qemu/hw/arm/raspi.c
<<
>>
Prefs
   1/*
   2 * Raspberry Pi emulation (c) 2012 Gregory Estrade
   3 * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
   4 *
   5 * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
   6 * Written by Andrew Baumann
   7 *
   8 * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
   9 * Upstream code cleanup (c) 2018 Pekka Enberg
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qemu/units.h"
  17#include "qemu/cutils.h"
  18#include "qapi/error.h"
  19#include "hw/arm/boot.h"
  20#include "hw/arm/bcm2836.h"
  21#include "hw/registerfields.h"
  22#include "qemu/error-report.h"
  23#include "hw/boards.h"
  24#include "hw/loader.h"
  25#include "hw/arm/boot.h"
  26#include "qom/object.h"
  27
  28#define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
  29#define MVBAR_ADDR      0x400 /* secure vectors */
  30#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
  31#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
  32#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
  33#define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
  34
  35/* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
  36#define MACH_TYPE_BCM2708   3138
  37
  38struct RaspiMachineState {
  39    /*< private >*/
  40    MachineState parent_obj;
  41    /*< public >*/
  42    BCM283XState soc;
  43    struct arm_boot_info binfo;
  44};
  45typedef struct RaspiMachineState RaspiMachineState;
  46
  47struct RaspiMachineClass {
  48    /*< private >*/
  49    MachineClass parent_obj;
  50    /*< public >*/
  51    uint32_t board_rev;
  52};
  53typedef struct RaspiMachineClass RaspiMachineClass;
  54
  55#define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
  56DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
  57                     RASPI_MACHINE, TYPE_RASPI_MACHINE)
  58
  59
  60/*
  61 * Board revision codes:
  62 * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
  63 */
  64FIELD(REV_CODE, REVISION,           0, 4);
  65FIELD(REV_CODE, TYPE,               4, 8);
  66FIELD(REV_CODE, PROCESSOR,         12, 4);
  67FIELD(REV_CODE, MANUFACTURER,      16, 4);
  68FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
  69FIELD(REV_CODE, STYLE,             23, 1);
  70
  71typedef enum RaspiProcessorId {
  72    PROCESSOR_ID_BCM2835 = 0,
  73    PROCESSOR_ID_BCM2836 = 1,
  74    PROCESSOR_ID_BCM2837 = 2,
  75} RaspiProcessorId;
  76
  77static const struct {
  78    const char *type;
  79    int cores_count;
  80} soc_property[] = {
  81    [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
  82    [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
  83    [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
  84};
  85
  86static uint64_t board_ram_size(uint32_t board_rev)
  87{
  88    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
  89    return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
  90}
  91
  92static RaspiProcessorId board_processor_id(uint32_t board_rev)
  93{
  94    int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
  95
  96    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
  97    assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
  98
  99    return proc_id;
 100}
 101
 102static const char *board_soc_type(uint32_t board_rev)
 103{
 104    return soc_property[board_processor_id(board_rev)].type;
 105}
 106
 107static int cores_count(uint32_t board_rev)
 108{
 109    return soc_property[board_processor_id(board_rev)].cores_count;
 110}
 111
 112static const char *board_type(uint32_t board_rev)
 113{
 114    static const char *types[] = {
 115        "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
 116        "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
 117    };
 118    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
 119    int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
 120    if (bt >= ARRAY_SIZE(types) || !types[bt]) {
 121        return "Unknown";
 122    }
 123    return types[bt];
 124}
 125
 126static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
 127{
 128    static const ARMInsnFixup smpboot[] = {
 129        { 0xe1a0e00f }, /*    mov     lr, pc */
 130        { 0xe3a0fe00 + (BOARDSETUP_ADDR >> 4) }, /* mov pc, BOARDSETUP_ADDR */
 131        { 0xee100fb0 }, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
 132        { 0xe7e10050 }, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
 133        { 0xe59f5014 }, /*    ldr     r5, =0x400000CC      ;load mbox base */
 134        { 0xe320f001 }, /* 1: yield */
 135        { 0xe7953200 }, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core */
 136        { 0xe3530000 }, /*    cmp     r3, #0               ;spin while zero */
 137        { 0x0afffffb }, /*    beq     1b */
 138        { 0xe7853200 }, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
 139        { 0xe12fff13 }, /*    bx      r3                   ;jump to target */
 140        { 0x400000cc }, /* (constant: mailbox 3 read/clear base) */
 141        { 0, FIXUP_TERMINATOR }
 142    };
 143    static const uint32_t fixupcontext[FIXUP_MAX] = { 0 };
 144
 145    /* check that we don't overrun board setup vectors */
 146    QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
 147    /* check that board setup address is correctly relocated */
 148    QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
 149                      || (BOARDSETUP_ADDR >> 4) >= 0x100);
 150
 151    arm_write_bootloader("raspi_smpboot", arm_boot_address_space(cpu, info),
 152                         info->smp_loader_start, smpboot, fixupcontext);
 153}
 154
 155static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
 156{
 157    AddressSpace *as = arm_boot_address_space(cpu, info);
 158    /* Unlike the AArch32 version we don't need to call the board setup hook.
 159     * The mechanism for doing the spin-table is also entirely different.
 160     * We must have four 64-bit fields at absolute addresses
 161     * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
 162     * our CPUs, and which we must ensure are zero initialized before
 163     * the primary CPU goes into the kernel. We put these variables inside
 164     * a rom blob, so that the reset for ROM contents zeroes them for us.
 165     */
 166    static const ARMInsnFixup smpboot[] = {
 167        { 0xd2801b05 }, /*        mov     x5, 0xd8 */
 168        { 0xd53800a6 }, /*        mrs     x6, mpidr_el1 */
 169        { 0x924004c6 }, /*        and     x6, x6, #0x3 */
 170        { 0xd503205f }, /* spin:  wfe */
 171        { 0xf86678a4 }, /*        ldr     x4, [x5,x6,lsl #3] */
 172        { 0xb4ffffc4 }, /*        cbz     x4, spin */
 173        { 0xd2800000 }, /*        mov     x0, #0x0 */
 174        { 0xd2800001 }, /*        mov     x1, #0x0 */
 175        { 0xd2800002 }, /*        mov     x2, #0x0 */
 176        { 0xd2800003 }, /*        mov     x3, #0x0 */
 177        { 0xd61f0080 }, /*        br      x4 */
 178        { 0, FIXUP_TERMINATOR }
 179    };
 180    static const uint32_t fixupcontext[FIXUP_MAX] = { 0 };
 181
 182    static const uint64_t spintables[] = {
 183        0, 0, 0, 0
 184    };
 185
 186    arm_write_bootloader("raspi_smpboot", as, info->smp_loader_start,
 187                         smpboot, fixupcontext);
 188    rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
 189                          SPINTABLE_ADDR, as);
 190}
 191
 192static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
 193{
 194    arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
 195}
 196
 197static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
 198{
 199    CPUState *cs = CPU(cpu);
 200    cpu_set_pc(cs, info->smp_loader_start);
 201}
 202
 203static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
 204                       size_t ram_size)
 205{
 206    RaspiMachineState *s = RASPI_MACHINE(machine);
 207    int r;
 208
 209    s->binfo.board_id = MACH_TYPE_BCM2708;
 210    s->binfo.ram_size = ram_size;
 211
 212    if (processor_id <= PROCESSOR_ID_BCM2836) {
 213        /*
 214         * The BCM2835 and BCM2836 require some custom setup code to run
 215         * in Secure mode before booting a kernel (to set up the SMC vectors
 216         * so that we get a no-op SMC; this is used by Linux to call the
 217         * firmware for some cache maintenance operations.
 218         * The BCM2837 doesn't need this.
 219         */
 220        s->binfo.board_setup_addr = BOARDSETUP_ADDR;
 221        s->binfo.write_board_setup = write_board_setup;
 222        s->binfo.secure_board_setup = true;
 223        s->binfo.secure_boot = true;
 224    }
 225
 226    /* BCM2836 and BCM2837 requires SMP setup */
 227    if (processor_id >= PROCESSOR_ID_BCM2836) {
 228        s->binfo.smp_loader_start = SMPBOOT_ADDR;
 229        if (processor_id == PROCESSOR_ID_BCM2836) {
 230            s->binfo.write_secondary_boot = write_smpboot;
 231        } else {
 232            s->binfo.write_secondary_boot = write_smpboot64;
 233        }
 234        s->binfo.secondary_cpu_reset_hook = reset_secondary;
 235    }
 236
 237    /* If the user specified a "firmware" image (e.g. UEFI), we bypass
 238     * the normal Linux boot process
 239     */
 240    if (machine->firmware) {
 241        hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
 242                             ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
 243        /* load the firmware image (typically kernel.img) */
 244        r = load_image_targphys(machine->firmware, firmware_addr,
 245                                ram_size - firmware_addr);
 246        if (r < 0) {
 247            error_report("Failed to load firmware from %s", machine->firmware);
 248            exit(1);
 249        }
 250
 251        s->binfo.entry = firmware_addr;
 252        s->binfo.firmware_loaded = true;
 253    }
 254
 255    arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
 256}
 257
 258static void raspi_machine_init(MachineState *machine)
 259{
 260    RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
 261    RaspiMachineState *s = RASPI_MACHINE(machine);
 262    uint32_t board_rev = mc->board_rev;
 263    uint64_t ram_size = board_ram_size(board_rev);
 264    uint32_t vcram_size;
 265    DriveInfo *di;
 266    BlockBackend *blk;
 267    BusState *bus;
 268    DeviceState *carddev;
 269
 270    if (machine->ram_size != ram_size) {
 271        char *size_str = size_to_str(ram_size);
 272        error_report("Invalid RAM size, should be %s", size_str);
 273        g_free(size_str);
 274        exit(1);
 275    }
 276
 277    /* FIXME: Remove when we have custom CPU address space support */
 278    memory_region_add_subregion_overlap(get_system_memory(), 0,
 279                                        machine->ram, 0);
 280
 281    /* Setup the SOC */
 282    object_initialize_child(OBJECT(machine), "soc", &s->soc,
 283                            board_soc_type(board_rev));
 284    object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
 285    object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
 286                            &error_abort);
 287    object_property_set_str(OBJECT(&s->soc), "command-line",
 288                            machine->kernel_cmdline, &error_abort);
 289    qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
 290
 291    /* Create and plug in the SD cards */
 292    di = drive_get(IF_SD, 0, 0);
 293    blk = di ? blk_by_legacy_dinfo(di) : NULL;
 294    bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
 295    if (bus == NULL) {
 296        error_report("No SD bus found in SOC object");
 297        exit(1);
 298    }
 299    carddev = qdev_new(TYPE_SD_CARD);
 300    qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
 301    qdev_realize_and_unref(carddev, bus, &error_fatal);
 302
 303    vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
 304                                          &error_abort);
 305    setup_boot(machine, board_processor_id(mc->board_rev),
 306               machine->ram_size - vcram_size);
 307}
 308
 309static void raspi_machine_class_common_init(MachineClass *mc,
 310                                            uint32_t board_rev)
 311{
 312    mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
 313                               board_type(board_rev),
 314                               FIELD_EX32(board_rev, REV_CODE, REVISION));
 315    mc->init = raspi_machine_init;
 316    mc->block_default_type = IF_SD;
 317    mc->no_parallel = 1;
 318    mc->no_floppy = 1;
 319    mc->no_cdrom = 1;
 320    mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
 321    mc->default_ram_size = board_ram_size(board_rev);
 322    mc->default_ram_id = "ram";
 323};
 324
 325static void raspi0_machine_class_init(ObjectClass *oc, void *data)
 326{
 327    MachineClass *mc = MACHINE_CLASS(oc);
 328    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
 329
 330    rmc->board_rev = 0x920092; /* Revision 1.2 */
 331    raspi_machine_class_common_init(mc, rmc->board_rev);
 332};
 333
 334static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
 335{
 336    MachineClass *mc = MACHINE_CLASS(oc);
 337    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
 338
 339    rmc->board_rev = 0x900021; /* Revision 1.1 */
 340    raspi_machine_class_common_init(mc, rmc->board_rev);
 341};
 342
 343static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
 344{
 345    MachineClass *mc = MACHINE_CLASS(oc);
 346    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
 347
 348    rmc->board_rev = 0xa21041;
 349    raspi_machine_class_common_init(mc, rmc->board_rev);
 350};
 351
 352#ifdef TARGET_AARCH64
 353static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
 354{
 355    MachineClass *mc = MACHINE_CLASS(oc);
 356    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
 357
 358    rmc->board_rev = 0x9020e0; /* Revision 1.0 */
 359    raspi_machine_class_common_init(mc, rmc->board_rev);
 360};
 361
 362static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
 363{
 364    MachineClass *mc = MACHINE_CLASS(oc);
 365    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
 366
 367    rmc->board_rev = 0xa02082;
 368    raspi_machine_class_common_init(mc, rmc->board_rev);
 369};
 370#endif /* TARGET_AARCH64 */
 371
 372static const TypeInfo raspi_machine_types[] = {
 373    {
 374        .name           = MACHINE_TYPE_NAME("raspi0"),
 375        .parent         = TYPE_RASPI_MACHINE,
 376        .class_init     = raspi0_machine_class_init,
 377    }, {
 378        .name           = MACHINE_TYPE_NAME("raspi1ap"),
 379        .parent         = TYPE_RASPI_MACHINE,
 380        .class_init     = raspi1ap_machine_class_init,
 381    }, {
 382        .name           = MACHINE_TYPE_NAME("raspi2b"),
 383        .parent         = TYPE_RASPI_MACHINE,
 384        .class_init     = raspi2b_machine_class_init,
 385#ifdef TARGET_AARCH64
 386    }, {
 387        .name           = MACHINE_TYPE_NAME("raspi3ap"),
 388        .parent         = TYPE_RASPI_MACHINE,
 389        .class_init     = raspi3ap_machine_class_init,
 390    }, {
 391        .name           = MACHINE_TYPE_NAME("raspi3b"),
 392        .parent         = TYPE_RASPI_MACHINE,
 393        .class_init     = raspi3b_machine_class_init,
 394#endif
 395    }, {
 396        .name           = TYPE_RASPI_MACHINE,
 397        .parent         = TYPE_MACHINE,
 398        .instance_size  = sizeof(RaspiMachineState),
 399        .class_size     = sizeof(RaspiMachineClass),
 400        .abstract       = true,
 401    }
 402};
 403
 404DEFINE_TYPES(raspi_machine_types)
 405