3093 CPUX86State *env = &cpu->env;
3094 int ret;
3095
3096 if (!has_msr_tsc_deadline) {
3097 return 0;
3098 }
3099
3100 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3101 if (ret < 0) {
3102 return ret;
3103 }
3104
3105 assert(ret == 1);
3106 return 0;
3107}
3108
3109
3110
3111
3112
3113
3114
3115static int kvm_put_msr_feature_control(X86CPU *cpu)
3116{
3117 int ret;
3118
3119 if (!has_msr_feature_control) {
3120 return 0;
3121 }
3122
3123 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3124 cpu->env.msr_ia32_feature_control);
3125 if (ret < 0) {
3126 return ret;
3127 }
3128
3129 assert(ret == 1);
3130 return 0;
3131}
3132
3133static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3134{
3135 uint32_t default1, can_be_one, can_be_zero;
3136 uint32_t must_be_one;
3137
3138 switch (index) {
3139 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3140 default1 = 0x00000016;
3141 break;
3142 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3143 default1 = 0x0401e172;
3144 break;
3145 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3146 default1 = 0x000011ff;
3147 break;
3148 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3149 default1 = 0x00036dff;
3150 break;
3151 case MSR_IA32_VMX_PROCBASED_CTLS2:
3152 default1 = 0;
3153 break;
3154 default:
3155 abort();
3156 }
3157
3158
3159
3160
3161 can_be_one = features | default1;
3162 can_be_zero = features | ~default1;
3163 must_be_one = ~can_be_zero;
3164
3165
3166
3167
3168
3169 return must_be_one | (((uint64_t)can_be_one) << 32);
3170}
3171
3172static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3173{
3174 uint64_t kvm_vmx_basic =
3175 kvm_arch_get_supported_msr_feature(kvm_state,
3176 MSR_IA32_VMX_BASIC);
3177
3178 if (!kvm_vmx_basic) {
3179
3180
3181
3182 return;
3183 }
3184
3185 uint64_t kvm_vmx_misc =
3186 kvm_arch_get_supported_msr_feature(kvm_state,
3187 MSR_IA32_VMX_MISC);
3188 uint64_t kvm_vmx_ept_vpid =
3189 kvm_arch_get_supported_msr_feature(kvm_state,
3190 MSR_IA32_VMX_EPT_VPID_CAP);
3191
3192
3193
3194
3195
3196 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3197 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3198
3199
3200
3201
3202
3203 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3204 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3205 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3206 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3207
3208
3209
3210
3211
3212
3213
3214
3215 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3216 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3217 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3218
3219
3220
3221
3222
3223 uint64_t fixed_vmx_ept_mask =
3224 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3225 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3226 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3227
3228 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3229 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3230 f[FEAT_VMX_PROCBASED_CTLS]));
3231 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3232 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3233 f[FEAT_VMX_PINBASED_CTLS]));
3234 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3235 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3236 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3237 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3238 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3239 f[FEAT_VMX_ENTRY_CTLS]));
3240 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3241 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3242 f[FEAT_VMX_SECONDARY_CTLS]));
3243 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3244 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3245 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3246 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3247 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3248 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3249 if (has_msr_vmx_vmfunc) {
3250 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3251 }
3252
3253
3254
3255
3256
3257 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3258 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3259 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3260 CR4_VMXE_MASK);
3261
3262 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3263
3264 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3265 } else {
3266
3267 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3268 }
3269}
3270
3271static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3272{
3273 uint64_t kvm_perf_cap =
3274 kvm_arch_get_supported_msr_feature(kvm_state,
3275 MSR_IA32_PERF_CAPABILITIES);
3276
3277 if (kvm_perf_cap) {
3278 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3279 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3280 }
3281}
3282
3283static int kvm_buf_set_msrs(X86CPU *cpu)
3284{
3285 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3286 if (ret < 0) {
3287 return ret;
3288 }
3289
3290 if (ret < cpu->kvm_msr_buf->nmsrs) {
3291 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3292 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3293 (uint32_t)e->index, (uint64_t)e->data);
3294 }
3295
3296 assert(ret == cpu->kvm_msr_buf->nmsrs);
3297 return 0;
3298}
3299
3300static void kvm_init_msrs(X86CPU *cpu)
3301{
3302 CPUX86State *env = &cpu->env;
3303
3304 kvm_msr_buf_reset(cpu);
3305 if (has_msr_arch_capabs) {
3306 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3307 env->features[FEAT_ARCH_CAPABILITIES]);
3308 }
3309
3310 if (has_msr_core_capabs) {
3311 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3312 env->features[FEAT_CORE_CAPABILITY]);
3313 }
3314
3315 if (has_msr_perf_capabs && cpu->enable_pmu) {
3316 kvm_msr_entry_add_perf(cpu, env->features);
3317 }
3318
3319 if (has_msr_ucode_rev) {
3320 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3321 }
3322
3323
3324
3325
3326
3327 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3328 kvm_msr_entry_add_vmx(cpu, env->features);
3329 }
3330
3331 assert(kvm_buf_set_msrs(cpu) == 0);
3332}
3333
3334static int kvm_put_msrs(X86CPU *cpu, int level)
3335{
3336 CPUX86State *env = &cpu->env;
3337 int i;
3338
3339 kvm_msr_buf_reset(cpu);
3340
3341 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3342 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3343 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3344 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3345 if (has_msr_star) {
3346 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3347 }
3348 if (has_msr_hsave_pa) {
3349 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3350 }
3351 if (has_msr_tsc_aux) {
3352 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3353 }
3354 if (has_msr_tsc_adjust) {
3355 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3356 }
3357 if (has_msr_misc_enable) {
3358 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3359 env->msr_ia32_misc_enable);
3360 }
3361 if (has_msr_smbase) {
3362 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3363 }
3364 if (has_msr_smi_count) {
3365 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3366 }
3367 if (has_msr_pkrs) {
3368 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3369 }
3370 if (has_msr_bndcfgs) {
3371 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3372 }
3373 if (has_msr_xss) {
3374 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3375 }
3376 if (has_msr_umwait) {
3377 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3378 }
3379 if (has_msr_spec_ctrl) {
3380 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3381 }
3382 if (has_tsc_scale_msr) {
3383 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3384 }
3385
3386 if (has_msr_tsx_ctrl) {
3387 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3388 }
3389 if (has_msr_virt_ssbd) {
3390 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3391 }
3392
3393#ifdef TARGET_X86_64
3394 if (lm_capable_kernel) {
3395 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3396 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3397 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3398 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3399 }
3400#endif
3401
3402
3403
3404
3405
3406 if (level >= KVM_PUT_RESET_STATE) {
3407 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3408 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3409 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3410 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3411 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3412 }
3413 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3414 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3415 }
3416 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3417 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3418 }
3419 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3420 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3421 }
3422
3423 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3424 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3425 }
3426
3427 if (has_architectural_pmu_version > 0) {
3428 if (has_architectural_pmu_version > 1) {
3429
3430 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3431 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3432 }
3433
3434
3435 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3437 env->msr_fixed_counters[i]);
3438 }
3439 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3440 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3441 env->msr_gp_counters[i]);
3442 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3443 env->msr_gp_evtsel[i]);
3444 }
3445 if (has_architectural_pmu_version > 1) {
3446 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3447 env->msr_global_status);
3448 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3449 env->msr_global_ovf_ctrl);
3450
3451
3452 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3453 env->msr_fixed_ctr_ctrl);
3454 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3455 env->msr_global_ctrl);
3456 }
3457 }
3458
3459
3460
3461
3462 if (current_cpu == first_cpu) {
3463 if (has_msr_hv_hypercall) {
3464 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3465 env->msr_hv_guest_os_id);
3466 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3467 env->msr_hv_hypercall);
3468 }
3469 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3470 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3471 env->msr_hv_tsc);
3472 }
3473 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3474 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3475 env->msr_hv_reenlightenment_control);
3476 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3477 env->msr_hv_tsc_emulation_control);
3478 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3479 env->msr_hv_tsc_emulation_status);
3480 }
3481#ifdef CONFIG_SYNDBG
3482 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3483 has_msr_hv_syndbg_options) {
3484 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3485 hyperv_syndbg_query_options());
3486 }
3487#endif
3488 }
3489 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3490 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3491 env->msr_hv_vapic);
3492 }
3493 if (has_msr_hv_crash) {
3494 int j;
3495
3496 for (j = 0; j < HV_CRASH_PARAMS; j++)
3497 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3498 env->msr_hv_crash_params[j]);
3499
3500 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3501 }
3502 if (has_msr_hv_runtime) {
3503 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3504 }
3505 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3506 && hv_vpindex_settable) {
3507 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3508 hyperv_vp_index(CPU(cpu)));
3509 }
3510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3511 int j;
3512
3513 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3514
3515 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3516 env->msr_hv_synic_control);
3517 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3518 env->msr_hv_synic_evt_page);
3519 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3520 env->msr_hv_synic_msg_page);
3521
3522 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3523 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3524 env->msr_hv_synic_sint[j]);
3525 }
3526 }
3527 if (has_msr_hv_stimer) {
3528 int j;
3529
3530 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3531 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3532 env->msr_hv_stimer_config[j]);
3533 }
3534
3535 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3536 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3537 env->msr_hv_stimer_count[j]);
3538 }
3539 }
3540 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3541 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3542
3543 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3544 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3545 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3546 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3547 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3548 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3549 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3550 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3551 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3552 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3553 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3554 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3555 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3556
3557
3558
3559 uint64_t mask = env->mtrr_var[i].mask;
3560 mask &= phys_mask;
3561
3562 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3563 env->mtrr_var[i].base);
3564 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3565 }
3566 }
3567 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3568 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3569 0x14, 1, R_EAX) & 0x7;
3570
3571 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3572 env->msr_rtit_ctrl);
3573 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3574 env->msr_rtit_status);
3575 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3576 env->msr_rtit_output_base);
3577 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3578 env->msr_rtit_output_mask);
3579 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3580 env->msr_rtit_cr3_match);
3581 for (i = 0; i < addr_num; i++) {
3582 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3583 env->msr_rtit_addrs[i]);
3584 }
3585 }
3586
3587 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3588 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3589 env->msr_ia32_sgxlepubkeyhash[0]);
3590 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3591 env->msr_ia32_sgxlepubkeyhash[1]);
3592 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3593 env->msr_ia32_sgxlepubkeyhash[2]);
3594 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3595 env->msr_ia32_sgxlepubkeyhash[3]);
3596 }
3597
3598 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3599 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3600 env->msr_xfd);
3601 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3602 env->msr_xfd_err);
3603 }
3604
3605 if (kvm_enabled() && cpu->enable_pmu &&
3606 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3607 uint64_t depth;
3608 int i, ret;
3609
3610
3611
3612
3613
3614
3615
3616 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3617
3618 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3619 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3620 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3621
3622 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3623 if (!env->lbr_records[i].from) {
3624 continue;
3625 }
3626 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3627 env->lbr_records[i].from);
3628 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3629 env->lbr_records[i].to);
3630 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3631 env->lbr_records[i].info);
3632 }
3633 }
3634 }
3635
3636
3637
3638 }
3639
3640 if (env->mcg_cap) {
3641 int i;
3642
3643 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3644 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3645 if (has_msr_mcg_ext_ctl) {
3646 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3647 }
3648 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3649 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3650 }
3651 }
3652
3653 return kvm_buf_set_msrs(cpu);
3654}
3655
3656
3657static int kvm_get_fpu(X86CPU *cpu)
3658{
3659 CPUX86State *env = &cpu->env;
3660 struct kvm_fpu fpu;
3661 int i, ret;
3662
3663 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3664 if (ret < 0) {
3665 return ret;
3666 }
3667
3668 env->fpstt = (fpu.fsw >> 11) & 7;
3669 env->fpus = fpu.fsw;
3670 env->fpuc = fpu.fcw;
3671 env->fpop = fpu.last_opcode;
3672 env->fpip = fpu.last_ip;
3673 env->fpdp = fpu.last_dp;
3674 for (i = 0; i < 8; ++i) {
3675 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3676 }
3677 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3678 for (i = 0; i < CPU_NB_REGS; i++) {
3679 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3680 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3681 }
3682 env->mxcsr = fpu.mxcsr;
3683
3684 return 0;
3685}
3686
3687static int kvm_get_xsave(X86CPU *cpu)
3688{
3689 CPUX86State *env = &cpu->env;
3690 void *xsave = env->xsave_buf;
3691 int type, ret;
3692
3693 if (!has_xsave) {
3694 return kvm_get_fpu(cpu);
3695 }
3696
3697 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3698 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3699 if (ret < 0) {
3700 return ret;
3701 }
3702 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3703
3704 return 0;
3705}
3706
3707static int kvm_get_xcrs(X86CPU *cpu)
3708{
3709 CPUX86State *env = &cpu->env;
3710 int i, ret;
3711 struct kvm_xcrs xcrs;
3712
3713 if (!has_xcrs) {
3714 return 0;
3715 }
3716
3717 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3718 if (ret < 0) {
3719 return ret;
3720 }
3721
3722 for (i = 0; i < xcrs.nr_xcrs; i++) {
3723
3724 if (xcrs.xcrs[i].xcr == 0) {
3725 env->xcr0 = xcrs.xcrs[i].value;
3726 break;
3727 }
3728 }
3729 return 0;
3730}
3731
3732static int kvm_get_sregs(X86CPU *cpu)
3733{
3734 CPUX86State *env = &cpu->env;
3735 struct kvm_sregs sregs;
3736 int ret;
3737
3738 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3739 if (ret < 0) {
3740 return ret;
3741 }
3742
3743
3744
3745
3746
3747
3748 get_seg(&env->segs[R_CS], &sregs.cs);
3749 get_seg(&env->segs[R_DS], &sregs.ds);
3750 get_seg(&env->segs[R_ES], &sregs.es);
3751 get_seg(&env->segs[R_FS], &sregs.fs);
3752 get_seg(&env->segs[R_GS], &sregs.gs);
3753 get_seg(&env->segs[R_SS], &sregs.ss);
3754
3755 get_seg(&env->tr, &sregs.tr);
3756 get_seg(&env->ldt, &sregs.ldt);
3757
3758 env->idt.limit = sregs.idt.limit;
3759 env->idt.base = sregs.idt.base;
3760 env->gdt.limit = sregs.gdt.limit;
3761 env->gdt.base = sregs.gdt.base;
3762
3763 env->cr[0] = sregs.cr0;
3764 env->cr[2] = sregs.cr2;
3765 env->cr[3] = sregs.cr3;
3766 env->cr[4] = sregs.cr4;
3767
3768 env->efer = sregs.efer;
3769
3770
3771 x86_update_hflags(env);
3772
3773 return 0;
3774}
3775
3776static int kvm_get_sregs2(X86CPU *cpu)
3777{
3778 CPUX86State *env = &cpu->env;
3779 struct kvm_sregs2 sregs;
3780 int i, ret;
3781
3782 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3783 if (ret < 0) {
3784 return ret;
3785 }
3786
3787 get_seg(&env->segs[R_CS], &sregs.cs);
3788 get_seg(&env->segs[R_DS], &sregs.ds);
3789 get_seg(&env->segs[R_ES], &sregs.es);
3790 get_seg(&env->segs[R_FS], &sregs.fs);
3791 get_seg(&env->segs[R_GS], &sregs.gs);
3792 get_seg(&env->segs[R_SS], &sregs.ss);
3793
3794 get_seg(&env->tr, &sregs.tr);
3795 get_seg(&env->ldt, &sregs.ldt);
3796
3797 env->idt.limit = sregs.idt.limit;
3798 env->idt.base = sregs.idt.base;
3799 env->gdt.limit = sregs.gdt.limit;
3800 env->gdt.base = sregs.gdt.base;
3801
3802 env->cr[0] = sregs.cr0;
3803 env->cr[2] = sregs.cr2;
3804 env->cr[3] = sregs.cr3;
3805 env->cr[4] = sregs.cr4;
3806
3807 env->efer = sregs.efer;
3808
3809 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3810
3811 if (env->pdptrs_valid) {
3812 for (i = 0; i < 4; i++) {
3813 env->pdptrs[i] = sregs.pdptrs[i];
3814 }
3815 }
3816
3817
3818 x86_update_hflags(env);
3819
3820 return 0;
3821}
3822
3823static int kvm_get_msrs(X86CPU *cpu)
3824{
3825 CPUX86State *env = &cpu->env;
3826 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3827 int ret, i;
3828 uint64_t mtrr_top_bits;
3829
3830 kvm_msr_buf_reset(cpu);
3831
3832 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3833 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3834 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3835 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3836 if (has_msr_star) {
3837 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3838 }
3839 if (has_msr_hsave_pa) {
3840 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3841 }
3842 if (has_msr_tsc_aux) {
3843 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3844 }
3845 if (has_msr_tsc_adjust) {
3846 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3847 }
3848 if (has_msr_tsc_deadline) {
3849 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3850 }
3851 if (has_msr_misc_enable) {
3852 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3853 }
3854 if (has_msr_smbase) {
3855 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3856 }
3857 if (has_msr_smi_count) {
3858 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3859 }
3860 if (has_msr_feature_control) {
3861 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3862 }
3863 if (has_msr_pkrs) {
3864 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3865 }
3866 if (has_msr_bndcfgs) {
3867 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3868 }
3869 if (has_msr_xss) {
3870 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3871 }
3872 if (has_msr_umwait) {
3873 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3874 }
3875 if (has_msr_spec_ctrl) {
3876 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3877 }
3878 if (has_tsc_scale_msr) {
3879 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3880 }
3881
3882 if (has_msr_tsx_ctrl) {
3883 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3884 }
3885 if (has_msr_virt_ssbd) {
3886 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3887 }
3888 if (!env->tsc_valid) {
3889 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3890 env->tsc_valid = !runstate_is_running();
3891 }
3892
3893#ifdef TARGET_X86_64
3894 if (lm_capable_kernel) {
3895 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3896 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3897 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3898 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3899 }
3900#endif
3901 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3902 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3903 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3904 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3905 }
3906 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3907 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3908 }
3909 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3910 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3911 }
3912 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3913 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3914 }
3915 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3916 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3917 }
3918 if (has_architectural_pmu_version > 0) {
3919 if (has_architectural_pmu_version > 1) {
3920 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3921 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3922 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3923 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3924 }
3925 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3926 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3927 }
3928 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3929 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3930 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3931 }
3932 }
3933
3934 if (env->mcg_cap) {
3935 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3936 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3937 if (has_msr_mcg_ext_ctl) {
3938 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3939 }
3940 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3941 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3942 }
3943 }
3944
3945 if (has_msr_hv_hypercall) {
3946 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3947 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3948 }
3949 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3950 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3951 }
3952 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3953 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3954 }
3955 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3956 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3957 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3958 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3959 }
3960 if (has_msr_hv_syndbg_options) {
3961 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3962 }
3963 if (has_msr_hv_crash) {
3964 int j;
3965
3966 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3967 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3968 }
3969 }
3970 if (has_msr_hv_runtime) {
3971 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3972 }
3973 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3974 uint32_t msr;
3975
3976 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3977 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3978 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3979 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3980 kvm_msr_entry_add(cpu, msr, 0);
3981 }
3982 }
3983 if (has_msr_hv_stimer) {
3984 uint32_t msr;
3985
3986 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3987 msr++) {
3988 kvm_msr_entry_add(cpu, msr, 0);
3989 }
3990 }
3991 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3992 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3993 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3994 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3995 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4002 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4003 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4004 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4005 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4006 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4007 }
4008 }
4009
4010 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4011 int addr_num =
4012 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4013
4014 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4015 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4016 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4018 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4019 for (i = 0; i < addr_num; i++) {
4020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4021 }
4022 }
4023
4024 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4025 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4026 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4027 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4028 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4029 }
4030
4031 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4032 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4033 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4034 }
4035
4036 if (kvm_enabled() && cpu->enable_pmu &&
4037 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4038 uint64_t depth;
4039 int i, ret;
4040
4041 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4042 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4043 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4044 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4045
4046 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4047 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4048 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4049 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4050 }
4051 }
4052 }
4053
4054 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4055 if (ret < 0) {
4056 return ret;
4057 }
4058
4059 if (ret < cpu->kvm_msr_buf->nmsrs) {
4060 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4061 error_report("error: failed to get MSR 0x%" PRIx32,
4062 (uint32_t)e->index);
4063 }
4064
4065 assert(ret == cpu->kvm_msr_buf->nmsrs);
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082 if (cpu->fill_mtrr_mask) {
4083 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4084 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4085 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4086 } else {
4087 mtrr_top_bits = 0;
4088 }
4089
4090 for (i = 0; i < ret; i++) {
4091 uint32_t index = msrs[i].index;
4092 switch (index) {
4093 case MSR_IA32_SYSENTER_CS:
4094 env->sysenter_cs = msrs[i].data;
4095 break;
4096 case MSR_IA32_SYSENTER_ESP:
4097 env->sysenter_esp = msrs[i].data;
4098 break;
4099 case MSR_IA32_SYSENTER_EIP:
4100 env->sysenter_eip = msrs[i].data;
4101 break;
4102 case MSR_PAT:
4103 env->pat = msrs[i].data;
4104 break;
4105 case MSR_STAR:
4106 env->star = msrs[i].data;
4107 break;
4108#ifdef TARGET_X86_64
4109 case MSR_CSTAR:
4110 env->cstar = msrs[i].data;
4111 break;
4112 case MSR_KERNELGSBASE:
4113 env->kernelgsbase = msrs[i].data;
4114 break;
4115 case MSR_FMASK:
4116 env->fmask = msrs[i].data;
4117 break;
4118 case MSR_LSTAR:
4119 env->lstar = msrs[i].data;
4120 break;
4121#endif
4122 case MSR_IA32_TSC:
4123 env->tsc = msrs[i].data;
4124 break;
4125 case MSR_TSC_AUX:
4126 env->tsc_aux = msrs[i].data;
4127 break;
4128 case MSR_TSC_ADJUST:
4129 env->tsc_adjust = msrs[i].data;
4130 break;
4131 case MSR_IA32_TSCDEADLINE:
4132 env->tsc_deadline = msrs[i].data;
4133 break;
4134 case MSR_VM_HSAVE_PA:
4135 env->vm_hsave = msrs[i].data;
4136 break;
4137 case MSR_KVM_SYSTEM_TIME:
4138 env->system_time_msr = msrs[i].data;
4139 break;
4140 case MSR_KVM_WALL_CLOCK:
4141 env->wall_clock_msr = msrs[i].data;
4142 break;
4143 case MSR_MCG_STATUS:
4144 env->mcg_status = msrs[i].data;
4145 break;
4146 case MSR_MCG_CTL:
4147 env->mcg_ctl = msrs[i].data;
4148 break;
4149 case MSR_MCG_EXT_CTL:
4150 env->mcg_ext_ctl = msrs[i].data;
4151 break;
4152 case MSR_IA32_MISC_ENABLE:
4153 env->msr_ia32_misc_enable = msrs[i].data;
4154 break;
4155 case MSR_IA32_SMBASE:
4156 env->smbase = msrs[i].data;
4157 break;
4158 case MSR_SMI_COUNT:
4159 env->msr_smi_count = msrs[i].data;
4160 break;
4161 case MSR_IA32_FEATURE_CONTROL:
4162 env->msr_ia32_feature_control = msrs[i].data;
4163 break;
4164 case MSR_IA32_BNDCFGS:
4165 env->msr_bndcfgs = msrs[i].data;
4166 break;
4167 case MSR_IA32_XSS:
4168 env->xss = msrs[i].data;
4169 break;
4170 case MSR_IA32_UMWAIT_CONTROL:
4171 env->umwait = msrs[i].data;
4172 break;
4173 case MSR_IA32_PKRS:
4174 env->pkrs = msrs[i].data;
4175 break;
4176 default:
4177 if (msrs[i].index >= MSR_MC0_CTL &&
4178 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4179 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4180 }
4181 break;
4182 case MSR_KVM_ASYNC_PF_EN:
4183 env->async_pf_en_msr = msrs[i].data;
4184 break;
4185 case MSR_KVM_ASYNC_PF_INT:
4186 env->async_pf_int_msr = msrs[i].data;
4187 break;
4188 case MSR_KVM_PV_EOI_EN:
4189 env->pv_eoi_en_msr = msrs[i].data;
4190 break;
4191 case MSR_KVM_STEAL_TIME:
4192 env->steal_time_msr = msrs[i].data;
4193 break;
4194 case MSR_KVM_POLL_CONTROL: {
4195 env->poll_control_msr = msrs[i].data;
4196 break;
4197 }
4198 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4199 env->msr_fixed_ctr_ctrl = msrs[i].data;
4200 break;
4201 case MSR_CORE_PERF_GLOBAL_CTRL:
4202 env->msr_global_ctrl = msrs[i].data;
4203 break;
4204 case MSR_CORE_PERF_GLOBAL_STATUS:
4205 env->msr_global_status = msrs[i].data;
4206 break;
4207 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4208 env->msr_global_ovf_ctrl = msrs[i].data;
4209 break;
4210 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4211 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4212 break;
4213 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4214 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4215 break;
4216 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4217 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4218 break;
4219 case HV_X64_MSR_HYPERCALL:
4220 env->msr_hv_hypercall = msrs[i].data;
4221 break;
4222 case HV_X64_MSR_GUEST_OS_ID:
4223 env->msr_hv_guest_os_id = msrs[i].data;
4224 break;
4225 case HV_X64_MSR_APIC_ASSIST_PAGE:
4226 env->msr_hv_vapic = msrs[i].data;
4227 break;
4228 case HV_X64_MSR_REFERENCE_TSC:
4229 env->msr_hv_tsc = msrs[i].data;
4230 break;
4231 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4232 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4233 break;
4234 case HV_X64_MSR_VP_RUNTIME:
4235 env->msr_hv_runtime = msrs[i].data;
4236 break;
4237 case HV_X64_MSR_SCONTROL:
4238 env->msr_hv_synic_control = msrs[i].data;
4239 break;
4240 case HV_X64_MSR_SIEFP:
4241 env->msr_hv_synic_evt_page = msrs[i].data;
4242 break;
4243 case HV_X64_MSR_SIMP:
4244 env->msr_hv_synic_msg_page = msrs[i].data;
4245 break;
4246 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4247 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4248 break;
4249 case HV_X64_MSR_STIMER0_CONFIG:
4250 case HV_X64_MSR_STIMER1_CONFIG:
4251 case HV_X64_MSR_STIMER2_CONFIG:
4252 case HV_X64_MSR_STIMER3_CONFIG:
4253 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4254 msrs[i].data;
4255 break;
4256 case HV_X64_MSR_STIMER0_COUNT:
4257 case HV_X64_MSR_STIMER1_COUNT:
4258 case HV_X64_MSR_STIMER2_COUNT:
4259 case HV_X64_MSR_STIMER3_COUNT:
4260 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4261 msrs[i].data;
4262 break;
4263 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4264 env->msr_hv_reenlightenment_control = msrs[i].data;
4265 break;
4266 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4267 env->msr_hv_tsc_emulation_control = msrs[i].data;
4268 break;
4269 case HV_X64_MSR_TSC_EMULATION_STATUS:
4270 env->msr_hv_tsc_emulation_status = msrs[i].data;
4271 break;
4272 case HV_X64_MSR_SYNDBG_OPTIONS:
4273 env->msr_hv_syndbg_options = msrs[i].data;
4274 break;
4275 case MSR_MTRRdefType:
4276 env->mtrr_deftype = msrs[i].data;
4277 break;
4278 case MSR_MTRRfix64K_00000:
4279 env->mtrr_fixed[0] = msrs[i].data;
4280 break;
4281 case MSR_MTRRfix16K_80000:
4282 env->mtrr_fixed[1] = msrs[i].data;
4283 break;
4284 case MSR_MTRRfix16K_A0000:
4285 env->mtrr_fixed[2] = msrs[i].data;
4286 break;
4287 case MSR_MTRRfix4K_C0000:
4288 env->mtrr_fixed[3] = msrs[i].data;
4289 break;
4290 case MSR_MTRRfix4K_C8000:
4291 env->mtrr_fixed[4] = msrs[i].data;
4292 break;
4293 case MSR_MTRRfix4K_D0000:
4294 env->mtrr_fixed[5] = msrs[i].data;
4295 break;
4296 case MSR_MTRRfix4K_D8000:
4297 env->mtrr_fixed[6] = msrs[i].data;
4298 break;
4299 case MSR_MTRRfix4K_E0000:
4300 env->mtrr_fixed[7] = msrs[i].data;
4301 break;
4302 case MSR_MTRRfix4K_E8000:
4303 env->mtrr_fixed[8] = msrs[i].data;
4304 break;
4305 case MSR_MTRRfix4K_F0000:
4306 env->mtrr_fixed[9] = msrs[i].data;
4307 break;
4308 case MSR_MTRRfix4K_F8000:
4309 env->mtrr_fixed[10] = msrs[i].data;
4310 break;
4311 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4312 if (index & 1) {
4313 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4314 mtrr_top_bits;
4315 } else {
4316 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4317 }
4318 break;
4319 case MSR_IA32_SPEC_CTRL:
4320 env->spec_ctrl = msrs[i].data;
4321 break;
4322 case MSR_AMD64_TSC_RATIO:
4323 env->amd_tsc_scale_msr = msrs[i].data;
4324 break;
4325 case MSR_IA32_TSX_CTRL:
4326 env->tsx_ctrl = msrs[i].data;
4327 break;
4328 case MSR_VIRT_SSBD:
4329 env->virt_ssbd = msrs[i].data;
4330 break;
4331 case MSR_IA32_RTIT_CTL:
4332 env->msr_rtit_ctrl = msrs[i].data;
4333 break;
4334 case MSR_IA32_RTIT_STATUS:
4335 env->msr_rtit_status = msrs[i].data;
4336 break;
4337 case MSR_IA32_RTIT_OUTPUT_BASE:
4338 env->msr_rtit_output_base = msrs[i].data;
4339 break;
4340 case MSR_IA32_RTIT_OUTPUT_MASK:
4341 env->msr_rtit_output_mask = msrs[i].data;
4342 break;
4343 case MSR_IA32_RTIT_CR3_MATCH:
4344 env->msr_rtit_cr3_match = msrs[i].data;
4345 break;
4346 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4347 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4348 break;
4349 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4350 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4351 msrs[i].data;
4352 break;
4353 case MSR_IA32_XFD:
4354 env->msr_xfd = msrs[i].data;
4355 break;
4356 case MSR_IA32_XFD_ERR:
4357 env->msr_xfd_err = msrs[i].data;
4358 break;
4359 case MSR_ARCH_LBR_CTL:
4360 env->msr_lbr_ctl = msrs[i].data;
4361 break;
4362 case MSR_ARCH_LBR_DEPTH:
4363 env->msr_lbr_depth = msrs[i].data;
4364 break;
4365 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4366 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4367 break;
4368 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4369 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4370 break;
4371 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4372 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4373 break;
4374 }
4375 }
4376
4377 return 0;
4378}
4379
4380static int kvm_put_mp_state(X86CPU *cpu)
4381{
4382 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4383
4384 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4385}
4386
4387static int kvm_get_mp_state(X86CPU *cpu)
4388{
4389 CPUState *cs = CPU(cpu);
4390 CPUX86State *env = &cpu->env;
4391 struct kvm_mp_state mp_state;
4392 int ret;
4393
4394 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4395 if (ret < 0) {
4396 return ret;
4397 }
4398 env->mp_state = mp_state.mp_state;
4399 if (kvm_irqchip_in_kernel()) {
4400 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4401 }
4402 return 0;
4403}
4404
4405static int kvm_get_apic(X86CPU *cpu)
4406{
4407 DeviceState *apic = cpu->apic_state;
4408 struct kvm_lapic_state kapic;
4409 int ret;
4410
4411 if (apic && kvm_irqchip_in_kernel()) {
4412 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4413 if (ret < 0) {
4414 return ret;
4415 }
4416
4417 kvm_get_apic_state(apic, &kapic);
4418 }
4419 return 0;
4420}
4421
4422static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4423{
4424 CPUState *cs = CPU(cpu);
4425 CPUX86State *env = &cpu->env;
4426 struct kvm_vcpu_events events = {};
4427
4428 if (!kvm_has_vcpu_events()) {
4429 return 0;
4430 }
4431
4432 events.flags = 0;
4433
4434 if (has_exception_payload) {
4435 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4436 events.exception.pending = env->exception_pending;
4437 events.exception_has_payload = env->exception_has_payload;
4438 events.exception_payload = env->exception_payload;
4439 }
4440 events.exception.nr = env->exception_nr;
4441 events.exception.injected = env->exception_injected;
4442 events.exception.has_error_code = env->has_error_code;
4443 events.exception.error_code = env->error_code;
4444
4445 events.interrupt.injected = (env->interrupt_injected >= 0);
4446 events.interrupt.nr = env->interrupt_injected;
4447 events.interrupt.soft = env->soft_interrupt;
4448
4449 events.nmi.injected = env->nmi_injected;
4450 events.nmi.pending = env->nmi_pending;
4451 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4452
4453 events.sipi_vector = env->sipi_vector;
4454
4455 if (has_msr_smbase) {
4456 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4457 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4458 if (kvm_irqchip_in_kernel()) {
4459
4460
4461
4462 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4463 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4464 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4465 } else {
4466
4467 events.smi.pending = 0;
4468 events.smi.latched_init = 0;
4469 }
4470
4471
4472
4473 if (!cpu->kvm_no_smi_migration) {
4474 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4475 }
4476 }
4477
4478 if (level >= KVM_PUT_RESET_STATE) {
4479 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4480 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4481 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4482 }
4483 }
4484
4485 if (has_triple_fault_event) {
4486 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4487 events.triple_fault.pending = env->triple_fault_pending;
4488 }
4489
4490 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4491}
4492
4493static int kvm_get_vcpu_events(X86CPU *cpu)
4494{
4495 CPUX86State *env = &cpu->env;
4496 struct kvm_vcpu_events events;
4497 int ret;
4498
4499 if (!kvm_has_vcpu_events()) {
4500 return 0;
4501 }
4502
4503 memset(&events, 0, sizeof(events));
4504 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4505 if (ret < 0) {
4506 return ret;
4507 }
4508
4509 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4510 env->exception_pending = events.exception.pending;
4511 env->exception_has_payload = events.exception_has_payload;
4512 env->exception_payload = events.exception_payload;
4513 } else {
4514 env->exception_pending = 0;
4515 env->exception_has_payload = false;
4516 }
4517 env->exception_injected = events.exception.injected;
4518 env->exception_nr =
4519 (env->exception_pending || env->exception_injected) ?
4520 events.exception.nr : -1;
4521 env->has_error_code = events.exception.has_error_code;
4522 env->error_code = events.exception.error_code;
4523
4524 env->interrupt_injected =
4525 events.interrupt.injected ? events.interrupt.nr : -1;
4526 env->soft_interrupt = events.interrupt.soft;
4527
4528 env->nmi_injected = events.nmi.injected;
4529 env->nmi_pending = events.nmi.pending;
4530 if (events.nmi.masked) {
4531 env->hflags2 |= HF2_NMI_MASK;
4532 } else {
4533 env->hflags2 &= ~HF2_NMI_MASK;
4534 }
4535
4536 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4537 if (events.smi.smm) {
4538 env->hflags |= HF_SMM_MASK;
4539 } else {
4540 env->hflags &= ~HF_SMM_MASK;
4541 }
4542 if (events.smi.pending) {
4543 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4544 } else {
4545 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4546 }
4547 if (events.smi.smm_inside_nmi) {
4548 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4549 } else {
4550 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4551 }
4552 if (events.smi.latched_init) {
4553 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4554 } else {
4555 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4556 }
4557 }
4558
4559 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4560 env->triple_fault_pending = events.triple_fault.pending;
4561 }
4562
4563 env->sipi_vector = events.sipi_vector;
4564
4565 return 0;
4566}
4567
4568static int kvm_guest_debug_workarounds(X86CPU *cpu)
4569{
4570 CPUState *cs = CPU(cpu);
4571 CPUX86State *env = &cpu->env;
4572 int ret = 0;
4573 unsigned long reinject_trap = 0;
4574
4575 if (!kvm_has_vcpu_events()) {
4576 if (env->exception_nr == EXCP01_DB) {
4577 reinject_trap = KVM_GUESTDBG_INJECT_DB;
4578 } else if (env->exception_injected == EXCP03_INT3) {
4579 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4580 }
4581 kvm_reset_exception(env);
4582 }
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592 if (reinject_trap ||
4593 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4594 ret = kvm_update_guest_debug(cs, reinject_trap);
4595 }
4596 return ret;
4597}
4598
4599static int kvm_put_debugregs(X86CPU *cpu)
4600{
4601 CPUX86State *env = &cpu->env;
4602 struct kvm_debugregs dbgregs;
4603 int i;
4604
4605 if (!kvm_has_debugregs()) {
4606 return 0;
4607 }
4608
4609 memset(&dbgregs, 0, sizeof(dbgregs));
4610 for (i = 0; i < 4; i++) {
4611 dbgregs.db[i] = env->dr[i];
4612 }
4613 dbgregs.dr6 = env->dr[6];
4614 dbgregs.dr7 = env->dr[7];
4615 dbgregs.flags = 0;
4616
4617 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4618}
4619
4620static int kvm_get_debugregs(X86CPU *cpu)
4621{
4622 CPUX86State *env = &cpu->env;
4623 struct kvm_debugregs dbgregs;
4624 int i, ret;
4625
4626 if (!kvm_has_debugregs()) {
4627 return 0;
4628 }
4629
4630 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4631 if (ret < 0) {
4632 return ret;
4633 }
4634 for (i = 0; i < 4; i++) {
4635 env->dr[i] = dbgregs.db[i];
4636 }
4637 env->dr[4] = env->dr[6] = dbgregs.dr6;
4638 env->dr[5] = env->dr[7] = dbgregs.dr7;
4639
4640 return 0;
4641}
4642
4643static int kvm_put_nested_state(X86CPU *cpu)
4644{
4645 CPUX86State *env = &cpu->env;
4646 int max_nested_state_len = kvm_max_nested_state_length();
4647
4648 if (!env->nested_state) {
4649 return 0;
4650 }
4651
4652
4653
4654
4655 if (env->hflags & HF_GUEST_MASK) {
4656 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4657 } else {
4658 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4659 }
4660
4661
4662 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4663 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4664 } else {
4665 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4666 }
4667
4668 assert(env->nested_state->size <= max_nested_state_len);
4669 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4670}
4671
4672static int kvm_get_nested_state(X86CPU *cpu)
4673{
4674 CPUX86State *env = &cpu->env;
4675 int max_nested_state_len = kvm_max_nested_state_length();
4676 int ret;
4677
4678 if (!env->nested_state) {
4679 return 0;
4680 }
4681
4682
4683
4684
4685
4686
4687
4688
4689 env->nested_state->size = max_nested_state_len;
4690
4691 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4692 if (ret < 0) {
4693 return ret;
4694 }
4695
4696
4697
4698
4699 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4700 env->hflags |= HF_GUEST_MASK;
4701 } else {
4702 env->hflags &= ~HF_GUEST_MASK;
4703 }
4704
4705
4706 if (cpu_has_svm(env)) {
4707 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4708 env->hflags2 |= HF2_GIF_MASK;
4709 } else {
4710 env->hflags2 &= ~HF2_GIF_MASK;
4711 }
4712 }
4713
4714 return ret;
4715}
4716
4717int kvm_arch_put_registers(CPUState *cpu, int level)
4718{
4719 X86CPU *x86_cpu = X86_CPU(cpu);
4720 int ret;
4721
4722 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4723
4724
4725
4726
4727
4728
4729 if (level >= KVM_PUT_RESET_STATE) {
4730 ret = kvm_put_msr_feature_control(x86_cpu);
4731 if (ret < 0) {
4732 return ret;
4733 }
4734 }
4735
4736
4737 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4738 if (ret < 0) {
4739 return ret;
4740 }
4741
4742 if (level >= KVM_PUT_RESET_STATE) {
4743 ret = kvm_put_nested_state(x86_cpu);
4744 if (ret < 0) {
4745 return ret;
4746 }
4747 }
4748
4749 if (level == KVM_PUT_FULL_STATE) {
4750
4751
4752
4753
4754
4755 kvm_arch_set_tsc_khz(cpu);
4756 }
4757
4758#ifdef CONFIG_XEN_EMU
4759 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4760 ret = kvm_put_xen_state(cpu);
4761 if (ret < 0) {
4762 return ret;
4763 }
4764 }
4765#endif
4766
4767 ret = kvm_getput_regs(x86_cpu, 1);
4768 if (ret < 0) {
4769 return ret;
4770 }
4771 ret = kvm_put_xsave(x86_cpu);
4772 if (ret < 0) {
4773 return ret;
4774 }
4775 ret = kvm_put_xcrs(x86_cpu);
4776 if (ret < 0) {
4777 return ret;
4778 }
4779
4780 ret = kvm_inject_mce_oldstyle(x86_cpu);
4781 if (ret < 0) {
4782 return ret;
4783 }
4784 ret = kvm_put_msrs(x86_cpu, level);
4785 if (ret < 0) {
4786 return ret;
4787 }
4788 ret = kvm_put_vcpu_events(x86_cpu, level);
4789 if (ret < 0) {
4790 return ret;
4791 }
4792 if (level >= KVM_PUT_RESET_STATE) {
4793 ret = kvm_put_mp_state(x86_cpu);
4794 if (ret < 0) {
4795 return ret;
4796 }
4797 }
4798
4799 ret = kvm_put_tscdeadline_msr(x86_cpu);
4800 if (ret < 0) {
4801 return ret;
4802 }
4803 ret = kvm_put_debugregs(x86_cpu);
4804 if (ret < 0) {
4805 return ret;
4806 }
4807
4808 ret = kvm_guest_debug_workarounds(x86_cpu);
4809 if (ret < 0) {
4810 return ret;
4811 }
4812 return 0;
4813}
4814
4815int kvm_arch_get_registers(CPUState *cs)
4816{
4817 X86CPU *cpu = X86_CPU(cs);
4818 int ret;
4819
4820 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4821
4822 ret = kvm_get_vcpu_events(cpu);
4823 if (ret < 0) {
4824 goto out;
4825 }
4826
4827
4828
4829
4830 ret = kvm_get_mp_state(cpu);
4831 if (ret < 0) {
4832 goto out;
4833 }
4834 ret = kvm_getput_regs(cpu, 0);
4835 if (ret < 0) {
4836 goto out;
4837 }
4838 ret = kvm_get_xsave(cpu);
4839 if (ret < 0) {
4840 goto out;
4841 }
4842 ret = kvm_get_xcrs(cpu);
4843 if (ret < 0) {
4844 goto out;
4845 }
4846 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4847 if (ret < 0) {
4848 goto out;
4849 }
4850 ret = kvm_get_msrs(cpu);
4851 if (ret < 0) {
4852 goto out;
4853 }
4854 ret = kvm_get_apic(cpu);
4855 if (ret < 0) {
4856 goto out;
4857 }
4858 ret = kvm_get_debugregs(cpu);
4859 if (ret < 0) {
4860 goto out;
4861 }
4862 ret = kvm_get_nested_state(cpu);
4863 if (ret < 0) {
4864 goto out;
4865 }
4866#ifdef CONFIG_XEN_EMU
4867 if (xen_mode == XEN_EMULATE) {
4868 ret = kvm_get_xen_state(cs);
4869 if (ret < 0) {
4870 goto out;
4871 }
4872 }
4873#endif
4874 ret = 0;
4875 out:
4876 cpu_sync_bndcs_hflags(&cpu->env);
4877 return ret;
4878}
4879
4880void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4881{
4882 X86CPU *x86_cpu = X86_CPU(cpu);
4883 CPUX86State *env = &x86_cpu->env;
4884 int ret;
4885
4886
4887 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4888 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4889 qemu_mutex_lock_iothread();
4890 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4891 qemu_mutex_unlock_iothread();
4892 DPRINTF("injected NMI\n");
4893 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4894 if (ret < 0) {
4895 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4896 strerror(-ret));
4897 }
4898 }
4899 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4900 qemu_mutex_lock_iothread();
4901 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4902 qemu_mutex_unlock_iothread();
4903 DPRINTF("injected SMI\n");
4904 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4905 if (ret < 0) {
4906 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4907 strerror(-ret));
4908 }
4909 }
4910 }
4911
4912 if (!kvm_pic_in_kernel()) {
4913 qemu_mutex_lock_iothread();
4914 }
4915
4916
4917
4918
4919
4920 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4921 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4922 !(env->hflags & HF_SMM_MASK)) {
4923 cpu->exit_request = 1;
4924 }
4925 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4926 cpu->exit_request = 1;
4927 }
4928 }
4929
4930 if (!kvm_pic_in_kernel()) {
4931
4932 if (run->ready_for_interrupt_injection &&
4933 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4934 (env->eflags & IF_MASK)) {
4935 int irq;
4936
4937 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4938 irq = cpu_get_pic_interrupt(env);
4939 if (irq >= 0) {
4940 struct kvm_interrupt intr;
4941
4942 intr.irq = irq;
4943 DPRINTF("injected interrupt %d\n", irq);
4944 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4945 if (ret < 0) {
4946 fprintf(stderr,
4947 "KVM: injection failed, interrupt lost (%s)\n",
4948 strerror(-ret));
4949 }
4950 }
4951 }
4952
4953
4954
4955
4956
4957 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4958 run->request_interrupt_window = 1;
4959 } else {
4960 run->request_interrupt_window = 0;
4961 }
4962
4963 DPRINTF("setting tpr\n");
4964 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4965
4966 qemu_mutex_unlock_iothread();
4967 }
4968}
4969
4970static void kvm_rate_limit_on_bus_lock(void)
4971{
4972 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4973
4974 if (delay_ns) {
4975 g_usleep(delay_ns / SCALE_US);
4976 }
4977}
4978
4979MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4980{
4981 X86CPU *x86_cpu = X86_CPU(cpu);
4982 CPUX86State *env = &x86_cpu->env;
4983
4984 if (run->flags & KVM_RUN_X86_SMM) {
4985 env->hflags |= HF_SMM_MASK;
4986 } else {
4987 env->hflags &= ~HF_SMM_MASK;
4988 }
4989 if (run->if_flag) {
4990 env->eflags |= IF_MASK;
4991 } else {
4992 env->eflags &= ~IF_MASK;
4993 }
4994 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4995 kvm_rate_limit_on_bus_lock();
4996 }
4997
4998#ifdef CONFIG_XEN_EMU
4999
5000
5001
5002
5003
5004
5005
5006 if (x86_cpu->env.xen_callback_asserted) {
5007 kvm_xen_maybe_deassert_callback(cpu);
5008 }
5009#endif
5010
5011
5012
5013 if (!kvm_irqchip_in_kernel()) {
5014 qemu_mutex_lock_iothread();
5015 }
5016 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5017 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5018 if (!kvm_irqchip_in_kernel()) {
5019 qemu_mutex_unlock_iothread();
5020 }
5021 return cpu_get_mem_attrs(env);
5022}
5023
5024int kvm_arch_process_async_events(CPUState *cs)
5025{
5026 X86CPU *cpu = X86_CPU(cs);
5027 CPUX86State *env = &cpu->env;
5028
5029 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5030
5031 assert(env->mcg_cap);
5032
5033 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5034
5035 kvm_cpu_synchronize_state(cs);
5036
5037 if (env->exception_nr == EXCP08_DBLE) {
5038
5039 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5040 cs->exit_request = 1;
5041 return 0;
5042 }
5043 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5044 env->has_error_code = 0;
5045
5046 cs->halted = 0;
5047 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5048 env->mp_state = KVM_MP_STATE_RUNNABLE;
5049 }
5050 }
5051
5052 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5053 !(env->hflags & HF_SMM_MASK)) {
5054 kvm_cpu_synchronize_state(cs);
5055 do_cpu_init(cpu);
5056 }
5057
5058 if (kvm_irqchip_in_kernel()) {
5059 return 0;
5060 }
5061
5062 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5063 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5064 apic_poll_irq(cpu->apic_state);
5065 }
5066 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5067 (env->eflags & IF_MASK)) ||
5068 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5069 cs->halted = 0;
5070 }
5071 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5072 kvm_cpu_synchronize_state(cs);
5073 do_cpu_sipi(cpu);
5074 }
5075 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5076 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5077 kvm_cpu_synchronize_state(cs);
5078 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5079 env->tpr_access_type);
5080 }
5081
5082 return cs->halted;
5083}
5084
5085static int kvm_handle_halt(X86CPU *cpu)
5086{
5087 CPUState *cs = CPU(cpu);
5088 CPUX86State *env = &cpu->env;
5089
5090 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5091 (env->eflags & IF_MASK)) &&
5092 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5093 cs->halted = 1;
5094 return EXCP_HLT;
5095 }
5096
5097 return 0;
5098}
5099
5100static int kvm_handle_tpr_access(X86CPU *cpu)
5101{
5102 CPUState *cs = CPU(cpu);
5103 struct kvm_run *run = cs->kvm_run;
5104
5105 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5106 run->tpr_access.is_write ? TPR_ACCESS_WRITE
5107 : TPR_ACCESS_READ);
5108 return 1;
5109}
5110
5111int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5112{
5113 static const uint8_t int3 = 0xcc;
5114
5115 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5116 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5117 return -EINVAL;
5118 }
5119 return 0;
5120}
5121
5122int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5123{
5124 uint8_t int3;
5125
5126 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5127 return -EINVAL;
5128 }
5129 if (int3 != 0xcc) {
5130 return 0;
5131 }
5132 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5133 return -EINVAL;
5134 }
5135 return 0;
5136}
5137
5138static struct {
5139 target_ulong addr;
5140 int len;
5141 int type;
5142} hw_breakpoint[4];
5143
5144static int nb_hw_breakpoint;
5145
5146static int find_hw_breakpoint(target_ulong addr, int len, int type)
5147{
5148 int n;
5149
5150 for (n = 0; n < nb_hw_breakpoint; n++) {
5151 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5152 (hw_breakpoint[n].len == len || len == -1)) {
5153 return n;
5154 }
5155 }
5156 return -1;
5157}
5158
5159int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5160 target_ulong len, int type)
5161{
5162 switch (type) {
5163 case GDB_BREAKPOINT_HW:
5164 len = 1;
5165 break;
5166 case GDB_WATCHPOINT_WRITE:
5167 case GDB_WATCHPOINT_ACCESS:
5168 switch (len) {
5169 case 1:
5170 break;
5171 case 2:
5172 case 4:
5173 case 8:
5174 if (addr & (len - 1)) {
5175 return -EINVAL;
5176 }
5177 break;
5178 default:
5179 return -EINVAL;
5180 }
5181 break;
5182 default:
5183 return -ENOSYS;
5184 }
5185
5186 if (nb_hw_breakpoint == 4) {
5187 return -ENOBUFS;
5188 }
5189 if (find_hw_breakpoint(addr, len, type) >= 0) {
5190 return -EEXIST;
5191 }
5192 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5193 hw_breakpoint[nb_hw_breakpoint].len = len;
5194 hw_breakpoint[nb_hw_breakpoint].type = type;
5195 nb_hw_breakpoint++;
5196
5197 return 0;
5198}
5199
5200int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5201 target_ulong len, int type)
5202{
5203 int n;
5204
5205 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5206 if (n < 0) {
5207 return -ENOENT;
5208 }
5209 nb_hw_breakpoint--;
5210 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5211
5212 return 0;
5213}
5214
5215void kvm_arch_remove_all_hw_breakpoints(void)
5216{
5217 nb_hw_breakpoint = 0;
5218}
5219
5220static CPUWatchpoint hw_watchpoint;
5221
5222static int kvm_handle_debug(X86CPU *cpu,
5223 struct kvm_debug_exit_arch *arch_info)
5224{
5225 CPUState *cs = CPU(cpu);
5226 CPUX86State *env = &cpu->env;
5227 int ret = 0;
5228 int n;
5229
5230 if (arch_info->exception == EXCP01_DB) {
5231 if (arch_info->dr6 & DR6_BS) {
5232 if (cs->singlestep_enabled) {
5233 ret = EXCP_DEBUG;
5234 }
5235 } else {
5236 for (n = 0; n < 4; n++) {
5237 if (arch_info->dr6 & (1 << n)) {
5238 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5239 case 0x0:
5240 ret = EXCP_DEBUG;
5241 break;
5242 case 0x1:
5243 ret = EXCP_DEBUG;
5244 cs->watchpoint_hit = &hw_watchpoint;
5245 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5246 hw_watchpoint.flags = BP_MEM_WRITE;
5247 break;
5248 case 0x3:
5249 ret = EXCP_DEBUG;
5250 cs->watchpoint_hit = &hw_watchpoint;
5251 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5252 hw_watchpoint.flags = BP_MEM_ACCESS;
5253 break;
5254 }
5255 }
5256 }
5257 }
5258 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5259 ret = EXCP_DEBUG;
5260 }
5261 if (ret == 0) {
5262 cpu_synchronize_state(cs);
5263 assert(env->exception_nr == -1);
5264
5265
5266 kvm_queue_exception(env, arch_info->exception,
5267 arch_info->exception == EXCP01_DB,
5268 arch_info->dr6);
5269 env->has_error_code = 0;
5270 }
5271
5272 return ret;
5273}
5274
5275void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5276{
5277 const uint8_t type_code[] = {
5278 [GDB_BREAKPOINT_HW] = 0x0,
5279 [GDB_WATCHPOINT_WRITE] = 0x1,
5280 [GDB_WATCHPOINT_ACCESS] = 0x3
5281 };
5282 const uint8_t len_code[] = {
5283 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5284 };
5285 int n;
5286
5287 if (kvm_sw_breakpoints_active(cpu)) {
5288 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5289 }
5290 if (nb_hw_breakpoint > 0) {
5291 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5292 dbg->arch.debugreg[7] = 0x0600;
5293 for (n = 0; n < nb_hw_breakpoint; n++) {
5294 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5295 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5296 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5297 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5298 }
5299 }
5300}
5301
5302static bool kvm_install_msr_filters(KVMState *s)
5303{
5304 uint64_t zero = 0;
5305 struct kvm_msr_filter filter = {
5306 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5307 };
5308 int r, i, j = 0;
5309
5310 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5311 KVMMSRHandlers *handler = &msr_handlers[i];
5312 if (handler->msr) {
5313 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5314
5315 *range = (struct kvm_msr_filter_range) {
5316 .flags = 0,
5317 .nmsrs = 1,
5318 .base = handler->msr,
5319 .bitmap = (__u8 *)&zero,
5320 };
5321
5322 if (handler->rdmsr) {
5323 range->flags |= KVM_MSR_FILTER_READ;
5324 }
5325
5326 if (handler->wrmsr) {
5327 range->flags |= KVM_MSR_FILTER_WRITE;
5328 }
5329 }
5330 }
5331
5332 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5333 if (r) {
5334 return false;
5335 }
5336
5337 return true;
5338}
5339
5340bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5341 QEMUWRMSRHandler *wrmsr)
5342{
5343 int i;
5344
5345 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5346 if (!msr_handlers[i].msr) {
5347 msr_handlers[i] = (KVMMSRHandlers) {
5348 .msr = msr,
5349 .rdmsr = rdmsr,
5350 .wrmsr = wrmsr,
5351 };
5352
5353 if (!kvm_install_msr_filters(s)) {
5354 msr_handlers[i] = (KVMMSRHandlers) { };
5355 return false;
5356 }
5357
5358 return true;
5359 }
5360 }
5361
5362 return false;
5363}
5364
5365static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5366{
5367 int i;
5368 bool r;
5369
5370 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5371 KVMMSRHandlers *handler = &msr_handlers[i];
5372 if (run->msr.index == handler->msr) {
5373 if (handler->rdmsr) {
5374 r = handler->rdmsr(cpu, handler->msr,
5375 (uint64_t *)&run->msr.data);
5376 run->msr.error = r ? 0 : 1;
5377 return 0;
5378 }
5379 }
5380 }
5381
5382 assert(false);
5383}
5384
5385static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5386{
5387 int i;
5388 bool r;
5389
5390 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5391 KVMMSRHandlers *handler = &msr_handlers[i];
5392 if (run->msr.index == handler->msr) {
5393 if (handler->wrmsr) {
5394 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5395 run->msr.error = r ? 0 : 1;
5396 return 0;
5397 }
5398 }
5399 }
5400
5401 assert(false);
5402}
5403
5404static bool has_sgx_provisioning;
5405
5406static bool __kvm_enable_sgx_provisioning(KVMState *s)
5407{
5408 int fd, ret;
5409
5410 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5411 return false;
5412 }
5413
5414 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5415 if (fd < 0) {
5416 return false;
5417 }
5418
5419 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5420 if (ret) {
5421 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5422 exit(1);
5423 }
5424 close(fd);
5425 return true;
5426}
5427
5428bool kvm_enable_sgx_provisioning(KVMState *s)
5429{
5430 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5431}
5432
5433static bool host_supports_vmx(void)
5434{
5435 uint32_t ecx, unused;
5436
5437 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5438 return ecx & CPUID_EXT_VMX;
5439}
5440
5441#define VMX_INVALID_GUEST_STATE 0x80000021
5442
5443int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5444{
5445 X86CPU *cpu = X86_CPU(cs);
5446 uint64_t code;
5447 int ret;
5448 bool ctx_invalid;
5449 char str[256];
5450 KVMState *state;
5451
5452 switch (run->exit_reason) {
5453 case KVM_EXIT_HLT:
5454 DPRINTF("handle_hlt\n");
5455 qemu_mutex_lock_iothread();
5456 ret = kvm_handle_halt(cpu);
5457 qemu_mutex_unlock_iothread();
5458 break;
5459 case KVM_EXIT_SET_TPR:
5460 ret = 0;
5461 break;
5462 case KVM_EXIT_TPR_ACCESS:
5463 qemu_mutex_lock_iothread();
5464 ret = kvm_handle_tpr_access(cpu);
5465 qemu_mutex_unlock_iothread();
5466 break;
5467 case KVM_EXIT_FAIL_ENTRY:
5468 code = run->fail_entry.hardware_entry_failure_reason;
5469 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5470 code);
5471 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5472 fprintf(stderr,
5473 "\nIf you're running a guest on an Intel machine without "
5474 "unrestricted mode\n"
5475 "support, the failure can be most likely due to the guest "
5476 "entering an invalid\n"
5477 "state for Intel VT. For example, the guest maybe running "
5478 "in big real mode\n"
5479 "which is not supported on less recent Intel processors."
5480 "\n\n");
5481 }
5482 ret = -1;
5483 break;
5484 case KVM_EXIT_EXCEPTION:
5485 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5486 run->ex.exception, run->ex.error_code);
5487 ret = -1;
5488 break;
5489 case KVM_EXIT_DEBUG:
5490 DPRINTF("kvm_exit_debug\n");
5491 qemu_mutex_lock_iothread();
5492 ret = kvm_handle_debug(cpu, &run->debug.arch);
5493 qemu_mutex_unlock_iothread();
5494 break;
5495 case KVM_EXIT_HYPERV:
5496 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5497 break;
5498 case KVM_EXIT_IOAPIC_EOI:
5499 ioapic_eoi_broadcast(run->eoi.vector);
5500 ret = 0;
5501 break;
5502 case KVM_EXIT_X86_BUS_LOCK:
5503
5504 ret = 0;
5505 break;
5506 case KVM_EXIT_NOTIFY:
5507 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5508 state = KVM_STATE(current_accel());
5509 sprintf(str, "Encounter a notify exit with %svalid context in"
5510 " guest. There can be possible misbehaves in guest."
5511 " Please have a look.", ctx_invalid ? "in" : "");
5512 if (ctx_invalid ||
5513 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5514 warn_report("KVM internal error: %s", str);
5515 ret = -1;
5516 } else {
5517 warn_report_once("KVM: %s", str);
5518 ret = 0;
5519 }
5520 break;
5521 case KVM_EXIT_X86_RDMSR:
5522
5523 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5524 ret = kvm_handle_rdmsr(cpu, run);
5525 break;
5526 case KVM_EXIT_X86_WRMSR:
5527
5528 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5529 ret = kvm_handle_wrmsr(cpu, run);
5530 break;
5531#ifdef CONFIG_XEN_EMU
5532 case KVM_EXIT_XEN:
5533 ret = kvm_xen_handle_exit(cpu, &run->xen);
5534 break;
5535#endif
5536 default:
5537 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5538 ret = -1;
5539 break;
5540 }
5541
5542 return ret;
5543}
5544
5545bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5546{
5547 X86CPU *cpu = X86_CPU(cs);
5548 CPUX86State *env = &cpu->env;
5549
5550 kvm_cpu_synchronize_state(cs);
5551 return !(env->cr[0] & CR0_PE_MASK) ||
5552 ((env->segs[R_CS].selector & 3) != 3);
5553}
5554
5555void kvm_arch_init_irq_routing(KVMState *s)
5556{
5557
5558
5559
5560
5561 kvm_msi_via_irqfd_allowed = true;
5562 kvm_gsi_routing_allowed = true;
5563
5564 if (kvm_irqchip_is_split()) {
5565 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5566 int i;
5567
5568
5569
5570 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5571 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5572 error_report("Could not enable split IRQ mode.");
5573 exit(1);
5574 }
5575 }
5576 kvm_irqchip_commit_route_changes(&c);
5577 }
5578}
5579
5580int kvm_arch_irqchip_create(KVMState *s)
5581{
5582 int ret;
5583 if (kvm_kernel_irqchip_split()) {
5584 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5585 if (ret) {
5586 error_report("Could not enable split irqchip mode: %s",
5587 strerror(-ret));
5588 exit(1);
5589 } else {
5590 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5591 kvm_split_irqchip = true;
5592 return 1;
5593 }
5594 } else {
5595 return 0;
5596 }
5597}
5598
5599uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5600{
5601 CPUX86State *env;
5602 uint64_t ext_id;
5603
5604 if (!first_cpu) {
5605 return address;
5606 }
5607 env = &X86_CPU(first_cpu)->env;
5608 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5609 return address;
5610 }
5611
5612
5613
5614
5615
5616
5617 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5618 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5619 return address;
5620 }
5621
5622 address &= ~ext_id;
5623 address |= ext_id << 35;
5624 return address;
5625}
5626
5627int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5628 uint64_t address, uint32_t data, PCIDevice *dev)
5629{
5630 X86IOMMUState *iommu = x86_iommu_get_default();
5631
5632 if (iommu) {
5633 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5634
5635 if (class->int_remap) {
5636 int ret;
5637 MSIMessage src, dst;
5638
5639 src.address = route->u.msi.address_hi;
5640 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5641 src.address |= route->u.msi.address_lo;
5642 src.data = route->u.msi.data;
5643
5644 ret = class->int_remap(iommu, &src, &dst, dev ? \
5645 pci_requester_id(dev) : \
5646 X86_IOMMU_SID_INVALID);
5647 if (ret) {
5648 trace_kvm_x86_fixup_msi_error(route->gsi);
5649 return 1;
5650 }
5651
5652
5653
5654
5655 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5656
5657 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5658 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5659 route->u.msi.data = dst.data;
5660 return 0;
5661 }
5662 }
5663
5664#ifdef CONFIG_XEN_EMU
5665 if (xen_mode == XEN_EMULATE) {
5666 int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5667
5668
5669
5670
5671
5672 if (handled <= 0) {
5673 return handled;
5674 }
5675 }
5676#endif
5677
5678 address = kvm_swizzle_msi_ext_dest_id(address);
5679 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5680 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5681 return 0;
5682}
5683
5684typedef struct MSIRouteEntry MSIRouteEntry;
5685
5686struct MSIRouteEntry {
5687 PCIDevice *dev;
5688 int vector;
5689 int virq;
5690 QLIST_ENTRY(MSIRouteEntry) list;
5691};
5692
5693
5694static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5695 QLIST_HEAD_INITIALIZER(msi_route_list);
5696
5697void kvm_update_msi_routes_all(void *private, bool global,
5698 uint32_t index, uint32_t mask)
5699{
5700 int cnt = 0, vector;
5701 MSIRouteEntry *entry;
5702 MSIMessage msg;
5703 PCIDevice *dev;
5704
5705
5706 QLIST_FOREACH(entry, &msi_route_list, list) {
5707 cnt++;
5708 vector = entry->vector;
5709 dev = entry->dev;
5710 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5711 msg = msix_get_message(dev, vector);
5712 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5713 msg = msi_get_message(dev, vector);
5714 } else {
5715
5716
5717
5718
5719 continue;
5720 }
5721 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5722 }
5723 kvm_irqchip_commit_routes(kvm_state);
5724 trace_kvm_x86_update_msi_routes(cnt);
5725}
5726
5727int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5728 int vector, PCIDevice *dev)
5729{
5730 static bool notify_list_inited = false;
5731 MSIRouteEntry *entry;
5732
5733 if (!dev) {
5734
5735
5736
5737 return 0;
5738 }
5739
5740 entry = g_new0(MSIRouteEntry, 1);
5741 entry->dev = dev;
5742 entry->vector = vector;
5743 entry->virq = route->gsi;
5744 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5745
5746 trace_kvm_x86_add_msi_route(route->gsi);
5747
5748 if (!notify_list_inited) {
5749
5750
5751 X86IOMMUState *iommu = x86_iommu_get_default();
5752 if (iommu) {
5753 x86_iommu_iec_register_notifier(iommu,
5754 kvm_update_msi_routes_all,
5755 NULL);
5756 }
5757 notify_list_inited = true;
5758 }
5759 return 0;
5760}
5761
5762int kvm_arch_release_virq_post(int virq)
5763{
5764 MSIRouteEntry *entry, *next;
5765 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5766 if (entry->virq == virq) {
5767 trace_kvm_x86_remove_msi_route(virq);
5768 QLIST_REMOVE(entry, list);
5769 g_free(entry);
5770 break;
5771 }
5772 }
5773 return 0;
5774}
5775
5776int kvm_arch_msi_data_to_gsi(uint32_t data)
5777{
5778 abort();
5779}
5780
5781bool kvm_has_waitpkg(void)
5782{
5783 return has_msr_umwait;
5784}
5785
5786bool kvm_arch_cpu_check_are_resettable(void)
5787{
5788 return !sev_es_enabled();
5789}
5790
5791#define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5792
5793void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5794{
5795 KVMState *s = kvm_state;
5796 uint64_t supported;
5797
5798 mask &= XSTATE_DYNAMIC_MASK;
5799 if (!mask) {
5800 return;
5801 }
5802
5803
5804
5805
5806
5807 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5808 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5809 mask &= supported;
5810
5811 while (mask) {
5812 int bit = ctz64(mask);
5813 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5814 if (rc) {
5815
5816
5817
5818
5819
5820 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5821 "for feature bit %d", bit);
5822 }
5823 mask &= ~BIT_ULL(bit);
5824 }
5825}
5826
5827static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5828{
5829 KVMState *s = KVM_STATE(obj);
5830 return s->notify_vmexit;
5831}
5832
5833static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5834{
5835 KVMState *s = KVM_STATE(obj);
5836
5837 if (s->fd != -1) {
5838 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5839 return;
5840 }
5841
5842 s->notify_vmexit = value;
5843}
5844
5845static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5846 const char *name, void *opaque,
5847 Error **errp)
5848{
5849 KVMState *s = KVM_STATE(obj);
5850 uint32_t value = s->notify_window;
5851
5852 visit_type_uint32(v, name, &value, errp);
5853}
5854
5855static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5856 const char *name, void *opaque,
5857 Error **errp)
5858{
5859 KVMState *s = KVM_STATE(obj);
5860 uint32_t value;
5861
5862 if (s->fd != -1) {
5863 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5864 return;
5865 }
5866
5867 if (!visit_type_uint32(v, name, &value, errp)) {
5868 return;
5869 }
5870
5871 s->notify_window = value;
5872}
5873
5874static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5875 const char *name, void *opaque,
5876 Error **errp)
5877{
5878 KVMState *s = KVM_STATE(obj);
5879 uint32_t value = s->xen_version;
5880
5881 visit_type_uint32(v, name, &value, errp);
5882}
5883
5884static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5885 const char *name, void *opaque,
5886 Error **errp)
5887{
5888 KVMState *s = KVM_STATE(obj);
5889 Error *error = NULL;
5890 uint32_t value;
5891
5892 visit_type_uint32(v, name, &value, &error);
5893 if (error) {
5894 error_propagate(errp, error);
5895 return;
5896 }
5897
5898 s->xen_version = value;
5899 if (value && xen_mode == XEN_DISABLED) {
5900 xen_mode = XEN_EMULATE;
5901 }
5902}
5903
5904static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5905 const char *name, void *opaque,
5906 Error **errp)
5907{
5908 KVMState *s = KVM_STATE(obj);
5909 uint16_t value = s->xen_gnttab_max_frames;
5910
5911 visit_type_uint16(v, name, &value, errp);
5912}
5913
5914static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5915 const char *name, void *opaque,
5916 Error **errp)
5917{
5918 KVMState *s = KVM_STATE(obj);
5919 Error *error = NULL;
5920 uint16_t value;
5921
5922 visit_type_uint16(v, name, &value, &error);
5923 if (error) {
5924 error_propagate(errp, error);
5925 return;
5926 }
5927
5928 s->xen_gnttab_max_frames = value;
5929}
5930
5931static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5932 const char *name, void *opaque,
5933 Error **errp)
5934{
5935 KVMState *s = KVM_STATE(obj);
5936 uint16_t value = s->xen_evtchn_max_pirq;
5937
5938 visit_type_uint16(v, name, &value, errp);
5939}
5940
5941static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5942 const char *name, void *opaque,
5943 Error **errp)
5944{
5945 KVMState *s = KVM_STATE(obj);
5946 Error *error = NULL;
5947 uint16_t value;
5948
5949 visit_type_uint16(v, name, &value, &error);
5950 if (error) {
5951 error_propagate(errp, error);
5952 return;
5953 }
5954
5955 s->xen_evtchn_max_pirq = value;
5956}
5957
5958void kvm_arch_accel_class_init(ObjectClass *oc)
5959{
5960 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5961 &NotifyVmexitOption_lookup,
5962 kvm_arch_get_notify_vmexit,
5963 kvm_arch_set_notify_vmexit);
5964 object_class_property_set_description(oc, "notify-vmexit",
5965 "Enable notify VM exit");
5966
5967 object_class_property_add(oc, "notify-window", "uint32",
5968 kvm_arch_get_notify_window,
5969 kvm_arch_set_notify_window,
5970 NULL, NULL);
5971 object_class_property_set_description(oc, "notify-window",
5972 "Clock cycles without an event window "
5973 "after which a notification VM exit occurs");
5974
5975 object_class_property_add(oc, "xen-version", "uint32",
5976 kvm_arch_get_xen_version,
5977 kvm_arch_set_xen_version,
5978 NULL, NULL);
5979 object_class_property_set_description(oc, "xen-version",
5980 "Xen version to be emulated "
5981 "(in XENVER_version form "
5982 "e.g. 0x4000a for 4.10)");
5983
5984 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5985 kvm_arch_get_xen_gnttab_max_frames,
5986 kvm_arch_set_xen_gnttab_max_frames,
5987 NULL, NULL);
5988 object_class_property_set_description(oc, "xen-gnttab-max-frames",
5989 "Maximum number of grant table frames");
5990
5991 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5992 kvm_arch_get_xen_evtchn_max_pirq,
5993 kvm_arch_set_xen_evtchn_max_pirq,
5994 NULL, NULL);
5995 object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5996 "Maximum number of Xen PIRQs");
5997}
5998
5999void kvm_set_max_apic_id(uint32_t max_apic_id)
6000{
6001 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6002}
6003