qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/option.h"
  23#include "qemu/memalign.h"
  24#include "trace.h"
  25#include "qed.h"
  26#include "sysemu/block-backend.h"
  27#include "qapi/qmp/qdict.h"
  28#include "qapi/qobject-input-visitor.h"
  29#include "qapi/qapi-visit-block-core.h"
  30
  31static QemuOptsList qed_create_opts;
  32
  33static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  34                          const char *filename)
  35{
  36    const QEDHeader *header = (const QEDHeader *)buf;
  37
  38    if (buf_size < sizeof(*header)) {
  39        return 0;
  40    }
  41    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  42        return 0;
  43    }
  44    return 100;
  45}
  46
  47/**
  48 * Check whether an image format is raw
  49 *
  50 * @fmt:    Backing file format, may be NULL
  51 */
  52static bool qed_fmt_is_raw(const char *fmt)
  53{
  54    return fmt && strcmp(fmt, "raw") == 0;
  55}
  56
  57static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  58{
  59    cpu->magic = le32_to_cpu(le->magic);
  60    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  61    cpu->table_size = le32_to_cpu(le->table_size);
  62    cpu->header_size = le32_to_cpu(le->header_size);
  63    cpu->features = le64_to_cpu(le->features);
  64    cpu->compat_features = le64_to_cpu(le->compat_features);
  65    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  66    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  67    cpu->image_size = le64_to_cpu(le->image_size);
  68    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  69    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  70}
  71
  72static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  73{
  74    le->magic = cpu_to_le32(cpu->magic);
  75    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  76    le->table_size = cpu_to_le32(cpu->table_size);
  77    le->header_size = cpu_to_le32(cpu->header_size);
  78    le->features = cpu_to_le64(cpu->features);
  79    le->compat_features = cpu_to_le64(cpu->compat_features);
  80    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  81    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  82    le->image_size = cpu_to_le64(cpu->image_size);
  83    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  84    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  85}
  86
  87int qed_write_header_sync(BDRVQEDState *s)
  88{
  89    QEDHeader le;
  90
  91    qed_header_cpu_to_le(&s->header, &le);
  92    return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
  93}
  94
  95/**
  96 * Update header in-place (does not rewrite backing filename or other strings)
  97 *
  98 * This function only updates known header fields in-place and does not affect
  99 * extra data after the QED header.
 100 *
 101 * No new allocating reqs can start while this function runs.
 102 */
 103static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
 104{
 105    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 106     * the data following the header if an unrecognized compat feature is
 107     * active.  Therefore, first read the sectors containing the header, update
 108     * them, and write back.
 109     */
 110
 111    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 112    size_t len = nsectors * BDRV_SECTOR_SIZE;
 113    uint8_t *buf;
 114    int ret;
 115
 116    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 117
 118    buf = qemu_blockalign(s->bs, len);
 119
 120    ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
 121    if (ret < 0) {
 122        goto out;
 123    }
 124
 125    /* Update header */
 126    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 127
 128    ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
 129    if (ret < 0) {
 130        goto out;
 131    }
 132
 133    ret = 0;
 134out:
 135    qemu_vfree(buf);
 136    return ret;
 137}
 138
 139static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 140{
 141    uint64_t table_entries;
 142    uint64_t l2_size;
 143
 144    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 145    l2_size = table_entries * cluster_size;
 146
 147    return l2_size * table_entries;
 148}
 149
 150static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 151{
 152    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 153        cluster_size > QED_MAX_CLUSTER_SIZE) {
 154        return false;
 155    }
 156    if (cluster_size & (cluster_size - 1)) {
 157        return false; /* not power of 2 */
 158    }
 159    return true;
 160}
 161
 162static bool qed_is_table_size_valid(uint32_t table_size)
 163{
 164    if (table_size < QED_MIN_TABLE_SIZE ||
 165        table_size > QED_MAX_TABLE_SIZE) {
 166        return false;
 167    }
 168    if (table_size & (table_size - 1)) {
 169        return false; /* not power of 2 */
 170    }
 171    return true;
 172}
 173
 174static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 175                                    uint32_t table_size)
 176{
 177    if (image_size % BDRV_SECTOR_SIZE != 0) {
 178        return false; /* not multiple of sector size */
 179    }
 180    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 181        return false; /* image is too large */
 182    }
 183    return true;
 184}
 185
 186/**
 187 * Read a string of known length from the image file
 188 *
 189 * @file:       Image file
 190 * @offset:     File offset to start of string, in bytes
 191 * @n:          String length in bytes
 192 * @buf:        Destination buffer
 193 * @buflen:     Destination buffer length in bytes
 194 * @ret:        0 on success, -errno on failure
 195 *
 196 * The string is NUL-terminated.
 197 */
 198static int coroutine_fn GRAPH_RDLOCK
 199qed_read_string(BdrvChild *file, uint64_t offset,
 200                size_t n, char *buf, size_t buflen)
 201{
 202    int ret;
 203    if (n >= buflen) {
 204        return -EINVAL;
 205    }
 206    ret = bdrv_co_pread(file, offset, n, buf, 0);
 207    if (ret < 0) {
 208        return ret;
 209    }
 210    buf[n] = '\0';
 211    return 0;
 212}
 213
 214/**
 215 * Allocate new clusters
 216 *
 217 * @s:          QED state
 218 * @n:          Number of contiguous clusters to allocate
 219 * @ret:        Offset of first allocated cluster
 220 *
 221 * This function only produces the offset where the new clusters should be
 222 * written.  It updates BDRVQEDState but does not make any changes to the image
 223 * file.
 224 *
 225 * Called with table_lock held.
 226 */
 227static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 228{
 229    uint64_t offset = s->file_size;
 230    s->file_size += n * s->header.cluster_size;
 231    return offset;
 232}
 233
 234QEDTable *qed_alloc_table(BDRVQEDState *s)
 235{
 236    /* Honor O_DIRECT memory alignment requirements */
 237    return qemu_blockalign(s->bs,
 238                           s->header.cluster_size * s->header.table_size);
 239}
 240
 241/**
 242 * Allocate a new zeroed L2 table
 243 *
 244 * Called with table_lock held.
 245 */
 246static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 247{
 248    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 249
 250    l2_table->table = qed_alloc_table(s);
 251    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 252
 253    memset(l2_table->table->offsets, 0,
 254           s->header.cluster_size * s->header.table_size);
 255    return l2_table;
 256}
 257
 258static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
 259{
 260    qemu_co_mutex_lock(&s->table_lock);
 261
 262    /* No reentrancy is allowed.  */
 263    assert(!s->allocating_write_reqs_plugged);
 264    if (s->allocating_acb != NULL) {
 265        /* Another allocating write came concurrently.  This cannot happen
 266         * from bdrv_qed_drain_begin, but it can happen when the timer runs.
 267         */
 268        qemu_co_mutex_unlock(&s->table_lock);
 269        return false;
 270    }
 271
 272    s->allocating_write_reqs_plugged = true;
 273    qemu_co_mutex_unlock(&s->table_lock);
 274    return true;
 275}
 276
 277static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 278{
 279    qemu_co_mutex_lock(&s->table_lock);
 280    assert(s->allocating_write_reqs_plugged);
 281    s->allocating_write_reqs_plugged = false;
 282    qemu_co_queue_next(&s->allocating_write_reqs);
 283    qemu_co_mutex_unlock(&s->table_lock);
 284}
 285
 286static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
 287{
 288    int ret;
 289
 290    trace_qed_need_check_timer_cb(s);
 291    assert_bdrv_graph_readable();
 292
 293    if (!qed_plug_allocating_write_reqs(s)) {
 294        return;
 295    }
 296
 297    /* Ensure writes are on disk before clearing flag */
 298    ret = bdrv_co_flush(s->bs->file->bs);
 299    if (ret < 0) {
 300        qed_unplug_allocating_write_reqs(s);
 301        return;
 302    }
 303
 304    s->header.features &= ~QED_F_NEED_CHECK;
 305    ret = qed_write_header(s);
 306    (void) ret;
 307
 308    qed_unplug_allocating_write_reqs(s);
 309
 310    ret = bdrv_co_flush(s->bs);
 311    (void) ret;
 312}
 313
 314static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 315{
 316    BDRVQEDState *s = opaque;
 317    GRAPH_RDLOCK_GUARD();
 318
 319    qed_need_check_timer(opaque);
 320    bdrv_dec_in_flight(s->bs);
 321}
 322
 323static void qed_need_check_timer_cb(void *opaque)
 324{
 325    BDRVQEDState *s = opaque;
 326    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 327
 328    bdrv_inc_in_flight(s->bs);
 329    qemu_coroutine_enter(co);
 330}
 331
 332static void qed_start_need_check_timer(BDRVQEDState *s)
 333{
 334    trace_qed_start_need_check_timer(s);
 335
 336    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 337     * migration.
 338     */
 339    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 340                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 341}
 342
 343/* It's okay to call this multiple times or when no timer is started */
 344static void qed_cancel_need_check_timer(BDRVQEDState *s)
 345{
 346    trace_qed_cancel_need_check_timer(s);
 347    timer_del(s->need_check_timer);
 348}
 349
 350static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 351{
 352    BDRVQEDState *s = bs->opaque;
 353
 354    qed_cancel_need_check_timer(s);
 355    timer_free(s->need_check_timer);
 356}
 357
 358static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 359                                        AioContext *new_context)
 360{
 361    BDRVQEDState *s = bs->opaque;
 362
 363    s->need_check_timer = aio_timer_new(new_context,
 364                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 365                                        qed_need_check_timer_cb, s);
 366    if (s->header.features & QED_F_NEED_CHECK) {
 367        qed_start_need_check_timer(s);
 368    }
 369}
 370
 371static void bdrv_qed_drain_begin(BlockDriverState *bs)
 372{
 373    BDRVQEDState *s = bs->opaque;
 374
 375    /* Fire the timer immediately in order to start doing I/O as soon as the
 376     * header is flushed.
 377     */
 378    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 379        Coroutine *co;
 380
 381        qed_cancel_need_check_timer(s);
 382        co = qemu_coroutine_create(qed_need_check_timer_entry, s);
 383        bdrv_inc_in_flight(bs);
 384        aio_co_enter(bdrv_get_aio_context(bs), co);
 385    }
 386}
 387
 388static void bdrv_qed_init_state(BlockDriverState *bs)
 389{
 390    BDRVQEDState *s = bs->opaque;
 391
 392    memset(s, 0, sizeof(BDRVQEDState));
 393    s->bs = bs;
 394    qemu_co_mutex_init(&s->table_lock);
 395    qemu_co_queue_init(&s->allocating_write_reqs);
 396}
 397
 398/* Called with table_lock held.  */
 399static int coroutine_fn GRAPH_RDLOCK
 400bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
 401{
 402    BDRVQEDState *s = bs->opaque;
 403    QEDHeader le_header;
 404    int64_t file_size;
 405    int ret;
 406
 407    ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
 408    if (ret < 0) {
 409        error_setg(errp, "Failed to read QED header");
 410        return ret;
 411    }
 412    qed_header_le_to_cpu(&le_header, &s->header);
 413
 414    if (s->header.magic != QED_MAGIC) {
 415        error_setg(errp, "Image not in QED format");
 416        return -EINVAL;
 417    }
 418    if (s->header.features & ~QED_FEATURE_MASK) {
 419        /* image uses unsupported feature bits */
 420        error_setg(errp, "Unsupported QED features: %" PRIx64,
 421                   s->header.features & ~QED_FEATURE_MASK);
 422        return -ENOTSUP;
 423    }
 424    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 425        error_setg(errp, "QED cluster size is invalid");
 426        return -EINVAL;
 427    }
 428
 429    /* Round down file size to the last cluster */
 430    file_size = bdrv_co_getlength(bs->file->bs);
 431    if (file_size < 0) {
 432        error_setg(errp, "Failed to get file length");
 433        return file_size;
 434    }
 435    s->file_size = qed_start_of_cluster(s, file_size);
 436
 437    if (!qed_is_table_size_valid(s->header.table_size)) {
 438        error_setg(errp, "QED table size is invalid");
 439        return -EINVAL;
 440    }
 441    if (!qed_is_image_size_valid(s->header.image_size,
 442                                 s->header.cluster_size,
 443                                 s->header.table_size)) {
 444        error_setg(errp, "QED image size is invalid");
 445        return -EINVAL;
 446    }
 447    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 448        error_setg(errp, "QED table offset is invalid");
 449        return -EINVAL;
 450    }
 451
 452    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 453                      sizeof(uint64_t);
 454    s->l2_shift = ctz32(s->header.cluster_size);
 455    s->l2_mask = s->table_nelems - 1;
 456    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 457
 458    /* Header size calculation must not overflow uint32_t */
 459    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 460        error_setg(errp, "QED header size is too large");
 461        return -EINVAL;
 462    }
 463
 464    if ((s->header.features & QED_F_BACKING_FILE)) {
 465        g_autofree char *backing_file_str = NULL;
 466
 467        if ((uint64_t)s->header.backing_filename_offset +
 468            s->header.backing_filename_size >
 469            s->header.cluster_size * s->header.header_size) {
 470            error_setg(errp, "QED backing filename offset is invalid");
 471            return -EINVAL;
 472        }
 473
 474        backing_file_str = g_malloc(sizeof(bs->backing_file));
 475        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 476                              s->header.backing_filename_size,
 477                              backing_file_str, sizeof(bs->backing_file));
 478        if (ret < 0) {
 479            error_setg(errp, "Failed to read backing filename");
 480            return ret;
 481        }
 482
 483        if (!g_str_equal(backing_file_str, bs->backing_file)) {
 484            pstrcpy(bs->backing_file, sizeof(bs->backing_file),
 485                    backing_file_str);
 486            pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
 487                    backing_file_str);
 488        }
 489
 490        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 491            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 492        }
 493    }
 494
 495    /* Reset unknown autoclear feature bits.  This is a backwards
 496     * compatibility mechanism that allows images to be opened by older
 497     * programs, which "knock out" unknown feature bits.  When an image is
 498     * opened by a newer program again it can detect that the autoclear
 499     * feature is no longer valid.
 500     */
 501    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 502        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 503        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 504
 505        ret = qed_write_header_sync(s);
 506        if (ret) {
 507            error_setg(errp, "Failed to update header");
 508            return ret;
 509        }
 510
 511        /* From here on only known autoclear feature bits are valid */
 512        bdrv_co_flush(bs->file->bs);
 513    }
 514
 515    s->l1_table = qed_alloc_table(s);
 516    qed_init_l2_cache(&s->l2_cache);
 517
 518    ret = qed_read_l1_table_sync(s);
 519    if (ret) {
 520        error_setg(errp, "Failed to read L1 table");
 521        goto out;
 522    }
 523
 524    /* If image was not closed cleanly, check consistency */
 525    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 526        /* Read-only images cannot be fixed.  There is no risk of corruption
 527         * since write operations are not possible.  Therefore, allow
 528         * potentially inconsistent images to be opened read-only.  This can
 529         * aid data recovery from an otherwise inconsistent image.
 530         */
 531        if (!bdrv_is_read_only(bs->file->bs) &&
 532            !(flags & BDRV_O_INACTIVE)) {
 533            BdrvCheckResult result = {0};
 534
 535            ret = qed_check(s, &result, true);
 536            if (ret) {
 537                error_setg(errp, "Image corrupted");
 538                goto out;
 539            }
 540        }
 541    }
 542
 543    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 544
 545out:
 546    if (ret) {
 547        qed_free_l2_cache(&s->l2_cache);
 548        qemu_vfree(s->l1_table);
 549    }
 550    return ret;
 551}
 552
 553typedef struct QEDOpenCo {
 554    BlockDriverState *bs;
 555    QDict *options;
 556    int flags;
 557    Error **errp;
 558    int ret;
 559} QEDOpenCo;
 560
 561static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 562{
 563    QEDOpenCo *qoc = opaque;
 564    BDRVQEDState *s = qoc->bs->opaque;
 565
 566    GRAPH_RDLOCK_GUARD();
 567
 568    qemu_co_mutex_lock(&s->table_lock);
 569    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 570    qemu_co_mutex_unlock(&s->table_lock);
 571}
 572
 573static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 574                         Error **errp)
 575{
 576    QEDOpenCo qoc = {
 577        .bs = bs,
 578        .options = options,
 579        .flags = flags,
 580        .errp = errp,
 581        .ret = -EINPROGRESS
 582    };
 583    int ret;
 584
 585    ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
 586    if (ret < 0) {
 587        return ret;
 588    }
 589
 590    bdrv_qed_init_state(bs);
 591    assert(!qemu_in_coroutine());
 592    assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 593    qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 594    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 595
 596    return qoc.ret;
 597}
 598
 599static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 600{
 601    BDRVQEDState *s = bs->opaque;
 602
 603    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 604    bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
 605}
 606
 607/* We have nothing to do for QED reopen, stubs just return
 608 * success */
 609static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 610                                   BlockReopenQueue *queue, Error **errp)
 611{
 612    return 0;
 613}
 614
 615static void bdrv_qed_close(BlockDriverState *bs)
 616{
 617    BDRVQEDState *s = bs->opaque;
 618
 619    bdrv_qed_detach_aio_context(bs);
 620
 621    /* Ensure writes reach stable storage */
 622    bdrv_flush(bs->file->bs);
 623
 624    /* Clean shutdown, no check required on next open */
 625    if (s->header.features & QED_F_NEED_CHECK) {
 626        s->header.features &= ~QED_F_NEED_CHECK;
 627        qed_write_header_sync(s);
 628    }
 629
 630    qed_free_l2_cache(&s->l2_cache);
 631    qemu_vfree(s->l1_table);
 632}
 633
 634static int coroutine_fn GRAPH_UNLOCKED
 635bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp)
 636{
 637    BlockdevCreateOptionsQed *qed_opts;
 638    BlockBackend *blk = NULL;
 639    BlockDriverState *bs = NULL;
 640
 641    QEDHeader header;
 642    QEDHeader le_header;
 643    uint8_t *l1_table = NULL;
 644    size_t l1_size;
 645    int ret = 0;
 646
 647    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 648    qed_opts = &opts->u.qed;
 649
 650    /* Validate options and set default values */
 651    if (!qed_opts->has_cluster_size) {
 652        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 653    }
 654    if (!qed_opts->has_table_size) {
 655        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 656    }
 657
 658    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 659        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 660                         "and power of 2",
 661                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 662        return -EINVAL;
 663    }
 664    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 665        error_setg(errp, "QED table size must be within range [%u, %u] "
 666                         "and power of 2",
 667                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 668        return -EINVAL;
 669    }
 670    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 671                                 qed_opts->table_size))
 672    {
 673        error_setg(errp, "QED image size must be a non-zero multiple of "
 674                         "cluster size and less than %" PRIu64 " bytes",
 675                   qed_max_image_size(qed_opts->cluster_size,
 676                                      qed_opts->table_size));
 677        return -EINVAL;
 678    }
 679
 680    /* Create BlockBackend to write to the image */
 681    bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
 682    if (bs == NULL) {
 683        return -EIO;
 684    }
 685
 686    blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
 687                             errp);
 688    if (!blk) {
 689        ret = -EPERM;
 690        goto out;
 691    }
 692    blk_set_allow_write_beyond_eof(blk, true);
 693
 694    /* Prepare image format */
 695    header = (QEDHeader) {
 696        .magic = QED_MAGIC,
 697        .cluster_size = qed_opts->cluster_size,
 698        .table_size = qed_opts->table_size,
 699        .header_size = 1,
 700        .features = 0,
 701        .compat_features = 0,
 702        .l1_table_offset = qed_opts->cluster_size,
 703        .image_size = qed_opts->size,
 704    };
 705
 706    l1_size = header.cluster_size * header.table_size;
 707
 708    /*
 709     * The QED format associates file length with allocation status,
 710     * so a new file (which is empty) must have a length of 0.
 711     */
 712    ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
 713    if (ret < 0) {
 714        goto out;
 715    }
 716
 717    if (qed_opts->backing_file) {
 718        header.features |= QED_F_BACKING_FILE;
 719        header.backing_filename_offset = sizeof(le_header);
 720        header.backing_filename_size = strlen(qed_opts->backing_file);
 721
 722        if (qed_opts->has_backing_fmt) {
 723            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 724            if (qed_fmt_is_raw(backing_fmt)) {
 725                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 726            }
 727        }
 728    }
 729
 730    qed_header_cpu_to_le(&header, &le_header);
 731    ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
 732    if (ret < 0) {
 733        goto out;
 734    }
 735    ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
 736                     qed_opts->backing_file, 0);
 737    if (ret < 0) {
 738        goto out;
 739    }
 740
 741    l1_table = g_malloc0(l1_size);
 742    ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
 743    if (ret < 0) {
 744        goto out;
 745    }
 746
 747    ret = 0; /* success */
 748out:
 749    g_free(l1_table);
 750    blk_co_unref(blk);
 751    bdrv_co_unref(bs);
 752    return ret;
 753}
 754
 755static int coroutine_fn GRAPH_UNLOCKED
 756bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
 757                        QemuOpts *opts, Error **errp)
 758{
 759    BlockdevCreateOptions *create_options = NULL;
 760    QDict *qdict;
 761    Visitor *v;
 762    BlockDriverState *bs = NULL;
 763    int ret;
 764
 765    static const QDictRenames opt_renames[] = {
 766        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 767        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 768        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 769        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 770        { NULL, NULL },
 771    };
 772
 773    /* Parse options and convert legacy syntax */
 774    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 775
 776    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 777        ret = -EINVAL;
 778        goto fail;
 779    }
 780
 781    /* Create and open the file (protocol layer) */
 782    ret = bdrv_co_create_file(filename, opts, errp);
 783    if (ret < 0) {
 784        goto fail;
 785    }
 786
 787    bs = bdrv_co_open(filename, NULL, NULL,
 788                      BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 789    if (bs == NULL) {
 790        ret = -EIO;
 791        goto fail;
 792    }
 793
 794    /* Now get the QAPI type BlockdevCreateOptions */
 795    qdict_put_str(qdict, "driver", "qed");
 796    qdict_put_str(qdict, "file", bs->node_name);
 797
 798    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 799    if (!v) {
 800        ret = -EINVAL;
 801        goto fail;
 802    }
 803
 804    visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
 805    visit_free(v);
 806    if (!create_options) {
 807        ret = -EINVAL;
 808        goto fail;
 809    }
 810
 811    /* Silently round up size */
 812    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 813    create_options->u.qed.size =
 814        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 815
 816    /* Create the qed image (format layer) */
 817    ret = bdrv_qed_co_create(create_options, errp);
 818
 819fail:
 820    qobject_unref(qdict);
 821    bdrv_co_unref(bs);
 822    qapi_free_BlockdevCreateOptions(create_options);
 823    return ret;
 824}
 825
 826static int coroutine_fn GRAPH_RDLOCK
 827bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
 828                         int64_t bytes, int64_t *pnum, int64_t *map,
 829                         BlockDriverState **file)
 830{
 831    BDRVQEDState *s = bs->opaque;
 832    size_t len = MIN(bytes, SIZE_MAX);
 833    int status;
 834    QEDRequest request = { .l2_table = NULL };
 835    uint64_t offset;
 836    int ret;
 837
 838    qemu_co_mutex_lock(&s->table_lock);
 839    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 840
 841    *pnum = len;
 842    switch (ret) {
 843    case QED_CLUSTER_FOUND:
 844        *map = offset | qed_offset_into_cluster(s, pos);
 845        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 846        *file = bs->file->bs;
 847        break;
 848    case QED_CLUSTER_ZERO:
 849        status = BDRV_BLOCK_ZERO;
 850        break;
 851    case QED_CLUSTER_L2:
 852    case QED_CLUSTER_L1:
 853        status = 0;
 854        break;
 855    default:
 856        assert(ret < 0);
 857        status = ret;
 858        break;
 859    }
 860
 861    qed_unref_l2_cache_entry(request.l2_table);
 862    qemu_co_mutex_unlock(&s->table_lock);
 863
 864    return status;
 865}
 866
 867static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 868{
 869    return acb->bs->opaque;
 870}
 871
 872/**
 873 * Read from the backing file or zero-fill if no backing file
 874 *
 875 * @s:              QED state
 876 * @pos:            Byte position in device
 877 * @qiov:           Destination I/O vector
 878 *
 879 * This function reads qiov->size bytes starting at pos from the backing file.
 880 * If there is no backing file then zeroes are read.
 881 */
 882static int coroutine_fn GRAPH_RDLOCK
 883qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
 884{
 885    if (s->bs->backing) {
 886        BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 887        return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
 888    }
 889    qemu_iovec_memset(qiov, 0, 0, qiov->size);
 890    return 0;
 891}
 892
 893/**
 894 * Copy data from backing file into the image
 895 *
 896 * @s:          QED state
 897 * @pos:        Byte position in device
 898 * @len:        Number of bytes
 899 * @offset:     Byte offset in image file
 900 */
 901static int coroutine_fn GRAPH_RDLOCK
 902qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
 903                           uint64_t offset)
 904{
 905    QEMUIOVector qiov;
 906    int ret;
 907
 908    /* Skip copy entirely if there is no work to do */
 909    if (len == 0) {
 910        return 0;
 911    }
 912
 913    qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
 914
 915    ret = qed_read_backing_file(s, pos, &qiov);
 916
 917    if (ret) {
 918        goto out;
 919    }
 920
 921    BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 922    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 923    if (ret < 0) {
 924        goto out;
 925    }
 926    ret = 0;
 927out:
 928    qemu_vfree(qemu_iovec_buf(&qiov));
 929    return ret;
 930}
 931
 932/**
 933 * Link one or more contiguous clusters into a table
 934 *
 935 * @s:              QED state
 936 * @table:          L2 table
 937 * @index:          First cluster index
 938 * @n:              Number of contiguous clusters
 939 * @cluster:        First cluster offset
 940 *
 941 * The cluster offset may be an allocated byte offset in the image file, the
 942 * zero cluster marker, or the unallocated cluster marker.
 943 *
 944 * Called with table_lock held.
 945 */
 946static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 947                                             int index, unsigned int n,
 948                                             uint64_t cluster)
 949{
 950    int i;
 951    for (i = index; i < index + n; i++) {
 952        table->offsets[i] = cluster;
 953        if (!qed_offset_is_unalloc_cluster(cluster) &&
 954            !qed_offset_is_zero_cluster(cluster)) {
 955            cluster += s->header.cluster_size;
 956        }
 957    }
 958}
 959
 960/* Called with table_lock held.  */
 961static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 962{
 963    BDRVQEDState *s = acb_to_s(acb);
 964
 965    /* Free resources */
 966    qemu_iovec_destroy(&acb->cur_qiov);
 967    qed_unref_l2_cache_entry(acb->request.l2_table);
 968
 969    /* Free the buffer we may have allocated for zero writes */
 970    if (acb->flags & QED_AIOCB_ZERO) {
 971        qemu_vfree(acb->qiov->iov[0].iov_base);
 972        acb->qiov->iov[0].iov_base = NULL;
 973    }
 974
 975    /* Start next allocating write request waiting behind this one.  Note that
 976     * requests enqueue themselves when they first hit an unallocated cluster
 977     * but they wait until the entire request is finished before waking up the
 978     * next request in the queue.  This ensures that we don't cycle through
 979     * requests multiple times but rather finish one at a time completely.
 980     */
 981    if (acb == s->allocating_acb) {
 982        s->allocating_acb = NULL;
 983        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
 984            qemu_co_queue_next(&s->allocating_write_reqs);
 985        } else if (s->header.features & QED_F_NEED_CHECK) {
 986            qed_start_need_check_timer(s);
 987        }
 988    }
 989}
 990
 991/**
 992 * Update L1 table with new L2 table offset and write it out
 993 *
 994 * Called with table_lock held.
 995 */
 996static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
 997{
 998    BDRVQEDState *s = acb_to_s(acb);
 999    CachedL2Table *l2_table = acb->request.l2_table;
1000    uint64_t l2_offset = l2_table->offset;
1001    int index, ret;
1002
1003    index = qed_l1_index(s, acb->cur_pos);
1004    s->l1_table->offsets[index] = l2_table->offset;
1005
1006    ret = qed_write_l1_table(s, index, 1);
1007
1008    /* Commit the current L2 table to the cache */
1009    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1010
1011    /* This is guaranteed to succeed because we just committed the entry to the
1012     * cache.
1013     */
1014    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1015    assert(acb->request.l2_table != NULL);
1016
1017    return ret;
1018}
1019
1020
1021/**
1022 * Update L2 table with new cluster offsets and write them out
1023 *
1024 * Called with table_lock held.
1025 */
1026static int coroutine_fn GRAPH_RDLOCK
1027qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1028{
1029    BDRVQEDState *s = acb_to_s(acb);
1030    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1031    int index, ret;
1032
1033    if (need_alloc) {
1034        qed_unref_l2_cache_entry(acb->request.l2_table);
1035        acb->request.l2_table = qed_new_l2_table(s);
1036    }
1037
1038    index = qed_l2_index(s, acb->cur_pos);
1039    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1040                         offset);
1041
1042    if (need_alloc) {
1043        /* Write out the whole new L2 table */
1044        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1045        if (ret) {
1046            return ret;
1047        }
1048        return qed_aio_write_l1_update(acb);
1049    } else {
1050        /* Write out only the updated part of the L2 table */
1051        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1052                                 false);
1053        if (ret) {
1054            return ret;
1055        }
1056    }
1057    return 0;
1058}
1059
1060/**
1061 * Write data to the image file
1062 *
1063 * Called with table_lock *not* held.
1064 */
1065static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1066{
1067    BDRVQEDState *s = acb_to_s(acb);
1068    uint64_t offset = acb->cur_cluster +
1069                      qed_offset_into_cluster(s, acb->cur_pos);
1070
1071    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1072
1073    BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1074    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1075                           &acb->cur_qiov, 0);
1076}
1077
1078/**
1079 * Populate untouched regions of new data cluster
1080 *
1081 * Called with table_lock held.
1082 */
1083static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1084{
1085    BDRVQEDState *s = acb_to_s(acb);
1086    uint64_t start, len, offset;
1087    int ret;
1088
1089    qemu_co_mutex_unlock(&s->table_lock);
1090
1091    /* Populate front untouched region of new data cluster */
1092    start = qed_start_of_cluster(s, acb->cur_pos);
1093    len = qed_offset_into_cluster(s, acb->cur_pos);
1094
1095    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1096    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1097    if (ret < 0) {
1098        goto out;
1099    }
1100
1101    /* Populate back untouched region of new data cluster */
1102    start = acb->cur_pos + acb->cur_qiov.size;
1103    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1104    offset = acb->cur_cluster +
1105             qed_offset_into_cluster(s, acb->cur_pos) +
1106             acb->cur_qiov.size;
1107
1108    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1109    ret = qed_copy_from_backing_file(s, start, len, offset);
1110    if (ret < 0) {
1111        goto out;
1112    }
1113
1114    ret = qed_aio_write_main(acb);
1115    if (ret < 0) {
1116        goto out;
1117    }
1118
1119    if (s->bs->backing) {
1120        /*
1121         * Flush new data clusters before updating the L2 table
1122         *
1123         * This flush is necessary when a backing file is in use.  A crash
1124         * during an allocating write could result in empty clusters in the
1125         * image.  If the write only touched a subregion of the cluster,
1126         * then backing image sectors have been lost in the untouched
1127         * region.  The solution is to flush after writing a new data
1128         * cluster and before updating the L2 table.
1129         */
1130        ret = bdrv_co_flush(s->bs->file->bs);
1131    }
1132
1133out:
1134    qemu_co_mutex_lock(&s->table_lock);
1135    return ret;
1136}
1137
1138/**
1139 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1140 */
1141static bool qed_should_set_need_check(BDRVQEDState *s)
1142{
1143    /* The flush before L2 update path ensures consistency */
1144    if (s->bs->backing) {
1145        return false;
1146    }
1147
1148    return !(s->header.features & QED_F_NEED_CHECK);
1149}
1150
1151/**
1152 * Write new data cluster
1153 *
1154 * @acb:        Write request
1155 * @len:        Length in bytes
1156 *
1157 * This path is taken when writing to previously unallocated clusters.
1158 *
1159 * Called with table_lock held.
1160 */
1161static int coroutine_fn GRAPH_RDLOCK
1162qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1163{
1164    BDRVQEDState *s = acb_to_s(acb);
1165    int ret;
1166
1167    /* Cancel timer when the first allocating request comes in */
1168    if (s->allocating_acb == NULL) {
1169        qed_cancel_need_check_timer(s);
1170    }
1171
1172    /* Freeze this request if another allocating write is in progress */
1173    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1174        if (s->allocating_acb != NULL) {
1175            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1176            assert(s->allocating_acb == NULL);
1177        }
1178        s->allocating_acb = acb;
1179        return -EAGAIN; /* start over with looking up table entries */
1180    }
1181
1182    acb->cur_nclusters = qed_bytes_to_clusters(s,
1183            qed_offset_into_cluster(s, acb->cur_pos) + len);
1184    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1185
1186    if (acb->flags & QED_AIOCB_ZERO) {
1187        /* Skip ahead if the clusters are already zero */
1188        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1189            return 0;
1190        }
1191        acb->cur_cluster = 1;
1192    } else {
1193        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1194    }
1195
1196    if (qed_should_set_need_check(s)) {
1197        s->header.features |= QED_F_NEED_CHECK;
1198        ret = qed_write_header(s);
1199        if (ret < 0) {
1200            return ret;
1201        }
1202    }
1203
1204    if (!(acb->flags & QED_AIOCB_ZERO)) {
1205        ret = qed_aio_write_cow(acb);
1206        if (ret < 0) {
1207            return ret;
1208        }
1209    }
1210
1211    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1212}
1213
1214/**
1215 * Write data cluster in place
1216 *
1217 * @acb:        Write request
1218 * @offset:     Cluster offset in bytes
1219 * @len:        Length in bytes
1220 *
1221 * This path is taken when writing to already allocated clusters.
1222 *
1223 * Called with table_lock held.
1224 */
1225static int coroutine_fn GRAPH_RDLOCK
1226qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1227{
1228    BDRVQEDState *s = acb_to_s(acb);
1229    int r;
1230
1231    qemu_co_mutex_unlock(&s->table_lock);
1232
1233    /* Allocate buffer for zero writes */
1234    if (acb->flags & QED_AIOCB_ZERO) {
1235        struct iovec *iov = acb->qiov->iov;
1236
1237        if (!iov->iov_base) {
1238            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1239            if (iov->iov_base == NULL) {
1240                r = -ENOMEM;
1241                goto out;
1242            }
1243            memset(iov->iov_base, 0, iov->iov_len);
1244        }
1245    }
1246
1247    /* Calculate the I/O vector */
1248    acb->cur_cluster = offset;
1249    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1250
1251    /* Do the actual write.  */
1252    r = qed_aio_write_main(acb);
1253out:
1254    qemu_co_mutex_lock(&s->table_lock);
1255    return r;
1256}
1257
1258/**
1259 * Write data cluster
1260 *
1261 * @opaque:     Write request
1262 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1263 * @offset:     Cluster offset in bytes
1264 * @len:        Length in bytes
1265 *
1266 * Called with table_lock held.
1267 */
1268static int coroutine_fn GRAPH_RDLOCK
1269qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1270{
1271    QEDAIOCB *acb = opaque;
1272
1273    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1274
1275    acb->find_cluster_ret = ret;
1276
1277    switch (ret) {
1278    case QED_CLUSTER_FOUND:
1279        return qed_aio_write_inplace(acb, offset, len);
1280
1281    case QED_CLUSTER_L2:
1282    case QED_CLUSTER_L1:
1283    case QED_CLUSTER_ZERO:
1284        return qed_aio_write_alloc(acb, len);
1285
1286    default:
1287        g_assert_not_reached();
1288    }
1289}
1290
1291/**
1292 * Read data cluster
1293 *
1294 * @opaque:     Read request
1295 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1296 * @offset:     Cluster offset in bytes
1297 * @len:        Length in bytes
1298 *
1299 * Called with table_lock held.
1300 */
1301static int coroutine_fn GRAPH_RDLOCK
1302qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1303{
1304    QEDAIOCB *acb = opaque;
1305    BDRVQEDState *s = acb_to_s(acb);
1306    BlockDriverState *bs = acb->bs;
1307    int r;
1308
1309    qemu_co_mutex_unlock(&s->table_lock);
1310
1311    /* Adjust offset into cluster */
1312    offset += qed_offset_into_cluster(s, acb->cur_pos);
1313
1314    trace_qed_aio_read_data(s, acb, ret, offset, len);
1315
1316    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1317
1318    /* Handle zero cluster and backing file reads, otherwise read
1319     * data cluster directly.
1320     */
1321    if (ret == QED_CLUSTER_ZERO) {
1322        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1323        r = 0;
1324    } else if (ret != QED_CLUSTER_FOUND) {
1325        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1326    } else {
1327        BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO);
1328        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1329                           &acb->cur_qiov, 0);
1330    }
1331
1332    qemu_co_mutex_lock(&s->table_lock);
1333    return r;
1334}
1335
1336/**
1337 * Begin next I/O or complete the request
1338 */
1339static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1340{
1341    BDRVQEDState *s = acb_to_s(acb);
1342    uint64_t offset;
1343    size_t len;
1344    int ret;
1345
1346    qemu_co_mutex_lock(&s->table_lock);
1347    while (1) {
1348        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1349
1350        acb->qiov_offset += acb->cur_qiov.size;
1351        acb->cur_pos += acb->cur_qiov.size;
1352        qemu_iovec_reset(&acb->cur_qiov);
1353
1354        /* Complete request */
1355        if (acb->cur_pos >= acb->end_pos) {
1356            ret = 0;
1357            break;
1358        }
1359
1360        /* Find next cluster and start I/O */
1361        len = acb->end_pos - acb->cur_pos;
1362        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1363        if (ret < 0) {
1364            break;
1365        }
1366
1367        if (acb->flags & QED_AIOCB_WRITE) {
1368            ret = qed_aio_write_data(acb, ret, offset, len);
1369        } else {
1370            ret = qed_aio_read_data(acb, ret, offset, len);
1371        }
1372
1373        if (ret < 0 && ret != -EAGAIN) {
1374            break;
1375        }
1376    }
1377
1378    trace_qed_aio_complete(s, acb, ret);
1379    qed_aio_complete(acb);
1380    qemu_co_mutex_unlock(&s->table_lock);
1381    return ret;
1382}
1383
1384static int coroutine_fn GRAPH_RDLOCK
1385qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1386               int nb_sectors, int flags)
1387{
1388    QEDAIOCB acb = {
1389        .bs         = bs,
1390        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1391        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1392        .qiov       = qiov,
1393        .flags      = flags,
1394    };
1395    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1396
1397    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1398
1399    /* Start request */
1400    return qed_aio_next_io(&acb);
1401}
1402
1403static int coroutine_fn GRAPH_RDLOCK
1404bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1405                  QEMUIOVector *qiov)
1406{
1407    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1408}
1409
1410static int coroutine_fn GRAPH_RDLOCK
1411bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1412                   QEMUIOVector *qiov, int flags)
1413{
1414    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1415}
1416
1417static int coroutine_fn GRAPH_RDLOCK
1418bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1419                          BdrvRequestFlags flags)
1420{
1421    BDRVQEDState *s = bs->opaque;
1422
1423    /*
1424     * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1425     * then it will be allocated during request processing.
1426     */
1427    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1428
1429    /*
1430     * QED is not prepared for 63bit write-zero requests, so rely on
1431     * max_pwrite_zeroes.
1432     */
1433    assert(bytes <= INT_MAX);
1434
1435    /* Fall back if the request is not aligned */
1436    if (qed_offset_into_cluster(s, offset) ||
1437        qed_offset_into_cluster(s, bytes)) {
1438        return -ENOTSUP;
1439    }
1440
1441    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1442                          bytes >> BDRV_SECTOR_BITS,
1443                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1444}
1445
1446static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1447                                             int64_t offset,
1448                                             bool exact,
1449                                             PreallocMode prealloc,
1450                                             BdrvRequestFlags flags,
1451                                             Error **errp)
1452{
1453    BDRVQEDState *s = bs->opaque;
1454    uint64_t old_image_size;
1455    int ret;
1456
1457    if (prealloc != PREALLOC_MODE_OFF) {
1458        error_setg(errp, "Unsupported preallocation mode '%s'",
1459                   PreallocMode_str(prealloc));
1460        return -ENOTSUP;
1461    }
1462
1463    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1464                                 s->header.table_size)) {
1465        error_setg(errp, "Invalid image size specified");
1466        return -EINVAL;
1467    }
1468
1469    if ((uint64_t)offset < s->header.image_size) {
1470        error_setg(errp, "Shrinking images is currently not supported");
1471        return -ENOTSUP;
1472    }
1473
1474    old_image_size = s->header.image_size;
1475    s->header.image_size = offset;
1476    ret = qed_write_header_sync(s);
1477    if (ret < 0) {
1478        s->header.image_size = old_image_size;
1479        error_setg_errno(errp, -ret, "Failed to update the image size");
1480    }
1481    return ret;
1482}
1483
1484static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1485{
1486    BDRVQEDState *s = bs->opaque;
1487    return s->header.image_size;
1488}
1489
1490static int coroutine_fn
1491bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1492{
1493    BDRVQEDState *s = bs->opaque;
1494
1495    memset(bdi, 0, sizeof(*bdi));
1496    bdi->cluster_size = s->header.cluster_size;
1497    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1498    return 0;
1499}
1500
1501static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1502                                        const char *backing_file,
1503                                        const char *backing_fmt)
1504{
1505    BDRVQEDState *s = bs->opaque;
1506    QEDHeader new_header, le_header;
1507    void *buffer;
1508    size_t buffer_len, backing_file_len;
1509    int ret;
1510
1511    /* Refuse to set backing filename if unknown compat feature bits are
1512     * active.  If the image uses an unknown compat feature then we may not
1513     * know the layout of data following the header structure and cannot safely
1514     * add a new string.
1515     */
1516    if (backing_file && (s->header.compat_features &
1517                         ~QED_COMPAT_FEATURE_MASK)) {
1518        return -ENOTSUP;
1519    }
1520
1521    memcpy(&new_header, &s->header, sizeof(new_header));
1522
1523    new_header.features &= ~(QED_F_BACKING_FILE |
1524                             QED_F_BACKING_FORMAT_NO_PROBE);
1525
1526    /* Adjust feature flags */
1527    if (backing_file) {
1528        new_header.features |= QED_F_BACKING_FILE;
1529
1530        if (qed_fmt_is_raw(backing_fmt)) {
1531            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1532        }
1533    }
1534
1535    /* Calculate new header size */
1536    backing_file_len = 0;
1537
1538    if (backing_file) {
1539        backing_file_len = strlen(backing_file);
1540    }
1541
1542    buffer_len = sizeof(new_header);
1543    new_header.backing_filename_offset = buffer_len;
1544    new_header.backing_filename_size = backing_file_len;
1545    buffer_len += backing_file_len;
1546
1547    /* Make sure we can rewrite header without failing */
1548    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1549        return -ENOSPC;
1550    }
1551
1552    /* Prepare new header */
1553    buffer = g_malloc(buffer_len);
1554
1555    qed_header_cpu_to_le(&new_header, &le_header);
1556    memcpy(buffer, &le_header, sizeof(le_header));
1557    buffer_len = sizeof(le_header);
1558
1559    if (backing_file) {
1560        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1561        buffer_len += backing_file_len;
1562    }
1563
1564    /* Write new header */
1565    ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1566    g_free(buffer);
1567    if (ret == 0) {
1568        memcpy(&s->header, &new_header, sizeof(new_header));
1569    }
1570    return ret;
1571}
1572
1573static void coroutine_fn GRAPH_RDLOCK
1574bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1575{
1576    BDRVQEDState *s = bs->opaque;
1577    int ret;
1578
1579    bdrv_qed_close(bs);
1580
1581    bdrv_qed_init_state(bs);
1582    qemu_co_mutex_lock(&s->table_lock);
1583    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1584    qemu_co_mutex_unlock(&s->table_lock);
1585    if (ret < 0) {
1586        error_prepend(errp, "Could not reopen qed layer: ");
1587    }
1588}
1589
1590static int coroutine_fn GRAPH_RDLOCK
1591bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1592                  BdrvCheckMode fix)
1593{
1594    BDRVQEDState *s = bs->opaque;
1595    int ret;
1596
1597    qemu_co_mutex_lock(&s->table_lock);
1598    ret = qed_check(s, result, !!fix);
1599    qemu_co_mutex_unlock(&s->table_lock);
1600
1601    return ret;
1602}
1603
1604static QemuOptsList qed_create_opts = {
1605    .name = "qed-create-opts",
1606    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1607    .desc = {
1608        {
1609            .name = BLOCK_OPT_SIZE,
1610            .type = QEMU_OPT_SIZE,
1611            .help = "Virtual disk size"
1612        },
1613        {
1614            .name = BLOCK_OPT_BACKING_FILE,
1615            .type = QEMU_OPT_STRING,
1616            .help = "File name of a base image"
1617        },
1618        {
1619            .name = BLOCK_OPT_BACKING_FMT,
1620            .type = QEMU_OPT_STRING,
1621            .help = "Image format of the base image"
1622        },
1623        {
1624            .name = BLOCK_OPT_CLUSTER_SIZE,
1625            .type = QEMU_OPT_SIZE,
1626            .help = "Cluster size (in bytes)",
1627            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1628        },
1629        {
1630            .name = BLOCK_OPT_TABLE_SIZE,
1631            .type = QEMU_OPT_SIZE,
1632            .help = "L1/L2 table size (in clusters)"
1633        },
1634        { /* end of list */ }
1635    }
1636};
1637
1638static BlockDriver bdrv_qed = {
1639    .format_name              = "qed",
1640    .instance_size            = sizeof(BDRVQEDState),
1641    .create_opts              = &qed_create_opts,
1642    .is_format                = true,
1643    .supports_backing         = true,
1644
1645    .bdrv_probe               = bdrv_qed_probe,
1646    .bdrv_open                = bdrv_qed_open,
1647    .bdrv_close               = bdrv_qed_close,
1648    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1649    .bdrv_child_perm          = bdrv_default_perms,
1650    .bdrv_co_create           = bdrv_qed_co_create,
1651    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1652    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1653    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1654    .bdrv_co_readv            = bdrv_qed_co_readv,
1655    .bdrv_co_writev           = bdrv_qed_co_writev,
1656    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1657    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1658    .bdrv_co_getlength        = bdrv_qed_co_getlength,
1659    .bdrv_co_get_info         = bdrv_qed_co_get_info,
1660    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1661    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1662    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1663    .bdrv_co_check            = bdrv_qed_co_check,
1664    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1665    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1666    .bdrv_drain_begin         = bdrv_qed_drain_begin,
1667};
1668
1669static void bdrv_qed_init(void)
1670{
1671    bdrv_register(&bdrv_qed);
1672}
1673
1674block_init(bdrv_qed_init);
1675