qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/datadir.h"
  12#include "qemu/error-report.h"
  13#include "qapi/error.h"
  14#include <libfdt.h>
  15#include "hw/arm/boot.h"
  16#include "hw/arm/linux-boot-if.h"
  17#include "sysemu/kvm.h"
  18#include "sysemu/tcg.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/numa.h"
  21#include "hw/boards.h"
  22#include "sysemu/reset.h"
  23#include "hw/loader.h"
  24#include "elf.h"
  25#include "sysemu/device_tree.h"
  26#include "qemu/config-file.h"
  27#include "qemu/option.h"
  28#include "qemu/units.h"
  29
  30/* Kernel boot protocol is specified in the kernel docs
  31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  32 * They have different preferred image load offsets from system RAM base.
  33 */
  34#define KERNEL_ARGS_ADDR   0x100
  35#define KERNEL_NOLOAD_ADDR 0x02000000
  36#define KERNEL_LOAD_ADDR   0x00010000
  37#define KERNEL64_LOAD_ADDR 0x00080000
  38
  39#define ARM64_TEXT_OFFSET_OFFSET    8
  40#define ARM64_MAGIC_OFFSET          56
  41
  42#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  43
  44AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  45                                     const struct arm_boot_info *info)
  46{
  47    /* Return the address space to use for bootloader reads and writes.
  48     * We prefer the secure address space if the CPU has it and we're
  49     * going to boot the guest into it.
  50     */
  51    int asidx;
  52    CPUState *cs = CPU(cpu);
  53
  54    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  55        asidx = ARMASIdx_S;
  56    } else {
  57        asidx = ARMASIdx_NS;
  58    }
  59
  60    return cpu_get_address_space(cs, asidx);
  61}
  62
  63static const ARMInsnFixup bootloader_aarch64[] = {
  64    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  65    { 0xaa1f03e1 }, /* mov x1, xzr */
  66    { 0xaa1f03e2 }, /* mov x2, xzr */
  67    { 0xaa1f03e3 }, /* mov x3, xzr */
  68    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  69    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  70    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
  71    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
  72    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
  73    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
  74    { 0, FIXUP_TERMINATOR }
  75};
  76
  77/* A very small bootloader: call the board-setup code (if needed),
  78 * set r0-r2, then jump to the kernel.
  79 * If we're not calling boot setup code then we don't copy across
  80 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
  81 */
  82
  83static const ARMInsnFixup bootloader[] = {
  84    { 0xe28fe004 }, /* add     lr, pc, #4 */
  85    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
  86    { 0, FIXUP_BOARD_SETUP },
  87#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
  88    { 0xe3a00000 }, /* mov     r0, #0 */
  89    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
  90    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
  91    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
  92    { 0, FIXUP_BOARDID },
  93    { 0, FIXUP_ARGPTR_LO },
  94    { 0, FIXUP_ENTRYPOINT_LO },
  95    { 0, FIXUP_TERMINATOR }
  96};
  97
  98/* Handling for secondary CPU boot in a multicore system.
  99 * Unlike the uniprocessor/primary CPU boot, this is platform
 100 * dependent. The default code here is based on the secondary
 101 * CPU boot protocol used on realview/vexpress boards, with
 102 * some parameterisation to increase its flexibility.
 103 * QEMU platform models for which this code is not appropriate
 104 * should override write_secondary_boot and secondary_cpu_reset_hook
 105 * instead.
 106 *
 107 * This code enables the interrupt controllers for the secondary
 108 * CPUs and then puts all the secondary CPUs into a loop waiting
 109 * for an interprocessor interrupt and polling a configurable
 110 * location for the kernel secondary CPU entry point.
 111 */
 112#define DSB_INSN 0xf57ff04f
 113#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 114
 115static const ARMInsnFixup smpboot[] = {
 116    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 117    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 118    { 0xe3a01001 }, /* mov r1, #1 */
 119    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 120    { 0xe3a010ff }, /* mov r1, #0xff */
 121    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 122    { 0, FIXUP_DSB },   /* dsb */
 123    { 0xe320f003 }, /* wfi */
 124    { 0xe5901000 }, /* ldr     r1, [r0] */
 125    { 0xe1110001 }, /* tst     r1, r1 */
 126    { 0x0afffffb }, /* beq     <wfi> */
 127    { 0xe12fff11 }, /* bx      r1 */
 128    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 129    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 130    { 0, FIXUP_TERMINATOR }
 131};
 132
 133void arm_write_bootloader(const char *name,
 134                          AddressSpace *as, hwaddr addr,
 135                          const ARMInsnFixup *insns,
 136                          const uint32_t *fixupcontext)
 137{
 138    /* Fix up the specified bootloader fragment and write it into
 139     * guest memory using rom_add_blob_fixed(). fixupcontext is
 140     * an array giving the values to write in for the fixup types
 141     * which write a value into the code array.
 142     */
 143    int i, len;
 144    uint32_t *code;
 145
 146    len = 0;
 147    while (insns[len].fixup != FIXUP_TERMINATOR) {
 148        len++;
 149    }
 150
 151    code = g_new0(uint32_t, len);
 152
 153    for (i = 0; i < len; i++) {
 154        uint32_t insn = insns[i].insn;
 155        FixupType fixup = insns[i].fixup;
 156
 157        switch (fixup) {
 158        case FIXUP_NONE:
 159            break;
 160        case FIXUP_BOARDID:
 161        case FIXUP_BOARD_SETUP:
 162        case FIXUP_ARGPTR_LO:
 163        case FIXUP_ARGPTR_HI:
 164        case FIXUP_ENTRYPOINT_LO:
 165        case FIXUP_ENTRYPOINT_HI:
 166        case FIXUP_GIC_CPU_IF:
 167        case FIXUP_BOOTREG:
 168        case FIXUP_DSB:
 169            insn = fixupcontext[fixup];
 170            break;
 171        default:
 172            abort();
 173        }
 174        code[i] = tswap32(insn);
 175    }
 176
 177    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 178
 179    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 180
 181    g_free(code);
 182}
 183
 184static void default_write_secondary(ARMCPU *cpu,
 185                                    const struct arm_boot_info *info)
 186{
 187    uint32_t fixupcontext[FIXUP_MAX];
 188    AddressSpace *as = arm_boot_address_space(cpu, info);
 189
 190    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 191    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 192    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 193        fixupcontext[FIXUP_DSB] = DSB_INSN;
 194    } else {
 195        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 196    }
 197
 198    arm_write_bootloader("smpboot", as, info->smp_loader_start,
 199                         smpboot, fixupcontext);
 200}
 201
 202void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 203                                            const struct arm_boot_info *info,
 204                                            hwaddr mvbar_addr)
 205{
 206    AddressSpace *as = arm_boot_address_space(cpu, info);
 207    int n;
 208    uint32_t mvbar_blob[] = {
 209        /* mvbar_addr: secure monitor vectors
 210         * Default unimplemented and unused vectors to spin. Makes it
 211         * easier to debug (as opposed to the CPU running away).
 212         */
 213        0xeafffffe, /* (spin) */
 214        0xeafffffe, /* (spin) */
 215        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 216        0xeafffffe, /* (spin) */
 217        0xeafffffe, /* (spin) */
 218        0xeafffffe, /* (spin) */
 219        0xeafffffe, /* (spin) */
 220        0xeafffffe, /* (spin) */
 221    };
 222    uint32_t board_setup_blob[] = {
 223        /* board setup addr */
 224        0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
 225        0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
 226        0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
 227        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 228        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 229        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 230        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 231        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 232        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 233        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 234        0xe1a0f001, /* mov     pc, r1                 ;return */
 235    };
 236
 237    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 238    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 239
 240    /* check that these blobs don't overlap */
 241    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 242          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 243
 244    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 245        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 246    }
 247    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 248                          mvbar_addr, as);
 249
 250    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 251        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 252    }
 253    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 254                          sizeof(board_setup_blob), info->board_setup_addr, as);
 255}
 256
 257static void default_reset_secondary(ARMCPU *cpu,
 258                                    const struct arm_boot_info *info)
 259{
 260    AddressSpace *as = arm_boot_address_space(cpu, info);
 261    CPUState *cs = CPU(cpu);
 262
 263    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 264                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 265    cpu_set_pc(cs, info->smp_loader_start);
 266}
 267
 268static inline bool have_dtb(const struct arm_boot_info *info)
 269{
 270    return info->dtb_filename || info->get_dtb;
 271}
 272
 273#define WRITE_WORD(p, value) do { \
 274    address_space_stl_notdirty(as, p, value, \
 275                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 276    p += 4;                       \
 277} while (0)
 278
 279static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 280{
 281    int initrd_size = info->initrd_size;
 282    hwaddr base = info->loader_start;
 283    hwaddr p;
 284
 285    p = base + KERNEL_ARGS_ADDR;
 286    /* ATAG_CORE */
 287    WRITE_WORD(p, 5);
 288    WRITE_WORD(p, 0x54410001);
 289    WRITE_WORD(p, 1);
 290    WRITE_WORD(p, 0x1000);
 291    WRITE_WORD(p, 0);
 292    /* ATAG_MEM */
 293    /* TODO: handle multiple chips on one ATAG list */
 294    WRITE_WORD(p, 4);
 295    WRITE_WORD(p, 0x54410002);
 296    WRITE_WORD(p, info->ram_size);
 297    WRITE_WORD(p, info->loader_start);
 298    if (initrd_size) {
 299        /* ATAG_INITRD2 */
 300        WRITE_WORD(p, 4);
 301        WRITE_WORD(p, 0x54420005);
 302        WRITE_WORD(p, info->initrd_start);
 303        WRITE_WORD(p, initrd_size);
 304    }
 305    if (info->kernel_cmdline && *info->kernel_cmdline) {
 306        /* ATAG_CMDLINE */
 307        int cmdline_size;
 308
 309        cmdline_size = strlen(info->kernel_cmdline);
 310        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 311                            info->kernel_cmdline, cmdline_size + 1);
 312        cmdline_size = (cmdline_size >> 2) + 1;
 313        WRITE_WORD(p, cmdline_size + 2);
 314        WRITE_WORD(p, 0x54410009);
 315        p += cmdline_size * 4;
 316    }
 317    if (info->atag_board) {
 318        /* ATAG_BOARD */
 319        int atag_board_len;
 320        uint8_t atag_board_buf[0x1000];
 321
 322        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 323        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 324        WRITE_WORD(p, 0x414f4d50);
 325        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 326                            atag_board_buf, atag_board_len);
 327        p += atag_board_len;
 328    }
 329    /* ATAG_END */
 330    WRITE_WORD(p, 0);
 331    WRITE_WORD(p, 0);
 332}
 333
 334static void set_kernel_args_old(const struct arm_boot_info *info,
 335                                AddressSpace *as)
 336{
 337    hwaddr p;
 338    const char *s;
 339    int initrd_size = info->initrd_size;
 340    hwaddr base = info->loader_start;
 341
 342    /* see linux/include/asm-arm/setup.h */
 343    p = base + KERNEL_ARGS_ADDR;
 344    /* page_size */
 345    WRITE_WORD(p, 4096);
 346    /* nr_pages */
 347    WRITE_WORD(p, info->ram_size / 4096);
 348    /* ramdisk_size */
 349    WRITE_WORD(p, 0);
 350#define FLAG_READONLY   1
 351#define FLAG_RDLOAD     4
 352#define FLAG_RDPROMPT   8
 353    /* flags */
 354    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 355    /* rootdev */
 356    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 357    /* video_num_cols */
 358    WRITE_WORD(p, 0);
 359    /* video_num_rows */
 360    WRITE_WORD(p, 0);
 361    /* video_x */
 362    WRITE_WORD(p, 0);
 363    /* video_y */
 364    WRITE_WORD(p, 0);
 365    /* memc_control_reg */
 366    WRITE_WORD(p, 0);
 367    /* unsigned char sounddefault */
 368    /* unsigned char adfsdrives */
 369    /* unsigned char bytes_per_char_h */
 370    /* unsigned char bytes_per_char_v */
 371    WRITE_WORD(p, 0);
 372    /* pages_in_bank[4] */
 373    WRITE_WORD(p, 0);
 374    WRITE_WORD(p, 0);
 375    WRITE_WORD(p, 0);
 376    WRITE_WORD(p, 0);
 377    /* pages_in_vram */
 378    WRITE_WORD(p, 0);
 379    /* initrd_start */
 380    if (initrd_size) {
 381        WRITE_WORD(p, info->initrd_start);
 382    } else {
 383        WRITE_WORD(p, 0);
 384    }
 385    /* initrd_size */
 386    WRITE_WORD(p, initrd_size);
 387    /* rd_start */
 388    WRITE_WORD(p, 0);
 389    /* system_rev */
 390    WRITE_WORD(p, 0);
 391    /* system_serial_low */
 392    WRITE_WORD(p, 0);
 393    /* system_serial_high */
 394    WRITE_WORD(p, 0);
 395    /* mem_fclk_21285 */
 396    WRITE_WORD(p, 0);
 397    /* zero unused fields */
 398    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 399        WRITE_WORD(p, 0);
 400    }
 401    s = info->kernel_cmdline;
 402    if (s) {
 403        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
 404    } else {
 405        WRITE_WORD(p, 0);
 406    }
 407}
 408
 409static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 410                               uint32_t scells, hwaddr mem_len,
 411                               int numa_node_id)
 412{
 413    char *nodename;
 414    int ret;
 415
 416    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 417    qemu_fdt_add_subnode(fdt, nodename);
 418    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 419    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 420                                       scells, mem_len);
 421    if (ret < 0) {
 422        goto out;
 423    }
 424
 425    /* only set the NUMA ID if it is specified */
 426    if (numa_node_id >= 0) {
 427        ret = qemu_fdt_setprop_cell(fdt, nodename,
 428                                    "numa-node-id", numa_node_id);
 429    }
 430out:
 431    g_free(nodename);
 432    return ret;
 433}
 434
 435static void fdt_add_psci_node(void *fdt)
 436{
 437    uint32_t cpu_suspend_fn;
 438    uint32_t cpu_off_fn;
 439    uint32_t cpu_on_fn;
 440    uint32_t migrate_fn;
 441    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 442    const char *psci_method;
 443    int64_t psci_conduit;
 444    int rc;
 445
 446    psci_conduit = object_property_get_int(OBJECT(armcpu),
 447                                           "psci-conduit",
 448                                           &error_abort);
 449    switch (psci_conduit) {
 450    case QEMU_PSCI_CONDUIT_DISABLED:
 451        return;
 452    case QEMU_PSCI_CONDUIT_HVC:
 453        psci_method = "hvc";
 454        break;
 455    case QEMU_PSCI_CONDUIT_SMC:
 456        psci_method = "smc";
 457        break;
 458    default:
 459        g_assert_not_reached();
 460    }
 461
 462    /*
 463     * A pre-existing /psci node might specify function ID values
 464     * that don't match QEMU's PSCI implementation. Delete the whole
 465     * node and put our own in instead.
 466     */
 467    rc = fdt_path_offset(fdt, "/psci");
 468    if (rc >= 0) {
 469        qemu_fdt_nop_node(fdt, "/psci");
 470    }
 471
 472    qemu_fdt_add_subnode(fdt, "/psci");
 473    if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
 474        if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
 475            const char comp[] = "arm,psci-0.2\0arm,psci";
 476            qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 477        } else {
 478            const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
 479            qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 480        }
 481
 482        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 483        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 484            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 485            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 486            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 487        } else {
 488            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 489            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 490            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 491        }
 492    } else {
 493        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 494
 495        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 496        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 497        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 498        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 499    }
 500
 501    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 502     * to the instruction that should be used to invoke PSCI functions.
 503     * However, the device tree binding uses 'method' instead, so that is
 504     * what we should use here.
 505     */
 506    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 507
 508    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 509    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 510    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 511    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 512}
 513
 514int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 515                 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
 516{
 517    void *fdt = NULL;
 518    int size, rc, n = 0;
 519    uint32_t acells, scells;
 520    unsigned int i;
 521    hwaddr mem_base, mem_len;
 522    char **node_path;
 523    Error *err = NULL;
 524
 525    if (binfo->dtb_filename) {
 526        char *filename;
 527        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 528        if (!filename) {
 529            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 530            goto fail;
 531        }
 532
 533        fdt = load_device_tree(filename, &size);
 534        if (!fdt) {
 535            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 536            g_free(filename);
 537            goto fail;
 538        }
 539        g_free(filename);
 540    } else {
 541        fdt = binfo->get_dtb(binfo, &size);
 542        if (!fdt) {
 543            fprintf(stderr, "Board was unable to create a dtb blob\n");
 544            goto fail;
 545        }
 546    }
 547
 548    if (addr_limit > addr && size > (addr_limit - addr)) {
 549        /* Installing the device tree blob at addr would exceed addr_limit.
 550         * Whether this constitutes failure is up to the caller to decide,
 551         * so just return 0 as size, i.e., no error.
 552         */
 553        g_free(fdt);
 554        return 0;
 555    }
 556
 557    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 558                                   NULL, &error_fatal);
 559    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 560                                   NULL, &error_fatal);
 561    if (acells == 0 || scells == 0) {
 562        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 563        goto fail;
 564    }
 565
 566    if (scells < 2 && binfo->ram_size >= 4 * GiB) {
 567        /* This is user error so deserves a friendlier error message
 568         * than the failure of setprop_sized_cells would provide
 569         */
 570        fprintf(stderr, "qemu: dtb file not compatible with "
 571                "RAM size > 4GB\n");
 572        goto fail;
 573    }
 574
 575    /* nop all root nodes matching /memory or /memory@unit-address */
 576    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 577    if (err) {
 578        error_report_err(err);
 579        goto fail;
 580    }
 581    while (node_path[n]) {
 582        if (g_str_has_prefix(node_path[n], "/memory")) {
 583            qemu_fdt_nop_node(fdt, node_path[n]);
 584        }
 585        n++;
 586    }
 587    g_strfreev(node_path);
 588
 589    /*
 590     * We drop all the memory nodes which correspond to empty NUMA nodes
 591     * from the device tree, because the Linux NUMA binding document
 592     * states they should not be generated. Linux will get the NUMA node
 593     * IDs of the empty NUMA nodes from the distance map if they are needed.
 594     * This means QEMU users may be obliged to provide command lines which
 595     * configure distance maps when the empty NUMA node IDs are needed and
 596     * Linux's default distance map isn't sufficient.
 597     */
 598    if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
 599        mem_base = binfo->loader_start;
 600        for (i = 0; i < ms->numa_state->num_nodes; i++) {
 601            mem_len = ms->numa_state->nodes[i].node_mem;
 602            if (!mem_len) {
 603                continue;
 604            }
 605
 606            rc = fdt_add_memory_node(fdt, acells, mem_base,
 607                                     scells, mem_len, i);
 608            if (rc < 0) {
 609                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 610                        mem_base);
 611                goto fail;
 612            }
 613
 614            mem_base += mem_len;
 615        }
 616    } else {
 617        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 618                                 scells, binfo->ram_size, -1);
 619        if (rc < 0) {
 620            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 621                    binfo->loader_start);
 622            goto fail;
 623        }
 624    }
 625
 626    rc = fdt_path_offset(fdt, "/chosen");
 627    if (rc < 0) {
 628        qemu_fdt_add_subnode(fdt, "/chosen");
 629    }
 630
 631    if (ms->kernel_cmdline && *ms->kernel_cmdline) {
 632        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 633                                     ms->kernel_cmdline);
 634        if (rc < 0) {
 635            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 636            goto fail;
 637        }
 638    }
 639
 640    if (binfo->initrd_size) {
 641        rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
 642                                          acells, binfo->initrd_start);
 643        if (rc < 0) {
 644            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 645            goto fail;
 646        }
 647
 648        rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
 649                                          acells,
 650                                          binfo->initrd_start +
 651                                          binfo->initrd_size);
 652        if (rc < 0) {
 653            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 654            goto fail;
 655        }
 656    }
 657
 658    fdt_add_psci_node(fdt);
 659
 660    if (binfo->modify_dtb) {
 661        binfo->modify_dtb(binfo, fdt);
 662    }
 663
 664    qemu_fdt_dumpdtb(fdt, size);
 665
 666    /* Put the DTB into the memory map as a ROM image: this will ensure
 667     * the DTB is copied again upon reset, even if addr points into RAM.
 668     */
 669    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 670    qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
 671                                       rom_ptr_for_as(as, addr, size));
 672
 673    if (fdt != ms->fdt) {
 674        g_free(ms->fdt);
 675        ms->fdt = fdt;
 676    }
 677
 678    return size;
 679
 680fail:
 681    g_free(fdt);
 682    return -1;
 683}
 684
 685static void do_cpu_reset(void *opaque)
 686{
 687    ARMCPU *cpu = opaque;
 688    CPUState *cs = CPU(cpu);
 689    CPUARMState *env = &cpu->env;
 690    const struct arm_boot_info *info = env->boot_info;
 691
 692    cpu_reset(cs);
 693    if (info) {
 694        if (!info->is_linux) {
 695            int i;
 696            /* Jump to the entry point.  */
 697            uint64_t entry = info->entry;
 698
 699            switch (info->endianness) {
 700            case ARM_ENDIANNESS_LE:
 701                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 702                for (i = 1; i < 4; ++i) {
 703                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 704                }
 705                env->uncached_cpsr &= ~CPSR_E;
 706                break;
 707            case ARM_ENDIANNESS_BE8:
 708                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 709                for (i = 1; i < 4; ++i) {
 710                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 711                }
 712                env->uncached_cpsr |= CPSR_E;
 713                break;
 714            case ARM_ENDIANNESS_BE32:
 715                env->cp15.sctlr_el[1] |= SCTLR_B;
 716                break;
 717            case ARM_ENDIANNESS_UNKNOWN:
 718                break; /* Board's decision */
 719            default:
 720                g_assert_not_reached();
 721            }
 722
 723            cpu_set_pc(cs, entry);
 724        } else {
 725            /* If we are booting Linux then we need to check whether we are
 726             * booting into secure or non-secure state and adjust the state
 727             * accordingly.  Out of reset, ARM is defined to be in secure state
 728             * (SCR.NS = 0), we change that here if non-secure boot has been
 729             * requested.
 730             */
 731            if (arm_feature(env, ARM_FEATURE_EL3)) {
 732                /* AArch64 is defined to come out of reset into EL3 if enabled.
 733                 * If we are booting Linux then we need to adjust our EL as
 734                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 735                 * SVC, which Linux expects, so no privilege/exception level to
 736                 * adjust.
 737                 */
 738                if (env->aarch64) {
 739                    env->cp15.scr_el3 |= SCR_RW;
 740                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 741                        env->cp15.hcr_el2 |= HCR_RW;
 742                        env->pstate = PSTATE_MODE_EL2h;
 743                    } else {
 744                        env->pstate = PSTATE_MODE_EL1h;
 745                    }
 746                    if (cpu_isar_feature(aa64_pauth, cpu)) {
 747                        env->cp15.scr_el3 |= SCR_API | SCR_APK;
 748                    }
 749                    if (cpu_isar_feature(aa64_mte, cpu)) {
 750                        env->cp15.scr_el3 |= SCR_ATA;
 751                    }
 752                    if (cpu_isar_feature(aa64_sve, cpu)) {
 753                        env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
 754                        env->vfp.zcr_el[3] = 0xf;
 755                    }
 756                    if (cpu_isar_feature(aa64_sme, cpu)) {
 757                        env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
 758                        env->cp15.scr_el3 |= SCR_ENTP2;
 759                        env->vfp.smcr_el[3] = 0xf;
 760                    }
 761                    if (cpu_isar_feature(aa64_hcx, cpu)) {
 762                        env->cp15.scr_el3 |= SCR_HXEN;
 763                    }
 764                    /* AArch64 kernels never boot in secure mode */
 765                    assert(!info->secure_boot);
 766                    /* This hook is only supported for AArch32 currently:
 767                     * bootloader_aarch64[] will not call the hook, and
 768                     * the code above has already dropped us into EL2 or EL1.
 769                     */
 770                    assert(!info->secure_board_setup);
 771                }
 772
 773                if (arm_feature(env, ARM_FEATURE_EL2)) {
 774                    /* If we have EL2 then Linux expects the HVC insn to work */
 775                    env->cp15.scr_el3 |= SCR_HCE;
 776                }
 777
 778                /* Set to non-secure if not a secure boot */
 779                if (!info->secure_boot &&
 780                    (cs != first_cpu || !info->secure_board_setup)) {
 781                    /* Linux expects non-secure state */
 782                    env->cp15.scr_el3 |= SCR_NS;
 783                    /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 784                    env->cp15.nsacr |= 3 << 10;
 785                }
 786            }
 787
 788            if (!env->aarch64 && !info->secure_boot &&
 789                arm_feature(env, ARM_FEATURE_EL2)) {
 790                /*
 791                 * This is an AArch32 boot not to Secure state, and
 792                 * we have Hyp mode available, so boot the kernel into
 793                 * Hyp mode. This is not how the CPU comes out of reset,
 794                 * so we need to manually put it there.
 795                 */
 796                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 797            }
 798
 799            if (cs == first_cpu) {
 800                AddressSpace *as = arm_boot_address_space(cpu, info);
 801
 802                cpu_set_pc(cs, info->loader_start);
 803
 804                if (!have_dtb(info)) {
 805                    if (old_param) {
 806                        set_kernel_args_old(info, as);
 807                    } else {
 808                        set_kernel_args(info, as);
 809                    }
 810                }
 811            } else if (info->secondary_cpu_reset_hook) {
 812                info->secondary_cpu_reset_hook(cpu, info);
 813            }
 814        }
 815
 816        if (tcg_enabled()) {
 817            arm_rebuild_hflags(env);
 818        }
 819    }
 820}
 821
 822static int do_arm_linux_init(Object *obj, void *opaque)
 823{
 824    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 825        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 826        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 827        struct arm_boot_info *info = opaque;
 828
 829        if (albifc->arm_linux_init) {
 830            albifc->arm_linux_init(albif, info->secure_boot);
 831        }
 832    }
 833    return 0;
 834}
 835
 836static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 837                            uint64_t *lowaddr, uint64_t *highaddr,
 838                            int elf_machine, AddressSpace *as)
 839{
 840    bool elf_is64;
 841    union {
 842        Elf32_Ehdr h32;
 843        Elf64_Ehdr h64;
 844    } elf_header;
 845    int data_swab = 0;
 846    bool big_endian;
 847    ssize_t ret = -1;
 848    Error *err = NULL;
 849
 850
 851    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 852    if (err) {
 853        error_free(err);
 854        return ret;
 855    }
 856
 857    if (elf_is64) {
 858        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 859        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 860                                      : ARM_ENDIANNESS_LE;
 861    } else {
 862        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 863        if (big_endian) {
 864            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 865                info->endianness = ARM_ENDIANNESS_BE8;
 866            } else {
 867                info->endianness = ARM_ENDIANNESS_BE32;
 868                /* In BE32, the CPU has a different view of the per-byte
 869                 * address map than the rest of the system. BE32 ELF files
 870                 * are organised such that they can be programmed through
 871                 * the CPU's per-word byte-reversed view of the world. QEMU
 872                 * however loads ELF files independently of the CPU. So
 873                 * tell the ELF loader to byte reverse the data for us.
 874                 */
 875                data_swab = 2;
 876            }
 877        } else {
 878            info->endianness = ARM_ENDIANNESS_LE;
 879        }
 880    }
 881
 882    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 883                      pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
 884                      1, data_swab, as);
 885    if (ret <= 0) {
 886        /* The header loaded but the image didn't */
 887        exit(1);
 888    }
 889
 890    return ret;
 891}
 892
 893static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 894                                   hwaddr *entry, AddressSpace *as)
 895{
 896    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 897    uint64_t kernel_size = 0;
 898    uint8_t *buffer;
 899    int size;
 900
 901    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 902    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 903                                     &buffer);
 904
 905    if (size < 0) {
 906        gsize len;
 907
 908        /* Load as raw file otherwise */
 909        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 910            return -1;
 911        }
 912        size = len;
 913
 914        /* Unpack the image if it is a EFI zboot image */
 915        if (unpack_efi_zboot_image(&buffer, &size) < 0) {
 916            g_free(buffer);
 917            return -1;
 918        }
 919    }
 920
 921    /* check the arm64 magic header value -- very old kernels may not have it */
 922    if (size > ARM64_MAGIC_OFFSET + 4 &&
 923        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 924        uint64_t hdrvals[2];
 925
 926        /* The arm64 Image header has text_offset and image_size fields at 8 and
 927         * 16 bytes into the Image header, respectively. The text_offset field
 928         * is only valid if the image_size is non-zero.
 929         */
 930        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 931
 932        kernel_size = le64_to_cpu(hdrvals[1]);
 933
 934        if (kernel_size != 0) {
 935            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 936
 937            /*
 938             * We write our startup "bootloader" at the very bottom of RAM,
 939             * so that bit can't be used for the image. Luckily the Image
 940             * format specification is that the image requests only an offset
 941             * from a 2MB boundary, not an absolute load address. So if the
 942             * image requests an offset that might mean it overlaps with the
 943             * bootloader, we can just load it starting at 2MB+offset rather
 944             * than 0MB + offset.
 945             */
 946            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 947                kernel_load_offset += 2 * MiB;
 948            }
 949        }
 950    }
 951
 952    /*
 953     * Kernels before v3.17 don't populate the image_size field, and
 954     * raw images have no header. For those our best guess at the size
 955     * is the size of the Image file itself.
 956     */
 957    if (kernel_size == 0) {
 958        kernel_size = size;
 959    }
 960
 961    *entry = mem_base + kernel_load_offset;
 962    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 963
 964    g_free(buffer);
 965
 966    return kernel_size;
 967}
 968
 969static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
 970                                         struct arm_boot_info *info)
 971{
 972    /* Set up for a direct boot of a kernel image file. */
 973    CPUState *cs;
 974    AddressSpace *as = arm_boot_address_space(cpu, info);
 975    ssize_t kernel_size;
 976    int initrd_size;
 977    int is_linux = 0;
 978    uint64_t elf_entry;
 979    /* Addresses of first byte used and first byte not used by the image */
 980    uint64_t image_low_addr = 0, image_high_addr = 0;
 981    int elf_machine;
 982    hwaddr entry;
 983    static const ARMInsnFixup *primary_loader;
 984    uint64_t ram_end = info->loader_start + info->ram_size;
 985
 986    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 987        primary_loader = bootloader_aarch64;
 988        elf_machine = EM_AARCH64;
 989    } else {
 990        primary_loader = bootloader;
 991        if (!info->write_board_setup) {
 992            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
 993        }
 994        elf_machine = EM_ARM;
 995    }
 996
 997    /* Assume that raw images are linux kernels, and ELF images are not.  */
 998    kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
 999                               &image_high_addr, elf_machine, as);
1000    if (kernel_size > 0 && have_dtb(info)) {
1001        /*
1002         * If there is still some room left at the base of RAM, try and put
1003         * the DTB there like we do for images loaded with -bios or -pflash.
1004         */
1005        if (image_low_addr > info->loader_start
1006            || image_high_addr < info->loader_start) {
1007            /*
1008             * Set image_low_addr as address limit for arm_load_dtb if it may be
1009             * pointing into RAM, otherwise pass '0' (no limit)
1010             */
1011            if (image_low_addr < info->loader_start) {
1012                image_low_addr = 0;
1013            }
1014            info->dtb_start = info->loader_start;
1015            info->dtb_limit = image_low_addr;
1016        }
1017    }
1018    entry = elf_entry;
1019    if (kernel_size < 0) {
1020        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1021        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1022                                     &is_linux, NULL, NULL, as);
1023        if (kernel_size >= 0) {
1024            image_low_addr = loadaddr;
1025            image_high_addr = image_low_addr + kernel_size;
1026        }
1027    }
1028    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1029        kernel_size = load_aarch64_image(info->kernel_filename,
1030                                         info->loader_start, &entry, as);
1031        is_linux = 1;
1032        if (kernel_size >= 0) {
1033            image_low_addr = entry;
1034            image_high_addr = image_low_addr + kernel_size;
1035        }
1036    } else if (kernel_size < 0) {
1037        /* 32-bit ARM */
1038        entry = info->loader_start + KERNEL_LOAD_ADDR;
1039        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1040                                             ram_end - KERNEL_LOAD_ADDR, as);
1041        is_linux = 1;
1042        if (kernel_size >= 0) {
1043            image_low_addr = entry;
1044            image_high_addr = image_low_addr + kernel_size;
1045        }
1046    }
1047    if (kernel_size < 0) {
1048        error_report("could not load kernel '%s'", info->kernel_filename);
1049        exit(1);
1050    }
1051
1052    if (kernel_size > info->ram_size) {
1053        error_report("kernel '%s' is too large to fit in RAM "
1054                     "(kernel size %zd, RAM size %" PRId64 ")",
1055                     info->kernel_filename, kernel_size, info->ram_size);
1056        exit(1);
1057    }
1058
1059    info->entry = entry;
1060
1061    /*
1062     * We want to put the initrd far enough into RAM that when the
1063     * kernel is uncompressed it will not clobber the initrd. However
1064     * on boards without much RAM we must ensure that we still leave
1065     * enough room for a decent sized initrd, and on boards with large
1066     * amounts of RAM we must avoid the initrd being so far up in RAM
1067     * that it is outside lowmem and inaccessible to the kernel.
1068     * So for boards with less  than 256MB of RAM we put the initrd
1069     * halfway into RAM, and for boards with 256MB of RAM or more we put
1070     * the initrd at 128MB.
1071     * We also refuse to put the initrd somewhere that will definitely
1072     * overlay the kernel we just loaded, though for kernel formats which
1073     * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1074     * we might still make a bad choice here.
1075     */
1076    info->initrd_start = info->loader_start +
1077        MIN(info->ram_size / 2, 128 * MiB);
1078    if (image_high_addr) {
1079        info->initrd_start = MAX(info->initrd_start, image_high_addr);
1080    }
1081    info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1082
1083    if (is_linux) {
1084        uint32_t fixupcontext[FIXUP_MAX];
1085
1086        if (info->initrd_filename) {
1087
1088            if (info->initrd_start >= ram_end) {
1089                error_report("not enough space after kernel to load initrd");
1090                exit(1);
1091            }
1092
1093            initrd_size = load_ramdisk_as(info->initrd_filename,
1094                                          info->initrd_start,
1095                                          ram_end - info->initrd_start, as);
1096            if (initrd_size < 0) {
1097                initrd_size = load_image_targphys_as(info->initrd_filename,
1098                                                     info->initrd_start,
1099                                                     ram_end -
1100                                                     info->initrd_start,
1101                                                     as);
1102            }
1103            if (initrd_size < 0) {
1104                error_report("could not load initrd '%s'",
1105                             info->initrd_filename);
1106                exit(1);
1107            }
1108            if (info->initrd_start + initrd_size > ram_end) {
1109                error_report("could not load initrd '%s': "
1110                             "too big to fit into RAM after the kernel",
1111                             info->initrd_filename);
1112                exit(1);
1113            }
1114        } else {
1115            initrd_size = 0;
1116        }
1117        info->initrd_size = initrd_size;
1118
1119        fixupcontext[FIXUP_BOARDID] = info->board_id;
1120        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1121
1122        /*
1123         * for device tree boot, we pass the DTB directly in r2. Otherwise
1124         * we point to the kernel args.
1125         */
1126        if (have_dtb(info)) {
1127            hwaddr align;
1128
1129            if (elf_machine == EM_AARCH64) {
1130                /*
1131                 * Some AArch64 kernels on early bootup map the fdt region as
1132                 *
1133                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1134                 *
1135                 * Let's play safe and prealign it to 2MB to give us some space.
1136                 */
1137                align = 2 * MiB;
1138            } else {
1139                /*
1140                 * Some 32bit kernels will trash anything in the 4K page the
1141                 * initrd ends in, so make sure the DTB isn't caught up in that.
1142                 */
1143                align = 4 * KiB;
1144            }
1145
1146            /* Place the DTB after the initrd in memory with alignment. */
1147            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1148                                           align);
1149            if (info->dtb_start >= ram_end) {
1150                error_report("Not enough space for DTB after kernel/initrd");
1151                exit(1);
1152            }
1153            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1154            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1155        } else {
1156            fixupcontext[FIXUP_ARGPTR_LO] =
1157                info->loader_start + KERNEL_ARGS_ADDR;
1158            fixupcontext[FIXUP_ARGPTR_HI] =
1159                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1160            if (info->ram_size >= 4 * GiB) {
1161                error_report("RAM size must be less than 4GB to boot"
1162                             " Linux kernel using ATAGS (try passing a device tree"
1163                             " using -dtb)");
1164                exit(1);
1165            }
1166        }
1167        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1168        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1169
1170        arm_write_bootloader("bootloader", as, info->loader_start,
1171                             primary_loader, fixupcontext);
1172
1173        if (info->write_board_setup) {
1174            info->write_board_setup(cpu, info);
1175        }
1176
1177        /*
1178         * Notify devices which need to fake up firmware initialization
1179         * that we're doing a direct kernel boot.
1180         */
1181        object_child_foreach_recursive(object_get_root(),
1182                                       do_arm_linux_init, info);
1183    }
1184    info->is_linux = is_linux;
1185
1186    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1187        ARM_CPU(cs)->env.boot_info = info;
1188    }
1189}
1190
1191static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1192{
1193    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1194
1195    if (have_dtb(info)) {
1196        /*
1197         * If we have a device tree blob, but no kernel to supply it to (or
1198         * the kernel is supposed to be loaded by the bootloader), copy the
1199         * DTB to the base of RAM for the bootloader to pick up.
1200         */
1201        info->dtb_start = info->loader_start;
1202    }
1203
1204    if (info->kernel_filename) {
1205        FWCfgState *fw_cfg;
1206        bool try_decompressing_kernel;
1207
1208        fw_cfg = fw_cfg_find();
1209
1210        if (!fw_cfg) {
1211            error_report("This machine type does not support loading both "
1212                         "a guest firmware/BIOS image and a guest kernel at "
1213                         "the same time. You should change your QEMU command "
1214                         "line to specify one or the other, but not both.");
1215            exit(1);
1216        }
1217
1218        try_decompressing_kernel = arm_feature(&cpu->env,
1219                                               ARM_FEATURE_AARCH64);
1220
1221        /*
1222         * Expose the kernel, the command line, and the initrd in fw_cfg.
1223         * We don't process them here at all, it's all left to the
1224         * firmware.
1225         */
1226        load_image_to_fw_cfg(fw_cfg,
1227                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1228                             info->kernel_filename,
1229                             try_decompressing_kernel);
1230        load_image_to_fw_cfg(fw_cfg,
1231                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1232                             info->initrd_filename, false);
1233
1234        if (info->kernel_cmdline) {
1235            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1236                           strlen(info->kernel_cmdline) + 1);
1237            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1238                              info->kernel_cmdline);
1239        }
1240    }
1241
1242    /*
1243     * We will start from address 0 (typically a boot ROM image) in the
1244     * same way as hardware. Leave env->boot_info NULL, so that
1245     * do_cpu_reset() knows it does not need to alter the PC on reset.
1246     */
1247}
1248
1249void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1250{
1251    CPUState *cs;
1252    AddressSpace *as = arm_boot_address_space(cpu, info);
1253    int boot_el;
1254    CPUARMState *env = &cpu->env;
1255    int nb_cpus = 0;
1256
1257    /*
1258     * CPU objects (unlike devices) are not automatically reset on system
1259     * reset, so we must always register a handler to do so. If we're
1260     * actually loading a kernel, the handler is also responsible for
1261     * arranging that we start it correctly.
1262     */
1263    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1264        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1265        nb_cpus++;
1266    }
1267
1268    /*
1269     * The board code is not supposed to set secure_board_setup unless
1270     * running its code in secure mode is actually possible, and KVM
1271     * doesn't support secure.
1272     */
1273    assert(!(info->secure_board_setup && kvm_enabled()));
1274    info->kernel_filename = ms->kernel_filename;
1275    info->kernel_cmdline = ms->kernel_cmdline;
1276    info->initrd_filename = ms->initrd_filename;
1277    info->dtb_filename = ms->dtb;
1278    info->dtb_limit = 0;
1279
1280    /* Load the kernel.  */
1281    if (!info->kernel_filename || info->firmware_loaded) {
1282        arm_setup_firmware_boot(cpu, info);
1283    } else {
1284        arm_setup_direct_kernel_boot(cpu, info);
1285    }
1286
1287    /*
1288     * Disable the PSCI conduit if it is set up to target the same
1289     * or a lower EL than the one we're going to start the guest code in.
1290     * This logic needs to agree with the code in do_cpu_reset() which
1291     * decides whether we're going to boot the guest in the highest
1292     * supported exception level or in a lower one.
1293     */
1294
1295    /*
1296     * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1297     * are never emulated to trap into guest code. It therefore does not
1298     * make sense for the board to have a setup code fragment that runs
1299     * in Secure, because this will probably need to itself issue an SMC of some
1300     * kind as part of its operation.
1301     */
1302    assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1303           !info->secure_board_setup);
1304
1305    /* Boot into highest supported EL ... */
1306    if (arm_feature(env, ARM_FEATURE_EL3)) {
1307        boot_el = 3;
1308    } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1309        boot_el = 2;
1310    } else {
1311        boot_el = 1;
1312    }
1313    /* ...except that if we're booting Linux we adjust the EL we boot into */
1314    if (info->is_linux && !info->secure_boot) {
1315        boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1316    }
1317
1318    if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1319        (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1320        info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1321    }
1322
1323    if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1324        for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1325            Object *cpuobj = OBJECT(cs);
1326
1327            object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1328                                    &error_abort);
1329            /*
1330             * Secondary CPUs start in PSCI powered-down state. Like the
1331             * code in do_cpu_reset(), we assume first_cpu is the primary
1332             * CPU.
1333             */
1334            if (cs != first_cpu) {
1335                object_property_set_bool(cpuobj, "start-powered-off", true,
1336                                         &error_abort);
1337            }
1338        }
1339    }
1340
1341    if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1342        info->is_linux && nb_cpus > 1) {
1343        /*
1344         * We're booting Linux but not using PSCI, so for SMP we need
1345         * to write a custom secondary CPU boot loader stub, and arrange
1346         * for the secondary CPU reset to make the accompanying initialization.
1347         */
1348        if (!info->secondary_cpu_reset_hook) {
1349            info->secondary_cpu_reset_hook = default_reset_secondary;
1350        }
1351        if (!info->write_secondary_boot) {
1352            info->write_secondary_boot = default_write_secondary;
1353        }
1354        info->write_secondary_boot(cpu, info);
1355    } else {
1356        /*
1357         * No secondary boot stub; don't use the reset hook that would
1358         * have set the CPU up to call it
1359         */
1360        info->write_secondary_boot = NULL;
1361        info->secondary_cpu_reset_hook = NULL;
1362    }
1363
1364    /*
1365     * arm_load_dtb() may add a PSCI node so it must be called after we have
1366     * decided whether to enable PSCI and set the psci-conduit CPU properties.
1367     */
1368    if (!info->skip_dtb_autoload && have_dtb(info)) {
1369        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1370            exit(1);
1371        }
1372    }
1373}
1374
1375static const TypeInfo arm_linux_boot_if_info = {
1376    .name = TYPE_ARM_LINUX_BOOT_IF,
1377    .parent = TYPE_INTERFACE,
1378    .class_size = sizeof(ARMLinuxBootIfClass),
1379};
1380
1381static void arm_linux_boot_register_types(void)
1382{
1383    type_register_static(&arm_linux_boot_if_info);
1384}
1385
1386type_init(arm_linux_boot_register_types)
1387