qemu/dump/dump.c
<<
>>
Prefs
   1/*
   2 * QEMU dump
   3 *
   4 * Copyright Fujitsu, Corp. 2011, 2012
   5 *
   6 * Authors:
   7 *     Wen Congyang <wency@cn.fujitsu.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#include "qemu/osdep.h"
  15#include "qemu/cutils.h"
  16#include "elf.h"
  17#include "qemu/bswap.h"
  18#include "exec/target_page.h"
  19#include "monitor/monitor.h"
  20#include "sysemu/dump.h"
  21#include "sysemu/runstate.h"
  22#include "sysemu/cpus.h"
  23#include "qapi/error.h"
  24#include "qapi/qapi-commands-dump.h"
  25#include "qapi/qapi-events-dump.h"
  26#include "qapi/qmp/qerror.h"
  27#include "qemu/error-report.h"
  28#include "qemu/main-loop.h"
  29#include "hw/misc/vmcoreinfo.h"
  30#include "migration/blocker.h"
  31#include "hw/core/cpu.h"
  32#include "win_dump.h"
  33
  34#include <zlib.h>
  35#ifdef CONFIG_LZO
  36#include <lzo/lzo1x.h>
  37#endif
  38#ifdef CONFIG_SNAPPY
  39#include <snappy-c.h>
  40#endif
  41#ifndef ELF_MACHINE_UNAME
  42#define ELF_MACHINE_UNAME "Unknown"
  43#endif
  44
  45#define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
  46
  47static Error *dump_migration_blocker;
  48
  49#define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
  50    ((DIV_ROUND_UP((hdr_size), 4) +                     \
  51      DIV_ROUND_UP((name_size), 4) +                    \
  52      DIV_ROUND_UP((desc_size), 4)) * 4)
  53
  54static inline bool dump_is_64bit(DumpState *s)
  55{
  56    return s->dump_info.d_class == ELFCLASS64;
  57}
  58
  59static inline bool dump_has_filter(DumpState *s)
  60{
  61    return s->filter_area_length > 0;
  62}
  63
  64uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
  65{
  66    if (s->dump_info.d_endian == ELFDATA2LSB) {
  67        val = cpu_to_le16(val);
  68    } else {
  69        val = cpu_to_be16(val);
  70    }
  71
  72    return val;
  73}
  74
  75uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
  76{
  77    if (s->dump_info.d_endian == ELFDATA2LSB) {
  78        val = cpu_to_le32(val);
  79    } else {
  80        val = cpu_to_be32(val);
  81    }
  82
  83    return val;
  84}
  85
  86uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
  87{
  88    if (s->dump_info.d_endian == ELFDATA2LSB) {
  89        val = cpu_to_le64(val);
  90    } else {
  91        val = cpu_to_be64(val);
  92    }
  93
  94    return val;
  95}
  96
  97static int dump_cleanup(DumpState *s)
  98{
  99    guest_phys_blocks_free(&s->guest_phys_blocks);
 100    memory_mapping_list_free(&s->list);
 101    close(s->fd);
 102    g_free(s->guest_note);
 103    g_array_unref(s->string_table_buf);
 104    s->guest_note = NULL;
 105    if (s->resume) {
 106        if (s->detached) {
 107            qemu_mutex_lock_iothread();
 108        }
 109        vm_start();
 110        if (s->detached) {
 111            qemu_mutex_unlock_iothread();
 112        }
 113    }
 114    migrate_del_blocker(dump_migration_blocker);
 115
 116    return 0;
 117}
 118
 119static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
 120{
 121    DumpState *s = opaque;
 122    size_t written_size;
 123
 124    written_size = qemu_write_full(s->fd, buf, size);
 125    if (written_size != size) {
 126        return -errno;
 127    }
 128
 129    return 0;
 130}
 131
 132static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
 133{
 134    /*
 135     * phnum in the elf header is 16 bit, if we have more segments we
 136     * set phnum to PN_XNUM and write the real number of segments to a
 137     * special section.
 138     */
 139    uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
 140
 141    memset(elf_header, 0, sizeof(Elf64_Ehdr));
 142    memcpy(elf_header, ELFMAG, SELFMAG);
 143    elf_header->e_ident[EI_CLASS] = ELFCLASS64;
 144    elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
 145    elf_header->e_ident[EI_VERSION] = EV_CURRENT;
 146    elf_header->e_type = cpu_to_dump16(s, ET_CORE);
 147    elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
 148    elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
 149    elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
 150    elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
 151    elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
 152    elf_header->e_phnum = cpu_to_dump16(s, phnum);
 153    elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
 154    elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
 155    elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
 156    elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
 157}
 158
 159static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
 160{
 161    /*
 162     * phnum in the elf header is 16 bit, if we have more segments we
 163     * set phnum to PN_XNUM and write the real number of segments to a
 164     * special section.
 165     */
 166    uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
 167
 168    memset(elf_header, 0, sizeof(Elf32_Ehdr));
 169    memcpy(elf_header, ELFMAG, SELFMAG);
 170    elf_header->e_ident[EI_CLASS] = ELFCLASS32;
 171    elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
 172    elf_header->e_ident[EI_VERSION] = EV_CURRENT;
 173    elf_header->e_type = cpu_to_dump16(s, ET_CORE);
 174    elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
 175    elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
 176    elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
 177    elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
 178    elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
 179    elf_header->e_phnum = cpu_to_dump16(s, phnum);
 180    elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
 181    elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
 182    elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
 183    elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
 184}
 185
 186static void write_elf_header(DumpState *s, Error **errp)
 187{
 188    Elf32_Ehdr elf32_header;
 189    Elf64_Ehdr elf64_header;
 190    size_t header_size;
 191    void *header_ptr;
 192    int ret;
 193
 194    /* The NULL header and the shstrtab are always defined */
 195    assert(s->shdr_num >= 2);
 196    if (dump_is_64bit(s)) {
 197        prepare_elf64_header(s, &elf64_header);
 198        header_size = sizeof(elf64_header);
 199        header_ptr = &elf64_header;
 200    } else {
 201        prepare_elf32_header(s, &elf32_header);
 202        header_size = sizeof(elf32_header);
 203        header_ptr = &elf32_header;
 204    }
 205
 206    ret = fd_write_vmcore(header_ptr, header_size, s);
 207    if (ret < 0) {
 208        error_setg_errno(errp, -ret, "dump: failed to write elf header");
 209    }
 210}
 211
 212static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
 213                             int phdr_index, hwaddr offset,
 214                             hwaddr filesz, Error **errp)
 215{
 216    Elf64_Phdr phdr;
 217    int ret;
 218
 219    memset(&phdr, 0, sizeof(Elf64_Phdr));
 220    phdr.p_type = cpu_to_dump32(s, PT_LOAD);
 221    phdr.p_offset = cpu_to_dump64(s, offset);
 222    phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
 223    phdr.p_filesz = cpu_to_dump64(s, filesz);
 224    phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
 225    phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
 226
 227    assert(memory_mapping->length >= filesz);
 228
 229    ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
 230    if (ret < 0) {
 231        error_setg_errno(errp, -ret,
 232                         "dump: failed to write program header table");
 233    }
 234}
 235
 236static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
 237                             int phdr_index, hwaddr offset,
 238                             hwaddr filesz, Error **errp)
 239{
 240    Elf32_Phdr phdr;
 241    int ret;
 242
 243    memset(&phdr, 0, sizeof(Elf32_Phdr));
 244    phdr.p_type = cpu_to_dump32(s, PT_LOAD);
 245    phdr.p_offset = cpu_to_dump32(s, offset);
 246    phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
 247    phdr.p_filesz = cpu_to_dump32(s, filesz);
 248    phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
 249    phdr.p_vaddr =
 250        cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
 251
 252    assert(memory_mapping->length >= filesz);
 253
 254    ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
 255    if (ret < 0) {
 256        error_setg_errno(errp, -ret,
 257                         "dump: failed to write program header table");
 258    }
 259}
 260
 261static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
 262{
 263    memset(phdr, 0, sizeof(*phdr));
 264    phdr->p_type = cpu_to_dump32(s, PT_NOTE);
 265    phdr->p_offset = cpu_to_dump64(s, s->note_offset);
 266    phdr->p_paddr = 0;
 267    phdr->p_filesz = cpu_to_dump64(s, s->note_size);
 268    phdr->p_memsz = cpu_to_dump64(s, s->note_size);
 269    phdr->p_vaddr = 0;
 270}
 271
 272static inline int cpu_index(CPUState *cpu)
 273{
 274    return cpu->cpu_index + 1;
 275}
 276
 277static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
 278                             Error **errp)
 279{
 280    int ret;
 281
 282    if (s->guest_note) {
 283        ret = f(s->guest_note, s->guest_note_size, s);
 284        if (ret < 0) {
 285            error_setg(errp, "dump: failed to write guest note");
 286        }
 287    }
 288}
 289
 290static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
 291                              Error **errp)
 292{
 293    CPUState *cpu;
 294    int ret;
 295    int id;
 296
 297    CPU_FOREACH(cpu) {
 298        id = cpu_index(cpu);
 299        ret = cpu_write_elf64_note(f, cpu, id, s);
 300        if (ret < 0) {
 301            error_setg(errp, "dump: failed to write elf notes");
 302            return;
 303        }
 304    }
 305
 306    CPU_FOREACH(cpu) {
 307        ret = cpu_write_elf64_qemunote(f, cpu, s);
 308        if (ret < 0) {
 309            error_setg(errp, "dump: failed to write CPU status");
 310            return;
 311        }
 312    }
 313
 314    write_guest_note(f, s, errp);
 315}
 316
 317static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
 318{
 319    memset(phdr, 0, sizeof(*phdr));
 320    phdr->p_type = cpu_to_dump32(s, PT_NOTE);
 321    phdr->p_offset = cpu_to_dump32(s, s->note_offset);
 322    phdr->p_paddr = 0;
 323    phdr->p_filesz = cpu_to_dump32(s, s->note_size);
 324    phdr->p_memsz = cpu_to_dump32(s, s->note_size);
 325    phdr->p_vaddr = 0;
 326}
 327
 328static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
 329                              Error **errp)
 330{
 331    CPUState *cpu;
 332    int ret;
 333    int id;
 334
 335    CPU_FOREACH(cpu) {
 336        id = cpu_index(cpu);
 337        ret = cpu_write_elf32_note(f, cpu, id, s);
 338        if (ret < 0) {
 339            error_setg(errp, "dump: failed to write elf notes");
 340            return;
 341        }
 342    }
 343
 344    CPU_FOREACH(cpu) {
 345        ret = cpu_write_elf32_qemunote(f, cpu, s);
 346        if (ret < 0) {
 347            error_setg(errp, "dump: failed to write CPU status");
 348            return;
 349        }
 350    }
 351
 352    write_guest_note(f, s, errp);
 353}
 354
 355static void write_elf_phdr_note(DumpState *s, Error **errp)
 356{
 357    Elf32_Phdr phdr32;
 358    Elf64_Phdr phdr64;
 359    void *phdr;
 360    size_t size;
 361    int ret;
 362
 363    if (dump_is_64bit(s)) {
 364        prepare_elf64_phdr_note(s, &phdr64);
 365        size = sizeof(phdr64);
 366        phdr = &phdr64;
 367    } else {
 368        prepare_elf32_phdr_note(s, &phdr32);
 369        size = sizeof(phdr32);
 370        phdr = &phdr32;
 371    }
 372
 373    ret = fd_write_vmcore(phdr, size, s);
 374    if (ret < 0) {
 375        error_setg_errno(errp, -ret,
 376                         "dump: failed to write program header table");
 377    }
 378}
 379
 380static void prepare_elf_section_hdr_zero(DumpState *s)
 381{
 382    if (dump_is_64bit(s)) {
 383        Elf64_Shdr *shdr64 = s->elf_section_hdrs;
 384
 385        shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
 386    } else {
 387        Elf32_Shdr *shdr32 = s->elf_section_hdrs;
 388
 389        shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
 390    }
 391}
 392
 393static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
 394{
 395    uint64_t index = s->string_table_buf->len;
 396    const char strtab[] = ".shstrtab";
 397    Elf32_Shdr shdr32 = {};
 398    Elf64_Shdr shdr64 = {};
 399    int shdr_size;
 400    void *shdr;
 401
 402    g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
 403    if (dump_is_64bit(s)) {
 404        shdr_size = sizeof(Elf64_Shdr);
 405        shdr64.sh_type = SHT_STRTAB;
 406        shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
 407        shdr64.sh_name = index;
 408        shdr64.sh_size = s->string_table_buf->len;
 409        shdr = &shdr64;
 410    } else {
 411        shdr_size = sizeof(Elf32_Shdr);
 412        shdr32.sh_type = SHT_STRTAB;
 413        shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
 414        shdr32.sh_name = index;
 415        shdr32.sh_size = s->string_table_buf->len;
 416        shdr = &shdr32;
 417    }
 418    memcpy(buff, shdr, shdr_size);
 419}
 420
 421static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
 422{
 423    size_t len, sizeof_shdr;
 424    void *buff_hdr;
 425
 426    /*
 427     * Section ordering:
 428     * - HDR zero
 429     * - Arch section hdrs
 430     * - String table hdr
 431     */
 432    sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
 433    len = sizeof_shdr * s->shdr_num;
 434    s->elf_section_hdrs = g_malloc0(len);
 435    buff_hdr = s->elf_section_hdrs;
 436
 437    /*
 438     * The first section header is ALWAYS a special initial section
 439     * header.
 440     *
 441     * The header should be 0 with one exception being that if
 442     * phdr_num is PN_XNUM then the sh_info field contains the real
 443     * number of segment entries.
 444     *
 445     * As we zero allocate the buffer we will only need to modify
 446     * sh_info for the PN_XNUM case.
 447     */
 448    if (s->phdr_num >= PN_XNUM) {
 449        prepare_elf_section_hdr_zero(s);
 450    }
 451    buff_hdr += sizeof_shdr;
 452
 453    /* Add architecture defined section headers */
 454    if (s->dump_info.arch_sections_write_hdr_fn
 455        && s->shdr_num > 2) {
 456        buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
 457
 458        if (s->shdr_num >= SHN_LORESERVE) {
 459            error_setg_errno(errp, EINVAL,
 460                             "dump: too many architecture defined sections");
 461            return false;
 462        }
 463    }
 464
 465    /*
 466     * String table is the last section since strings are added via
 467     * arch_sections_write_hdr().
 468     */
 469    prepare_elf_section_hdr_string(s, buff_hdr);
 470    return true;
 471}
 472
 473static void write_elf_section_headers(DumpState *s, Error **errp)
 474{
 475    size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
 476    int ret;
 477
 478    if (!prepare_elf_section_hdrs(s, errp)) {
 479        return;
 480    }
 481
 482    ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
 483    if (ret < 0) {
 484        error_setg_errno(errp, -ret, "dump: failed to write section headers");
 485    }
 486
 487    g_free(s->elf_section_hdrs);
 488}
 489
 490static void write_elf_sections(DumpState *s, Error **errp)
 491{
 492    int ret;
 493
 494    if (s->elf_section_data_size) {
 495        /* Write architecture section data */
 496        ret = fd_write_vmcore(s->elf_section_data,
 497                              s->elf_section_data_size, s);
 498        if (ret < 0) {
 499            error_setg_errno(errp, -ret,
 500                             "dump: failed to write architecture section data");
 501            return;
 502        }
 503    }
 504
 505    /* Write string table */
 506    ret = fd_write_vmcore(s->string_table_buf->data,
 507                          s->string_table_buf->len, s);
 508    if (ret < 0) {
 509        error_setg_errno(errp, -ret, "dump: failed to write string table data");
 510    }
 511}
 512
 513static void write_data(DumpState *s, void *buf, int length, Error **errp)
 514{
 515    int ret;
 516
 517    ret = fd_write_vmcore(buf, length, s);
 518    if (ret < 0) {
 519        error_setg_errno(errp, -ret, "dump: failed to save memory");
 520    } else {
 521        s->written_size += length;
 522    }
 523}
 524
 525/* write the memory to vmcore. 1 page per I/O. */
 526static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
 527                         int64_t size, Error **errp)
 528{
 529    ERRP_GUARD();
 530    int64_t i;
 531
 532    for (i = 0; i < size / s->dump_info.page_size; i++) {
 533        write_data(s, block->host_addr + start + i * s->dump_info.page_size,
 534                   s->dump_info.page_size, errp);
 535        if (*errp) {
 536            return;
 537        }
 538    }
 539
 540    if ((size % s->dump_info.page_size) != 0) {
 541        write_data(s, block->host_addr + start + i * s->dump_info.page_size,
 542                   size % s->dump_info.page_size, errp);
 543        if (*errp) {
 544            return;
 545        }
 546    }
 547}
 548
 549/* get the memory's offset and size in the vmcore */
 550static void get_offset_range(hwaddr phys_addr,
 551                             ram_addr_t mapping_length,
 552                             DumpState *s,
 553                             hwaddr *p_offset,
 554                             hwaddr *p_filesz)
 555{
 556    GuestPhysBlock *block;
 557    hwaddr offset = s->memory_offset;
 558    int64_t size_in_block, start;
 559
 560    /* When the memory is not stored into vmcore, offset will be -1 */
 561    *p_offset = -1;
 562    *p_filesz = 0;
 563
 564    if (dump_has_filter(s)) {
 565        if (phys_addr < s->filter_area_begin ||
 566            phys_addr >= s->filter_area_begin + s->filter_area_length) {
 567            return;
 568        }
 569    }
 570
 571    QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
 572        if (dump_has_filter(s)) {
 573            if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
 574                block->target_end <= s->filter_area_begin) {
 575                /* This block is out of the range */
 576                continue;
 577            }
 578
 579            if (s->filter_area_begin <= block->target_start) {
 580                start = block->target_start;
 581            } else {
 582                start = s->filter_area_begin;
 583            }
 584
 585            size_in_block = block->target_end - start;
 586            if (s->filter_area_begin + s->filter_area_length < block->target_end) {
 587                size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
 588            }
 589        } else {
 590            start = block->target_start;
 591            size_in_block = block->target_end - block->target_start;
 592        }
 593
 594        if (phys_addr >= start && phys_addr < start + size_in_block) {
 595            *p_offset = phys_addr - start + offset;
 596
 597            /* The offset range mapped from the vmcore file must not spill over
 598             * the GuestPhysBlock, clamp it. The rest of the mapping will be
 599             * zero-filled in memory at load time; see
 600             * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
 601             */
 602            *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
 603                        mapping_length :
 604                        size_in_block - (phys_addr - start);
 605            return;
 606        }
 607
 608        offset += size_in_block;
 609    }
 610}
 611
 612static void write_elf_phdr_loads(DumpState *s, Error **errp)
 613{
 614    ERRP_GUARD();
 615    hwaddr offset, filesz;
 616    MemoryMapping *memory_mapping;
 617    uint32_t phdr_index = 1;
 618
 619    QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
 620        get_offset_range(memory_mapping->phys_addr,
 621                         memory_mapping->length,
 622                         s, &offset, &filesz);
 623        if (dump_is_64bit(s)) {
 624            write_elf64_load(s, memory_mapping, phdr_index++, offset,
 625                             filesz, errp);
 626        } else {
 627            write_elf32_load(s, memory_mapping, phdr_index++, offset,
 628                             filesz, errp);
 629        }
 630
 631        if (*errp) {
 632            return;
 633        }
 634
 635        if (phdr_index >= s->phdr_num) {
 636            break;
 637        }
 638    }
 639}
 640
 641static void write_elf_notes(DumpState *s, Error **errp)
 642{
 643    if (dump_is_64bit(s)) {
 644        write_elf64_notes(fd_write_vmcore, s, errp);
 645    } else {
 646        write_elf32_notes(fd_write_vmcore, s, errp);
 647    }
 648}
 649
 650/* write elf header, PT_NOTE and elf note to vmcore. */
 651static void dump_begin(DumpState *s, Error **errp)
 652{
 653    ERRP_GUARD();
 654
 655    /*
 656     * the vmcore's format is:
 657     *   --------------
 658     *   |  elf header |
 659     *   --------------
 660     *   |  sctn_hdr   |
 661     *   --------------
 662     *   |  PT_NOTE    |
 663     *   --------------
 664     *   |  PT_LOAD    |
 665     *   --------------
 666     *   |  ......     |
 667     *   --------------
 668     *   |  PT_LOAD    |
 669     *   --------------
 670     *   |  elf note   |
 671     *   --------------
 672     *   |  memory     |
 673     *   --------------
 674     *
 675     * we only know where the memory is saved after we write elf note into
 676     * vmcore.
 677     */
 678
 679    /* write elf header to vmcore */
 680    write_elf_header(s, errp);
 681    if (*errp) {
 682        return;
 683    }
 684
 685    /* write section headers to vmcore */
 686    write_elf_section_headers(s, errp);
 687    if (*errp) {
 688        return;
 689    }
 690
 691    /* write PT_NOTE to vmcore */
 692    write_elf_phdr_note(s, errp);
 693    if (*errp) {
 694        return;
 695    }
 696
 697    /* write all PT_LOADs to vmcore */
 698    write_elf_phdr_loads(s, errp);
 699    if (*errp) {
 700        return;
 701    }
 702
 703    /* write notes to vmcore */
 704    write_elf_notes(s, errp);
 705}
 706
 707int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
 708                                    int64_t filter_area_start,
 709                                    int64_t filter_area_length)
 710{
 711    int64_t size, left, right;
 712
 713    /* No filter, return full size */
 714    if (!filter_area_length) {
 715        return block->target_end - block->target_start;
 716    }
 717
 718    /* calculate the overlapped region. */
 719    left = MAX(filter_area_start, block->target_start);
 720    right = MIN(filter_area_start + filter_area_length, block->target_end);
 721    size = right - left;
 722    size = size > 0 ? size : 0;
 723
 724    return size;
 725}
 726
 727int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
 728                                     int64_t filter_area_start,
 729                                     int64_t filter_area_length)
 730{
 731    if (filter_area_length) {
 732        /* return -1 if the block is not within filter area */
 733        if (block->target_start >= filter_area_start + filter_area_length ||
 734            block->target_end <= filter_area_start) {
 735            return -1;
 736        }
 737
 738        if (filter_area_start > block->target_start) {
 739            return filter_area_start - block->target_start;
 740        }
 741    }
 742
 743    return 0;
 744}
 745
 746/* write all memory to vmcore */
 747static void dump_iterate(DumpState *s, Error **errp)
 748{
 749    ERRP_GUARD();
 750    GuestPhysBlock *block;
 751    int64_t memblock_size, memblock_start;
 752
 753    QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
 754        memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
 755        if (memblock_start == -1) {
 756            continue;
 757        }
 758
 759        memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
 760
 761        /* Write the memory to file */
 762        write_memory(s, block, memblock_start, memblock_size, errp);
 763        if (*errp) {
 764            return;
 765        }
 766    }
 767}
 768
 769static void dump_end(DumpState *s, Error **errp)
 770{
 771    int rc;
 772
 773    if (s->elf_section_data_size) {
 774        s->elf_section_data = g_malloc0(s->elf_section_data_size);
 775    }
 776
 777    /* Adds the architecture defined section data to s->elf_section_data  */
 778    if (s->dump_info.arch_sections_write_fn &&
 779        s->elf_section_data_size) {
 780        rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
 781        if (rc) {
 782            error_setg_errno(errp, rc,
 783                             "dump: failed to get arch section data");
 784            g_free(s->elf_section_data);
 785            return;
 786        }
 787    }
 788
 789    /* write sections to vmcore */
 790    write_elf_sections(s, errp);
 791}
 792
 793static void create_vmcore(DumpState *s, Error **errp)
 794{
 795    ERRP_GUARD();
 796
 797    dump_begin(s, errp);
 798    if (*errp) {
 799        return;
 800    }
 801
 802    /* Iterate over memory and dump it to file */
 803    dump_iterate(s, errp);
 804    if (*errp) {
 805        return;
 806    }
 807
 808    /* Write the section data */
 809    dump_end(s, errp);
 810}
 811
 812static int write_start_flat_header(int fd)
 813{
 814    MakedumpfileHeader *mh;
 815    int ret = 0;
 816
 817    QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
 818    mh = g_malloc0(MAX_SIZE_MDF_HEADER);
 819
 820    memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
 821           MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
 822
 823    mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
 824    mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
 825
 826    size_t written_size;
 827    written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
 828    if (written_size != MAX_SIZE_MDF_HEADER) {
 829        ret = -1;
 830    }
 831
 832    g_free(mh);
 833    return ret;
 834}
 835
 836static int write_end_flat_header(int fd)
 837{
 838    MakedumpfileDataHeader mdh;
 839
 840    mdh.offset = END_FLAG_FLAT_HEADER;
 841    mdh.buf_size = END_FLAG_FLAT_HEADER;
 842
 843    size_t written_size;
 844    written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
 845    if (written_size != sizeof(mdh)) {
 846        return -1;
 847    }
 848
 849    return 0;
 850}
 851
 852static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
 853{
 854    size_t written_size;
 855    MakedumpfileDataHeader mdh;
 856
 857    mdh.offset = cpu_to_be64(offset);
 858    mdh.buf_size = cpu_to_be64(size);
 859
 860    written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
 861    if (written_size != sizeof(mdh)) {
 862        return -1;
 863    }
 864
 865    written_size = qemu_write_full(fd, buf, size);
 866    if (written_size != size) {
 867        return -1;
 868    }
 869
 870    return 0;
 871}
 872
 873static int buf_write_note(const void *buf, size_t size, void *opaque)
 874{
 875    DumpState *s = opaque;
 876
 877    /* note_buf is not enough */
 878    if (s->note_buf_offset + size > s->note_size) {
 879        return -1;
 880    }
 881
 882    memcpy(s->note_buf + s->note_buf_offset, buf, size);
 883
 884    s->note_buf_offset += size;
 885
 886    return 0;
 887}
 888
 889/*
 890 * This function retrieves various sizes from an elf header.
 891 *
 892 * @note has to be a valid ELF note. The return sizes are unmodified
 893 * (not padded or rounded up to be multiple of 4).
 894 */
 895static void get_note_sizes(DumpState *s, const void *note,
 896                           uint64_t *note_head_size,
 897                           uint64_t *name_size,
 898                           uint64_t *desc_size)
 899{
 900    uint64_t note_head_sz;
 901    uint64_t name_sz;
 902    uint64_t desc_sz;
 903
 904    if (dump_is_64bit(s)) {
 905        const Elf64_Nhdr *hdr = note;
 906        note_head_sz = sizeof(Elf64_Nhdr);
 907        name_sz = cpu_to_dump64(s, hdr->n_namesz);
 908        desc_sz = cpu_to_dump64(s, hdr->n_descsz);
 909    } else {
 910        const Elf32_Nhdr *hdr = note;
 911        note_head_sz = sizeof(Elf32_Nhdr);
 912        name_sz = cpu_to_dump32(s, hdr->n_namesz);
 913        desc_sz = cpu_to_dump32(s, hdr->n_descsz);
 914    }
 915
 916    if (note_head_size) {
 917        *note_head_size = note_head_sz;
 918    }
 919    if (name_size) {
 920        *name_size = name_sz;
 921    }
 922    if (desc_size) {
 923        *desc_size = desc_sz;
 924    }
 925}
 926
 927static bool note_name_equal(DumpState *s,
 928                            const uint8_t *note, const char *name)
 929{
 930    int len = strlen(name) + 1;
 931    uint64_t head_size, name_size;
 932
 933    get_note_sizes(s, note, &head_size, &name_size, NULL);
 934    head_size = ROUND_UP(head_size, 4);
 935
 936    return name_size == len && memcmp(note + head_size, name, len) == 0;
 937}
 938
 939/* write common header, sub header and elf note to vmcore */
 940static void create_header32(DumpState *s, Error **errp)
 941{
 942    ERRP_GUARD();
 943    DiskDumpHeader32 *dh = NULL;
 944    KdumpSubHeader32 *kh = NULL;
 945    size_t size;
 946    uint32_t block_size;
 947    uint32_t sub_hdr_size;
 948    uint32_t bitmap_blocks;
 949    uint32_t status = 0;
 950    uint64_t offset_note;
 951
 952    /* write common header, the version of kdump-compressed format is 6th */
 953    size = sizeof(DiskDumpHeader32);
 954    dh = g_malloc0(size);
 955
 956    memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
 957    dh->header_version = cpu_to_dump32(s, 6);
 958    block_size = s->dump_info.page_size;
 959    dh->block_size = cpu_to_dump32(s, block_size);
 960    sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
 961    sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
 962    dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
 963    /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
 964    dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
 965    dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
 966    bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
 967    dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
 968    strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
 969
 970    if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
 971        status |= DUMP_DH_COMPRESSED_ZLIB;
 972    }
 973#ifdef CONFIG_LZO
 974    if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
 975        status |= DUMP_DH_COMPRESSED_LZO;
 976    }
 977#endif
 978#ifdef CONFIG_SNAPPY
 979    if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
 980        status |= DUMP_DH_COMPRESSED_SNAPPY;
 981    }
 982#endif
 983    dh->status = cpu_to_dump32(s, status);
 984
 985    if (write_buffer(s->fd, 0, dh, size) < 0) {
 986        error_setg(errp, "dump: failed to write disk dump header");
 987        goto out;
 988    }
 989
 990    /* write sub header */
 991    size = sizeof(KdumpSubHeader32);
 992    kh = g_malloc0(size);
 993
 994    /* 64bit max_mapnr_64 */
 995    kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
 996    kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
 997    kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
 998
 999    offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1000    if (s->guest_note &&
1001        note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1002        uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1003
1004        get_note_sizes(s, s->guest_note,
1005                       &hsize, &name_size, &size_vmcoreinfo_desc);
1006        offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1007            (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1008        kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1009        kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1010    }
1011
1012    kh->offset_note = cpu_to_dump64(s, offset_note);
1013    kh->note_size = cpu_to_dump32(s, s->note_size);
1014
1015    if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1016                     block_size, kh, size) < 0) {
1017        error_setg(errp, "dump: failed to write kdump sub header");
1018        goto out;
1019    }
1020
1021    /* write note */
1022    s->note_buf = g_malloc0(s->note_size);
1023    s->note_buf_offset = 0;
1024
1025    /* use s->note_buf to store notes temporarily */
1026    write_elf32_notes(buf_write_note, s, errp);
1027    if (*errp) {
1028        goto out;
1029    }
1030    if (write_buffer(s->fd, offset_note, s->note_buf,
1031                     s->note_size) < 0) {
1032        error_setg(errp, "dump: failed to write notes");
1033        goto out;
1034    }
1035
1036    /* get offset of dump_bitmap */
1037    s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1038                             block_size;
1039
1040    /* get offset of page */
1041    s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1042                     block_size;
1043
1044out:
1045    g_free(dh);
1046    g_free(kh);
1047    g_free(s->note_buf);
1048}
1049
1050/* write common header, sub header and elf note to vmcore */
1051static void create_header64(DumpState *s, Error **errp)
1052{
1053    ERRP_GUARD();
1054    DiskDumpHeader64 *dh = NULL;
1055    KdumpSubHeader64 *kh = NULL;
1056    size_t size;
1057    uint32_t block_size;
1058    uint32_t sub_hdr_size;
1059    uint32_t bitmap_blocks;
1060    uint32_t status = 0;
1061    uint64_t offset_note;
1062
1063    /* write common header, the version of kdump-compressed format is 6th */
1064    size = sizeof(DiskDumpHeader64);
1065    dh = g_malloc0(size);
1066
1067    memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1068    dh->header_version = cpu_to_dump32(s, 6);
1069    block_size = s->dump_info.page_size;
1070    dh->block_size = cpu_to_dump32(s, block_size);
1071    sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1072    sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1073    dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1074    /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1075    dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1076    dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1077    bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1078    dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1079    strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1080
1081    if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1082        status |= DUMP_DH_COMPRESSED_ZLIB;
1083    }
1084#ifdef CONFIG_LZO
1085    if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1086        status |= DUMP_DH_COMPRESSED_LZO;
1087    }
1088#endif
1089#ifdef CONFIG_SNAPPY
1090    if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1091        status |= DUMP_DH_COMPRESSED_SNAPPY;
1092    }
1093#endif
1094    dh->status = cpu_to_dump32(s, status);
1095
1096    if (write_buffer(s->fd, 0, dh, size) < 0) {
1097        error_setg(errp, "dump: failed to write disk dump header");
1098        goto out;
1099    }
1100
1101    /* write sub header */
1102    size = sizeof(KdumpSubHeader64);
1103    kh = g_malloc0(size);
1104
1105    /* 64bit max_mapnr_64 */
1106    kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1107    kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1108    kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1109
1110    offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1111    if (s->guest_note &&
1112        note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1113        uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1114
1115        get_note_sizes(s, s->guest_note,
1116                       &hsize, &name_size, &size_vmcoreinfo_desc);
1117        offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1118            (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1119        kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1120        kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1121    }
1122
1123    kh->offset_note = cpu_to_dump64(s, offset_note);
1124    kh->note_size = cpu_to_dump64(s, s->note_size);
1125
1126    if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1127                     block_size, kh, size) < 0) {
1128        error_setg(errp, "dump: failed to write kdump sub header");
1129        goto out;
1130    }
1131
1132    /* write note */
1133    s->note_buf = g_malloc0(s->note_size);
1134    s->note_buf_offset = 0;
1135
1136    /* use s->note_buf to store notes temporarily */
1137    write_elf64_notes(buf_write_note, s, errp);
1138    if (*errp) {
1139        goto out;
1140    }
1141
1142    if (write_buffer(s->fd, offset_note, s->note_buf,
1143                     s->note_size) < 0) {
1144        error_setg(errp, "dump: failed to write notes");
1145        goto out;
1146    }
1147
1148    /* get offset of dump_bitmap */
1149    s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1150                             block_size;
1151
1152    /* get offset of page */
1153    s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1154                     block_size;
1155
1156out:
1157    g_free(dh);
1158    g_free(kh);
1159    g_free(s->note_buf);
1160}
1161
1162static void write_dump_header(DumpState *s, Error **errp)
1163{
1164    if (dump_is_64bit(s)) {
1165        create_header64(s, errp);
1166    } else {
1167        create_header32(s, errp);
1168    }
1169}
1170
1171static size_t dump_bitmap_get_bufsize(DumpState *s)
1172{
1173    return s->dump_info.page_size;
1174}
1175
1176/*
1177 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1178 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1179 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1180 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1181 * vmcore, ie. synchronizing un-sync bit into vmcore.
1182 */
1183static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1184                           uint8_t *buf, DumpState *s)
1185{
1186    off_t old_offset, new_offset;
1187    off_t offset_bitmap1, offset_bitmap2;
1188    uint32_t byte, bit;
1189    size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1190    size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1191
1192    /* should not set the previous place */
1193    assert(last_pfn <= pfn);
1194
1195    /*
1196     * if the bit needed to be set is not cached in buf, flush the data in buf
1197     * to vmcore firstly.
1198     * making new_offset be bigger than old_offset can also sync remained data
1199     * into vmcore.
1200     */
1201    old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1202    new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1203
1204    while (old_offset < new_offset) {
1205        /* calculate the offset and write dump_bitmap */
1206        offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1207        if (write_buffer(s->fd, offset_bitmap1, buf,
1208                         bitmap_bufsize) < 0) {
1209            return -1;
1210        }
1211
1212        /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1213        offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1214                         old_offset;
1215        if (write_buffer(s->fd, offset_bitmap2, buf,
1216                         bitmap_bufsize) < 0) {
1217            return -1;
1218        }
1219
1220        memset(buf, 0, bitmap_bufsize);
1221        old_offset += bitmap_bufsize;
1222    }
1223
1224    /* get the exact place of the bit in the buf, and set it */
1225    byte = (pfn % bits_per_buf) / CHAR_BIT;
1226    bit = (pfn % bits_per_buf) % CHAR_BIT;
1227    if (value) {
1228        buf[byte] |= 1u << bit;
1229    } else {
1230        buf[byte] &= ~(1u << bit);
1231    }
1232
1233    return 0;
1234}
1235
1236static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1237{
1238    int target_page_shift = ctz32(s->dump_info.page_size);
1239
1240    return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1241}
1242
1243static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1244{
1245    int target_page_shift = ctz32(s->dump_info.page_size);
1246
1247    return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1248}
1249
1250/*
1251 * Return the page frame number and the page content in *bufptr. bufptr can be
1252 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1253 * memory. This is not necessarily the memory returned.
1254 */
1255static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1256                          uint8_t **bufptr, DumpState *s)
1257{
1258    GuestPhysBlock *block = *blockptr;
1259    uint32_t page_size = s->dump_info.page_size;
1260    uint8_t *buf = NULL, *hbuf;
1261    hwaddr addr;
1262
1263    /* block == NULL means the start of the iteration */
1264    if (!block) {
1265        block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1266        *blockptr = block;
1267        addr = block->target_start;
1268        *pfnptr = dump_paddr_to_pfn(s, addr);
1269    } else {
1270        *pfnptr += 1;
1271        addr = dump_pfn_to_paddr(s, *pfnptr);
1272    }
1273    assert(block != NULL);
1274
1275    while (1) {
1276        if (addr >= block->target_start && addr < block->target_end) {
1277            size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1278            hbuf = block->host_addr + (addr - block->target_start);
1279            if (!buf) {
1280                if (n == page_size) {
1281                    /* this is a whole target page, go for it */
1282                    assert(addr % page_size == 0);
1283                    buf = hbuf;
1284                    break;
1285                } else if (bufptr) {
1286                    assert(*bufptr);
1287                    buf = *bufptr;
1288                    memset(buf, 0, page_size);
1289                } else {
1290                    return true;
1291                }
1292            }
1293
1294            memcpy(buf + addr % page_size, hbuf, n);
1295            addr += n;
1296            if (addr % page_size == 0 || addr >= block->target_end) {
1297                /* we filled up the page or the current block is finished */
1298                break;
1299            }
1300        } else {
1301            /* the next page is in the next block */
1302            *blockptr = block = QTAILQ_NEXT(block, next);
1303            if (!block) {
1304                break;
1305            }
1306
1307            addr = block->target_start;
1308            /* are we still in the same page? */
1309            if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1310                if (buf) {
1311                    /* no, but we already filled something earlier, return it */
1312                    break;
1313                } else {
1314                    /* else continue from there */
1315                    *pfnptr = dump_paddr_to_pfn(s, addr);
1316                }
1317            }
1318        }
1319    }
1320
1321    if (bufptr) {
1322        *bufptr = buf;
1323    }
1324
1325    return buf != NULL;
1326}
1327
1328static void write_dump_bitmap(DumpState *s, Error **errp)
1329{
1330    int ret = 0;
1331    uint64_t last_pfn, pfn;
1332    void *dump_bitmap_buf;
1333    size_t num_dumpable;
1334    GuestPhysBlock *block_iter = NULL;
1335    size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1336    size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1337
1338    /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1339    dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1340
1341    num_dumpable = 0;
1342    last_pfn = 0;
1343
1344    /*
1345     * exam memory page by page, and set the bit in dump_bitmap corresponded
1346     * to the existing page.
1347     */
1348    while (get_next_page(&block_iter, &pfn, NULL, s)) {
1349        ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1350        if (ret < 0) {
1351            error_setg(errp, "dump: failed to set dump_bitmap");
1352            goto out;
1353        }
1354
1355        last_pfn = pfn;
1356        num_dumpable++;
1357    }
1358
1359    /*
1360     * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1361     * set the remaining bits from last_pfn to the end of the bitmap buffer to
1362     * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1363     */
1364    if (num_dumpable > 0) {
1365        ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1366                              dump_bitmap_buf, s);
1367        if (ret < 0) {
1368            error_setg(errp, "dump: failed to sync dump_bitmap");
1369            goto out;
1370        }
1371    }
1372
1373    /* number of dumpable pages that will be dumped later */
1374    s->num_dumpable = num_dumpable;
1375
1376out:
1377    g_free(dump_bitmap_buf);
1378}
1379
1380static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1381                               off_t offset)
1382{
1383    data_cache->fd = s->fd;
1384    data_cache->data_size = 0;
1385    data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1386    data_cache->buf = g_malloc0(data_cache->buf_size);
1387    data_cache->offset = offset;
1388}
1389
1390static int write_cache(DataCache *dc, const void *buf, size_t size,
1391                       bool flag_sync)
1392{
1393    /*
1394     * dc->buf_size should not be less than size, otherwise dc will never be
1395     * enough
1396     */
1397    assert(size <= dc->buf_size);
1398
1399    /*
1400     * if flag_sync is set, synchronize data in dc->buf into vmcore.
1401     * otherwise check if the space is enough for caching data in buf, if not,
1402     * write the data in dc->buf to dc->fd and reset dc->buf
1403     */
1404    if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1405        (flag_sync && dc->data_size > 0)) {
1406        if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1407            return -1;
1408        }
1409
1410        dc->offset += dc->data_size;
1411        dc->data_size = 0;
1412    }
1413
1414    if (!flag_sync) {
1415        memcpy(dc->buf + dc->data_size, buf, size);
1416        dc->data_size += size;
1417    }
1418
1419    return 0;
1420}
1421
1422static void free_data_cache(DataCache *data_cache)
1423{
1424    g_free(data_cache->buf);
1425}
1426
1427static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1428{
1429    switch (flag_compress) {
1430    case DUMP_DH_COMPRESSED_ZLIB:
1431        return compressBound(page_size);
1432
1433    case DUMP_DH_COMPRESSED_LZO:
1434        /*
1435         * LZO will expand incompressible data by a little amount. Please check
1436         * the following URL to see the expansion calculation:
1437         * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1438         */
1439        return page_size + page_size / 16 + 64 + 3;
1440
1441#ifdef CONFIG_SNAPPY
1442    case DUMP_DH_COMPRESSED_SNAPPY:
1443        return snappy_max_compressed_length(page_size);
1444#endif
1445    }
1446    return 0;
1447}
1448
1449static void write_dump_pages(DumpState *s, Error **errp)
1450{
1451    int ret = 0;
1452    DataCache page_desc, page_data;
1453    size_t len_buf_out, size_out;
1454#ifdef CONFIG_LZO
1455    lzo_bytep wrkmem = NULL;
1456#endif
1457    uint8_t *buf_out = NULL;
1458    off_t offset_desc, offset_data;
1459    PageDescriptor pd, pd_zero;
1460    uint8_t *buf;
1461    GuestPhysBlock *block_iter = NULL;
1462    uint64_t pfn_iter;
1463    g_autofree uint8_t *page = NULL;
1464
1465    /* get offset of page_desc and page_data in dump file */
1466    offset_desc = s->offset_page;
1467    offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1468
1469    prepare_data_cache(&page_desc, s, offset_desc);
1470    prepare_data_cache(&page_data, s, offset_data);
1471
1472    /* prepare buffer to store compressed data */
1473    len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1474    assert(len_buf_out != 0);
1475
1476#ifdef CONFIG_LZO
1477    wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1478#endif
1479
1480    buf_out = g_malloc(len_buf_out);
1481
1482    /*
1483     * init zero page's page_desc and page_data, because every zero page
1484     * uses the same page_data
1485     */
1486    pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1487    pd_zero.flags = cpu_to_dump32(s, 0);
1488    pd_zero.offset = cpu_to_dump64(s, offset_data);
1489    pd_zero.page_flags = cpu_to_dump64(s, 0);
1490    buf = g_malloc0(s->dump_info.page_size);
1491    ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1492    g_free(buf);
1493    if (ret < 0) {
1494        error_setg(errp, "dump: failed to write page data (zero page)");
1495        goto out;
1496    }
1497
1498    offset_data += s->dump_info.page_size;
1499    page = g_malloc(s->dump_info.page_size);
1500
1501    /*
1502     * dump memory to vmcore page by page. zero page will all be resided in the
1503     * first page of page section
1504     */
1505    for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1506        /* check zero page */
1507        if (buffer_is_zero(buf, s->dump_info.page_size)) {
1508            ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1509                              false);
1510            if (ret < 0) {
1511                error_setg(errp, "dump: failed to write page desc");
1512                goto out;
1513            }
1514        } else {
1515            /*
1516             * not zero page, then:
1517             * 1. compress the page
1518             * 2. write the compressed page into the cache of page_data
1519             * 3. get page desc of the compressed page and write it into the
1520             *    cache of page_desc
1521             *
1522             * only one compression format will be used here, for
1523             * s->flag_compress is set. But when compression fails to work,
1524             * we fall back to save in plaintext.
1525             */
1526             size_out = len_buf_out;
1527             if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1528                    (compress2(buf_out, (uLongf *)&size_out, buf,
1529                               s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1530                    (size_out < s->dump_info.page_size)) {
1531                pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1532                pd.size  = cpu_to_dump32(s, size_out);
1533
1534                ret = write_cache(&page_data, buf_out, size_out, false);
1535                if (ret < 0) {
1536                    error_setg(errp, "dump: failed to write page data");
1537                    goto out;
1538                }
1539#ifdef CONFIG_LZO
1540            } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1541                    (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1542                    (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1543                    (size_out < s->dump_info.page_size)) {
1544                pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1545                pd.size  = cpu_to_dump32(s, size_out);
1546
1547                ret = write_cache(&page_data, buf_out, size_out, false);
1548                if (ret < 0) {
1549                    error_setg(errp, "dump: failed to write page data");
1550                    goto out;
1551                }
1552#endif
1553#ifdef CONFIG_SNAPPY
1554            } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1555                    (snappy_compress((char *)buf, s->dump_info.page_size,
1556                    (char *)buf_out, &size_out) == SNAPPY_OK) &&
1557                    (size_out < s->dump_info.page_size)) {
1558                pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1559                pd.size  = cpu_to_dump32(s, size_out);
1560
1561                ret = write_cache(&page_data, buf_out, size_out, false);
1562                if (ret < 0) {
1563                    error_setg(errp, "dump: failed to write page data");
1564                    goto out;
1565                }
1566#endif
1567            } else {
1568                /*
1569                 * fall back to save in plaintext, size_out should be
1570                 * assigned the target's page size
1571                 */
1572                pd.flags = cpu_to_dump32(s, 0);
1573                size_out = s->dump_info.page_size;
1574                pd.size = cpu_to_dump32(s, size_out);
1575
1576                ret = write_cache(&page_data, buf,
1577                                  s->dump_info.page_size, false);
1578                if (ret < 0) {
1579                    error_setg(errp, "dump: failed to write page data");
1580                    goto out;
1581                }
1582            }
1583
1584            /* get and write page desc here */
1585            pd.page_flags = cpu_to_dump64(s, 0);
1586            pd.offset = cpu_to_dump64(s, offset_data);
1587            offset_data += size_out;
1588
1589            ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1590            if (ret < 0) {
1591                error_setg(errp, "dump: failed to write page desc");
1592                goto out;
1593            }
1594        }
1595        s->written_size += s->dump_info.page_size;
1596    }
1597
1598    ret = write_cache(&page_desc, NULL, 0, true);
1599    if (ret < 0) {
1600        error_setg(errp, "dump: failed to sync cache for page_desc");
1601        goto out;
1602    }
1603    ret = write_cache(&page_data, NULL, 0, true);
1604    if (ret < 0) {
1605        error_setg(errp, "dump: failed to sync cache for page_data");
1606        goto out;
1607    }
1608
1609out:
1610    free_data_cache(&page_desc);
1611    free_data_cache(&page_data);
1612
1613#ifdef CONFIG_LZO
1614    g_free(wrkmem);
1615#endif
1616
1617    g_free(buf_out);
1618}
1619
1620static void create_kdump_vmcore(DumpState *s, Error **errp)
1621{
1622    ERRP_GUARD();
1623    int ret;
1624
1625    /*
1626     * the kdump-compressed format is:
1627     *                                               File offset
1628     *  +------------------------------------------+ 0x0
1629     *  |    main header (struct disk_dump_header) |
1630     *  |------------------------------------------+ block 1
1631     *  |    sub header (struct kdump_sub_header)  |
1632     *  |------------------------------------------+ block 2
1633     *  |            1st-dump_bitmap               |
1634     *  |------------------------------------------+ block 2 + X blocks
1635     *  |            2nd-dump_bitmap               | (aligned by block)
1636     *  |------------------------------------------+ block 2 + 2 * X blocks
1637     *  |  page desc for pfn 0 (struct page_desc)  | (aligned by block)
1638     *  |  page desc for pfn 1 (struct page_desc)  |
1639     *  |                    :                     |
1640     *  |------------------------------------------| (not aligned by block)
1641     *  |         page data (pfn 0)                |
1642     *  |         page data (pfn 1)                |
1643     *  |                    :                     |
1644     *  +------------------------------------------+
1645     */
1646
1647    ret = write_start_flat_header(s->fd);
1648    if (ret < 0) {
1649        error_setg(errp, "dump: failed to write start flat header");
1650        return;
1651    }
1652
1653    write_dump_header(s, errp);
1654    if (*errp) {
1655        return;
1656    }
1657
1658    write_dump_bitmap(s, errp);
1659    if (*errp) {
1660        return;
1661    }
1662
1663    write_dump_pages(s, errp);
1664    if (*errp) {
1665        return;
1666    }
1667
1668    ret = write_end_flat_header(s->fd);
1669    if (ret < 0) {
1670        error_setg(errp, "dump: failed to write end flat header");
1671        return;
1672    }
1673}
1674
1675static int validate_start_block(DumpState *s)
1676{
1677    GuestPhysBlock *block;
1678
1679    if (!dump_has_filter(s)) {
1680        return 0;
1681    }
1682
1683    QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1684        /* This block is out of the range */
1685        if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
1686            block->target_end <= s->filter_area_begin) {
1687            continue;
1688        }
1689        return 0;
1690   }
1691
1692    return -1;
1693}
1694
1695static void get_max_mapnr(DumpState *s)
1696{
1697    GuestPhysBlock *last_block;
1698
1699    last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1700    s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1701}
1702
1703static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1704
1705static void dump_state_prepare(DumpState *s)
1706{
1707    /* zero the struct, setting status to active */
1708    *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1709}
1710
1711bool qemu_system_dump_in_progress(void)
1712{
1713    DumpState *state = &dump_state_global;
1714    return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1715}
1716
1717/*
1718 * calculate total size of memory to be dumped (taking filter into
1719 * account.)
1720 */
1721static int64_t dump_calculate_size(DumpState *s)
1722{
1723    GuestPhysBlock *block;
1724    int64_t total = 0;
1725
1726    QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1727        total += dump_filtered_memblock_size(block,
1728                                             s->filter_area_begin,
1729                                             s->filter_area_length);
1730    }
1731
1732    return total;
1733}
1734
1735static void vmcoreinfo_update_phys_base(DumpState *s)
1736{
1737    uint64_t size, note_head_size, name_size, phys_base;
1738    char **lines;
1739    uint8_t *vmci;
1740    size_t i;
1741
1742    if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1743        return;
1744    }
1745
1746    get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1747    note_head_size = ROUND_UP(note_head_size, 4);
1748
1749    vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1750    *(vmci + size) = '\0';
1751
1752    lines = g_strsplit((char *)vmci, "\n", -1);
1753    for (i = 0; lines[i]; i++) {
1754        const char *prefix = NULL;
1755
1756        if (s->dump_info.d_machine == EM_X86_64) {
1757            prefix = "NUMBER(phys_base)=";
1758        } else if (s->dump_info.d_machine == EM_AARCH64) {
1759            prefix = "NUMBER(PHYS_OFFSET)=";
1760        }
1761
1762        if (prefix && g_str_has_prefix(lines[i], prefix)) {
1763            if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1764                              &phys_base) < 0) {
1765                warn_report("Failed to read %s", prefix);
1766            } else {
1767                s->dump_info.phys_base = phys_base;
1768            }
1769            break;
1770        }
1771    }
1772
1773    g_strfreev(lines);
1774}
1775
1776static void dump_init(DumpState *s, int fd, bool has_format,
1777                      DumpGuestMemoryFormat format, bool paging, bool has_filter,
1778                      int64_t begin, int64_t length, Error **errp)
1779{
1780    ERRP_GUARD();
1781    VMCoreInfoState *vmci = vmcoreinfo_find();
1782    CPUState *cpu;
1783    int nr_cpus;
1784    int ret;
1785
1786    s->has_format = has_format;
1787    s->format = format;
1788    s->written_size = 0;
1789
1790    /* kdump-compressed is conflict with paging and filter */
1791    if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1792        assert(!paging && !has_filter);
1793    }
1794
1795    if (runstate_is_running()) {
1796        vm_stop(RUN_STATE_SAVE_VM);
1797        s->resume = true;
1798    } else {
1799        s->resume = false;
1800    }
1801
1802    /* If we use KVM, we should synchronize the registers before we get dump
1803     * info or physmap info.
1804     */
1805    cpu_synchronize_all_states();
1806    nr_cpus = 0;
1807    CPU_FOREACH(cpu) {
1808        nr_cpus++;
1809    }
1810
1811    s->fd = fd;
1812    if (has_filter && !length) {
1813        error_setg(errp, QERR_INVALID_PARAMETER, "length");
1814        goto cleanup;
1815    }
1816    s->filter_area_begin = begin;
1817    s->filter_area_length = length;
1818
1819    /* First index is 0, it's the special null name */
1820    s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1821    /*
1822     * Allocate the null name, due to the clearing option set to true
1823     * it will be 0.
1824     */
1825    g_array_set_size(s->string_table_buf, 1);
1826
1827    memory_mapping_list_init(&s->list);
1828
1829    guest_phys_blocks_init(&s->guest_phys_blocks);
1830    guest_phys_blocks_append(&s->guest_phys_blocks);
1831    s->total_size = dump_calculate_size(s);
1832#ifdef DEBUG_DUMP_GUEST_MEMORY
1833    fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1834#endif
1835
1836    /* it does not make sense to dump non-existent memory */
1837    if (!s->total_size) {
1838        error_setg(errp, "dump: no guest memory to dump");
1839        goto cleanup;
1840    }
1841
1842    /* Is the filter filtering everything? */
1843    if (validate_start_block(s) == -1) {
1844        error_setg(errp, QERR_INVALID_PARAMETER, "begin");
1845        goto cleanup;
1846    }
1847
1848    /* get dump info: endian, class and architecture.
1849     * If the target architecture is not supported, cpu_get_dump_info() will
1850     * return -1.
1851     */
1852    ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1853    if (ret < 0) {
1854        error_setg(errp,
1855                   "dumping guest memory is not supported on this target");
1856        goto cleanup;
1857    }
1858
1859    if (!s->dump_info.page_size) {
1860        s->dump_info.page_size = qemu_target_page_size();
1861    }
1862
1863    s->note_size = cpu_get_note_size(s->dump_info.d_class,
1864                                     s->dump_info.d_machine, nr_cpus);
1865    assert(s->note_size >= 0);
1866
1867    /*
1868     * The goal of this block is to (a) update the previously guessed
1869     * phys_base, (b) copy the guest note out of the guest.
1870     * Failure to do so is not fatal for dumping.
1871     */
1872    if (vmci) {
1873        uint64_t addr, note_head_size, name_size, desc_size;
1874        uint32_t size;
1875        uint16_t format;
1876
1877        note_head_size = dump_is_64bit(s) ?
1878            sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1879
1880        format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1881        size = le32_to_cpu(vmci->vmcoreinfo.size);
1882        addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1883        if (!vmci->has_vmcoreinfo) {
1884            warn_report("guest note is not present");
1885        } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1886            warn_report("guest note size is invalid: %" PRIu32, size);
1887        } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1888            warn_report("guest note format is unsupported: %" PRIu16, format);
1889        } else {
1890            s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1891            cpu_physical_memory_read(addr, s->guest_note, size);
1892
1893            get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1894            s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1895                                               desc_size);
1896            if (name_size > MAX_GUEST_NOTE_SIZE ||
1897                desc_size > MAX_GUEST_NOTE_SIZE ||
1898                s->guest_note_size > size) {
1899                warn_report("Invalid guest note header");
1900                g_free(s->guest_note);
1901                s->guest_note = NULL;
1902            } else {
1903                vmcoreinfo_update_phys_base(s);
1904                s->note_size += s->guest_note_size;
1905            }
1906        }
1907    }
1908
1909    /* get memory mapping */
1910    if (paging) {
1911        qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1912        if (*errp) {
1913            goto cleanup;
1914        }
1915    } else {
1916        qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1917    }
1918
1919    s->nr_cpus = nr_cpus;
1920
1921    get_max_mapnr(s);
1922
1923    uint64_t tmp;
1924    tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1925                       s->dump_info.page_size);
1926    s->len_dump_bitmap = tmp * s->dump_info.page_size;
1927
1928    /* init for kdump-compressed format */
1929    if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1930        switch (format) {
1931        case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1932            s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1933            break;
1934
1935        case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1936#ifdef CONFIG_LZO
1937            if (lzo_init() != LZO_E_OK) {
1938                error_setg(errp, "failed to initialize the LZO library");
1939                goto cleanup;
1940            }
1941#endif
1942            s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1943            break;
1944
1945        case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1946            s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1947            break;
1948
1949        default:
1950            s->flag_compress = 0;
1951        }
1952
1953        return;
1954    }
1955
1956    if (dump_has_filter(s)) {
1957        memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1958    }
1959
1960    /*
1961     * The first section header is always a special one in which most
1962     * fields are 0. The section header string table is also always
1963     * set.
1964     */
1965    s->shdr_num = 2;
1966
1967    /*
1968     * Adds the number of architecture sections to shdr_num and sets
1969     * elf_section_data_size so we know the offsets and sizes of all
1970     * parts.
1971     */
1972    if (s->dump_info.arch_sections_add_fn) {
1973        s->dump_info.arch_sections_add_fn(s);
1974    }
1975
1976    /*
1977     * calculate shdr_num so we know the offsets and sizes of all
1978     * parts.
1979     * Calculate phdr_num
1980     *
1981     * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1982     * sh_info is 32 bit. There's special handling once we go over
1983     * UINT16_MAX - 1 but that is handled in the ehdr and section
1984     * code.
1985     */
1986    s->phdr_num = 1; /* Reserve PT_NOTE */
1987    if (s->list.num <= UINT32_MAX - 1) {
1988        s->phdr_num += s->list.num;
1989    } else {
1990        s->phdr_num = UINT32_MAX;
1991    }
1992
1993    /*
1994     * Now that the number of section and program headers is known we
1995     * can calculate the offsets of the headers and data.
1996     */
1997    if (dump_is_64bit(s)) {
1998        s->shdr_offset = sizeof(Elf64_Ehdr);
1999        s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
2000        s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
2001    } else {
2002        s->shdr_offset = sizeof(Elf32_Ehdr);
2003        s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
2004        s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
2005    }
2006    s->memory_offset = s->note_offset + s->note_size;
2007    s->section_offset = s->memory_offset + s->total_size;
2008
2009    return;
2010
2011cleanup:
2012    dump_cleanup(s);
2013}
2014
2015/* this operation might be time consuming. */
2016static void dump_process(DumpState *s, Error **errp)
2017{
2018    ERRP_GUARD();
2019    DumpQueryResult *result = NULL;
2020
2021    if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2022        create_win_dump(s, errp);
2023    } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2024        create_kdump_vmcore(s, errp);
2025    } else {
2026        create_vmcore(s, errp);
2027    }
2028
2029    /* make sure status is written after written_size updates */
2030    smp_wmb();
2031    qatomic_set(&s->status,
2032               (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2033
2034    /* send DUMP_COMPLETED message (unconditionally) */
2035    result = qmp_query_dump(NULL);
2036    /* should never fail */
2037    assert(result);
2038    qapi_event_send_dump_completed(result,
2039                                   *errp ? error_get_pretty(*errp) : NULL);
2040    qapi_free_DumpQueryResult(result);
2041
2042    dump_cleanup(s);
2043}
2044
2045static void *dump_thread(void *data)
2046{
2047    DumpState *s = (DumpState *)data;
2048    dump_process(s, NULL);
2049    return NULL;
2050}
2051
2052DumpQueryResult *qmp_query_dump(Error **errp)
2053{
2054    DumpQueryResult *result = g_new(DumpQueryResult, 1);
2055    DumpState *state = &dump_state_global;
2056    result->status = qatomic_read(&state->status);
2057    /* make sure we are reading status and written_size in order */
2058    smp_rmb();
2059    result->completed = state->written_size;
2060    result->total = state->total_size;
2061    return result;
2062}
2063
2064void qmp_dump_guest_memory(bool paging, const char *file,
2065                           bool has_detach, bool detach,
2066                           bool has_begin, int64_t begin, bool has_length,
2067                           int64_t length, bool has_format,
2068                           DumpGuestMemoryFormat format, Error **errp)
2069{
2070    ERRP_GUARD();
2071    const char *p;
2072    int fd = -1;
2073    DumpState *s;
2074    bool detach_p = false;
2075
2076    if (runstate_check(RUN_STATE_INMIGRATE)) {
2077        error_setg(errp, "Dump not allowed during incoming migration.");
2078        return;
2079    }
2080
2081    /* if there is a dump in background, we should wait until the dump
2082     * finished */
2083    if (qemu_system_dump_in_progress()) {
2084        error_setg(errp, "There is a dump in process, please wait.");
2085        return;
2086    }
2087
2088    /*
2089     * kdump-compressed format need the whole memory dumped, so paging or
2090     * filter is not supported here.
2091     */
2092    if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2093        (paging || has_begin || has_length)) {
2094        error_setg(errp, "kdump-compressed format doesn't support paging or "
2095                         "filter");
2096        return;
2097    }
2098    if (has_begin && !has_length) {
2099        error_setg(errp, QERR_MISSING_PARAMETER, "length");
2100        return;
2101    }
2102    if (!has_begin && has_length) {
2103        error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2104        return;
2105    }
2106    if (has_detach) {
2107        detach_p = detach;
2108    }
2109
2110    /* check whether lzo/snappy is supported */
2111#ifndef CONFIG_LZO
2112    if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2113        error_setg(errp, "kdump-lzo is not available now");
2114        return;
2115    }
2116#endif
2117
2118#ifndef CONFIG_SNAPPY
2119    if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2120        error_setg(errp, "kdump-snappy is not available now");
2121        return;
2122    }
2123#endif
2124
2125    if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2126        && !win_dump_available(errp)) {
2127        return;
2128    }
2129
2130#if !defined(WIN32)
2131    if (strstart(file, "fd:", &p)) {
2132        fd = monitor_get_fd(monitor_cur(), p, errp);
2133        if (fd == -1) {
2134            return;
2135        }
2136    }
2137#endif
2138
2139    if  (strstart(file, "file:", &p)) {
2140        fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
2141        if (fd < 0) {
2142            error_setg_file_open(errp, errno, p);
2143            return;
2144        }
2145    }
2146
2147    if (fd == -1) {
2148        error_setg(errp, QERR_INVALID_PARAMETER, "protocol");
2149        return;
2150    }
2151
2152    if (!dump_migration_blocker) {
2153        error_setg(&dump_migration_blocker,
2154                   "Live migration disabled: dump-guest-memory in progress");
2155    }
2156
2157    /*
2158     * Allows even for -only-migratable, but forbid migration during the
2159     * process of dump guest memory.
2160     */
2161    if (migrate_add_blocker_internal(dump_migration_blocker, errp)) {
2162        /* Remember to release the fd before passing it over to dump state */
2163        close(fd);
2164        return;
2165    }
2166
2167    s = &dump_state_global;
2168    dump_state_prepare(s);
2169
2170    dump_init(s, fd, has_format, format, paging, has_begin,
2171              begin, length, errp);
2172    if (*errp) {
2173        qatomic_set(&s->status, DUMP_STATUS_FAILED);
2174        return;
2175    }
2176
2177    if (detach_p) {
2178        /* detached dump */
2179        s->detached = true;
2180        qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2181                           s, QEMU_THREAD_DETACHED);
2182    } else {
2183        /* sync dump */
2184        dump_process(s, errp);
2185    }
2186}
2187
2188DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2189{
2190    DumpGuestMemoryCapability *cap =
2191                                  g_new0(DumpGuestMemoryCapability, 1);
2192    DumpGuestMemoryFormatList **tail = &cap->formats;
2193
2194    /* elf is always available */
2195    QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2196
2197    /* kdump-zlib is always available */
2198    QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2199
2200    /* add new item if kdump-lzo is available */
2201#ifdef CONFIG_LZO
2202    QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2203#endif
2204
2205    /* add new item if kdump-snappy is available */
2206#ifdef CONFIG_SNAPPY
2207    QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2208#endif
2209
2210    if (win_dump_available(NULL)) {
2211        QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2212    }
2213
2214    return cap;
2215}
2216