qemu/block/io.c
<<
>>
Prefs
   1/*
   2 * Block layer I/O functions
   3 *
   4 * Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "trace.h"
  27#include "sysemu/block-backend.h"
  28#include "block/aio-wait.h"
  29#include "block/blockjob.h"
  30#include "block/blockjob_int.h"
  31#include "block/block_int.h"
  32#include "block/coroutines.h"
  33#include "block/dirty-bitmap.h"
  34#include "block/write-threshold.h"
  35#include "qemu/cutils.h"
  36#include "qemu/memalign.h"
  37#include "qapi/error.h"
  38#include "qemu/error-report.h"
  39#include "qemu/main-loop.h"
  40#include "sysemu/replay.h"
  41
  42/* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
  43#define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
  44
  45static void bdrv_parent_cb_resize(BlockDriverState *bs);
  46static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
  47    int64_t offset, int64_t bytes, BdrvRequestFlags flags);
  48
  49static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
  50{
  51    BdrvChild *c, *next;
  52
  53    QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
  54        if (c == ignore) {
  55            continue;
  56        }
  57        bdrv_parent_drained_begin_single(c);
  58    }
  59}
  60
  61void bdrv_parent_drained_end_single(BdrvChild *c)
  62{
  63    GLOBAL_STATE_CODE();
  64
  65    assert(c->quiesced_parent);
  66    c->quiesced_parent = false;
  67
  68    if (c->klass->drained_end) {
  69        c->klass->drained_end(c);
  70    }
  71}
  72
  73static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
  74{
  75    BdrvChild *c;
  76
  77    QLIST_FOREACH(c, &bs->parents, next_parent) {
  78        if (c == ignore) {
  79            continue;
  80        }
  81        bdrv_parent_drained_end_single(c);
  82    }
  83}
  84
  85bool bdrv_parent_drained_poll_single(BdrvChild *c)
  86{
  87    if (c->klass->drained_poll) {
  88        return c->klass->drained_poll(c);
  89    }
  90    return false;
  91}
  92
  93static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
  94                                     bool ignore_bds_parents)
  95{
  96    BdrvChild *c, *next;
  97    bool busy = false;
  98
  99    QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
 100        if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
 101            continue;
 102        }
 103        busy |= bdrv_parent_drained_poll_single(c);
 104    }
 105
 106    return busy;
 107}
 108
 109void bdrv_parent_drained_begin_single(BdrvChild *c)
 110{
 111    GLOBAL_STATE_CODE();
 112
 113    assert(!c->quiesced_parent);
 114    c->quiesced_parent = true;
 115
 116    if (c->klass->drained_begin) {
 117        c->klass->drained_begin(c);
 118    }
 119}
 120
 121static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
 122{
 123    dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
 124                                  src->pdiscard_alignment);
 125    dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
 126    dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
 127    dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
 128                                        src->max_hw_transfer);
 129    dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
 130                                 src->opt_mem_alignment);
 131    dst->min_mem_alignment = MAX(dst->min_mem_alignment,
 132                                 src->min_mem_alignment);
 133    dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
 134    dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
 135}
 136
 137typedef struct BdrvRefreshLimitsState {
 138    BlockDriverState *bs;
 139    BlockLimits old_bl;
 140} BdrvRefreshLimitsState;
 141
 142static void bdrv_refresh_limits_abort(void *opaque)
 143{
 144    BdrvRefreshLimitsState *s = opaque;
 145
 146    s->bs->bl = s->old_bl;
 147}
 148
 149static TransactionActionDrv bdrv_refresh_limits_drv = {
 150    .abort = bdrv_refresh_limits_abort,
 151    .clean = g_free,
 152};
 153
 154/* @tran is allowed to be NULL, in this case no rollback is possible. */
 155void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
 156{
 157    ERRP_GUARD();
 158    BlockDriver *drv = bs->drv;
 159    BdrvChild *c;
 160    bool have_limits;
 161
 162    GLOBAL_STATE_CODE();
 163
 164    if (tran) {
 165        BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
 166        *s = (BdrvRefreshLimitsState) {
 167            .bs = bs,
 168            .old_bl = bs->bl,
 169        };
 170        tran_add(tran, &bdrv_refresh_limits_drv, s);
 171    }
 172
 173    memset(&bs->bl, 0, sizeof(bs->bl));
 174
 175    if (!drv) {
 176        return;
 177    }
 178
 179    /* Default alignment based on whether driver has byte interface */
 180    bs->bl.request_alignment = (drv->bdrv_co_preadv ||
 181                                drv->bdrv_aio_preadv ||
 182                                drv->bdrv_co_preadv_part) ? 1 : 512;
 183
 184    /* Take some limits from the children as a default */
 185    have_limits = false;
 186    QLIST_FOREACH(c, &bs->children, next) {
 187        if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
 188        {
 189            bdrv_merge_limits(&bs->bl, &c->bs->bl);
 190            have_limits = true;
 191        }
 192
 193        if (c->role & BDRV_CHILD_FILTERED) {
 194            bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
 195        }
 196    }
 197
 198    if (!have_limits) {
 199        bs->bl.min_mem_alignment = 512;
 200        bs->bl.opt_mem_alignment = qemu_real_host_page_size();
 201
 202        /* Safe default since most protocols use readv()/writev()/etc */
 203        bs->bl.max_iov = IOV_MAX;
 204    }
 205
 206    /* Then let the driver override it */
 207    if (drv->bdrv_refresh_limits) {
 208        drv->bdrv_refresh_limits(bs, errp);
 209        if (*errp) {
 210            return;
 211        }
 212    }
 213
 214    if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
 215        error_setg(errp, "Driver requires too large request alignment");
 216    }
 217}
 218
 219/**
 220 * The copy-on-read flag is actually a reference count so multiple users may
 221 * use the feature without worrying about clobbering its previous state.
 222 * Copy-on-read stays enabled until all users have called to disable it.
 223 */
 224void bdrv_enable_copy_on_read(BlockDriverState *bs)
 225{
 226    IO_CODE();
 227    qatomic_inc(&bs->copy_on_read);
 228}
 229
 230void bdrv_disable_copy_on_read(BlockDriverState *bs)
 231{
 232    int old = qatomic_fetch_dec(&bs->copy_on_read);
 233    IO_CODE();
 234    assert(old >= 1);
 235}
 236
 237typedef struct {
 238    Coroutine *co;
 239    BlockDriverState *bs;
 240    bool done;
 241    bool begin;
 242    bool poll;
 243    BdrvChild *parent;
 244} BdrvCoDrainData;
 245
 246/* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
 247bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
 248                     bool ignore_bds_parents)
 249{
 250    GLOBAL_STATE_CODE();
 251
 252    if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
 253        return true;
 254    }
 255
 256    if (qatomic_read(&bs->in_flight)) {
 257        return true;
 258    }
 259
 260    return false;
 261}
 262
 263static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
 264                                      BdrvChild *ignore_parent)
 265{
 266    return bdrv_drain_poll(bs, ignore_parent, false);
 267}
 268
 269static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
 270                                  bool poll);
 271static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
 272
 273static void bdrv_co_drain_bh_cb(void *opaque)
 274{
 275    BdrvCoDrainData *data = opaque;
 276    Coroutine *co = data->co;
 277    BlockDriverState *bs = data->bs;
 278
 279    if (bs) {
 280        AioContext *ctx = bdrv_get_aio_context(bs);
 281        aio_context_acquire(ctx);
 282        bdrv_dec_in_flight(bs);
 283        if (data->begin) {
 284            bdrv_do_drained_begin(bs, data->parent, data->poll);
 285        } else {
 286            assert(!data->poll);
 287            bdrv_do_drained_end(bs, data->parent);
 288        }
 289        aio_context_release(ctx);
 290    } else {
 291        assert(data->begin);
 292        bdrv_drain_all_begin();
 293    }
 294
 295    data->done = true;
 296    aio_co_wake(co);
 297}
 298
 299static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
 300                                                bool begin,
 301                                                BdrvChild *parent,
 302                                                bool poll)
 303{
 304    BdrvCoDrainData data;
 305    Coroutine *self = qemu_coroutine_self();
 306    AioContext *ctx = bdrv_get_aio_context(bs);
 307    AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
 308
 309    /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
 310     * other coroutines run if they were queued by aio_co_enter(). */
 311
 312    assert(qemu_in_coroutine());
 313    data = (BdrvCoDrainData) {
 314        .co = self,
 315        .bs = bs,
 316        .done = false,
 317        .begin = begin,
 318        .parent = parent,
 319        .poll = poll,
 320    };
 321
 322    if (bs) {
 323        bdrv_inc_in_flight(bs);
 324    }
 325
 326    /*
 327     * Temporarily drop the lock across yield or we would get deadlocks.
 328     * bdrv_co_drain_bh_cb() reaquires the lock as needed.
 329     *
 330     * When we yield below, the lock for the current context will be
 331     * released, so if this is actually the lock that protects bs, don't drop
 332     * it a second time.
 333     */
 334    if (ctx != co_ctx) {
 335        aio_context_release(ctx);
 336    }
 337    replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
 338                                     bdrv_co_drain_bh_cb, &data);
 339
 340    qemu_coroutine_yield();
 341    /* If we are resumed from some other event (such as an aio completion or a
 342     * timer callback), it is a bug in the caller that should be fixed. */
 343    assert(data.done);
 344
 345    /* Reaquire the AioContext of bs if we dropped it */
 346    if (ctx != co_ctx) {
 347        aio_context_acquire(ctx);
 348    }
 349}
 350
 351static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
 352                                  bool poll)
 353{
 354    IO_OR_GS_CODE();
 355
 356    if (qemu_in_coroutine()) {
 357        bdrv_co_yield_to_drain(bs, true, parent, poll);
 358        return;
 359    }
 360
 361    GLOBAL_STATE_CODE();
 362
 363    /* Stop things in parent-to-child order */
 364    if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
 365        bdrv_parent_drained_begin(bs, parent);
 366        if (bs->drv && bs->drv->bdrv_drain_begin) {
 367            bs->drv->bdrv_drain_begin(bs);
 368        }
 369    }
 370
 371    /*
 372     * Wait for drained requests to finish.
 373     *
 374     * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
 375     * call is needed so things in this AioContext can make progress even
 376     * though we don't return to the main AioContext loop - this automatically
 377     * includes other nodes in the same AioContext and therefore all child
 378     * nodes.
 379     */
 380    if (poll) {
 381        BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
 382    }
 383}
 384
 385void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
 386{
 387    bdrv_do_drained_begin(bs, parent, false);
 388}
 389
 390void bdrv_drained_begin(BlockDriverState *bs)
 391{
 392    IO_OR_GS_CODE();
 393    bdrv_do_drained_begin(bs, NULL, true);
 394}
 395
 396/**
 397 * This function does not poll, nor must any of its recursively called
 398 * functions.
 399 */
 400static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
 401{
 402    int old_quiesce_counter;
 403
 404    IO_OR_GS_CODE();
 405
 406    if (qemu_in_coroutine()) {
 407        bdrv_co_yield_to_drain(bs, false, parent, false);
 408        return;
 409    }
 410    assert(bs->quiesce_counter > 0);
 411    GLOBAL_STATE_CODE();
 412
 413    /* Re-enable things in child-to-parent order */
 414    old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
 415    if (old_quiesce_counter == 1) {
 416        if (bs->drv && bs->drv->bdrv_drain_end) {
 417            bs->drv->bdrv_drain_end(bs);
 418        }
 419        bdrv_parent_drained_end(bs, parent);
 420    }
 421}
 422
 423void bdrv_drained_end(BlockDriverState *bs)
 424{
 425    IO_OR_GS_CODE();
 426    bdrv_do_drained_end(bs, NULL);
 427}
 428
 429void bdrv_drain(BlockDriverState *bs)
 430{
 431    IO_OR_GS_CODE();
 432    bdrv_drained_begin(bs);
 433    bdrv_drained_end(bs);
 434}
 435
 436static void bdrv_drain_assert_idle(BlockDriverState *bs)
 437{
 438    BdrvChild *child, *next;
 439
 440    assert(qatomic_read(&bs->in_flight) == 0);
 441    QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
 442        bdrv_drain_assert_idle(child->bs);
 443    }
 444}
 445
 446unsigned int bdrv_drain_all_count = 0;
 447
 448static bool bdrv_drain_all_poll(void)
 449{
 450    BlockDriverState *bs = NULL;
 451    bool result = false;
 452    GLOBAL_STATE_CODE();
 453
 454    /* bdrv_drain_poll() can't make changes to the graph and we are holding the
 455     * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
 456    while ((bs = bdrv_next_all_states(bs))) {
 457        AioContext *aio_context = bdrv_get_aio_context(bs);
 458        aio_context_acquire(aio_context);
 459        result |= bdrv_drain_poll(bs, NULL, true);
 460        aio_context_release(aio_context);
 461    }
 462
 463    return result;
 464}
 465
 466/*
 467 * Wait for pending requests to complete across all BlockDriverStates
 468 *
 469 * This function does not flush data to disk, use bdrv_flush_all() for that
 470 * after calling this function.
 471 *
 472 * This pauses all block jobs and disables external clients. It must
 473 * be paired with bdrv_drain_all_end().
 474 *
 475 * NOTE: no new block jobs or BlockDriverStates can be created between
 476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
 477 */
 478void bdrv_drain_all_begin_nopoll(void)
 479{
 480    BlockDriverState *bs = NULL;
 481    GLOBAL_STATE_CODE();
 482
 483    /*
 484     * bdrv queue is managed by record/replay,
 485     * waiting for finishing the I/O requests may
 486     * be infinite
 487     */
 488    if (replay_events_enabled()) {
 489        return;
 490    }
 491
 492    /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
 493     * loop AioContext, so make sure we're in the main context. */
 494    assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 495    assert(bdrv_drain_all_count < INT_MAX);
 496    bdrv_drain_all_count++;
 497
 498    /* Quiesce all nodes, without polling in-flight requests yet. The graph
 499     * cannot change during this loop. */
 500    while ((bs = bdrv_next_all_states(bs))) {
 501        AioContext *aio_context = bdrv_get_aio_context(bs);
 502
 503        aio_context_acquire(aio_context);
 504        bdrv_do_drained_begin(bs, NULL, false);
 505        aio_context_release(aio_context);
 506    }
 507}
 508
 509void bdrv_drain_all_begin(void)
 510{
 511    BlockDriverState *bs = NULL;
 512
 513    if (qemu_in_coroutine()) {
 514        bdrv_co_yield_to_drain(NULL, true, NULL, true);
 515        return;
 516    }
 517
 518    /*
 519     * bdrv queue is managed by record/replay,
 520     * waiting for finishing the I/O requests may
 521     * be infinite
 522     */
 523    if (replay_events_enabled()) {
 524        return;
 525    }
 526
 527    bdrv_drain_all_begin_nopoll();
 528
 529    /* Now poll the in-flight requests */
 530    AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
 531
 532    while ((bs = bdrv_next_all_states(bs))) {
 533        bdrv_drain_assert_idle(bs);
 534    }
 535}
 536
 537void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
 538{
 539    GLOBAL_STATE_CODE();
 540
 541    g_assert(bs->quiesce_counter > 0);
 542    g_assert(!bs->refcnt);
 543
 544    while (bs->quiesce_counter) {
 545        bdrv_do_drained_end(bs, NULL);
 546    }
 547}
 548
 549void bdrv_drain_all_end(void)
 550{
 551    BlockDriverState *bs = NULL;
 552    GLOBAL_STATE_CODE();
 553
 554    /*
 555     * bdrv queue is managed by record/replay,
 556     * waiting for finishing the I/O requests may
 557     * be endless
 558     */
 559    if (replay_events_enabled()) {
 560        return;
 561    }
 562
 563    while ((bs = bdrv_next_all_states(bs))) {
 564        AioContext *aio_context = bdrv_get_aio_context(bs);
 565
 566        aio_context_acquire(aio_context);
 567        bdrv_do_drained_end(bs, NULL);
 568        aio_context_release(aio_context);
 569    }
 570
 571    assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 572    assert(bdrv_drain_all_count > 0);
 573    bdrv_drain_all_count--;
 574}
 575
 576void bdrv_drain_all(void)
 577{
 578    GLOBAL_STATE_CODE();
 579    bdrv_drain_all_begin();
 580    bdrv_drain_all_end();
 581}
 582
 583/**
 584 * Remove an active request from the tracked requests list
 585 *
 586 * This function should be called when a tracked request is completing.
 587 */
 588static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
 589{
 590    if (req->serialising) {
 591        qatomic_dec(&req->bs->serialising_in_flight);
 592    }
 593
 594    qemu_co_mutex_lock(&req->bs->reqs_lock);
 595    QLIST_REMOVE(req, list);
 596    qemu_co_queue_restart_all(&req->wait_queue);
 597    qemu_co_mutex_unlock(&req->bs->reqs_lock);
 598}
 599
 600/**
 601 * Add an active request to the tracked requests list
 602 */
 603static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
 604                                               BlockDriverState *bs,
 605                                               int64_t offset,
 606                                               int64_t bytes,
 607                                               enum BdrvTrackedRequestType type)
 608{
 609    bdrv_check_request(offset, bytes, &error_abort);
 610
 611    *req = (BdrvTrackedRequest){
 612        .bs = bs,
 613        .offset         = offset,
 614        .bytes          = bytes,
 615        .type           = type,
 616        .co             = qemu_coroutine_self(),
 617        .serialising    = false,
 618        .overlap_offset = offset,
 619        .overlap_bytes  = bytes,
 620    };
 621
 622    qemu_co_queue_init(&req->wait_queue);
 623
 624    qemu_co_mutex_lock(&bs->reqs_lock);
 625    QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
 626    qemu_co_mutex_unlock(&bs->reqs_lock);
 627}
 628
 629static bool tracked_request_overlaps(BdrvTrackedRequest *req,
 630                                     int64_t offset, int64_t bytes)
 631{
 632    bdrv_check_request(offset, bytes, &error_abort);
 633
 634    /*        aaaa   bbbb */
 635    if (offset >= req->overlap_offset + req->overlap_bytes) {
 636        return false;
 637    }
 638    /* bbbb   aaaa        */
 639    if (req->overlap_offset >= offset + bytes) {
 640        return false;
 641    }
 642    return true;
 643}
 644
 645/* Called with self->bs->reqs_lock held */
 646static coroutine_fn BdrvTrackedRequest *
 647bdrv_find_conflicting_request(BdrvTrackedRequest *self)
 648{
 649    BdrvTrackedRequest *req;
 650
 651    QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
 652        if (req == self || (!req->serialising && !self->serialising)) {
 653            continue;
 654        }
 655        if (tracked_request_overlaps(req, self->overlap_offset,
 656                                     self->overlap_bytes))
 657        {
 658            /*
 659             * Hitting this means there was a reentrant request, for
 660             * example, a block driver issuing nested requests.  This must
 661             * never happen since it means deadlock.
 662             */
 663            assert(qemu_coroutine_self() != req->co);
 664
 665            /*
 666             * If the request is already (indirectly) waiting for us, or
 667             * will wait for us as soon as it wakes up, then just go on
 668             * (instead of producing a deadlock in the former case).
 669             */
 670            if (!req->waiting_for) {
 671                return req;
 672            }
 673        }
 674    }
 675
 676    return NULL;
 677}
 678
 679/* Called with self->bs->reqs_lock held */
 680static void coroutine_fn
 681bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
 682{
 683    BdrvTrackedRequest *req;
 684
 685    while ((req = bdrv_find_conflicting_request(self))) {
 686        self->waiting_for = req;
 687        qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
 688        self->waiting_for = NULL;
 689    }
 690}
 691
 692/* Called with req->bs->reqs_lock held */
 693static void tracked_request_set_serialising(BdrvTrackedRequest *req,
 694                                            uint64_t align)
 695{
 696    int64_t overlap_offset = req->offset & ~(align - 1);
 697    int64_t overlap_bytes =
 698        ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
 699
 700    bdrv_check_request(req->offset, req->bytes, &error_abort);
 701
 702    if (!req->serialising) {
 703        qatomic_inc(&req->bs->serialising_in_flight);
 704        req->serialising = true;
 705    }
 706
 707    req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
 708    req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
 709}
 710
 711/**
 712 * Return the tracked request on @bs for the current coroutine, or
 713 * NULL if there is none.
 714 */
 715BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
 716{
 717    BdrvTrackedRequest *req;
 718    Coroutine *self = qemu_coroutine_self();
 719    IO_CODE();
 720
 721    QLIST_FOREACH(req, &bs->tracked_requests, list) {
 722        if (req->co == self) {
 723            return req;
 724        }
 725    }
 726
 727    return NULL;
 728}
 729
 730/**
 731 * Round a region to cluster boundaries
 732 */
 733void coroutine_fn GRAPH_RDLOCK
 734bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
 735                       int64_t *cluster_offset, int64_t *cluster_bytes)
 736{
 737    BlockDriverInfo bdi;
 738    IO_CODE();
 739    if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
 740        *cluster_offset = offset;
 741        *cluster_bytes = bytes;
 742    } else {
 743        int64_t c = bdi.cluster_size;
 744        *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
 745        *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
 746    }
 747}
 748
 749static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
 750{
 751    BlockDriverInfo bdi;
 752    int ret;
 753
 754    ret = bdrv_co_get_info(bs, &bdi);
 755    if (ret < 0 || bdi.cluster_size == 0) {
 756        return bs->bl.request_alignment;
 757    } else {
 758        return bdi.cluster_size;
 759    }
 760}
 761
 762void bdrv_inc_in_flight(BlockDriverState *bs)
 763{
 764    IO_CODE();
 765    qatomic_inc(&bs->in_flight);
 766}
 767
 768void bdrv_wakeup(BlockDriverState *bs)
 769{
 770    IO_CODE();
 771    aio_wait_kick();
 772}
 773
 774void bdrv_dec_in_flight(BlockDriverState *bs)
 775{
 776    IO_CODE();
 777    qatomic_dec(&bs->in_flight);
 778    bdrv_wakeup(bs);
 779}
 780
 781static void coroutine_fn
 782bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
 783{
 784    BlockDriverState *bs = self->bs;
 785
 786    if (!qatomic_read(&bs->serialising_in_flight)) {
 787        return;
 788    }
 789
 790    qemu_co_mutex_lock(&bs->reqs_lock);
 791    bdrv_wait_serialising_requests_locked(self);
 792    qemu_co_mutex_unlock(&bs->reqs_lock);
 793}
 794
 795void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
 796                                                uint64_t align)
 797{
 798    IO_CODE();
 799
 800    qemu_co_mutex_lock(&req->bs->reqs_lock);
 801
 802    tracked_request_set_serialising(req, align);
 803    bdrv_wait_serialising_requests_locked(req);
 804
 805    qemu_co_mutex_unlock(&req->bs->reqs_lock);
 806}
 807
 808int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
 809                            QEMUIOVector *qiov, size_t qiov_offset,
 810                            Error **errp)
 811{
 812    /*
 813     * Check generic offset/bytes correctness
 814     */
 815
 816    if (offset < 0) {
 817        error_setg(errp, "offset is negative: %" PRIi64, offset);
 818        return -EIO;
 819    }
 820
 821    if (bytes < 0) {
 822        error_setg(errp, "bytes is negative: %" PRIi64, bytes);
 823        return -EIO;
 824    }
 825
 826    if (bytes > BDRV_MAX_LENGTH) {
 827        error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
 828                   bytes, BDRV_MAX_LENGTH);
 829        return -EIO;
 830    }
 831
 832    if (offset > BDRV_MAX_LENGTH) {
 833        error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
 834                   offset, BDRV_MAX_LENGTH);
 835        return -EIO;
 836    }
 837
 838    if (offset > BDRV_MAX_LENGTH - bytes) {
 839        error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
 840                   "exceeds maximum(%" PRIi64 ")", offset, bytes,
 841                   BDRV_MAX_LENGTH);
 842        return -EIO;
 843    }
 844
 845    if (!qiov) {
 846        return 0;
 847    }
 848
 849    /*
 850     * Check qiov and qiov_offset
 851     */
 852
 853    if (qiov_offset > qiov->size) {
 854        error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
 855                   qiov_offset, qiov->size);
 856        return -EIO;
 857    }
 858
 859    if (bytes > qiov->size - qiov_offset) {
 860        error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
 861                   "vector size(%zu)", bytes, qiov_offset, qiov->size);
 862        return -EIO;
 863    }
 864
 865    return 0;
 866}
 867
 868int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
 869{
 870    return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
 871}
 872
 873static int bdrv_check_request32(int64_t offset, int64_t bytes,
 874                                QEMUIOVector *qiov, size_t qiov_offset)
 875{
 876    int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
 877    if (ret < 0) {
 878        return ret;
 879    }
 880
 881    if (bytes > BDRV_REQUEST_MAX_BYTES) {
 882        return -EIO;
 883    }
 884
 885    return 0;
 886}
 887
 888/*
 889 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
 890 * The operation is sped up by checking the block status and only writing
 891 * zeroes to the device if they currently do not return zeroes. Optional
 892 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
 893 * BDRV_REQ_FUA).
 894 *
 895 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
 896 */
 897int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
 898{
 899    int ret;
 900    int64_t target_size, bytes, offset = 0;
 901    BlockDriverState *bs = child->bs;
 902    IO_CODE();
 903
 904    target_size = bdrv_getlength(bs);
 905    if (target_size < 0) {
 906        return target_size;
 907    }
 908
 909    for (;;) {
 910        bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
 911        if (bytes <= 0) {
 912            return 0;
 913        }
 914        ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
 915        if (ret < 0) {
 916            return ret;
 917        }
 918        if (ret & BDRV_BLOCK_ZERO) {
 919            offset += bytes;
 920            continue;
 921        }
 922        ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
 923        if (ret < 0) {
 924            return ret;
 925        }
 926        offset += bytes;
 927    }
 928}
 929
 930/*
 931 * Writes to the file and ensures that no writes are reordered across this
 932 * request (acts as a barrier)
 933 *
 934 * Returns 0 on success, -errno in error cases.
 935 */
 936int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
 937                                     int64_t bytes, const void *buf,
 938                                     BdrvRequestFlags flags)
 939{
 940    int ret;
 941    IO_CODE();
 942    assert_bdrv_graph_readable();
 943
 944    ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
 945    if (ret < 0) {
 946        return ret;
 947    }
 948
 949    ret = bdrv_co_flush(child->bs);
 950    if (ret < 0) {
 951        return ret;
 952    }
 953
 954    return 0;
 955}
 956
 957typedef struct CoroutineIOCompletion {
 958    Coroutine *coroutine;
 959    int ret;
 960} CoroutineIOCompletion;
 961
 962static void bdrv_co_io_em_complete(void *opaque, int ret)
 963{
 964    CoroutineIOCompletion *co = opaque;
 965
 966    co->ret = ret;
 967    aio_co_wake(co->coroutine);
 968}
 969
 970static int coroutine_fn GRAPH_RDLOCK
 971bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
 972                   QEMUIOVector *qiov, size_t qiov_offset, int flags)
 973{
 974    BlockDriver *drv = bs->drv;
 975    int64_t sector_num;
 976    unsigned int nb_sectors;
 977    QEMUIOVector local_qiov;
 978    int ret;
 979    assert_bdrv_graph_readable();
 980
 981    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
 982    assert(!(flags & ~bs->supported_read_flags));
 983
 984    if (!drv) {
 985        return -ENOMEDIUM;
 986    }
 987
 988    if (drv->bdrv_co_preadv_part) {
 989        return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
 990                                        flags);
 991    }
 992
 993    if (qiov_offset > 0 || bytes != qiov->size) {
 994        qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
 995        qiov = &local_qiov;
 996    }
 997
 998    if (drv->bdrv_co_preadv) {
 999        ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1000        goto out;
1001    }
1002
1003    if (drv->bdrv_aio_preadv) {
1004        BlockAIOCB *acb;
1005        CoroutineIOCompletion co = {
1006            .coroutine = qemu_coroutine_self(),
1007        };
1008
1009        acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1010                                   bdrv_co_io_em_complete, &co);
1011        if (acb == NULL) {
1012            ret = -EIO;
1013            goto out;
1014        } else {
1015            qemu_coroutine_yield();
1016            ret = co.ret;
1017            goto out;
1018        }
1019    }
1020
1021    sector_num = offset >> BDRV_SECTOR_BITS;
1022    nb_sectors = bytes >> BDRV_SECTOR_BITS;
1023
1024    assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1025    assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1026    assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1027    assert(drv->bdrv_co_readv);
1028
1029    ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1030
1031out:
1032    if (qiov == &local_qiov) {
1033        qemu_iovec_destroy(&local_qiov);
1034    }
1035
1036    return ret;
1037}
1038
1039static int coroutine_fn GRAPH_RDLOCK
1040bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1041                    QEMUIOVector *qiov, size_t qiov_offset,
1042                    BdrvRequestFlags flags)
1043{
1044    BlockDriver *drv = bs->drv;
1045    bool emulate_fua = false;
1046    int64_t sector_num;
1047    unsigned int nb_sectors;
1048    QEMUIOVector local_qiov;
1049    int ret;
1050    assert_bdrv_graph_readable();
1051
1052    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1053
1054    if (!drv) {
1055        return -ENOMEDIUM;
1056    }
1057
1058    if ((flags & BDRV_REQ_FUA) &&
1059        (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1060        flags &= ~BDRV_REQ_FUA;
1061        emulate_fua = true;
1062    }
1063
1064    flags &= bs->supported_write_flags;
1065
1066    if (drv->bdrv_co_pwritev_part) {
1067        ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1068                                        flags);
1069        goto emulate_flags;
1070    }
1071
1072    if (qiov_offset > 0 || bytes != qiov->size) {
1073        qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1074        qiov = &local_qiov;
1075    }
1076
1077    if (drv->bdrv_co_pwritev) {
1078        ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1079        goto emulate_flags;
1080    }
1081
1082    if (drv->bdrv_aio_pwritev) {
1083        BlockAIOCB *acb;
1084        CoroutineIOCompletion co = {
1085            .coroutine = qemu_coroutine_self(),
1086        };
1087
1088        acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1089                                    bdrv_co_io_em_complete, &co);
1090        if (acb == NULL) {
1091            ret = -EIO;
1092        } else {
1093            qemu_coroutine_yield();
1094            ret = co.ret;
1095        }
1096        goto emulate_flags;
1097    }
1098
1099    sector_num = offset >> BDRV_SECTOR_BITS;
1100    nb_sectors = bytes >> BDRV_SECTOR_BITS;
1101
1102    assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1103    assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1104    assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1105
1106    assert(drv->bdrv_co_writev);
1107    ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1108
1109emulate_flags:
1110    if (ret == 0 && emulate_fua) {
1111        ret = bdrv_co_flush(bs);
1112    }
1113
1114    if (qiov == &local_qiov) {
1115        qemu_iovec_destroy(&local_qiov);
1116    }
1117
1118    return ret;
1119}
1120
1121static int coroutine_fn GRAPH_RDLOCK
1122bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1123                               int64_t bytes, QEMUIOVector *qiov,
1124                               size_t qiov_offset)
1125{
1126    BlockDriver *drv = bs->drv;
1127    QEMUIOVector local_qiov;
1128    int ret;
1129    assert_bdrv_graph_readable();
1130
1131    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1132
1133    if (!drv) {
1134        return -ENOMEDIUM;
1135    }
1136
1137    if (!block_driver_can_compress(drv)) {
1138        return -ENOTSUP;
1139    }
1140
1141    if (drv->bdrv_co_pwritev_compressed_part) {
1142        return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1143                                                    qiov, qiov_offset);
1144    }
1145
1146    if (qiov_offset == 0) {
1147        return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1148    }
1149
1150    qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1151    ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1152    qemu_iovec_destroy(&local_qiov);
1153
1154    return ret;
1155}
1156
1157static int coroutine_fn GRAPH_RDLOCK
1158bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1159                         QEMUIOVector *qiov, size_t qiov_offset, int flags)
1160{
1161    BlockDriverState *bs = child->bs;
1162
1163    /* Perform I/O through a temporary buffer so that users who scribble over
1164     * their read buffer while the operation is in progress do not end up
1165     * modifying the image file.  This is critical for zero-copy guest I/O
1166     * where anything might happen inside guest memory.
1167     */
1168    void *bounce_buffer = NULL;
1169
1170    BlockDriver *drv = bs->drv;
1171    int64_t cluster_offset;
1172    int64_t cluster_bytes;
1173    int64_t skip_bytes;
1174    int ret;
1175    int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1176                                    BDRV_REQUEST_MAX_BYTES);
1177    int64_t progress = 0;
1178    bool skip_write;
1179
1180    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1181
1182    if (!drv) {
1183        return -ENOMEDIUM;
1184    }
1185
1186    /*
1187     * Do not write anything when the BDS is inactive.  That is not
1188     * allowed, and it would not help.
1189     */
1190    skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1191
1192    /* FIXME We cannot require callers to have write permissions when all they
1193     * are doing is a read request. If we did things right, write permissions
1194     * would be obtained anyway, but internally by the copy-on-read code. As
1195     * long as it is implemented here rather than in a separate filter driver,
1196     * the copy-on-read code doesn't have its own BdrvChild, however, for which
1197     * it could request permissions. Therefore we have to bypass the permission
1198     * system for the moment. */
1199    // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1200
1201    /* Cover entire cluster so no additional backing file I/O is required when
1202     * allocating cluster in the image file.  Note that this value may exceed
1203     * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1204     * is one reason we loop rather than doing it all at once.
1205     */
1206    bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1207    skip_bytes = offset - cluster_offset;
1208
1209    trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1210                                   cluster_offset, cluster_bytes);
1211
1212    while (cluster_bytes) {
1213        int64_t pnum;
1214
1215        if (skip_write) {
1216            ret = 1; /* "already allocated", so nothing will be copied */
1217            pnum = MIN(cluster_bytes, max_transfer);
1218        } else {
1219            ret = bdrv_is_allocated(bs, cluster_offset,
1220                                    MIN(cluster_bytes, max_transfer), &pnum);
1221            if (ret < 0) {
1222                /*
1223                 * Safe to treat errors in querying allocation as if
1224                 * unallocated; we'll probably fail again soon on the
1225                 * read, but at least that will set a decent errno.
1226                 */
1227                pnum = MIN(cluster_bytes, max_transfer);
1228            }
1229
1230            /* Stop at EOF if the image ends in the middle of the cluster */
1231            if (ret == 0 && pnum == 0) {
1232                assert(progress >= bytes);
1233                break;
1234            }
1235
1236            assert(skip_bytes < pnum);
1237        }
1238
1239        if (ret <= 0) {
1240            QEMUIOVector local_qiov;
1241
1242            /* Must copy-on-read; use the bounce buffer */
1243            pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1244            if (!bounce_buffer) {
1245                int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1246                int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1247                int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1248
1249                bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1250                if (!bounce_buffer) {
1251                    ret = -ENOMEM;
1252                    goto err;
1253                }
1254            }
1255            qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1256
1257            ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1258                                     &local_qiov, 0, 0);
1259            if (ret < 0) {
1260                goto err;
1261            }
1262
1263            bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1264            if (drv->bdrv_co_pwrite_zeroes &&
1265                buffer_is_zero(bounce_buffer, pnum)) {
1266                /* FIXME: Should we (perhaps conditionally) be setting
1267                 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1268                 * that still correctly reads as zero? */
1269                ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1270                                               BDRV_REQ_WRITE_UNCHANGED);
1271            } else {
1272                /* This does not change the data on the disk, it is not
1273                 * necessary to flush even in cache=writethrough mode.
1274                 */
1275                ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1276                                          &local_qiov, 0,
1277                                          BDRV_REQ_WRITE_UNCHANGED);
1278            }
1279
1280            if (ret < 0) {
1281                /* It might be okay to ignore write errors for guest
1282                 * requests.  If this is a deliberate copy-on-read
1283                 * then we don't want to ignore the error.  Simply
1284                 * report it in all cases.
1285                 */
1286                goto err;
1287            }
1288
1289            if (!(flags & BDRV_REQ_PREFETCH)) {
1290                qemu_iovec_from_buf(qiov, qiov_offset + progress,
1291                                    bounce_buffer + skip_bytes,
1292                                    MIN(pnum - skip_bytes, bytes - progress));
1293            }
1294        } else if (!(flags & BDRV_REQ_PREFETCH)) {
1295            /* Read directly into the destination */
1296            ret = bdrv_driver_preadv(bs, offset + progress,
1297                                     MIN(pnum - skip_bytes, bytes - progress),
1298                                     qiov, qiov_offset + progress, 0);
1299            if (ret < 0) {
1300                goto err;
1301            }
1302        }
1303
1304        cluster_offset += pnum;
1305        cluster_bytes -= pnum;
1306        progress += pnum - skip_bytes;
1307        skip_bytes = 0;
1308    }
1309    ret = 0;
1310
1311err:
1312    qemu_vfree(bounce_buffer);
1313    return ret;
1314}
1315
1316/*
1317 * Forwards an already correctly aligned request to the BlockDriver. This
1318 * handles copy on read, zeroing after EOF, and fragmentation of large
1319 * reads; any other features must be implemented by the caller.
1320 */
1321static int coroutine_fn GRAPH_RDLOCK
1322bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1323                    int64_t offset, int64_t bytes, int64_t align,
1324                    QEMUIOVector *qiov, size_t qiov_offset, int flags)
1325{
1326    BlockDriverState *bs = child->bs;
1327    int64_t total_bytes, max_bytes;
1328    int ret = 0;
1329    int64_t bytes_remaining = bytes;
1330    int max_transfer;
1331
1332    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1333    assert(is_power_of_2(align));
1334    assert((offset & (align - 1)) == 0);
1335    assert((bytes & (align - 1)) == 0);
1336    assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1337    max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1338                                   align);
1339
1340    /*
1341     * TODO: We would need a per-BDS .supported_read_flags and
1342     * potential fallback support, if we ever implement any read flags
1343     * to pass through to drivers.  For now, there aren't any
1344     * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1345     */
1346    assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1347                       BDRV_REQ_REGISTERED_BUF)));
1348
1349    /* Handle Copy on Read and associated serialisation */
1350    if (flags & BDRV_REQ_COPY_ON_READ) {
1351        /* If we touch the same cluster it counts as an overlap.  This
1352         * guarantees that allocating writes will be serialized and not race
1353         * with each other for the same cluster.  For example, in copy-on-read
1354         * it ensures that the CoR read and write operations are atomic and
1355         * guest writes cannot interleave between them. */
1356        bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1357    } else {
1358        bdrv_wait_serialising_requests(req);
1359    }
1360
1361    if (flags & BDRV_REQ_COPY_ON_READ) {
1362        int64_t pnum;
1363
1364        /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1365        flags &= ~BDRV_REQ_COPY_ON_READ;
1366
1367        ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1368        if (ret < 0) {
1369            goto out;
1370        }
1371
1372        if (!ret || pnum != bytes) {
1373            ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1374                                           qiov, qiov_offset, flags);
1375            goto out;
1376        } else if (flags & BDRV_REQ_PREFETCH) {
1377            goto out;
1378        }
1379    }
1380
1381    /* Forward the request to the BlockDriver, possibly fragmenting it */
1382    total_bytes = bdrv_co_getlength(bs);
1383    if (total_bytes < 0) {
1384        ret = total_bytes;
1385        goto out;
1386    }
1387
1388    assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1389
1390    max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1391    if (bytes <= max_bytes && bytes <= max_transfer) {
1392        ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1393        goto out;
1394    }
1395
1396    while (bytes_remaining) {
1397        int64_t num;
1398
1399        if (max_bytes) {
1400            num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1401            assert(num);
1402
1403            ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1404                                     num, qiov,
1405                                     qiov_offset + bytes - bytes_remaining,
1406                                     flags);
1407            max_bytes -= num;
1408        } else {
1409            num = bytes_remaining;
1410            ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1411                                    0, bytes_remaining);
1412        }
1413        if (ret < 0) {
1414            goto out;
1415        }
1416        bytes_remaining -= num;
1417    }
1418
1419out:
1420    return ret < 0 ? ret : 0;
1421}
1422
1423/*
1424 * Request padding
1425 *
1426 *  |<---- align ----->|                     |<----- align ---->|
1427 *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1428 *  |          |       |                     |     |            |
1429 * -*----------$-------*-------- ... --------*-----$------------*---
1430 *  |          |       |                     |     |            |
1431 *  |          offset  |                     |     end          |
1432 *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1433 *  [buf   ... )                             [tail_buf          )
1434 *
1435 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1436 * is placed at the beginning of @buf and @tail at the @end.
1437 *
1438 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1439 * around tail, if tail exists.
1440 *
1441 * @merge_reads is true for small requests,
1442 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1443 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1444 *
1445 * @write is true for write requests, false for read requests.
1446 *
1447 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1448 * merge existing vector elements into a single one.  @collapse_bounce_buf acts
1449 * as the bounce buffer in such cases.  @pre_collapse_qiov has the pre-collapse
1450 * I/O vector elements so for read requests, the data can be copied back after
1451 * the read is done.
1452 */
1453typedef struct BdrvRequestPadding {
1454    uint8_t *buf;
1455    size_t buf_len;
1456    uint8_t *tail_buf;
1457    size_t head;
1458    size_t tail;
1459    bool merge_reads;
1460    bool write;
1461    QEMUIOVector local_qiov;
1462
1463    uint8_t *collapse_bounce_buf;
1464    size_t collapse_len;
1465    QEMUIOVector pre_collapse_qiov;
1466} BdrvRequestPadding;
1467
1468static bool bdrv_init_padding(BlockDriverState *bs,
1469                              int64_t offset, int64_t bytes,
1470                              bool write,
1471                              BdrvRequestPadding *pad)
1472{
1473    int64_t align = bs->bl.request_alignment;
1474    int64_t sum;
1475
1476    bdrv_check_request(offset, bytes, &error_abort);
1477    assert(align <= INT_MAX); /* documented in block/block_int.h */
1478    assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1479
1480    memset(pad, 0, sizeof(*pad));
1481
1482    pad->head = offset & (align - 1);
1483    pad->tail = ((offset + bytes) & (align - 1));
1484    if (pad->tail) {
1485        pad->tail = align - pad->tail;
1486    }
1487
1488    if (!pad->head && !pad->tail) {
1489        return false;
1490    }
1491
1492    assert(bytes); /* Nothing good in aligning zero-length requests */
1493
1494    sum = pad->head + bytes + pad->tail;
1495    pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1496    pad->buf = qemu_blockalign(bs, pad->buf_len);
1497    pad->merge_reads = sum == pad->buf_len;
1498    if (pad->tail) {
1499        pad->tail_buf = pad->buf + pad->buf_len - align;
1500    }
1501
1502    pad->write = write;
1503
1504    return true;
1505}
1506
1507static int coroutine_fn GRAPH_RDLOCK
1508bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1509                      BdrvRequestPadding *pad, bool zero_middle)
1510{
1511    QEMUIOVector local_qiov;
1512    BlockDriverState *bs = child->bs;
1513    uint64_t align = bs->bl.request_alignment;
1514    int ret;
1515
1516    assert(req->serialising && pad->buf);
1517
1518    if (pad->head || pad->merge_reads) {
1519        int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1520
1521        qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1522
1523        if (pad->head) {
1524            bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1525        }
1526        if (pad->merge_reads && pad->tail) {
1527            bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1528        }
1529        ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1530                                  align, &local_qiov, 0, 0);
1531        if (ret < 0) {
1532            return ret;
1533        }
1534        if (pad->head) {
1535            bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1536        }
1537        if (pad->merge_reads && pad->tail) {
1538            bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1539        }
1540
1541        if (pad->merge_reads) {
1542            goto zero_mem;
1543        }
1544    }
1545
1546    if (pad->tail) {
1547        qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1548
1549        bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1550        ret = bdrv_aligned_preadv(
1551                child, req,
1552                req->overlap_offset + req->overlap_bytes - align,
1553                align, align, &local_qiov, 0, 0);
1554        if (ret < 0) {
1555            return ret;
1556        }
1557        bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1558    }
1559
1560zero_mem:
1561    if (zero_middle) {
1562        memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1563    }
1564
1565    return 0;
1566}
1567
1568/**
1569 * Free *pad's associated buffers, and perform any necessary finalization steps.
1570 */
1571static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1572{
1573    if (pad->collapse_bounce_buf) {
1574        if (!pad->write) {
1575            /*
1576             * If padding required elements in the vector to be collapsed into a
1577             * bounce buffer, copy the bounce buffer content back
1578             */
1579            qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1580                                pad->collapse_bounce_buf, pad->collapse_len);
1581        }
1582        qemu_vfree(pad->collapse_bounce_buf);
1583        qemu_iovec_destroy(&pad->pre_collapse_qiov);
1584    }
1585    if (pad->buf) {
1586        qemu_vfree(pad->buf);
1587        qemu_iovec_destroy(&pad->local_qiov);
1588    }
1589    memset(pad, 0, sizeof(*pad));
1590}
1591
1592/*
1593 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1594 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1595 *
1596 * To ensure this, when necessary, the first two or three elements of @iov are
1597 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1598 * bounce buffer in pad->local_qiov.
1599 *
1600 * After performing a read request, the data from the bounce buffer must be
1601 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1602 */
1603static int bdrv_create_padded_qiov(BlockDriverState *bs,
1604                                   BdrvRequestPadding *pad,
1605                                   struct iovec *iov, int niov,
1606                                   size_t iov_offset, size_t bytes)
1607{
1608    int padded_niov, surplus_count, collapse_count;
1609
1610    /* Assert this invariant */
1611    assert(niov <= IOV_MAX);
1612
1613    /*
1614     * Cannot pad if resulting length would exceed SIZE_MAX.  Returning an error
1615     * to the guest is not ideal, but there is little else we can do.  At least
1616     * this will practically never happen on 64-bit systems.
1617     */
1618    if (SIZE_MAX - pad->head < bytes ||
1619        SIZE_MAX - pad->head - bytes < pad->tail)
1620    {
1621        return -EINVAL;
1622    }
1623
1624    /* Length of the resulting IOV if we just concatenated everything */
1625    padded_niov = !!pad->head + niov + !!pad->tail;
1626
1627    qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1628
1629    if (pad->head) {
1630        qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1631    }
1632
1633    /*
1634     * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1635     * Instead, merge the first two or three elements of @iov to reduce the
1636     * number of vector elements as necessary.
1637     */
1638    if (padded_niov > IOV_MAX) {
1639        /*
1640         * Only head and tail can have lead to the number of entries exceeding
1641         * IOV_MAX, so we can exceed it by the head and tail at most.  We need
1642         * to reduce the number of elements by `surplus_count`, so we merge that
1643         * many elements plus one into one element.
1644         */
1645        surplus_count = padded_niov - IOV_MAX;
1646        assert(surplus_count <= !!pad->head + !!pad->tail);
1647        collapse_count = surplus_count + 1;
1648
1649        /*
1650         * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1651         * advance `iov` (and associated variables) by those elements.
1652         */
1653        qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1654        qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1655                              collapse_count, iov_offset, SIZE_MAX);
1656        iov += collapse_count;
1657        iov_offset = 0;
1658        niov -= collapse_count;
1659        bytes -= pad->pre_collapse_qiov.size;
1660
1661        /*
1662         * Construct the bounce buffer to match the length of the to-collapse
1663         * vector elements, and for write requests, initialize it with the data
1664         * from those elements.  Then add it to `pad->local_qiov`.
1665         */
1666        pad->collapse_len = pad->pre_collapse_qiov.size;
1667        pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1668        if (pad->write) {
1669            qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1670                              pad->collapse_bounce_buf, pad->collapse_len);
1671        }
1672        qemu_iovec_add(&pad->local_qiov,
1673                       pad->collapse_bounce_buf, pad->collapse_len);
1674    }
1675
1676    qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1677
1678    if (pad->tail) {
1679        qemu_iovec_add(&pad->local_qiov,
1680                       pad->buf + pad->buf_len - pad->tail, pad->tail);
1681    }
1682
1683    assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1684    return 0;
1685}
1686
1687/*
1688 * bdrv_pad_request
1689 *
1690 * Exchange request parameters with padded request if needed. Don't include RMW
1691 * read of padding, bdrv_padding_rmw_read() should be called separately if
1692 * needed.
1693 *
1694 * @write is true for write requests, false for read requests.
1695 *
1696 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1697 *  - on function start they represent original request
1698 *  - on failure or when padding is not needed they are unchanged
1699 *  - on success when padding is needed they represent padded request
1700 */
1701static int bdrv_pad_request(BlockDriverState *bs,
1702                            QEMUIOVector **qiov, size_t *qiov_offset,
1703                            int64_t *offset, int64_t *bytes,
1704                            bool write,
1705                            BdrvRequestPadding *pad, bool *padded,
1706                            BdrvRequestFlags *flags)
1707{
1708    int ret;
1709    struct iovec *sliced_iov;
1710    int sliced_niov;
1711    size_t sliced_head, sliced_tail;
1712
1713    /* Should have been checked by the caller already */
1714    ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1715    if (ret < 0) {
1716        return ret;
1717    }
1718
1719    if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1720        if (padded) {
1721            *padded = false;
1722        }
1723        return 0;
1724    }
1725
1726    sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1727                                  &sliced_head, &sliced_tail,
1728                                  &sliced_niov);
1729
1730    /* Guaranteed by bdrv_check_request32() */
1731    assert(*bytes <= SIZE_MAX);
1732    ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1733                                  sliced_head, *bytes);
1734    if (ret < 0) {
1735        bdrv_padding_finalize(pad);
1736        return ret;
1737    }
1738    *bytes += pad->head + pad->tail;
1739    *offset -= pad->head;
1740    *qiov = &pad->local_qiov;
1741    *qiov_offset = 0;
1742    if (padded) {
1743        *padded = true;
1744    }
1745    if (flags) {
1746        /* Can't use optimization hint with bounce buffer */
1747        *flags &= ~BDRV_REQ_REGISTERED_BUF;
1748    }
1749
1750    return 0;
1751}
1752
1753int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1754    int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1755    BdrvRequestFlags flags)
1756{
1757    IO_CODE();
1758    return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1759}
1760
1761int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1762    int64_t offset, int64_t bytes,
1763    QEMUIOVector *qiov, size_t qiov_offset,
1764    BdrvRequestFlags flags)
1765{
1766    BlockDriverState *bs = child->bs;
1767    BdrvTrackedRequest req;
1768    BdrvRequestPadding pad;
1769    int ret;
1770    IO_CODE();
1771
1772    trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1773
1774    if (!bdrv_co_is_inserted(bs)) {
1775        return -ENOMEDIUM;
1776    }
1777
1778    ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1779    if (ret < 0) {
1780        return ret;
1781    }
1782
1783    if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1784        /*
1785         * Aligning zero request is nonsense. Even if driver has special meaning
1786         * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1787         * it to driver due to request_alignment.
1788         *
1789         * Still, no reason to return an error if someone do unaligned
1790         * zero-length read occasionally.
1791         */
1792        return 0;
1793    }
1794
1795    bdrv_inc_in_flight(bs);
1796
1797    /* Don't do copy-on-read if we read data before write operation */
1798    if (qatomic_read(&bs->copy_on_read)) {
1799        flags |= BDRV_REQ_COPY_ON_READ;
1800    }
1801
1802    ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1803                           &pad, NULL, &flags);
1804    if (ret < 0) {
1805        goto fail;
1806    }
1807
1808    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1809    ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1810                              bs->bl.request_alignment,
1811                              qiov, qiov_offset, flags);
1812    tracked_request_end(&req);
1813    bdrv_padding_finalize(&pad);
1814
1815fail:
1816    bdrv_dec_in_flight(bs);
1817
1818    return ret;
1819}
1820
1821static int coroutine_fn GRAPH_RDLOCK
1822bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1823                         BdrvRequestFlags flags)
1824{
1825    BlockDriver *drv = bs->drv;
1826    QEMUIOVector qiov;
1827    void *buf = NULL;
1828    int ret = 0;
1829    bool need_flush = false;
1830    int head = 0;
1831    int tail = 0;
1832
1833    int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1834                                            INT64_MAX);
1835    int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1836                        bs->bl.request_alignment);
1837    int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1838
1839    assert_bdrv_graph_readable();
1840    bdrv_check_request(offset, bytes, &error_abort);
1841
1842    if (!drv) {
1843        return -ENOMEDIUM;
1844    }
1845
1846    if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1847        return -ENOTSUP;
1848    }
1849
1850    /* By definition there is no user buffer so this flag doesn't make sense */
1851    if (flags & BDRV_REQ_REGISTERED_BUF) {
1852        return -EINVAL;
1853    }
1854
1855    /* Invalidate the cached block-status data range if this write overlaps */
1856    bdrv_bsc_invalidate_range(bs, offset, bytes);
1857
1858    assert(alignment % bs->bl.request_alignment == 0);
1859    head = offset % alignment;
1860    tail = (offset + bytes) % alignment;
1861    max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1862    assert(max_write_zeroes >= bs->bl.request_alignment);
1863
1864    while (bytes > 0 && !ret) {
1865        int64_t num = bytes;
1866
1867        /* Align request.  Block drivers can expect the "bulk" of the request
1868         * to be aligned, and that unaligned requests do not cross cluster
1869         * boundaries.
1870         */
1871        if (head) {
1872            /* Make a small request up to the first aligned sector. For
1873             * convenience, limit this request to max_transfer even if
1874             * we don't need to fall back to writes.  */
1875            num = MIN(MIN(bytes, max_transfer), alignment - head);
1876            head = (head + num) % alignment;
1877            assert(num < max_write_zeroes);
1878        } else if (tail && num > alignment) {
1879            /* Shorten the request to the last aligned sector.  */
1880            num -= tail;
1881        }
1882
1883        /* limit request size */
1884        if (num > max_write_zeroes) {
1885            num = max_write_zeroes;
1886        }
1887
1888        ret = -ENOTSUP;
1889        /* First try the efficient write zeroes operation */
1890        if (drv->bdrv_co_pwrite_zeroes) {
1891            ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1892                                             flags & bs->supported_zero_flags);
1893            if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1894                !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1895                need_flush = true;
1896            }
1897        } else {
1898            assert(!bs->supported_zero_flags);
1899        }
1900
1901        if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1902            /* Fall back to bounce buffer if write zeroes is unsupported */
1903            BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1904
1905            if ((flags & BDRV_REQ_FUA) &&
1906                !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1907                /* No need for bdrv_driver_pwrite() to do a fallback
1908                 * flush on each chunk; use just one at the end */
1909                write_flags &= ~BDRV_REQ_FUA;
1910                need_flush = true;
1911            }
1912            num = MIN(num, max_transfer);
1913            if (buf == NULL) {
1914                buf = qemu_try_blockalign0(bs, num);
1915                if (buf == NULL) {
1916                    ret = -ENOMEM;
1917                    goto fail;
1918                }
1919            }
1920            qemu_iovec_init_buf(&qiov, buf, num);
1921
1922            ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1923
1924            /* Keep bounce buffer around if it is big enough for all
1925             * all future requests.
1926             */
1927            if (num < max_transfer) {
1928                qemu_vfree(buf);
1929                buf = NULL;
1930            }
1931        }
1932
1933        offset += num;
1934        bytes -= num;
1935    }
1936
1937fail:
1938    if (ret == 0 && need_flush) {
1939        ret = bdrv_co_flush(bs);
1940    }
1941    qemu_vfree(buf);
1942    return ret;
1943}
1944
1945static inline int coroutine_fn GRAPH_RDLOCK
1946bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1947                          BdrvTrackedRequest *req, int flags)
1948{
1949    BlockDriverState *bs = child->bs;
1950
1951    bdrv_check_request(offset, bytes, &error_abort);
1952
1953    if (bdrv_is_read_only(bs)) {
1954        return -EPERM;
1955    }
1956
1957    assert(!(bs->open_flags & BDRV_O_INACTIVE));
1958    assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1959    assert(!(flags & ~BDRV_REQ_MASK));
1960    assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1961
1962    if (flags & BDRV_REQ_SERIALISING) {
1963        QEMU_LOCK_GUARD(&bs->reqs_lock);
1964
1965        tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1966
1967        if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1968            return -EBUSY;
1969        }
1970
1971        bdrv_wait_serialising_requests_locked(req);
1972    } else {
1973        bdrv_wait_serialising_requests(req);
1974    }
1975
1976    assert(req->overlap_offset <= offset);
1977    assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1978    assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1979           child->perm & BLK_PERM_RESIZE);
1980
1981    switch (req->type) {
1982    case BDRV_TRACKED_WRITE:
1983    case BDRV_TRACKED_DISCARD:
1984        if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1985            assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1986        } else {
1987            assert(child->perm & BLK_PERM_WRITE);
1988        }
1989        bdrv_write_threshold_check_write(bs, offset, bytes);
1990        return 0;
1991    case BDRV_TRACKED_TRUNCATE:
1992        assert(child->perm & BLK_PERM_RESIZE);
1993        return 0;
1994    default:
1995        abort();
1996    }
1997}
1998
1999static inline void coroutine_fn
2000bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2001                         BdrvTrackedRequest *req, int ret)
2002{
2003    int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2004    BlockDriverState *bs = child->bs;
2005
2006    bdrv_check_request(offset, bytes, &error_abort);
2007
2008    qatomic_inc(&bs->write_gen);
2009
2010    /*
2011     * Discard cannot extend the image, but in error handling cases, such as
2012     * when reverting a qcow2 cluster allocation, the discarded range can pass
2013     * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2014     * here. Instead, just skip it, since semantically a discard request
2015     * beyond EOF cannot expand the image anyway.
2016     */
2017    if (ret == 0 &&
2018        (req->type == BDRV_TRACKED_TRUNCATE ||
2019         end_sector > bs->total_sectors) &&
2020        req->type != BDRV_TRACKED_DISCARD) {
2021        bs->total_sectors = end_sector;
2022        bdrv_parent_cb_resize(bs);
2023        bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2024    }
2025    if (req->bytes) {
2026        switch (req->type) {
2027        case BDRV_TRACKED_WRITE:
2028            stat64_max(&bs->wr_highest_offset, offset + bytes);
2029            /* fall through, to set dirty bits */
2030        case BDRV_TRACKED_DISCARD:
2031            bdrv_set_dirty(bs, offset, bytes);
2032            break;
2033        default:
2034            break;
2035        }
2036    }
2037}
2038
2039/*
2040 * Forwards an already correctly aligned write request to the BlockDriver,
2041 * after possibly fragmenting it.
2042 */
2043static int coroutine_fn GRAPH_RDLOCK
2044bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2045                     int64_t offset, int64_t bytes, int64_t align,
2046                     QEMUIOVector *qiov, size_t qiov_offset,
2047                     BdrvRequestFlags flags)
2048{
2049    BlockDriverState *bs = child->bs;
2050    BlockDriver *drv = bs->drv;
2051    int ret;
2052
2053    int64_t bytes_remaining = bytes;
2054    int max_transfer;
2055
2056    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2057
2058    if (!drv) {
2059        return -ENOMEDIUM;
2060    }
2061
2062    if (bdrv_has_readonly_bitmaps(bs)) {
2063        return -EPERM;
2064    }
2065
2066    assert(is_power_of_2(align));
2067    assert((offset & (align - 1)) == 0);
2068    assert((bytes & (align - 1)) == 0);
2069    max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2070                                   align);
2071
2072    ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2073
2074    if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2075        !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2076        qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2077        flags |= BDRV_REQ_ZERO_WRITE;
2078        if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2079            flags |= BDRV_REQ_MAY_UNMAP;
2080        }
2081
2082        /* Can't use optimization hint with bufferless zero write */
2083        flags &= ~BDRV_REQ_REGISTERED_BUF;
2084    }
2085
2086    if (ret < 0) {
2087        /* Do nothing, write notifier decided to fail this request */
2088    } else if (flags & BDRV_REQ_ZERO_WRITE) {
2089        bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2090        ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2091    } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2092        ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2093                                             qiov, qiov_offset);
2094    } else if (bytes <= max_transfer) {
2095        bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2096        ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2097    } else {
2098        bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2099        while (bytes_remaining) {
2100            int num = MIN(bytes_remaining, max_transfer);
2101            int local_flags = flags;
2102
2103            assert(num);
2104            if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2105                !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2106                /* If FUA is going to be emulated by flush, we only
2107                 * need to flush on the last iteration */
2108                local_flags &= ~BDRV_REQ_FUA;
2109            }
2110
2111            ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2112                                      num, qiov,
2113                                      qiov_offset + bytes - bytes_remaining,
2114                                      local_flags);
2115            if (ret < 0) {
2116                break;
2117            }
2118            bytes_remaining -= num;
2119        }
2120    }
2121    bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2122
2123    if (ret >= 0) {
2124        ret = 0;
2125    }
2126    bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2127
2128    return ret;
2129}
2130
2131static int coroutine_fn GRAPH_RDLOCK
2132bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2133                        BdrvRequestFlags flags, BdrvTrackedRequest *req)
2134{
2135    BlockDriverState *bs = child->bs;
2136    QEMUIOVector local_qiov;
2137    uint64_t align = bs->bl.request_alignment;
2138    int ret = 0;
2139    bool padding;
2140    BdrvRequestPadding pad;
2141
2142    /* This flag doesn't make sense for padding or zero writes */
2143    flags &= ~BDRV_REQ_REGISTERED_BUF;
2144
2145    padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2146    if (padding) {
2147        assert(!(flags & BDRV_REQ_NO_WAIT));
2148        bdrv_make_request_serialising(req, align);
2149
2150        bdrv_padding_rmw_read(child, req, &pad, true);
2151
2152        if (pad.head || pad.merge_reads) {
2153            int64_t aligned_offset = offset & ~(align - 1);
2154            int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2155
2156            qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2157            ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2158                                       align, &local_qiov, 0,
2159                                       flags & ~BDRV_REQ_ZERO_WRITE);
2160            if (ret < 0 || pad.merge_reads) {
2161                /* Error or all work is done */
2162                goto out;
2163            }
2164            offset += write_bytes - pad.head;
2165            bytes -= write_bytes - pad.head;
2166        }
2167    }
2168
2169    assert(!bytes || (offset & (align - 1)) == 0);
2170    if (bytes >= align) {
2171        /* Write the aligned part in the middle. */
2172        int64_t aligned_bytes = bytes & ~(align - 1);
2173        ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2174                                   NULL, 0, flags);
2175        if (ret < 0) {
2176            goto out;
2177        }
2178        bytes -= aligned_bytes;
2179        offset += aligned_bytes;
2180    }
2181
2182    assert(!bytes || (offset & (align - 1)) == 0);
2183    if (bytes) {
2184        assert(align == pad.tail + bytes);
2185
2186        qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2187        ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2188                                   &local_qiov, 0,
2189                                   flags & ~BDRV_REQ_ZERO_WRITE);
2190    }
2191
2192out:
2193    bdrv_padding_finalize(&pad);
2194
2195    return ret;
2196}
2197
2198/*
2199 * Handle a write request in coroutine context
2200 */
2201int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2202    int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2203    BdrvRequestFlags flags)
2204{
2205    IO_CODE();
2206    return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2207}
2208
2209int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2210    int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2211    BdrvRequestFlags flags)
2212{
2213    BlockDriverState *bs = child->bs;
2214    BdrvTrackedRequest req;
2215    uint64_t align = bs->bl.request_alignment;
2216    BdrvRequestPadding pad;
2217    int ret;
2218    bool padded = false;
2219    IO_CODE();
2220
2221    trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2222
2223    if (!bdrv_co_is_inserted(bs)) {
2224        return -ENOMEDIUM;
2225    }
2226
2227    if (flags & BDRV_REQ_ZERO_WRITE) {
2228        ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2229    } else {
2230        ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2231    }
2232    if (ret < 0) {
2233        return ret;
2234    }
2235
2236    /* If the request is misaligned then we can't make it efficient */
2237    if ((flags & BDRV_REQ_NO_FALLBACK) &&
2238        !QEMU_IS_ALIGNED(offset | bytes, align))
2239    {
2240        return -ENOTSUP;
2241    }
2242
2243    if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2244        /*
2245         * Aligning zero request is nonsense. Even if driver has special meaning
2246         * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2247         * it to driver due to request_alignment.
2248         *
2249         * Still, no reason to return an error if someone do unaligned
2250         * zero-length write occasionally.
2251         */
2252        return 0;
2253    }
2254
2255    if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2256        /*
2257         * Pad request for following read-modify-write cycle.
2258         * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2259         * alignment only if there is no ZERO flag.
2260         */
2261        ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2262                               &pad, &padded, &flags);
2263        if (ret < 0) {
2264            return ret;
2265        }
2266    }
2267
2268    bdrv_inc_in_flight(bs);
2269    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2270
2271    if (flags & BDRV_REQ_ZERO_WRITE) {
2272        assert(!padded);
2273        ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2274        goto out;
2275    }
2276
2277    if (padded) {
2278        /*
2279         * Request was unaligned to request_alignment and therefore
2280         * padded.  We are going to do read-modify-write, and must
2281         * serialize the request to prevent interactions of the
2282         * widened region with other transactions.
2283         */
2284        assert(!(flags & BDRV_REQ_NO_WAIT));
2285        bdrv_make_request_serialising(&req, align);
2286        bdrv_padding_rmw_read(child, &req, &pad, false);
2287    }
2288
2289    ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2290                               qiov, qiov_offset, flags);
2291
2292    bdrv_padding_finalize(&pad);
2293
2294out:
2295    tracked_request_end(&req);
2296    bdrv_dec_in_flight(bs);
2297
2298    return ret;
2299}
2300
2301int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2302                                       int64_t bytes, BdrvRequestFlags flags)
2303{
2304    IO_CODE();
2305    trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2306    assert_bdrv_graph_readable();
2307
2308    if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2309        flags &= ~BDRV_REQ_MAY_UNMAP;
2310    }
2311
2312    return bdrv_co_pwritev(child, offset, bytes, NULL,
2313                           BDRV_REQ_ZERO_WRITE | flags);
2314}
2315
2316/*
2317 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2318 */
2319int bdrv_flush_all(void)
2320{
2321    BdrvNextIterator it;
2322    BlockDriverState *bs = NULL;
2323    int result = 0;
2324
2325    GLOBAL_STATE_CODE();
2326
2327    /*
2328     * bdrv queue is managed by record/replay,
2329     * creating new flush request for stopping
2330     * the VM may break the determinism
2331     */
2332    if (replay_events_enabled()) {
2333        return result;
2334    }
2335
2336    for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2337        AioContext *aio_context = bdrv_get_aio_context(bs);
2338        int ret;
2339
2340        aio_context_acquire(aio_context);
2341        ret = bdrv_flush(bs);
2342        if (ret < 0 && !result) {
2343            result = ret;
2344        }
2345        aio_context_release(aio_context);
2346    }
2347
2348    return result;
2349}
2350
2351/*
2352 * Returns the allocation status of the specified sectors.
2353 * Drivers not implementing the functionality are assumed to not support
2354 * backing files, hence all their sectors are reported as allocated.
2355 *
2356 * If 'want_zero' is true, the caller is querying for mapping
2357 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2358 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2359 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2360 *
2361 * If 'offset' is beyond the end of the disk image the return value is
2362 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2363 *
2364 * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2365 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2366 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2367 *
2368 * 'pnum' is set to the number of bytes (including and immediately
2369 * following the specified offset) that are easily known to be in the
2370 * same allocated/unallocated state.  Note that a second call starting
2371 * at the original offset plus returned pnum may have the same status.
2372 * The returned value is non-zero on success except at end-of-file.
2373 *
2374 * Returns negative errno on failure.  Otherwise, if the
2375 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2376 * set to the host mapping and BDS corresponding to the guest offset.
2377 */
2378static int coroutine_fn GRAPH_RDLOCK
2379bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2380                     int64_t offset, int64_t bytes,
2381                     int64_t *pnum, int64_t *map, BlockDriverState **file)
2382{
2383    int64_t total_size;
2384    int64_t n; /* bytes */
2385    int ret;
2386    int64_t local_map = 0;
2387    BlockDriverState *local_file = NULL;
2388    int64_t aligned_offset, aligned_bytes;
2389    uint32_t align;
2390    bool has_filtered_child;
2391
2392    assert(pnum);
2393    assert_bdrv_graph_readable();
2394    *pnum = 0;
2395    total_size = bdrv_co_getlength(bs);
2396    if (total_size < 0) {
2397        ret = total_size;
2398        goto early_out;
2399    }
2400
2401    if (offset >= total_size) {
2402        ret = BDRV_BLOCK_EOF;
2403        goto early_out;
2404    }
2405    if (!bytes) {
2406        ret = 0;
2407        goto early_out;
2408    }
2409
2410    n = total_size - offset;
2411    if (n < bytes) {
2412        bytes = n;
2413    }
2414
2415    /* Must be non-NULL or bdrv_co_getlength() would have failed */
2416    assert(bs->drv);
2417    has_filtered_child = bdrv_filter_child(bs);
2418    if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2419        *pnum = bytes;
2420        ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2421        if (offset + bytes == total_size) {
2422            ret |= BDRV_BLOCK_EOF;
2423        }
2424        if (bs->drv->protocol_name) {
2425            ret |= BDRV_BLOCK_OFFSET_VALID;
2426            local_map = offset;
2427            local_file = bs;
2428        }
2429        goto early_out;
2430    }
2431
2432    bdrv_inc_in_flight(bs);
2433
2434    /* Round out to request_alignment boundaries */
2435    align = bs->bl.request_alignment;
2436    aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2437    aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2438
2439    if (bs->drv->bdrv_co_block_status) {
2440        /*
2441         * Use the block-status cache only for protocol nodes: Format
2442         * drivers are generally quick to inquire the status, but protocol
2443         * drivers often need to get information from outside of qemu, so
2444         * we do not have control over the actual implementation.  There
2445         * have been cases where inquiring the status took an unreasonably
2446         * long time, and we can do nothing in qemu to fix it.
2447         * This is especially problematic for images with large data areas,
2448         * because finding the few holes in them and giving them special
2449         * treatment does not gain much performance.  Therefore, we try to
2450         * cache the last-identified data region.
2451         *
2452         * Second, limiting ourselves to protocol nodes allows us to assume
2453         * the block status for data regions to be DATA | OFFSET_VALID, and
2454         * that the host offset is the same as the guest offset.
2455         *
2456         * Note that it is possible that external writers zero parts of
2457         * the cached regions without the cache being invalidated, and so
2458         * we may report zeroes as data.  This is not catastrophic,
2459         * however, because reporting zeroes as data is fine.
2460         */
2461        if (QLIST_EMPTY(&bs->children) &&
2462            bdrv_bsc_is_data(bs, aligned_offset, pnum))
2463        {
2464            ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2465            local_file = bs;
2466            local_map = aligned_offset;
2467        } else {
2468            ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2469                                                aligned_bytes, pnum, &local_map,
2470                                                &local_file);
2471
2472            /*
2473             * Note that checking QLIST_EMPTY(&bs->children) is also done when
2474             * the cache is queried above.  Technically, we do not need to check
2475             * it here; the worst that can happen is that we fill the cache for
2476             * non-protocol nodes, and then it is never used.  However, filling
2477             * the cache requires an RCU update, so double check here to avoid
2478             * such an update if possible.
2479             *
2480             * Check want_zero, because we only want to update the cache when we
2481             * have accurate information about what is zero and what is data.
2482             */
2483            if (want_zero &&
2484                ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2485                QLIST_EMPTY(&bs->children))
2486            {
2487                /*
2488                 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2489                 * returned local_map value must be the same as the offset we
2490                 * have passed (aligned_offset), and local_bs must be the node
2491                 * itself.
2492                 * Assert this, because we follow this rule when reading from
2493                 * the cache (see the `local_file = bs` and
2494                 * `local_map = aligned_offset` assignments above), and the
2495                 * result the cache delivers must be the same as the driver
2496                 * would deliver.
2497                 */
2498                assert(local_file == bs);
2499                assert(local_map == aligned_offset);
2500                bdrv_bsc_fill(bs, aligned_offset, *pnum);
2501            }
2502        }
2503    } else {
2504        /* Default code for filters */
2505
2506        local_file = bdrv_filter_bs(bs);
2507        assert(local_file);
2508
2509        *pnum = aligned_bytes;
2510        local_map = aligned_offset;
2511        ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2512    }
2513    if (ret < 0) {
2514        *pnum = 0;
2515        goto out;
2516    }
2517
2518    /*
2519     * The driver's result must be a non-zero multiple of request_alignment.
2520     * Clamp pnum and adjust map to original request.
2521     */
2522    assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2523           align > offset - aligned_offset);
2524    if (ret & BDRV_BLOCK_RECURSE) {
2525        assert(ret & BDRV_BLOCK_DATA);
2526        assert(ret & BDRV_BLOCK_OFFSET_VALID);
2527        assert(!(ret & BDRV_BLOCK_ZERO));
2528    }
2529
2530    *pnum -= offset - aligned_offset;
2531    if (*pnum > bytes) {
2532        *pnum = bytes;
2533    }
2534    if (ret & BDRV_BLOCK_OFFSET_VALID) {
2535        local_map += offset - aligned_offset;
2536    }
2537
2538    if (ret & BDRV_BLOCK_RAW) {
2539        assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2540        ret = bdrv_co_block_status(local_file, want_zero, local_map,
2541                                   *pnum, pnum, &local_map, &local_file);
2542        goto out;
2543    }
2544
2545    if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2546        ret |= BDRV_BLOCK_ALLOCATED;
2547    } else if (bs->drv->supports_backing) {
2548        BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2549
2550        if (!cow_bs) {
2551            ret |= BDRV_BLOCK_ZERO;
2552        } else if (want_zero) {
2553            int64_t size2 = bdrv_co_getlength(cow_bs);
2554
2555            if (size2 >= 0 && offset >= size2) {
2556                ret |= BDRV_BLOCK_ZERO;
2557            }
2558        }
2559    }
2560
2561    if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2562        local_file && local_file != bs &&
2563        (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2564        (ret & BDRV_BLOCK_OFFSET_VALID)) {
2565        int64_t file_pnum;
2566        int ret2;
2567
2568        ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2569                                    *pnum, &file_pnum, NULL, NULL);
2570        if (ret2 >= 0) {
2571            /* Ignore errors.  This is just providing extra information, it
2572             * is useful but not necessary.
2573             */
2574            if (ret2 & BDRV_BLOCK_EOF &&
2575                (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2576                /*
2577                 * It is valid for the format block driver to read
2578                 * beyond the end of the underlying file's current
2579                 * size; such areas read as zero.
2580                 */
2581                ret |= BDRV_BLOCK_ZERO;
2582            } else {
2583                /* Limit request to the range reported by the protocol driver */
2584                *pnum = file_pnum;
2585                ret |= (ret2 & BDRV_BLOCK_ZERO);
2586            }
2587        }
2588    }
2589
2590out:
2591    bdrv_dec_in_flight(bs);
2592    if (ret >= 0 && offset + *pnum == total_size) {
2593        ret |= BDRV_BLOCK_EOF;
2594    }
2595early_out:
2596    if (file) {
2597        *file = local_file;
2598    }
2599    if (map) {
2600        *map = local_map;
2601    }
2602    return ret;
2603}
2604
2605int coroutine_fn
2606bdrv_co_common_block_status_above(BlockDriverState *bs,
2607                                  BlockDriverState *base,
2608                                  bool include_base,
2609                                  bool want_zero,
2610                                  int64_t offset,
2611                                  int64_t bytes,
2612                                  int64_t *pnum,
2613                                  int64_t *map,
2614                                  BlockDriverState **file,
2615                                  int *depth)
2616{
2617    int ret;
2618    BlockDriverState *p;
2619    int64_t eof = 0;
2620    int dummy;
2621    IO_CODE();
2622
2623    assert(!include_base || base); /* Can't include NULL base */
2624    assert_bdrv_graph_readable();
2625
2626    if (!depth) {
2627        depth = &dummy;
2628    }
2629    *depth = 0;
2630
2631    if (!include_base && bs == base) {
2632        *pnum = bytes;
2633        return 0;
2634    }
2635
2636    ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2637    ++*depth;
2638    if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2639        return ret;
2640    }
2641
2642    if (ret & BDRV_BLOCK_EOF) {
2643        eof = offset + *pnum;
2644    }
2645
2646    assert(*pnum <= bytes);
2647    bytes = *pnum;
2648
2649    for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2650         p = bdrv_filter_or_cow_bs(p))
2651    {
2652        ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2653                                   file);
2654        ++*depth;
2655        if (ret < 0) {
2656            return ret;
2657        }
2658        if (*pnum == 0) {
2659            /*
2660             * The top layer deferred to this layer, and because this layer is
2661             * short, any zeroes that we synthesize beyond EOF behave as if they
2662             * were allocated at this layer.
2663             *
2664             * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2665             * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2666             * below.
2667             */
2668            assert(ret & BDRV_BLOCK_EOF);
2669            *pnum = bytes;
2670            if (file) {
2671                *file = p;
2672            }
2673            ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2674            break;
2675        }
2676        if (ret & BDRV_BLOCK_ALLOCATED) {
2677            /*
2678             * We've found the node and the status, we must break.
2679             *
2680             * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2681             * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2682             * below.
2683             */
2684            ret &= ~BDRV_BLOCK_EOF;
2685            break;
2686        }
2687
2688        if (p == base) {
2689            assert(include_base);
2690            break;
2691        }
2692
2693        /*
2694         * OK, [offset, offset + *pnum) region is unallocated on this layer,
2695         * let's continue the diving.
2696         */
2697        assert(*pnum <= bytes);
2698        bytes = *pnum;
2699    }
2700
2701    if (offset + *pnum == eof) {
2702        ret |= BDRV_BLOCK_EOF;
2703    }
2704
2705    return ret;
2706}
2707
2708int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2709                                            BlockDriverState *base,
2710                                            int64_t offset, int64_t bytes,
2711                                            int64_t *pnum, int64_t *map,
2712                                            BlockDriverState **file)
2713{
2714    IO_CODE();
2715    return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2716                                             bytes, pnum, map, file, NULL);
2717}
2718
2719int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2720                            int64_t offset, int64_t bytes, int64_t *pnum,
2721                            int64_t *map, BlockDriverState **file)
2722{
2723    IO_CODE();
2724    return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2725                                          pnum, map, file, NULL);
2726}
2727
2728int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2729                      int64_t *pnum, int64_t *map, BlockDriverState **file)
2730{
2731    IO_CODE();
2732    return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2733                                   offset, bytes, pnum, map, file);
2734}
2735
2736/*
2737 * Check @bs (and its backing chain) to see if the range defined
2738 * by @offset and @bytes is known to read as zeroes.
2739 * Return 1 if that is the case, 0 otherwise and -errno on error.
2740 * This test is meant to be fast rather than accurate so returning 0
2741 * does not guarantee non-zero data.
2742 */
2743int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2744                                      int64_t bytes)
2745{
2746    int ret;
2747    int64_t pnum = bytes;
2748    IO_CODE();
2749
2750    if (!bytes) {
2751        return 1;
2752    }
2753
2754    ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2755                                            bytes, &pnum, NULL, NULL, NULL);
2756
2757    if (ret < 0) {
2758        return ret;
2759    }
2760
2761    return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2762}
2763
2764int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2765                                      int64_t bytes, int64_t *pnum)
2766{
2767    int ret;
2768    int64_t dummy;
2769    IO_CODE();
2770
2771    ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2772                                            bytes, pnum ? pnum : &dummy, NULL,
2773                                            NULL, NULL);
2774    if (ret < 0) {
2775        return ret;
2776    }
2777    return !!(ret & BDRV_BLOCK_ALLOCATED);
2778}
2779
2780int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2781                      int64_t *pnum)
2782{
2783    int ret;
2784    int64_t dummy;
2785    IO_CODE();
2786
2787    ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2788                                         bytes, pnum ? pnum : &dummy, NULL,
2789                                         NULL, NULL);
2790    if (ret < 0) {
2791        return ret;
2792    }
2793    return !!(ret & BDRV_BLOCK_ALLOCATED);
2794}
2795
2796/* See bdrv_is_allocated_above for documentation */
2797int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2798                                            BlockDriverState *base,
2799                                            bool include_base, int64_t offset,
2800                                            int64_t bytes, int64_t *pnum)
2801{
2802    int depth;
2803    int ret;
2804    IO_CODE();
2805
2806    ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2807                                            offset, bytes, pnum, NULL, NULL,
2808                                            &depth);
2809    if (ret < 0) {
2810        return ret;
2811    }
2812
2813    if (ret & BDRV_BLOCK_ALLOCATED) {
2814        return depth;
2815    }
2816    return 0;
2817}
2818
2819/*
2820 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2821 *
2822 * Return a positive depth if (a prefix of) the given range is allocated
2823 * in any image between BASE and TOP (BASE is only included if include_base
2824 * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2825 * BASE can be NULL to check if the given offset is allocated in any
2826 * image of the chain.  Return 0 otherwise, or negative errno on
2827 * failure.
2828 *
2829 * 'pnum' is set to the number of bytes (including and immediately
2830 * following the specified offset) that are known to be in the same
2831 * allocated/unallocated state.  Note that a subsequent call starting
2832 * at 'offset + *pnum' may return the same allocation status (in other
2833 * words, the result is not necessarily the maximum possible range);
2834 * but 'pnum' will only be 0 when end of file is reached.
2835 */
2836int bdrv_is_allocated_above(BlockDriverState *top,
2837                            BlockDriverState *base,
2838                            bool include_base, int64_t offset,
2839                            int64_t bytes, int64_t *pnum)
2840{
2841    int depth;
2842    int ret;
2843    IO_CODE();
2844
2845    ret = bdrv_common_block_status_above(top, base, include_base, false,
2846                                         offset, bytes, pnum, NULL, NULL,
2847                                         &depth);
2848    if (ret < 0) {
2849        return ret;
2850    }
2851
2852    if (ret & BDRV_BLOCK_ALLOCATED) {
2853        return depth;
2854    }
2855    return 0;
2856}
2857
2858int coroutine_fn
2859bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2860{
2861    BlockDriver *drv = bs->drv;
2862    BlockDriverState *child_bs = bdrv_primary_bs(bs);
2863    int ret;
2864    IO_CODE();
2865    assert_bdrv_graph_readable();
2866
2867    ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2868    if (ret < 0) {
2869        return ret;
2870    }
2871
2872    if (!drv) {
2873        return -ENOMEDIUM;
2874    }
2875
2876    bdrv_inc_in_flight(bs);
2877
2878    if (drv->bdrv_co_load_vmstate) {
2879        ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2880    } else if (child_bs) {
2881        ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2882    } else {
2883        ret = -ENOTSUP;
2884    }
2885
2886    bdrv_dec_in_flight(bs);
2887
2888    return ret;
2889}
2890
2891int coroutine_fn
2892bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2893{
2894    BlockDriver *drv = bs->drv;
2895    BlockDriverState *child_bs = bdrv_primary_bs(bs);
2896    int ret;
2897    IO_CODE();
2898    assert_bdrv_graph_readable();
2899
2900    ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2901    if (ret < 0) {
2902        return ret;
2903    }
2904
2905    if (!drv) {
2906        return -ENOMEDIUM;
2907    }
2908
2909    bdrv_inc_in_flight(bs);
2910
2911    if (drv->bdrv_co_save_vmstate) {
2912        ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2913    } else if (child_bs) {
2914        ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2915    } else {
2916        ret = -ENOTSUP;
2917    }
2918
2919    bdrv_dec_in_flight(bs);
2920
2921    return ret;
2922}
2923
2924int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2925                      int64_t pos, int size)
2926{
2927    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2928    int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2929    IO_CODE();
2930
2931    return ret < 0 ? ret : size;
2932}
2933
2934int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2935                      int64_t pos, int size)
2936{
2937    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2938    int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2939    IO_CODE();
2940
2941    return ret < 0 ? ret : size;
2942}
2943
2944/**************************************************************/
2945/* async I/Os */
2946
2947void bdrv_aio_cancel(BlockAIOCB *acb)
2948{
2949    IO_CODE();
2950    qemu_aio_ref(acb);
2951    bdrv_aio_cancel_async(acb);
2952    while (acb->refcnt > 1) {
2953        if (acb->aiocb_info->get_aio_context) {
2954            aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2955        } else if (acb->bs) {
2956            /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2957             * assert that we're not using an I/O thread.  Thread-safe
2958             * code should use bdrv_aio_cancel_async exclusively.
2959             */
2960            assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2961            aio_poll(bdrv_get_aio_context(acb->bs), true);
2962        } else {
2963            abort();
2964        }
2965    }
2966    qemu_aio_unref(acb);
2967}
2968
2969/* Async version of aio cancel. The caller is not blocked if the acb implements
2970 * cancel_async, otherwise we do nothing and let the request normally complete.
2971 * In either case the completion callback must be called. */
2972void bdrv_aio_cancel_async(BlockAIOCB *acb)
2973{
2974    IO_CODE();
2975    if (acb->aiocb_info->cancel_async) {
2976        acb->aiocb_info->cancel_async(acb);
2977    }
2978}
2979
2980/**************************************************************/
2981/* Coroutine block device emulation */
2982
2983int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2984{
2985    BdrvChild *primary_child = bdrv_primary_child(bs);
2986    BdrvChild *child;
2987    int current_gen;
2988    int ret = 0;
2989    IO_CODE();
2990
2991    assert_bdrv_graph_readable();
2992    bdrv_inc_in_flight(bs);
2993
2994    if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2995        bdrv_is_sg(bs)) {
2996        goto early_exit;
2997    }
2998
2999    qemu_co_mutex_lock(&bs->reqs_lock);
3000    current_gen = qatomic_read(&bs->write_gen);
3001
3002    /* Wait until any previous flushes are completed */
3003    while (bs->active_flush_req) {
3004        qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3005    }
3006
3007    /* Flushes reach this point in nondecreasing current_gen order.  */
3008    bs->active_flush_req = true;
3009    qemu_co_mutex_unlock(&bs->reqs_lock);
3010
3011    /* Write back all layers by calling one driver function */
3012    if (bs->drv->bdrv_co_flush) {
3013        ret = bs->drv->bdrv_co_flush(bs);
3014        goto out;
3015    }
3016
3017    /* Write back cached data to the OS even with cache=unsafe */
3018    BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3019    if (bs->drv->bdrv_co_flush_to_os) {
3020        ret = bs->drv->bdrv_co_flush_to_os(bs);
3021        if (ret < 0) {
3022            goto out;
3023        }
3024    }
3025
3026    /* But don't actually force it to the disk with cache=unsafe */
3027    if (bs->open_flags & BDRV_O_NO_FLUSH) {
3028        goto flush_children;
3029    }
3030
3031    /* Check if we really need to flush anything */
3032    if (bs->flushed_gen == current_gen) {
3033        goto flush_children;
3034    }
3035
3036    BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3037    if (!bs->drv) {
3038        /* bs->drv->bdrv_co_flush() might have ejected the BDS
3039         * (even in case of apparent success) */
3040        ret = -ENOMEDIUM;
3041        goto out;
3042    }
3043    if (bs->drv->bdrv_co_flush_to_disk) {
3044        ret = bs->drv->bdrv_co_flush_to_disk(bs);
3045    } else if (bs->drv->bdrv_aio_flush) {
3046        BlockAIOCB *acb;
3047        CoroutineIOCompletion co = {
3048            .coroutine = qemu_coroutine_self(),
3049        };
3050
3051        acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3052        if (acb == NULL) {
3053            ret = -EIO;
3054        } else {
3055            qemu_coroutine_yield();
3056            ret = co.ret;
3057        }
3058    } else {
3059        /*
3060         * Some block drivers always operate in either writethrough or unsafe
3061         * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3062         * know how the server works (because the behaviour is hardcoded or
3063         * depends on server-side configuration), so we can't ensure that
3064         * everything is safe on disk. Returning an error doesn't work because
3065         * that would break guests even if the server operates in writethrough
3066         * mode.
3067         *
3068         * Let's hope the user knows what he's doing.
3069         */
3070        ret = 0;
3071    }
3072
3073    if (ret < 0) {
3074        goto out;
3075    }
3076
3077    /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3078     * in the case of cache=unsafe, so there are no useless flushes.
3079     */
3080flush_children:
3081    ret = 0;
3082    QLIST_FOREACH(child, &bs->children, next) {
3083        if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3084            int this_child_ret = bdrv_co_flush(child->bs);
3085            if (!ret) {
3086                ret = this_child_ret;
3087            }
3088        }
3089    }
3090
3091out:
3092    /* Notify any pending flushes that we have completed */
3093    if (ret == 0) {
3094        bs->flushed_gen = current_gen;
3095    }
3096
3097    qemu_co_mutex_lock(&bs->reqs_lock);
3098    bs->active_flush_req = false;
3099    /* Return value is ignored - it's ok if wait queue is empty */
3100    qemu_co_queue_next(&bs->flush_queue);
3101    qemu_co_mutex_unlock(&bs->reqs_lock);
3102
3103early_exit:
3104    bdrv_dec_in_flight(bs);
3105    return ret;
3106}
3107
3108int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3109                                  int64_t bytes)
3110{
3111    BdrvTrackedRequest req;
3112    int ret;
3113    int64_t max_pdiscard;
3114    int head, tail, align;
3115    BlockDriverState *bs = child->bs;
3116    IO_CODE();
3117    assert_bdrv_graph_readable();
3118
3119    if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3120        return -ENOMEDIUM;
3121    }
3122
3123    if (bdrv_has_readonly_bitmaps(bs)) {
3124        return -EPERM;
3125    }
3126
3127    ret = bdrv_check_request(offset, bytes, NULL);
3128    if (ret < 0) {
3129        return ret;
3130    }
3131
3132    /* Do nothing if disabled.  */
3133    if (!(bs->open_flags & BDRV_O_UNMAP)) {
3134        return 0;
3135    }
3136
3137    if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3138        return 0;
3139    }
3140
3141    /* Invalidate the cached block-status data range if this discard overlaps */
3142    bdrv_bsc_invalidate_range(bs, offset, bytes);
3143
3144    /* Discard is advisory, but some devices track and coalesce
3145     * unaligned requests, so we must pass everything down rather than
3146     * round here.  Still, most devices will just silently ignore
3147     * unaligned requests (by returning -ENOTSUP), so we must fragment
3148     * the request accordingly.  */
3149    align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3150    assert(align % bs->bl.request_alignment == 0);
3151    head = offset % align;
3152    tail = (offset + bytes) % align;
3153
3154    bdrv_inc_in_flight(bs);
3155    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3156
3157    ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3158    if (ret < 0) {
3159        goto out;
3160    }
3161
3162    max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3163                                   align);
3164    assert(max_pdiscard >= bs->bl.request_alignment);
3165
3166    while (bytes > 0) {
3167        int64_t num = bytes;
3168
3169        if (head) {
3170            /* Make small requests to get to alignment boundaries. */
3171            num = MIN(bytes, align - head);
3172            if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3173                num %= bs->bl.request_alignment;
3174            }
3175            head = (head + num) % align;
3176            assert(num < max_pdiscard);
3177        } else if (tail) {
3178            if (num > align) {
3179                /* Shorten the request to the last aligned cluster.  */
3180                num -= tail;
3181            } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3182                       tail > bs->bl.request_alignment) {
3183                tail %= bs->bl.request_alignment;
3184                num -= tail;
3185            }
3186        }
3187        /* limit request size */
3188        if (num > max_pdiscard) {
3189            num = max_pdiscard;
3190        }
3191
3192        if (!bs->drv) {
3193            ret = -ENOMEDIUM;
3194            goto out;
3195        }
3196        if (bs->drv->bdrv_co_pdiscard) {
3197            ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3198        } else {
3199            BlockAIOCB *acb;
3200            CoroutineIOCompletion co = {
3201                .coroutine = qemu_coroutine_self(),
3202            };
3203
3204            acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3205                                             bdrv_co_io_em_complete, &co);
3206            if (acb == NULL) {
3207                ret = -EIO;
3208                goto out;
3209            } else {
3210                qemu_coroutine_yield();
3211                ret = co.ret;
3212            }
3213        }
3214        if (ret && ret != -ENOTSUP) {
3215            goto out;
3216        }
3217
3218        offset += num;
3219        bytes -= num;
3220    }
3221    ret = 0;
3222out:
3223    bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3224    tracked_request_end(&req);
3225    bdrv_dec_in_flight(bs);
3226    return ret;
3227}
3228
3229int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3230{
3231    BlockDriver *drv = bs->drv;
3232    CoroutineIOCompletion co = {
3233        .coroutine = qemu_coroutine_self(),
3234    };
3235    BlockAIOCB *acb;
3236    IO_CODE();
3237    assert_bdrv_graph_readable();
3238
3239    bdrv_inc_in_flight(bs);
3240    if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3241        co.ret = -ENOTSUP;
3242        goto out;
3243    }
3244
3245    if (drv->bdrv_co_ioctl) {
3246        co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3247    } else {
3248        acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3249        if (!acb) {
3250            co.ret = -ENOTSUP;
3251            goto out;
3252        }
3253        qemu_coroutine_yield();
3254    }
3255out:
3256    bdrv_dec_in_flight(bs);
3257    return co.ret;
3258}
3259
3260int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3261                        unsigned int *nr_zones,
3262                        BlockZoneDescriptor *zones)
3263{
3264    BlockDriver *drv = bs->drv;
3265    CoroutineIOCompletion co = {
3266            .coroutine = qemu_coroutine_self(),
3267    };
3268    IO_CODE();
3269
3270    bdrv_inc_in_flight(bs);
3271    if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3272        co.ret = -ENOTSUP;
3273        goto out;
3274    }
3275    co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3276out:
3277    bdrv_dec_in_flight(bs);
3278    return co.ret;
3279}
3280
3281int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3282        int64_t offset, int64_t len)
3283{
3284    BlockDriver *drv = bs->drv;
3285    CoroutineIOCompletion co = {
3286            .coroutine = qemu_coroutine_self(),
3287    };
3288    IO_CODE();
3289
3290    bdrv_inc_in_flight(bs);
3291    if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3292        co.ret = -ENOTSUP;
3293        goto out;
3294    }
3295    co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3296out:
3297    bdrv_dec_in_flight(bs);
3298    return co.ret;
3299}
3300
3301int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3302                        QEMUIOVector *qiov,
3303                        BdrvRequestFlags flags)
3304{
3305    int ret;
3306    BlockDriver *drv = bs->drv;
3307    CoroutineIOCompletion co = {
3308            .coroutine = qemu_coroutine_self(),
3309    };
3310    IO_CODE();
3311
3312    ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3313    if (ret < 0) {
3314        return ret;
3315    }
3316
3317    bdrv_inc_in_flight(bs);
3318    if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3319        co.ret = -ENOTSUP;
3320        goto out;
3321    }
3322    co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3323out:
3324    bdrv_dec_in_flight(bs);
3325    return co.ret;
3326}
3327
3328void *qemu_blockalign(BlockDriverState *bs, size_t size)
3329{
3330    IO_CODE();
3331    return qemu_memalign(bdrv_opt_mem_align(bs), size);
3332}
3333
3334void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3335{
3336    IO_CODE();
3337    return memset(qemu_blockalign(bs, size), 0, size);
3338}
3339
3340void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3341{
3342    size_t align = bdrv_opt_mem_align(bs);
3343    IO_CODE();
3344
3345    /* Ensure that NULL is never returned on success */
3346    assert(align > 0);
3347    if (size == 0) {
3348        size = align;
3349    }
3350
3351    return qemu_try_memalign(align, size);
3352}
3353
3354void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3355{
3356    void *mem = qemu_try_blockalign(bs, size);
3357    IO_CODE();
3358
3359    if (mem) {
3360        memset(mem, 0, size);
3361    }
3362
3363    return mem;
3364}
3365
3366/* Helper that undoes bdrv_register_buf() when it fails partway through */
3367static void GRAPH_RDLOCK
3368bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3369                           BdrvChild *final_child)
3370{
3371    BdrvChild *child;
3372
3373    GLOBAL_STATE_CODE();
3374    assert_bdrv_graph_readable();
3375
3376    QLIST_FOREACH(child, &bs->children, next) {
3377        if (child == final_child) {
3378            break;
3379        }
3380
3381        bdrv_unregister_buf(child->bs, host, size);
3382    }
3383
3384    if (bs->drv && bs->drv->bdrv_unregister_buf) {
3385        bs->drv->bdrv_unregister_buf(bs, host, size);
3386    }
3387}
3388
3389bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3390                       Error **errp)
3391{
3392    BdrvChild *child;
3393
3394    GLOBAL_STATE_CODE();
3395    GRAPH_RDLOCK_GUARD_MAINLOOP();
3396
3397    if (bs->drv && bs->drv->bdrv_register_buf) {
3398        if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3399            return false;
3400        }
3401    }
3402    QLIST_FOREACH(child, &bs->children, next) {
3403        if (!bdrv_register_buf(child->bs, host, size, errp)) {
3404            bdrv_register_buf_rollback(bs, host, size, child);
3405            return false;
3406        }
3407    }
3408    return true;
3409}
3410
3411void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3412{
3413    BdrvChild *child;
3414
3415    GLOBAL_STATE_CODE();
3416    GRAPH_RDLOCK_GUARD_MAINLOOP();
3417
3418    if (bs->drv && bs->drv->bdrv_unregister_buf) {
3419        bs->drv->bdrv_unregister_buf(bs, host, size);
3420    }
3421    QLIST_FOREACH(child, &bs->children, next) {
3422        bdrv_unregister_buf(child->bs, host, size);
3423    }
3424}
3425
3426static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3427        BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3428        int64_t dst_offset, int64_t bytes,
3429        BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3430        bool recurse_src)
3431{
3432    BdrvTrackedRequest req;
3433    int ret;
3434    assert_bdrv_graph_readable();
3435
3436    /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3437    assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3438    assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3439    assert(!(read_flags & BDRV_REQ_NO_WAIT));
3440    assert(!(write_flags & BDRV_REQ_NO_WAIT));
3441
3442    if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3443        return -ENOMEDIUM;
3444    }
3445    ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3446    if (ret) {
3447        return ret;
3448    }
3449    if (write_flags & BDRV_REQ_ZERO_WRITE) {
3450        return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3451    }
3452
3453    if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3454        return -ENOMEDIUM;
3455    }
3456    ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3457    if (ret) {
3458        return ret;
3459    }
3460
3461    if (!src->bs->drv->bdrv_co_copy_range_from
3462        || !dst->bs->drv->bdrv_co_copy_range_to
3463        || src->bs->encrypted || dst->bs->encrypted) {
3464        return -ENOTSUP;
3465    }
3466
3467    if (recurse_src) {
3468        bdrv_inc_in_flight(src->bs);
3469        tracked_request_begin(&req, src->bs, src_offset, bytes,
3470                              BDRV_TRACKED_READ);
3471
3472        /* BDRV_REQ_SERIALISING is only for write operation */
3473        assert(!(read_flags & BDRV_REQ_SERIALISING));
3474        bdrv_wait_serialising_requests(&req);
3475
3476        ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3477                                                    src, src_offset,
3478                                                    dst, dst_offset,
3479                                                    bytes,
3480                                                    read_flags, write_flags);
3481
3482        tracked_request_end(&req);
3483        bdrv_dec_in_flight(src->bs);
3484    } else {
3485        bdrv_inc_in_flight(dst->bs);
3486        tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3487                              BDRV_TRACKED_WRITE);
3488        ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3489                                        write_flags);
3490        if (!ret) {
3491            ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3492                                                      src, src_offset,
3493                                                      dst, dst_offset,
3494                                                      bytes,
3495                                                      read_flags, write_flags);
3496        }
3497        bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3498        tracked_request_end(&req);
3499        bdrv_dec_in_flight(dst->bs);
3500    }
3501
3502    return ret;
3503}
3504
3505/* Copy range from @src to @dst.
3506 *
3507 * See the comment of bdrv_co_copy_range for the parameter and return value
3508 * semantics. */
3509int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3510                                         BdrvChild *dst, int64_t dst_offset,
3511                                         int64_t bytes,
3512                                         BdrvRequestFlags read_flags,
3513                                         BdrvRequestFlags write_flags)
3514{
3515    IO_CODE();
3516    assert_bdrv_graph_readable();
3517    trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3518                                  read_flags, write_flags);
3519    return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3520                                       bytes, read_flags, write_flags, true);
3521}
3522
3523/* Copy range from @src to @dst.
3524 *
3525 * See the comment of bdrv_co_copy_range for the parameter and return value
3526 * semantics. */
3527int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3528                                       BdrvChild *dst, int64_t dst_offset,
3529                                       int64_t bytes,
3530                                       BdrvRequestFlags read_flags,
3531                                       BdrvRequestFlags write_flags)
3532{
3533    IO_CODE();
3534    assert_bdrv_graph_readable();
3535    trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3536                                read_flags, write_flags);
3537    return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3538                                       bytes, read_flags, write_flags, false);
3539}
3540
3541int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3542                                    BdrvChild *dst, int64_t dst_offset,
3543                                    int64_t bytes, BdrvRequestFlags read_flags,
3544                                    BdrvRequestFlags write_flags)
3545{
3546    IO_CODE();
3547    assert_bdrv_graph_readable();
3548
3549    return bdrv_co_copy_range_from(src, src_offset,
3550                                   dst, dst_offset,
3551                                   bytes, read_flags, write_flags);
3552}
3553
3554static void bdrv_parent_cb_resize(BlockDriverState *bs)
3555{
3556    BdrvChild *c;
3557    QLIST_FOREACH(c, &bs->parents, next_parent) {
3558        if (c->klass->resize) {
3559            c->klass->resize(c);
3560        }
3561    }
3562}
3563
3564/**
3565 * Truncate file to 'offset' bytes (needed only for file protocols)
3566 *
3567 * If 'exact' is true, the file must be resized to exactly the given
3568 * 'offset'.  Otherwise, it is sufficient for the node to be at least
3569 * 'offset' bytes in length.
3570 */
3571int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3572                                  PreallocMode prealloc, BdrvRequestFlags flags,
3573                                  Error **errp)
3574{
3575    BlockDriverState *bs = child->bs;
3576    BdrvChild *filtered, *backing;
3577    BlockDriver *drv = bs->drv;
3578    BdrvTrackedRequest req;
3579    int64_t old_size, new_bytes;
3580    int ret;
3581    IO_CODE();
3582    assert_bdrv_graph_readable();
3583
3584    /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3585    if (!drv) {
3586        error_setg(errp, "No medium inserted");
3587        return -ENOMEDIUM;
3588    }
3589    if (offset < 0) {
3590        error_setg(errp, "Image size cannot be negative");
3591        return -EINVAL;
3592    }
3593
3594    ret = bdrv_check_request(offset, 0, errp);
3595    if (ret < 0) {
3596        return ret;
3597    }
3598
3599    old_size = bdrv_co_getlength(bs);
3600    if (old_size < 0) {
3601        error_setg_errno(errp, -old_size, "Failed to get old image size");
3602        return old_size;
3603    }
3604
3605    if (bdrv_is_read_only(bs)) {
3606        error_setg(errp, "Image is read-only");
3607        return -EACCES;
3608    }
3609
3610    if (offset > old_size) {
3611        new_bytes = offset - old_size;
3612    } else {
3613        new_bytes = 0;
3614    }
3615
3616    bdrv_inc_in_flight(bs);
3617    tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3618                          BDRV_TRACKED_TRUNCATE);
3619
3620    /* If we are growing the image and potentially using preallocation for the
3621     * new area, we need to make sure that no write requests are made to it
3622     * concurrently or they might be overwritten by preallocation. */
3623    if (new_bytes) {
3624        bdrv_make_request_serialising(&req, 1);
3625    }
3626    ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3627                                    0);
3628    if (ret < 0) {
3629        error_setg_errno(errp, -ret,
3630                         "Failed to prepare request for truncation");
3631        goto out;
3632    }
3633
3634    filtered = bdrv_filter_child(bs);
3635    backing = bdrv_cow_child(bs);
3636
3637    /*
3638     * If the image has a backing file that is large enough that it would
3639     * provide data for the new area, we cannot leave it unallocated because
3640     * then the backing file content would become visible. Instead, zero-fill
3641     * the new area.
3642     *
3643     * Note that if the image has a backing file, but was opened without the
3644     * backing file, taking care of keeping things consistent with that backing
3645     * file is the user's responsibility.
3646     */
3647    if (new_bytes && backing) {
3648        int64_t backing_len;
3649
3650        backing_len = bdrv_co_getlength(backing->bs);
3651        if (backing_len < 0) {
3652            ret = backing_len;
3653            error_setg_errno(errp, -ret, "Could not get backing file size");
3654            goto out;
3655        }
3656
3657        if (backing_len > old_size) {
3658            flags |= BDRV_REQ_ZERO_WRITE;
3659        }
3660    }
3661
3662    if (drv->bdrv_co_truncate) {
3663        if (flags & ~bs->supported_truncate_flags) {
3664            error_setg(errp, "Block driver does not support requested flags");
3665            ret = -ENOTSUP;
3666            goto out;
3667        }
3668        ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3669    } else if (filtered) {
3670        ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3671    } else {
3672        error_setg(errp, "Image format driver does not support resize");
3673        ret = -ENOTSUP;
3674        goto out;
3675    }
3676    if (ret < 0) {
3677        goto out;
3678    }
3679
3680    ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3681    if (ret < 0) {
3682        error_setg_errno(errp, -ret, "Could not refresh total sector count");
3683    } else {
3684        offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3685    }
3686    /*
3687     * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3688     * failed, but the latter doesn't affect how we should finish the request.
3689     * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3690     */
3691    bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3692
3693out:
3694    tracked_request_end(&req);
3695    bdrv_dec_in_flight(bs);
3696
3697    return ret;
3698}
3699
3700void bdrv_cancel_in_flight(BlockDriverState *bs)
3701{
3702    GLOBAL_STATE_CODE();
3703    if (!bs || !bs->drv) {
3704        return;
3705    }
3706
3707    if (bs->drv->bdrv_cancel_in_flight) {
3708        bs->drv->bdrv_cancel_in_flight(bs);
3709    }
3710}
3711
3712int coroutine_fn
3713bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3714                        QEMUIOVector *qiov, size_t qiov_offset)
3715{
3716    BlockDriverState *bs = child->bs;
3717    BlockDriver *drv = bs->drv;
3718    int ret;
3719    IO_CODE();
3720    assert_bdrv_graph_readable();
3721
3722    if (!drv) {
3723        return -ENOMEDIUM;
3724    }
3725
3726    if (!drv->bdrv_co_preadv_snapshot) {
3727        return -ENOTSUP;
3728    }
3729
3730    bdrv_inc_in_flight(bs);
3731    ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3732    bdrv_dec_in_flight(bs);
3733
3734    return ret;
3735}
3736
3737int coroutine_fn
3738bdrv_co_snapshot_block_status(BlockDriverState *bs,
3739                              bool want_zero, int64_t offset, int64_t bytes,
3740                              int64_t *pnum, int64_t *map,
3741                              BlockDriverState **file)
3742{
3743    BlockDriver *drv = bs->drv;
3744    int ret;
3745    IO_CODE();
3746    assert_bdrv_graph_readable();
3747
3748    if (!drv) {
3749        return -ENOMEDIUM;
3750    }
3751
3752    if (!drv->bdrv_co_snapshot_block_status) {
3753        return -ENOTSUP;
3754    }
3755
3756    bdrv_inc_in_flight(bs);
3757    ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3758                                             pnum, map, file);
3759    bdrv_dec_in_flight(bs);
3760
3761    return ret;
3762}
3763
3764int coroutine_fn
3765bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3766{
3767    BlockDriver *drv = bs->drv;
3768    int ret;
3769    IO_CODE();
3770    assert_bdrv_graph_readable();
3771
3772    if (!drv) {
3773        return -ENOMEDIUM;
3774    }
3775
3776    if (!drv->bdrv_co_pdiscard_snapshot) {
3777        return -ENOTSUP;
3778    }
3779
3780    bdrv_inc_in_flight(bs);
3781    ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3782    bdrv_dec_in_flight(bs);
3783
3784    return ret;
3785}
3786