qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu/datadir.h"
  33#include "qemu/units.h"
  34#include "qemu/option.h"
  35#include "monitor/qdev.h"
  36#include "hw/sysbus.h"
  37#include "hw/arm/boot.h"
  38#include "hw/arm/primecell.h"
  39#include "hw/arm/virt.h"
  40#include "hw/block/flash.h"
  41#include "hw/vfio/vfio-calxeda-xgmac.h"
  42#include "hw/vfio/vfio-amd-xgbe.h"
  43#include "hw/display/ramfb.h"
  44#include "net/net.h"
  45#include "sysemu/device_tree.h"
  46#include "sysemu/numa.h"
  47#include "sysemu/runstate.h"
  48#include "sysemu/tpm.h"
  49#include "sysemu/tcg.h"
  50#include "sysemu/kvm.h"
  51#include "sysemu/hvf.h"
  52#include "sysemu/qtest.h"
  53#include "hw/loader.h"
  54#include "qapi/error.h"
  55#include "qemu/bitops.h"
  56#include "qemu/error-report.h"
  57#include "qemu/module.h"
  58#include "hw/pci-host/gpex.h"
  59#include "hw/virtio/virtio-pci.h"
  60#include "hw/core/sysbus-fdt.h"
  61#include "hw/platform-bus.h"
  62#include "hw/qdev-properties.h"
  63#include "hw/arm/fdt.h"
  64#include "hw/intc/arm_gic.h"
  65#include "hw/intc/arm_gicv3_common.h"
  66#include "hw/intc/arm_gicv3_its_common.h"
  67#include "hw/irq.h"
  68#include "kvm_arm.h"
  69#include "hw/firmware/smbios.h"
  70#include "qapi/visitor.h"
  71#include "qapi/qapi-visit-common.h"
  72#include "standard-headers/linux/input.h"
  73#include "hw/arm/smmuv3.h"
  74#include "hw/acpi/acpi.h"
  75#include "target/arm/internals.h"
  76#include "hw/mem/pc-dimm.h"
  77#include "hw/mem/nvdimm.h"
  78#include "hw/acpi/generic_event_device.h"
  79#include "hw/virtio/virtio-md-pci.h"
  80#include "hw/virtio/virtio-iommu.h"
  81#include "hw/char/pl011.h"
  82#include "qemu/guest-random.h"
  83
  84#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  85    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  86                                                    void *data) \
  87    { \
  88        MachineClass *mc = MACHINE_CLASS(oc); \
  89        virt_machine_##major##_##minor##_options(mc); \
  90        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  91        if (latest) { \
  92            mc->alias = "virt"; \
  93        } \
  94    } \
  95    static const TypeInfo machvirt_##major##_##minor##_info = { \
  96        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  97        .parent = TYPE_VIRT_MACHINE, \
  98        .class_init = virt_##major##_##minor##_class_init, \
  99    }; \
 100    static void machvirt_machine_##major##_##minor##_init(void) \
 101    { \
 102        type_register_static(&machvirt_##major##_##minor##_info); \
 103    } \
 104    type_init(machvirt_machine_##major##_##minor##_init);
 105
 106#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 107    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 108#define DEFINE_VIRT_MACHINE(major, minor) \
 109    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 110
 111
 112/* Number of external interrupt lines to configure the GIC with */
 113#define NUM_IRQS 256
 114
 115#define PLATFORM_BUS_NUM_IRQS 64
 116
 117/* Legacy RAM limit in GB (< version 4.0) */
 118#define LEGACY_RAMLIMIT_GB 255
 119#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 120
 121/* Addresses and sizes of our components.
 122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 123 * 128MB..256MB is used for miscellaneous device I/O.
 124 * 256MB..1GB is reserved for possible future PCI support (ie where the
 125 * PCI memory window will go if we add a PCI host controller).
 126 * 1GB and up is RAM (which may happily spill over into the
 127 * high memory region beyond 4GB).
 128 * This represents a compromise between how much RAM can be given to
 129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 130 * Note that devices should generally be placed at multiples of 0x10000,
 131 * to accommodate guests using 64K pages.
 132 */
 133static const MemMapEntry base_memmap[] = {
 134    /* Space up to 0x8000000 is reserved for a boot ROM */
 135    [VIRT_FLASH] =              {          0, 0x08000000 },
 136    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 137    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 138    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 139    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 140    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 141    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 142    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 143    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 144    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 145    /* This redistributor space allows up to 2*64kB*123 CPUs */
 146    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 147    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 148    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 149    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 150    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 151    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 152    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 153    [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
 154    [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
 155    [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
 156    [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
 157    [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
 158    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 159    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 160    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 161    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 162    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 163    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 164    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 165    /* Actual RAM size depends on initial RAM and device memory settings */
 166    [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 167};
 168
 169/*
 170 * Highmem IO Regions: This memory map is floating, located after the RAM.
 171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 172 * top of the RAM, so that its base get the same alignment as the size,
 173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 175 * Note the extended_memmap is sized so that it eventually also includes the
 176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 177 * index of base_memmap).
 178 *
 179 * The memory map for these Highmem IO Regions can be in legacy or compact
 180 * layout, depending on 'compact-highmem' property. With legacy layout, the
 181 * PA space for one specific region is always reserved, even if the region
 182 * has been disabled or doesn't fit into the PA space. However, the PA space
 183 * for the region won't be reserved in these circumstances with compact layout.
 184 */
 185static MemMapEntry extended_memmap[] = {
 186    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 187    [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 188    [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 189    /* Second PCIe window */
 190    [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 191};
 192
 193static const int a15irqmap[] = {
 194    [VIRT_UART] = 1,
 195    [VIRT_RTC] = 2,
 196    [VIRT_PCIE] = 3, /* ... to 6 */
 197    [VIRT_GPIO] = 7,
 198    [VIRT_SECURE_UART] = 8,
 199    [VIRT_ACPI_GED] = 9,
 200    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 201    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 202    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 203    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 204};
 205
 206static const char *valid_cpus[] = {
 207#ifdef CONFIG_TCG
 208    ARM_CPU_TYPE_NAME("cortex-a7"),
 209    ARM_CPU_TYPE_NAME("cortex-a15"),
 210    ARM_CPU_TYPE_NAME("cortex-a35"),
 211    ARM_CPU_TYPE_NAME("cortex-a55"),
 212    ARM_CPU_TYPE_NAME("cortex-a72"),
 213    ARM_CPU_TYPE_NAME("cortex-a76"),
 214    ARM_CPU_TYPE_NAME("a64fx"),
 215    ARM_CPU_TYPE_NAME("neoverse-n1"),
 216    ARM_CPU_TYPE_NAME("neoverse-v1"),
 217#endif
 218    ARM_CPU_TYPE_NAME("cortex-a53"),
 219    ARM_CPU_TYPE_NAME("cortex-a57"),
 220    ARM_CPU_TYPE_NAME("host"),
 221    ARM_CPU_TYPE_NAME("max"),
 222};
 223
 224static bool cpu_type_valid(const char *cpu)
 225{
 226    int i;
 227
 228    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 229        if (strcmp(cpu, valid_cpus[i]) == 0) {
 230            return true;
 231        }
 232    }
 233    return false;
 234}
 235
 236static void create_randomness(MachineState *ms, const char *node)
 237{
 238    struct {
 239        uint64_t kaslr;
 240        uint8_t rng[32];
 241    } seed;
 242
 243    if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
 244        return;
 245    }
 246    qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
 247    qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
 248}
 249
 250static void create_fdt(VirtMachineState *vms)
 251{
 252    MachineState *ms = MACHINE(vms);
 253    int nb_numa_nodes = ms->numa_state->num_nodes;
 254    void *fdt = create_device_tree(&vms->fdt_size);
 255
 256    if (!fdt) {
 257        error_report("create_device_tree() failed");
 258        exit(1);
 259    }
 260
 261    ms->fdt = fdt;
 262
 263    /* Header */
 264    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 265    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 266    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 267    qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
 268
 269    /* /chosen must exist for load_dtb to fill in necessary properties later */
 270    qemu_fdt_add_subnode(fdt, "/chosen");
 271    if (vms->dtb_randomness) {
 272        create_randomness(ms, "/chosen");
 273    }
 274
 275    if (vms->secure) {
 276        qemu_fdt_add_subnode(fdt, "/secure-chosen");
 277        if (vms->dtb_randomness) {
 278            create_randomness(ms, "/secure-chosen");
 279        }
 280    }
 281
 282    /* Clock node, for the benefit of the UART. The kernel device tree
 283     * binding documentation claims the PL011 node clock properties are
 284     * optional but in practice if you omit them the kernel refuses to
 285     * probe for the device.
 286     */
 287    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 288    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 289    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 290    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 291    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 292    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 293                                "clk24mhz");
 294    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 295
 296    if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
 297        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 298        uint32_t *matrix = g_malloc0(size);
 299        int idx, i, j;
 300
 301        for (i = 0; i < nb_numa_nodes; i++) {
 302            for (j = 0; j < nb_numa_nodes; j++) {
 303                idx = (i * nb_numa_nodes + j) * 3;
 304                matrix[idx + 0] = cpu_to_be32(i);
 305                matrix[idx + 1] = cpu_to_be32(j);
 306                matrix[idx + 2] =
 307                    cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
 308            }
 309        }
 310
 311        qemu_fdt_add_subnode(fdt, "/distance-map");
 312        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 313                                "numa-distance-map-v1");
 314        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 315                         matrix, size);
 316        g_free(matrix);
 317    }
 318}
 319
 320static void fdt_add_timer_nodes(const VirtMachineState *vms)
 321{
 322    /* On real hardware these interrupts are level-triggered.
 323     * On KVM they were edge-triggered before host kernel version 4.4,
 324     * and level-triggered afterwards.
 325     * On emulated QEMU they are level-triggered.
 326     *
 327     * Getting the DTB info about them wrong is awkward for some
 328     * guest kernels:
 329     *  pre-4.8 ignore the DT and leave the interrupt configured
 330     *   with whatever the GIC reset value (or the bootloader) left it at
 331     *  4.8 before rc6 honour the incorrect data by programming it back
 332     *   into the GIC, causing problems
 333     *  4.8rc6 and later ignore the DT and always write "level triggered"
 334     *   into the GIC
 335     *
 336     * For backwards-compatibility, virt-2.8 and earlier will continue
 337     * to say these are edge-triggered, but later machines will report
 338     * the correct information.
 339     */
 340    ARMCPU *armcpu;
 341    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 342    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 343    MachineState *ms = MACHINE(vms);
 344
 345    if (vmc->claim_edge_triggered_timers) {
 346        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 347    }
 348
 349    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 350        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 351                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 352                             (1 << MACHINE(vms)->smp.cpus) - 1);
 353    }
 354
 355    qemu_fdt_add_subnode(ms->fdt, "/timer");
 356
 357    armcpu = ARM_CPU(qemu_get_cpu(0));
 358    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 359        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 360        qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
 361                         compat, sizeof(compat));
 362    } else {
 363        qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
 364                                "arm,armv7-timer");
 365    }
 366    qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
 367    qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
 368                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 369                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 370                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 371                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 372}
 373
 374static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 375{
 376    int cpu;
 377    int addr_cells = 1;
 378    const MachineState *ms = MACHINE(vms);
 379    const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 380    int smp_cpus = ms->smp.cpus;
 381
 382    /*
 383     * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
 384     * On ARM v8 64-bit systems value should be set to 2,
 385     * that corresponds to the MPIDR_EL1 register size.
 386     * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 387     * in the system, #address-cells can be set to 1, since
 388     * MPIDR_EL1[63:32] bits are not used for CPUs
 389     * identification.
 390     *
 391     * Here we actually don't know whether our system is 32- or 64-bit one.
 392     * The simplest way to go is to examine affinity IDs of all our CPUs. If
 393     * at least one of them has Aff3 populated, we set #address-cells to 2.
 394     */
 395    for (cpu = 0; cpu < smp_cpus; cpu++) {
 396        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 397
 398        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 399            addr_cells = 2;
 400            break;
 401        }
 402    }
 403
 404    qemu_fdt_add_subnode(ms->fdt, "/cpus");
 405    qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
 406    qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
 407
 408    for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
 409        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 410        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 411        CPUState *cs = CPU(armcpu);
 412
 413        qemu_fdt_add_subnode(ms->fdt, nodename);
 414        qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
 415        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 416                                    armcpu->dtb_compatible);
 417
 418        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
 419            qemu_fdt_setprop_string(ms->fdt, nodename,
 420                                        "enable-method", "psci");
 421        }
 422
 423        if (addr_cells == 2) {
 424            qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
 425                                 armcpu->mp_affinity);
 426        } else {
 427            qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
 428                                  armcpu->mp_affinity);
 429        }
 430
 431        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 432            qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
 433                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 434        }
 435
 436        if (!vmc->no_cpu_topology) {
 437            qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
 438                                  qemu_fdt_alloc_phandle(ms->fdt));
 439        }
 440
 441        g_free(nodename);
 442    }
 443
 444    if (!vmc->no_cpu_topology) {
 445        /*
 446         * Add vCPU topology description through fdt node cpu-map.
 447         *
 448         * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
 449         * In a SMP system, the hierarchy of CPUs can be defined through
 450         * four entities that are used to describe the layout of CPUs in
 451         * the system: socket/cluster/core/thread.
 452         *
 453         * A socket node represents the boundary of system physical package
 454         * and its child nodes must be one or more cluster nodes. A system
 455         * can contain several layers of clustering within a single physical
 456         * package and cluster nodes can be contained in parent cluster nodes.
 457         *
 458         * Note: currently we only support one layer of clustering within
 459         * each physical package.
 460         */
 461        qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
 462
 463        for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
 464            char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
 465            char *map_path;
 466
 467            if (ms->smp.threads > 1) {
 468                map_path = g_strdup_printf(
 469                    "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
 470                    cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
 471                    (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
 472                    (cpu / ms->smp.threads) % ms->smp.cores,
 473                    cpu % ms->smp.threads);
 474            } else {
 475                map_path = g_strdup_printf(
 476                    "/cpus/cpu-map/socket%d/cluster%d/core%d",
 477                    cpu / (ms->smp.clusters * ms->smp.cores),
 478                    (cpu / ms->smp.cores) % ms->smp.clusters,
 479                    cpu % ms->smp.cores);
 480            }
 481            qemu_fdt_add_path(ms->fdt, map_path);
 482            qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
 483
 484            g_free(map_path);
 485            g_free(cpu_path);
 486        }
 487    }
 488}
 489
 490static void fdt_add_its_gic_node(VirtMachineState *vms)
 491{
 492    char *nodename;
 493    MachineState *ms = MACHINE(vms);
 494
 495    vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 496    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 497                               vms->memmap[VIRT_GIC_ITS].base);
 498    qemu_fdt_add_subnode(ms->fdt, nodename);
 499    qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 500                            "arm,gic-v3-its");
 501    qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
 502    qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
 503    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 504                                 2, vms->memmap[VIRT_GIC_ITS].base,
 505                                 2, vms->memmap[VIRT_GIC_ITS].size);
 506    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
 507    g_free(nodename);
 508}
 509
 510static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 511{
 512    MachineState *ms = MACHINE(vms);
 513    char *nodename;
 514
 515    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 516                               vms->memmap[VIRT_GIC_V2M].base);
 517    vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 518    qemu_fdt_add_subnode(ms->fdt, nodename);
 519    qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 520                            "arm,gic-v2m-frame");
 521    qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
 522    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 523                                 2, vms->memmap[VIRT_GIC_V2M].base,
 524                                 2, vms->memmap[VIRT_GIC_V2M].size);
 525    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
 526    g_free(nodename);
 527}
 528
 529static void fdt_add_gic_node(VirtMachineState *vms)
 530{
 531    MachineState *ms = MACHINE(vms);
 532    char *nodename;
 533
 534    vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 535    qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 536
 537    nodename = g_strdup_printf("/intc@%" PRIx64,
 538                               vms->memmap[VIRT_GIC_DIST].base);
 539    qemu_fdt_add_subnode(ms->fdt, nodename);
 540    qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
 541    qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
 542    qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
 543    qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
 544    qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
 545    if (vms->gic_version != VIRT_GIC_VERSION_2) {
 546        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 547
 548        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 549                                "arm,gic-v3");
 550
 551        qemu_fdt_setprop_cell(ms->fdt, nodename,
 552                              "#redistributor-regions", nb_redist_regions);
 553
 554        if (nb_redist_regions == 1) {
 555            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 556                                         2, vms->memmap[VIRT_GIC_DIST].base,
 557                                         2, vms->memmap[VIRT_GIC_DIST].size,
 558                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 559                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 560        } else {
 561            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 562                                 2, vms->memmap[VIRT_GIC_DIST].base,
 563                                 2, vms->memmap[VIRT_GIC_DIST].size,
 564                                 2, vms->memmap[VIRT_GIC_REDIST].base,
 565                                 2, vms->memmap[VIRT_GIC_REDIST].size,
 566                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 567                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 568        }
 569
 570        if (vms->virt) {
 571            qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 572                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 573                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 574        }
 575    } else {
 576        /* 'cortex-a15-gic' means 'GIC v2' */
 577        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 578                                "arm,cortex-a15-gic");
 579        if (!vms->virt) {
 580            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 581                                         2, vms->memmap[VIRT_GIC_DIST].base,
 582                                         2, vms->memmap[VIRT_GIC_DIST].size,
 583                                         2, vms->memmap[VIRT_GIC_CPU].base,
 584                                         2, vms->memmap[VIRT_GIC_CPU].size);
 585        } else {
 586            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 587                                         2, vms->memmap[VIRT_GIC_DIST].base,
 588                                         2, vms->memmap[VIRT_GIC_DIST].size,
 589                                         2, vms->memmap[VIRT_GIC_CPU].base,
 590                                         2, vms->memmap[VIRT_GIC_CPU].size,
 591                                         2, vms->memmap[VIRT_GIC_HYP].base,
 592                                         2, vms->memmap[VIRT_GIC_HYP].size,
 593                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 594                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 595            qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 596                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 597                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 598        }
 599    }
 600
 601    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
 602    g_free(nodename);
 603}
 604
 605static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 606{
 607    ARMCPU *armcpu = ARM_CPU(first_cpu);
 608    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 609    MachineState *ms = MACHINE(vms);
 610
 611    if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 612        assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
 613        return;
 614    }
 615
 616    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 617        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 618                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 619                             (1 << MACHINE(vms)->smp.cpus) - 1);
 620    }
 621
 622    qemu_fdt_add_subnode(ms->fdt, "/pmu");
 623    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 624        const char compat[] = "arm,armv8-pmuv3";
 625        qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
 626                         compat, sizeof(compat));
 627        qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
 628                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 629    }
 630}
 631
 632static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
 633{
 634    DeviceState *dev;
 635    MachineState *ms = MACHINE(vms);
 636    int irq = vms->irqmap[VIRT_ACPI_GED];
 637    uint32_t event = ACPI_GED_PWR_DOWN_EVT;
 638
 639    if (ms->ram_slots) {
 640        event |= ACPI_GED_MEM_HOTPLUG_EVT;
 641    }
 642
 643    if (ms->nvdimms_state->is_enabled) {
 644        event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
 645    }
 646
 647    dev = qdev_new(TYPE_ACPI_GED);
 648    qdev_prop_set_uint32(dev, "ged-event", event);
 649
 650    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
 651    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
 652    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
 653
 654    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 655
 656    return dev;
 657}
 658
 659static void create_its(VirtMachineState *vms)
 660{
 661    const char *itsclass = its_class_name();
 662    DeviceState *dev;
 663
 664    if (!strcmp(itsclass, "arm-gicv3-its")) {
 665        if (!vms->tcg_its) {
 666            itsclass = NULL;
 667        }
 668    }
 669
 670    if (!itsclass) {
 671        /* Do nothing if not supported */
 672        return;
 673    }
 674
 675    dev = qdev_new(itsclass);
 676
 677    object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
 678                             &error_abort);
 679    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 680    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 681
 682    fdt_add_its_gic_node(vms);
 683    vms->msi_controller = VIRT_MSI_CTRL_ITS;
 684}
 685
 686static void create_v2m(VirtMachineState *vms)
 687{
 688    int i;
 689    int irq = vms->irqmap[VIRT_GIC_V2M];
 690    DeviceState *dev;
 691
 692    dev = qdev_new("arm-gicv2m");
 693    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 694    qdev_prop_set_uint32(dev, "base-spi", irq);
 695    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 696    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 697
 698    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 699        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 700                           qdev_get_gpio_in(vms->gic, irq + i));
 701    }
 702
 703    fdt_add_v2m_gic_node(vms);
 704    vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
 705}
 706
 707static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
 708{
 709    MachineState *ms = MACHINE(vms);
 710    /* We create a standalone GIC */
 711    SysBusDevice *gicbusdev;
 712    const char *gictype;
 713    int i;
 714    unsigned int smp_cpus = ms->smp.cpus;
 715    uint32_t nb_redist_regions = 0;
 716    int revision;
 717
 718    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 719        gictype = gic_class_name();
 720    } else {
 721        gictype = gicv3_class_name();
 722    }
 723
 724    switch (vms->gic_version) {
 725    case VIRT_GIC_VERSION_2:
 726        revision = 2;
 727        break;
 728    case VIRT_GIC_VERSION_3:
 729        revision = 3;
 730        break;
 731    case VIRT_GIC_VERSION_4:
 732        revision = 4;
 733        break;
 734    default:
 735        g_assert_not_reached();
 736    }
 737    vms->gic = qdev_new(gictype);
 738    qdev_prop_set_uint32(vms->gic, "revision", revision);
 739    qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
 740    /* Note that the num-irq property counts both internal and external
 741     * interrupts; there are always 32 of the former (mandated by GIC spec).
 742     */
 743    qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
 744    if (!kvm_irqchip_in_kernel()) {
 745        qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
 746    }
 747
 748    if (vms->gic_version != VIRT_GIC_VERSION_2) {
 749        uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
 750        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 751
 752        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 753
 754        qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
 755                             nb_redist_regions);
 756        qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
 757
 758        if (!kvm_irqchip_in_kernel()) {
 759            if (vms->tcg_its) {
 760                object_property_set_link(OBJECT(vms->gic), "sysmem",
 761                                         OBJECT(mem), &error_fatal);
 762                qdev_prop_set_bit(vms->gic, "has-lpi", true);
 763            }
 764        }
 765
 766        if (nb_redist_regions == 2) {
 767            uint32_t redist1_capacity =
 768                virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
 769
 770            qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
 771                MIN(smp_cpus - redist0_count, redist1_capacity));
 772        }
 773    } else {
 774        if (!kvm_irqchip_in_kernel()) {
 775            qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
 776                              vms->virt);
 777        }
 778    }
 779    gicbusdev = SYS_BUS_DEVICE(vms->gic);
 780    sysbus_realize_and_unref(gicbusdev, &error_fatal);
 781    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 782    if (vms->gic_version != VIRT_GIC_VERSION_2) {
 783        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 784        if (nb_redist_regions == 2) {
 785            sysbus_mmio_map(gicbusdev, 2,
 786                            vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 787        }
 788    } else {
 789        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 790        if (vms->virt) {
 791            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 792            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 793        }
 794    }
 795
 796    /* Wire the outputs from each CPU's generic timer and the GICv3
 797     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 798     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 799     */
 800    for (i = 0; i < smp_cpus; i++) {
 801        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 802        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 803        int irq;
 804        /* Mapping from the output timer irq lines from the CPU to the
 805         * GIC PPI inputs we use for the virt board.
 806         */
 807        const int timer_irq[] = {
 808            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 809            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 810            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 811            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 812        };
 813
 814        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 815            qdev_connect_gpio_out(cpudev, irq,
 816                                  qdev_get_gpio_in(vms->gic,
 817                                                   ppibase + timer_irq[irq]));
 818        }
 819
 820        if (vms->gic_version != VIRT_GIC_VERSION_2) {
 821            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 822                                            ppibase + ARCH_GIC_MAINT_IRQ);
 823            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 824                                        0, irq);
 825        } else if (vms->virt) {
 826            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 827                                            ppibase + ARCH_GIC_MAINT_IRQ);
 828            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 829        }
 830
 831        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 832                                    qdev_get_gpio_in(vms->gic, ppibase
 833                                                     + VIRTUAL_PMU_IRQ));
 834
 835        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 836        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 837                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 838        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 839                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 840        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 841                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 842    }
 843
 844    fdt_add_gic_node(vms);
 845
 846    if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
 847        create_its(vms);
 848    } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
 849        create_v2m(vms);
 850    }
 851}
 852
 853static void create_uart(const VirtMachineState *vms, int uart,
 854                        MemoryRegion *mem, Chardev *chr)
 855{
 856    char *nodename;
 857    hwaddr base = vms->memmap[uart].base;
 858    hwaddr size = vms->memmap[uart].size;
 859    int irq = vms->irqmap[uart];
 860    const char compat[] = "arm,pl011\0arm,primecell";
 861    const char clocknames[] = "uartclk\0apb_pclk";
 862    DeviceState *dev = qdev_new(TYPE_PL011);
 863    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 864    MachineState *ms = MACHINE(vms);
 865
 866    qdev_prop_set_chr(dev, "chardev", chr);
 867    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 868    memory_region_add_subregion(mem, base,
 869                                sysbus_mmio_get_region(s, 0));
 870    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 871
 872    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 873    qemu_fdt_add_subnode(ms->fdt, nodename);
 874    /* Note that we can't use setprop_string because of the embedded NUL */
 875    qemu_fdt_setprop(ms->fdt, nodename, "compatible",
 876                         compat, sizeof(compat));
 877    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 878                                     2, base, 2, size);
 879    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 880                               GIC_FDT_IRQ_TYPE_SPI, irq,
 881                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 882    qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
 883                               vms->clock_phandle, vms->clock_phandle);
 884    qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
 885                         clocknames, sizeof(clocknames));
 886
 887    if (uart == VIRT_UART) {
 888        qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
 889    } else {
 890        /* Mark as not usable by the normal world */
 891        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
 892        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
 893
 894        qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
 895                                nodename);
 896    }
 897
 898    g_free(nodename);
 899}
 900
 901static void create_rtc(const VirtMachineState *vms)
 902{
 903    char *nodename;
 904    hwaddr base = vms->memmap[VIRT_RTC].base;
 905    hwaddr size = vms->memmap[VIRT_RTC].size;
 906    int irq = vms->irqmap[VIRT_RTC];
 907    const char compat[] = "arm,pl031\0arm,primecell";
 908    MachineState *ms = MACHINE(vms);
 909
 910    sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
 911
 912    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 913    qemu_fdt_add_subnode(ms->fdt, nodename);
 914    qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
 915    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 916                                 2, base, 2, size);
 917    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 918                           GIC_FDT_IRQ_TYPE_SPI, irq,
 919                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 920    qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
 921    qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
 922    g_free(nodename);
 923}
 924
 925static DeviceState *gpio_key_dev;
 926static void virt_powerdown_req(Notifier *n, void *opaque)
 927{
 928    VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
 929
 930    if (s->acpi_dev) {
 931        acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
 932    } else {
 933        /* use gpio Pin 3 for power button event */
 934        qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 935    }
 936}
 937
 938static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
 939                             uint32_t phandle)
 940{
 941    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 942                                        qdev_get_gpio_in(pl061_dev, 3));
 943
 944    qemu_fdt_add_subnode(fdt, "/gpio-keys");
 945    qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
 946
 947    qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
 948    qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
 949                            "label", "GPIO Key Poweroff");
 950    qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
 951                          KEY_POWER);
 952    qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
 953                           "gpios", phandle, 3, 0);
 954}
 955
 956#define SECURE_GPIO_POWEROFF 0
 957#define SECURE_GPIO_RESET    1
 958
 959static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
 960                                   uint32_t phandle)
 961{
 962    DeviceState *gpio_pwr_dev;
 963
 964    /* gpio-pwr */
 965    gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
 966
 967    /* connect secure pl061 to gpio-pwr */
 968    qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
 969                          qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
 970    qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
 971                          qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
 972
 973    qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
 974    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
 975                            "gpio-poweroff");
 976    qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
 977                           "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
 978    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
 979    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
 980                            "okay");
 981
 982    qemu_fdt_add_subnode(fdt, "/gpio-restart");
 983    qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
 984                            "gpio-restart");
 985    qemu_fdt_setprop_cells(fdt, "/gpio-restart",
 986                           "gpios", phandle, SECURE_GPIO_RESET, 0);
 987    qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
 988    qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
 989                            "okay");
 990}
 991
 992static void create_gpio_devices(const VirtMachineState *vms, int gpio,
 993                                MemoryRegion *mem)
 994{
 995    char *nodename;
 996    DeviceState *pl061_dev;
 997    hwaddr base = vms->memmap[gpio].base;
 998    hwaddr size = vms->memmap[gpio].size;
 999    int irq = vms->irqmap[gpio];
1000    const char compat[] = "arm,pl061\0arm,primecell";
1001    SysBusDevice *s;
1002    MachineState *ms = MACHINE(vms);
1003
1004    pl061_dev = qdev_new("pl061");
1005    /* Pull lines down to 0 if not driven by the PL061 */
1006    qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1007    qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1008    s = SYS_BUS_DEVICE(pl061_dev);
1009    sysbus_realize_and_unref(s, &error_fatal);
1010    memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1011    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1012
1013    uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1014    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1015    qemu_fdt_add_subnode(ms->fdt, nodename);
1016    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1017                                 2, base, 2, size);
1018    qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1019    qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1020    qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1021    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1022                           GIC_FDT_IRQ_TYPE_SPI, irq,
1023                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1024    qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1025    qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1026    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1027
1028    if (gpio != VIRT_GPIO) {
1029        /* Mark as not usable by the normal world */
1030        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1031        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1032    }
1033    g_free(nodename);
1034
1035    /* Child gpio devices */
1036    if (gpio == VIRT_GPIO) {
1037        create_gpio_keys(ms->fdt, pl061_dev, phandle);
1038    } else {
1039        create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1040    }
1041}
1042
1043static void create_virtio_devices(const VirtMachineState *vms)
1044{
1045    int i;
1046    hwaddr size = vms->memmap[VIRT_MMIO].size;
1047    MachineState *ms = MACHINE(vms);
1048
1049    /* We create the transports in forwards order. Since qbus_realize()
1050     * prepends (not appends) new child buses, the incrementing loop below will
1051     * create a list of virtio-mmio buses with decreasing base addresses.
1052     *
1053     * When a -device option is processed from the command line,
1054     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1055     * order. The upshot is that -device options in increasing command line
1056     * order are mapped to virtio-mmio buses with decreasing base addresses.
1057     *
1058     * When this code was originally written, that arrangement ensured that the
1059     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1060     * the first -device on the command line. (The end-to-end order is a
1061     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1062     * guest kernel's name-to-address assignment strategy.)
1063     *
1064     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1065     * the message, if not necessarily the code, of commit 70161ff336.
1066     * Therefore the loop now establishes the inverse of the original intent.
1067     *
1068     * Unfortunately, we can't counteract the kernel change by reversing the
1069     * loop; it would break existing command lines.
1070     *
1071     * In any case, the kernel makes no guarantee about the stability of
1072     * enumeration order of virtio devices (as demonstrated by it changing
1073     * between kernel versions). For reliable and stable identification
1074     * of disks users must use UUIDs or similar mechanisms.
1075     */
1076    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1077        int irq = vms->irqmap[VIRT_MMIO] + i;
1078        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1079
1080        sysbus_create_simple("virtio-mmio", base,
1081                             qdev_get_gpio_in(vms->gic, irq));
1082    }
1083
1084    /* We add dtb nodes in reverse order so that they appear in the finished
1085     * device tree lowest address first.
1086     *
1087     * Note that this mapping is independent of the loop above. The previous
1088     * loop influences virtio device to virtio transport assignment, whereas
1089     * this loop controls how virtio transports are laid out in the dtb.
1090     */
1091    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1092        char *nodename;
1093        int irq = vms->irqmap[VIRT_MMIO] + i;
1094        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1095
1096        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1097        qemu_fdt_add_subnode(ms->fdt, nodename);
1098        qemu_fdt_setprop_string(ms->fdt, nodename,
1099                                "compatible", "virtio,mmio");
1100        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1101                                     2, base, 2, size);
1102        qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1103                               GIC_FDT_IRQ_TYPE_SPI, irq,
1104                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1105        qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1106        g_free(nodename);
1107    }
1108}
1109
1110#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1111
1112static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1113                                        const char *name,
1114                                        const char *alias_prop_name)
1115{
1116    /*
1117     * Create a single flash device.  We use the same parameters as
1118     * the flash devices on the Versatile Express board.
1119     */
1120    DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1121
1122    qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1123    qdev_prop_set_uint8(dev, "width", 4);
1124    qdev_prop_set_uint8(dev, "device-width", 2);
1125    qdev_prop_set_bit(dev, "big-endian", false);
1126    qdev_prop_set_uint16(dev, "id0", 0x89);
1127    qdev_prop_set_uint16(dev, "id1", 0x18);
1128    qdev_prop_set_uint16(dev, "id2", 0x00);
1129    qdev_prop_set_uint16(dev, "id3", 0x00);
1130    qdev_prop_set_string(dev, "name", name);
1131    object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1132    object_property_add_alias(OBJECT(vms), alias_prop_name,
1133                              OBJECT(dev), "drive");
1134    return PFLASH_CFI01(dev);
1135}
1136
1137static void virt_flash_create(VirtMachineState *vms)
1138{
1139    vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1140    vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1141}
1142
1143static void virt_flash_map1(PFlashCFI01 *flash,
1144                            hwaddr base, hwaddr size,
1145                            MemoryRegion *sysmem)
1146{
1147    DeviceState *dev = DEVICE(flash);
1148
1149    assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1150    assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1151    qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1152    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1153
1154    memory_region_add_subregion(sysmem, base,
1155                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1156                                                       0));
1157}
1158
1159static void virt_flash_map(VirtMachineState *vms,
1160                           MemoryRegion *sysmem,
1161                           MemoryRegion *secure_sysmem)
1162{
1163    /*
1164     * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1165     * sysmem is the system memory space. secure_sysmem is the secure view
1166     * of the system, and the first flash device should be made visible only
1167     * there. The second flash device is visible to both secure and nonsecure.
1168     * If sysmem == secure_sysmem this means there is no separate Secure
1169     * address space and both flash devices are generally visible.
1170     */
1171    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1172    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1173
1174    virt_flash_map1(vms->flash[0], flashbase, flashsize,
1175                    secure_sysmem);
1176    virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1177                    sysmem);
1178}
1179
1180static void virt_flash_fdt(VirtMachineState *vms,
1181                           MemoryRegion *sysmem,
1182                           MemoryRegion *secure_sysmem)
1183{
1184    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1185    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1186    MachineState *ms = MACHINE(vms);
1187    char *nodename;
1188
1189    if (sysmem == secure_sysmem) {
1190        /* Report both flash devices as a single node in the DT */
1191        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1192        qemu_fdt_add_subnode(ms->fdt, nodename);
1193        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1194        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1195                                     2, flashbase, 2, flashsize,
1196                                     2, flashbase + flashsize, 2, flashsize);
1197        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1198        g_free(nodename);
1199    } else {
1200        /*
1201         * Report the devices as separate nodes so we can mark one as
1202         * only visible to the secure world.
1203         */
1204        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1205        qemu_fdt_add_subnode(ms->fdt, nodename);
1206        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1207        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1208                                     2, flashbase, 2, flashsize);
1209        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1210        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1211        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1212        g_free(nodename);
1213
1214        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1215        qemu_fdt_add_subnode(ms->fdt, nodename);
1216        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1217        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1218                                     2, flashbase + flashsize, 2, flashsize);
1219        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1220        g_free(nodename);
1221    }
1222}
1223
1224static bool virt_firmware_init(VirtMachineState *vms,
1225                               MemoryRegion *sysmem,
1226                               MemoryRegion *secure_sysmem)
1227{
1228    int i;
1229    const char *bios_name;
1230    BlockBackend *pflash_blk0;
1231
1232    /* Map legacy -drive if=pflash to machine properties */
1233    for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1234        pflash_cfi01_legacy_drive(vms->flash[i],
1235                                  drive_get(IF_PFLASH, 0, i));
1236    }
1237
1238    virt_flash_map(vms, sysmem, secure_sysmem);
1239
1240    pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1241
1242    bios_name = MACHINE(vms)->firmware;
1243    if (bios_name) {
1244        char *fname;
1245        MemoryRegion *mr;
1246        int image_size;
1247
1248        if (pflash_blk0) {
1249            error_report("The contents of the first flash device may be "
1250                         "specified with -bios or with -drive if=pflash... "
1251                         "but you cannot use both options at once");
1252            exit(1);
1253        }
1254
1255        /* Fall back to -bios */
1256
1257        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1258        if (!fname) {
1259            error_report("Could not find ROM image '%s'", bios_name);
1260            exit(1);
1261        }
1262        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1263        image_size = load_image_mr(fname, mr);
1264        g_free(fname);
1265        if (image_size < 0) {
1266            error_report("Could not load ROM image '%s'", bios_name);
1267            exit(1);
1268        }
1269    }
1270
1271    return pflash_blk0 || bios_name;
1272}
1273
1274static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1275{
1276    MachineState *ms = MACHINE(vms);
1277    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1278    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1279    FWCfgState *fw_cfg;
1280    char *nodename;
1281
1282    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1283    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1284
1285    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1286    qemu_fdt_add_subnode(ms->fdt, nodename);
1287    qemu_fdt_setprop_string(ms->fdt, nodename,
1288                            "compatible", "qemu,fw-cfg-mmio");
1289    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1290                                 2, base, 2, size);
1291    qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1292    g_free(nodename);
1293    return fw_cfg;
1294}
1295
1296static void create_pcie_irq_map(const MachineState *ms,
1297                                uint32_t gic_phandle,
1298                                int first_irq, const char *nodename)
1299{
1300    int devfn, pin;
1301    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1302    uint32_t *irq_map = full_irq_map;
1303
1304    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1305        for (pin = 0; pin < 4; pin++) {
1306            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1307            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1308            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1309            int i;
1310
1311            uint32_t map[] = {
1312                devfn << 8, 0, 0,                           /* devfn */
1313                pin + 1,                                    /* PCI pin */
1314                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1315
1316            /* Convert map to big endian */
1317            for (i = 0; i < 10; i++) {
1318                irq_map[i] = cpu_to_be32(map[i]);
1319            }
1320            irq_map += 10;
1321        }
1322    }
1323
1324    qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1325                     full_irq_map, sizeof(full_irq_map));
1326
1327    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1328                           cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1329                           0, 0,
1330                           0x7           /* PCI irq */);
1331}
1332
1333static void create_smmu(const VirtMachineState *vms,
1334                        PCIBus *bus)
1335{
1336    char *node;
1337    const char compat[] = "arm,smmu-v3";
1338    int irq =  vms->irqmap[VIRT_SMMU];
1339    int i;
1340    hwaddr base = vms->memmap[VIRT_SMMU].base;
1341    hwaddr size = vms->memmap[VIRT_SMMU].size;
1342    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1343    DeviceState *dev;
1344    MachineState *ms = MACHINE(vms);
1345
1346    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1347        return;
1348    }
1349
1350    dev = qdev_new(TYPE_ARM_SMMUV3);
1351
1352    object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1353                             &error_abort);
1354    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1355    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1356    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1357        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1358                           qdev_get_gpio_in(vms->gic, irq + i));
1359    }
1360
1361    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1362    qemu_fdt_add_subnode(ms->fdt, node);
1363    qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1364    qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1365
1366    qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1367            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1368            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1370            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1371
1372    qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1373                     sizeof(irq_names));
1374
1375    qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1376
1377    qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1378
1379    qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1380    g_free(node);
1381}
1382
1383static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1384{
1385    const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1386    uint16_t bdf = vms->virtio_iommu_bdf;
1387    MachineState *ms = MACHINE(vms);
1388    char *node;
1389
1390    vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1391
1392    node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1393                           PCI_SLOT(bdf), PCI_FUNC(bdf));
1394    qemu_fdt_add_subnode(ms->fdt, node);
1395    qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1396    qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1397                                 1, bdf << 8, 1, 0, 1, 0,
1398                                 1, 0, 1, 0);
1399
1400    qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1401    qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1402    g_free(node);
1403
1404    qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1405                           0x0, vms->iommu_phandle, 0x0, bdf,
1406                           bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1407}
1408
1409static void create_pcie(VirtMachineState *vms)
1410{
1411    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1412    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1413    hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1414    hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1415    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1416    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1417    hwaddr base_ecam, size_ecam;
1418    hwaddr base = base_mmio;
1419    int nr_pcie_buses;
1420    int irq = vms->irqmap[VIRT_PCIE];
1421    MemoryRegion *mmio_alias;
1422    MemoryRegion *mmio_reg;
1423    MemoryRegion *ecam_alias;
1424    MemoryRegion *ecam_reg;
1425    DeviceState *dev;
1426    char *nodename;
1427    int i, ecam_id;
1428    PCIHostState *pci;
1429    MachineState *ms = MACHINE(vms);
1430    MachineClass *mc = MACHINE_GET_CLASS(ms);
1431
1432    dev = qdev_new(TYPE_GPEX_HOST);
1433    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1434
1435    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1436    base_ecam = vms->memmap[ecam_id].base;
1437    size_ecam = vms->memmap[ecam_id].size;
1438    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1439    /* Map only the first size_ecam bytes of ECAM space */
1440    ecam_alias = g_new0(MemoryRegion, 1);
1441    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1442    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1443                             ecam_reg, 0, size_ecam);
1444    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1445
1446    /* Map the MMIO window into system address space so as to expose
1447     * the section of PCI MMIO space which starts at the same base address
1448     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1449     * the window).
1450     */
1451    mmio_alias = g_new0(MemoryRegion, 1);
1452    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1453    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1454                             mmio_reg, base_mmio, size_mmio);
1455    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1456
1457    if (vms->highmem_mmio) {
1458        /* Map high MMIO space */
1459        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1460
1461        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1462                                 mmio_reg, base_mmio_high, size_mmio_high);
1463        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1464                                    high_mmio_alias);
1465    }
1466
1467    /* Map IO port space */
1468    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1469
1470    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1471        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1472                           qdev_get_gpio_in(vms->gic, irq + i));
1473        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1474    }
1475
1476    pci = PCI_HOST_BRIDGE(dev);
1477    pci->bypass_iommu = vms->default_bus_bypass_iommu;
1478    vms->bus = pci->bus;
1479    if (vms->bus) {
1480        for (i = 0; i < nb_nics; i++) {
1481            pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1482        }
1483    }
1484
1485    nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1486    qemu_fdt_add_subnode(ms->fdt, nodename);
1487    qemu_fdt_setprop_string(ms->fdt, nodename,
1488                            "compatible", "pci-host-ecam-generic");
1489    qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1490    qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1491    qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1492    qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1493    qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1494                           nr_pcie_buses - 1);
1495    qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1496
1497    if (vms->msi_phandle) {
1498        qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1499                               0, vms->msi_phandle, 0, 0x10000);
1500    }
1501
1502    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1503                                 2, base_ecam, 2, size_ecam);
1504
1505    if (vms->highmem_mmio) {
1506        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1507                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1508                                     2, base_pio, 2, size_pio,
1509                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1510                                     2, base_mmio, 2, size_mmio,
1511                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1512                                     2, base_mmio_high,
1513                                     2, base_mmio_high, 2, size_mmio_high);
1514    } else {
1515        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1516                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1517                                     2, base_pio, 2, size_pio,
1518                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1519                                     2, base_mmio, 2, size_mmio);
1520    }
1521
1522    qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1523    create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1524
1525    if (vms->iommu) {
1526        vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1527
1528        switch (vms->iommu) {
1529        case VIRT_IOMMU_SMMUV3:
1530            create_smmu(vms, vms->bus);
1531            qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1532                                   0x0, vms->iommu_phandle, 0x0, 0x10000);
1533            break;
1534        default:
1535            g_assert_not_reached();
1536        }
1537    }
1538}
1539
1540static void create_platform_bus(VirtMachineState *vms)
1541{
1542    DeviceState *dev;
1543    SysBusDevice *s;
1544    int i;
1545    MemoryRegion *sysmem = get_system_memory();
1546
1547    dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1548    dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1549    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1550    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1551    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1552    vms->platform_bus_dev = dev;
1553
1554    s = SYS_BUS_DEVICE(dev);
1555    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1556        int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1557        sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1558    }
1559
1560    memory_region_add_subregion(sysmem,
1561                                vms->memmap[VIRT_PLATFORM_BUS].base,
1562                                sysbus_mmio_get_region(s, 0));
1563}
1564
1565static void create_tag_ram(MemoryRegion *tag_sysmem,
1566                           hwaddr base, hwaddr size,
1567                           const char *name)
1568{
1569    MemoryRegion *tagram = g_new(MemoryRegion, 1);
1570
1571    memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1572    memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1573}
1574
1575static void create_secure_ram(VirtMachineState *vms,
1576                              MemoryRegion *secure_sysmem,
1577                              MemoryRegion *secure_tag_sysmem)
1578{
1579    MemoryRegion *secram = g_new(MemoryRegion, 1);
1580    char *nodename;
1581    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1582    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1583    MachineState *ms = MACHINE(vms);
1584
1585    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1586                           &error_fatal);
1587    memory_region_add_subregion(secure_sysmem, base, secram);
1588
1589    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1590    qemu_fdt_add_subnode(ms->fdt, nodename);
1591    qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1592    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1593    qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1594    qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1595
1596    if (secure_tag_sysmem) {
1597        create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1598    }
1599
1600    g_free(nodename);
1601}
1602
1603static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1604{
1605    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1606                                                 bootinfo);
1607    MachineState *ms = MACHINE(board);
1608
1609
1610    *fdt_size = board->fdt_size;
1611    return ms->fdt;
1612}
1613
1614static void virt_build_smbios(VirtMachineState *vms)
1615{
1616    MachineClass *mc = MACHINE_GET_CLASS(vms);
1617    MachineState *ms = MACHINE(vms);
1618    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1619    uint8_t *smbios_tables, *smbios_anchor;
1620    size_t smbios_tables_len, smbios_anchor_len;
1621    struct smbios_phys_mem_area mem_array;
1622    const char *product = "QEMU Virtual Machine";
1623
1624    if (kvm_enabled()) {
1625        product = "KVM Virtual Machine";
1626    }
1627
1628    smbios_set_defaults("QEMU", product,
1629                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1630                        true, SMBIOS_ENTRY_POINT_TYPE_64);
1631
1632    /* build the array of physical mem area from base_memmap */
1633    mem_array.address = vms->memmap[VIRT_MEM].base;
1634    mem_array.length = ms->ram_size;
1635
1636    smbios_get_tables(ms, &mem_array, 1,
1637                      &smbios_tables, &smbios_tables_len,
1638                      &smbios_anchor, &smbios_anchor_len,
1639                      &error_fatal);
1640
1641    if (smbios_anchor) {
1642        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1643                        smbios_tables, smbios_tables_len);
1644        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1645                        smbios_anchor, smbios_anchor_len);
1646    }
1647}
1648
1649static
1650void virt_machine_done(Notifier *notifier, void *data)
1651{
1652    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1653                                         machine_done);
1654    MachineState *ms = MACHINE(vms);
1655    ARMCPU *cpu = ARM_CPU(first_cpu);
1656    struct arm_boot_info *info = &vms->bootinfo;
1657    AddressSpace *as = arm_boot_address_space(cpu, info);
1658
1659    /*
1660     * If the user provided a dtb, we assume the dynamic sysbus nodes
1661     * already are integrated there. This corresponds to a use case where
1662     * the dynamic sysbus nodes are complex and their generation is not yet
1663     * supported. In that case the user can take charge of the guest dt
1664     * while qemu takes charge of the qom stuff.
1665     */
1666    if (info->dtb_filename == NULL) {
1667        platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1668                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1669                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1670                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1671    }
1672    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1673        exit(1);
1674    }
1675
1676    fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1677
1678    virt_acpi_setup(vms);
1679    virt_build_smbios(vms);
1680}
1681
1682static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1683{
1684    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1685    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1686
1687    if (!vmc->disallow_affinity_adjustment) {
1688        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1689         * GIC's target-list limitations. 32-bit KVM hosts currently
1690         * always create clusters of 4 CPUs, but that is expected to
1691         * change when they gain support for gicv3. When KVM is enabled
1692         * it will override the changes we make here, therefore our
1693         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1694         * and to improve SGI efficiency.
1695         */
1696        if (vms->gic_version == VIRT_GIC_VERSION_2) {
1697            clustersz = GIC_TARGETLIST_BITS;
1698        } else {
1699            clustersz = GICV3_TARGETLIST_BITS;
1700        }
1701    }
1702    return arm_cpu_mp_affinity(idx, clustersz);
1703}
1704
1705static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1706                                                 int index)
1707{
1708    bool *enabled_array[] = {
1709        &vms->highmem_redists,
1710        &vms->highmem_ecam,
1711        &vms->highmem_mmio,
1712    };
1713
1714    assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1715           ARRAY_SIZE(enabled_array));
1716    assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1717
1718    return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1719}
1720
1721static void virt_set_high_memmap(VirtMachineState *vms,
1722                                 hwaddr base, int pa_bits)
1723{
1724    hwaddr region_base, region_size;
1725    bool *region_enabled, fits;
1726    int i;
1727
1728    for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1729        region_enabled = virt_get_high_memmap_enabled(vms, i);
1730        region_base = ROUND_UP(base, extended_memmap[i].size);
1731        region_size = extended_memmap[i].size;
1732
1733        vms->memmap[i].base = region_base;
1734        vms->memmap[i].size = region_size;
1735
1736        /*
1737         * Check each device to see if it fits in the PA space,
1738         * moving highest_gpa as we go. For compatibility, move
1739         * highest_gpa for disabled fitting devices as well, if
1740         * the compact layout has been disabled.
1741         *
1742         * For each device that doesn't fit, disable it.
1743         */
1744        fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1745        *region_enabled &= fits;
1746        if (vms->highmem_compact && !*region_enabled) {
1747            continue;
1748        }
1749
1750        base = region_base + region_size;
1751        if (fits) {
1752            vms->highest_gpa = base - 1;
1753        }
1754    }
1755}
1756
1757static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1758{
1759    MachineState *ms = MACHINE(vms);
1760    hwaddr base, device_memory_base, device_memory_size, memtop;
1761    int i;
1762
1763    vms->memmap = extended_memmap;
1764
1765    for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1766        vms->memmap[i] = base_memmap[i];
1767    }
1768
1769    if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1770        error_report("unsupported number of memory slots: %"PRIu64,
1771                     ms->ram_slots);
1772        exit(EXIT_FAILURE);
1773    }
1774
1775    /*
1776     * !highmem is exactly the same as limiting the PA space to 32bit,
1777     * irrespective of the underlying capabilities of the HW.
1778     */
1779    if (!vms->highmem) {
1780        pa_bits = 32;
1781    }
1782
1783    /*
1784     * We compute the base of the high IO region depending on the
1785     * amount of initial and device memory. The device memory start/size
1786     * is aligned on 1GiB. We never put the high IO region below 256GiB
1787     * so that if maxram_size is < 255GiB we keep the legacy memory map.
1788     * The device region size assumes 1GiB page max alignment per slot.
1789     */
1790    device_memory_base =
1791        ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1792    device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1793
1794    /* Base address of the high IO region */
1795    memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1796    if (memtop > BIT_ULL(pa_bits)) {
1797            error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1798                         pa_bits, memtop - BIT_ULL(pa_bits));
1799        exit(EXIT_FAILURE);
1800    }
1801    if (base < device_memory_base) {
1802        error_report("maxmem/slots too huge");
1803        exit(EXIT_FAILURE);
1804    }
1805    if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1806        base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1807    }
1808
1809    /* We know for sure that at least the memory fits in the PA space */
1810    vms->highest_gpa = memtop - 1;
1811
1812    virt_set_high_memmap(vms, base, pa_bits);
1813
1814    if (device_memory_size > 0) {
1815        machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1816    }
1817}
1818
1819static VirtGICType finalize_gic_version_do(const char *accel_name,
1820                                           VirtGICType gic_version,
1821                                           int gics_supported,
1822                                           unsigned int max_cpus)
1823{
1824    /* Convert host/max/nosel to GIC version number */
1825    switch (gic_version) {
1826    case VIRT_GIC_VERSION_HOST:
1827        if (!kvm_enabled()) {
1828            error_report("gic-version=host requires KVM");
1829            exit(1);
1830        }
1831
1832        /* For KVM, gic-version=host means gic-version=max */
1833        return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1834                                       gics_supported, max_cpus);
1835    case VIRT_GIC_VERSION_MAX:
1836        if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1837            gic_version = VIRT_GIC_VERSION_4;
1838        } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1839            gic_version = VIRT_GIC_VERSION_3;
1840        } else {
1841            gic_version = VIRT_GIC_VERSION_2;
1842        }
1843        break;
1844    case VIRT_GIC_VERSION_NOSEL:
1845        if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1846            max_cpus <= GIC_NCPU) {
1847            gic_version = VIRT_GIC_VERSION_2;
1848        } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1849            /*
1850             * in case the host does not support v2 emulation or
1851             * the end-user requested more than 8 VCPUs we now default
1852             * to v3. In any case defaulting to v2 would be broken.
1853             */
1854            gic_version = VIRT_GIC_VERSION_3;
1855        } else if (max_cpus > GIC_NCPU) {
1856            error_report("%s only supports GICv2 emulation but more than 8 "
1857                         "vcpus are requested", accel_name);
1858            exit(1);
1859        }
1860        break;
1861    case VIRT_GIC_VERSION_2:
1862    case VIRT_GIC_VERSION_3:
1863    case VIRT_GIC_VERSION_4:
1864        break;
1865    }
1866
1867    /* Check chosen version is effectively supported */
1868    switch (gic_version) {
1869    case VIRT_GIC_VERSION_2:
1870        if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1871            error_report("%s does not support GICv2 emulation", accel_name);
1872            exit(1);
1873        }
1874        break;
1875    case VIRT_GIC_VERSION_3:
1876        if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1877            error_report("%s does not support GICv3 emulation", accel_name);
1878            exit(1);
1879        }
1880        break;
1881    case VIRT_GIC_VERSION_4:
1882        if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1883            error_report("%s does not support GICv4 emulation, is virtualization=on?",
1884                         accel_name);
1885            exit(1);
1886        }
1887        break;
1888    default:
1889        error_report("logic error in finalize_gic_version");
1890        exit(1);
1891        break;
1892    }
1893
1894    return gic_version;
1895}
1896
1897/*
1898 * finalize_gic_version - Determines the final gic_version
1899 * according to the gic-version property
1900 *
1901 * Default GIC type is v2
1902 */
1903static void finalize_gic_version(VirtMachineState *vms)
1904{
1905    const char *accel_name = current_accel_name();
1906    unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1907    int gics_supported = 0;
1908
1909    /* Determine which GIC versions the current environment supports */
1910    if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1911        int probe_bitmap = kvm_arm_vgic_probe();
1912
1913        if (!probe_bitmap) {
1914            error_report("Unable to determine GIC version supported by host");
1915            exit(1);
1916        }
1917
1918        if (probe_bitmap & KVM_ARM_VGIC_V2) {
1919            gics_supported |= VIRT_GIC_VERSION_2_MASK;
1920        }
1921        if (probe_bitmap & KVM_ARM_VGIC_V3) {
1922            gics_supported |= VIRT_GIC_VERSION_3_MASK;
1923        }
1924    } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1925        /* KVM w/o kernel irqchip can only deal with GICv2 */
1926        gics_supported |= VIRT_GIC_VERSION_2_MASK;
1927        accel_name = "KVM with kernel-irqchip=off";
1928    } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1929        gics_supported |= VIRT_GIC_VERSION_2_MASK;
1930        if (module_object_class_by_name("arm-gicv3")) {
1931            gics_supported |= VIRT_GIC_VERSION_3_MASK;
1932            if (vms->virt) {
1933                /* GICv4 only makes sense if CPU has EL2 */
1934                gics_supported |= VIRT_GIC_VERSION_4_MASK;
1935            }
1936        }
1937    } else {
1938        error_report("Unsupported accelerator, can not determine GIC support");
1939        exit(1);
1940    }
1941
1942    /*
1943     * Then convert helpers like host/max to concrete GIC versions and ensure
1944     * the desired version is supported
1945     */
1946    vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1947                                               gics_supported, max_cpus);
1948}
1949
1950/*
1951 * virt_cpu_post_init() must be called after the CPUs have
1952 * been realized and the GIC has been created.
1953 */
1954static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1955{
1956    int max_cpus = MACHINE(vms)->smp.max_cpus;
1957    bool aarch64, pmu, steal_time;
1958    CPUState *cpu;
1959
1960    aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1961    pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1962    steal_time = object_property_get_bool(OBJECT(first_cpu),
1963                                          "kvm-steal-time", NULL);
1964
1965    if (kvm_enabled()) {
1966        hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1967        hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1968
1969        if (steal_time) {
1970            MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1971            hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1972
1973            /* The memory region size must be a multiple of host page size. */
1974            pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1975
1976            if (pvtime_size > pvtime_reg_size) {
1977                error_report("pvtime requires a %" HWADDR_PRId
1978                             " byte memory region for %d CPUs,"
1979                             " but only %" HWADDR_PRId " has been reserved",
1980                             pvtime_size, max_cpus, pvtime_reg_size);
1981                exit(1);
1982            }
1983
1984            memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1985            memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1986        }
1987
1988        CPU_FOREACH(cpu) {
1989            if (pmu) {
1990                assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1991                if (kvm_irqchip_in_kernel()) {
1992                    kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1993                }
1994                kvm_arm_pmu_init(cpu);
1995            }
1996            if (steal_time) {
1997                kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1998                                         cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1999            }
2000        }
2001    } else {
2002        if (aarch64 && vms->highmem) {
2003            int requested_pa_size = 64 - clz64(vms->highest_gpa);
2004            int pamax = arm_pamax(ARM_CPU(first_cpu));
2005
2006            if (pamax < requested_pa_size) {
2007                error_report("VCPU supports less PA bits (%d) than "
2008                             "requested by the memory map (%d)",
2009                             pamax, requested_pa_size);
2010                exit(1);
2011            }
2012        }
2013    }
2014}
2015
2016static void machvirt_init(MachineState *machine)
2017{
2018    VirtMachineState *vms = VIRT_MACHINE(machine);
2019    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2020    MachineClass *mc = MACHINE_GET_CLASS(machine);
2021    const CPUArchIdList *possible_cpus;
2022    MemoryRegion *sysmem = get_system_memory();
2023    MemoryRegion *secure_sysmem = NULL;
2024    MemoryRegion *tag_sysmem = NULL;
2025    MemoryRegion *secure_tag_sysmem = NULL;
2026    int n, virt_max_cpus;
2027    bool firmware_loaded;
2028    bool aarch64 = true;
2029    bool has_ged = !vmc->no_ged;
2030    unsigned int smp_cpus = machine->smp.cpus;
2031    unsigned int max_cpus = machine->smp.max_cpus;
2032
2033    if (!cpu_type_valid(machine->cpu_type)) {
2034        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2035        exit(1);
2036    }
2037
2038    possible_cpus = mc->possible_cpu_arch_ids(machine);
2039
2040    /*
2041     * In accelerated mode, the memory map is computed earlier in kvm_type()
2042     * to create a VM with the right number of IPA bits.
2043     */
2044    if (!vms->memmap) {
2045        Object *cpuobj;
2046        ARMCPU *armcpu;
2047        int pa_bits;
2048
2049        /*
2050         * Instantiate a temporary CPU object to find out about what
2051         * we are about to deal with. Once this is done, get rid of
2052         * the object.
2053         */
2054        cpuobj = object_new(possible_cpus->cpus[0].type);
2055        armcpu = ARM_CPU(cpuobj);
2056
2057        pa_bits = arm_pamax(armcpu);
2058
2059        object_unref(cpuobj);
2060
2061        virt_set_memmap(vms, pa_bits);
2062    }
2063
2064    /* We can probe only here because during property set
2065     * KVM is not available yet
2066     */
2067    finalize_gic_version(vms);
2068
2069    if (vms->secure) {
2070        /*
2071         * The Secure view of the world is the same as the NonSecure,
2072         * but with a few extra devices. Create it as a container region
2073         * containing the system memory at low priority; any secure-only
2074         * devices go in at higher priority and take precedence.
2075         */
2076        secure_sysmem = g_new(MemoryRegion, 1);
2077        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2078                           UINT64_MAX);
2079        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2080    }
2081
2082    firmware_loaded = virt_firmware_init(vms, sysmem,
2083                                         secure_sysmem ?: sysmem);
2084
2085    /* If we have an EL3 boot ROM then the assumption is that it will
2086     * implement PSCI itself, so disable QEMU's internal implementation
2087     * so it doesn't get in the way. Instead of starting secondary
2088     * CPUs in PSCI powerdown state we will start them all running and
2089     * let the boot ROM sort them out.
2090     * The usual case is that we do use QEMU's PSCI implementation;
2091     * if the guest has EL2 then we will use SMC as the conduit,
2092     * and otherwise we will use HVC (for backwards compatibility and
2093     * because if we're using KVM then we must use HVC).
2094     */
2095    if (vms->secure && firmware_loaded) {
2096        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2097    } else if (vms->virt) {
2098        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2099    } else {
2100        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2101    }
2102
2103    /*
2104     * The maximum number of CPUs depends on the GIC version, or on how
2105     * many redistributors we can fit into the memory map (which in turn
2106     * depends on whether this is a GICv3 or v4).
2107     */
2108    if (vms->gic_version == VIRT_GIC_VERSION_2) {
2109        virt_max_cpus = GIC_NCPU;
2110    } else {
2111        virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2112        if (vms->highmem_redists) {
2113            virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2114        }
2115    }
2116
2117    if (max_cpus > virt_max_cpus) {
2118        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2119                     "supported by machine 'mach-virt' (%d)",
2120                     max_cpus, virt_max_cpus);
2121        if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2122            error_printf("Try 'highmem-redists=on' for more CPUs\n");
2123        }
2124
2125        exit(1);
2126    }
2127
2128    if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2129        error_report("mach-virt: %s does not support providing "
2130                     "Security extensions (TrustZone) to the guest CPU",
2131                     current_accel_name());
2132        exit(1);
2133    }
2134
2135    if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2136        error_report("mach-virt: %s does not support providing "
2137                     "Virtualization extensions to the guest CPU",
2138                     current_accel_name());
2139        exit(1);
2140    }
2141
2142    if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2143        error_report("mach-virt: %s does not support providing "
2144                     "MTE to the guest CPU",
2145                     current_accel_name());
2146        exit(1);
2147    }
2148
2149    create_fdt(vms);
2150
2151    assert(possible_cpus->len == max_cpus);
2152    for (n = 0; n < possible_cpus->len; n++) {
2153        Object *cpuobj;
2154        CPUState *cs;
2155
2156        if (n >= smp_cpus) {
2157            break;
2158        }
2159
2160        cpuobj = object_new(possible_cpus->cpus[n].type);
2161        object_property_set_int(cpuobj, "mp-affinity",
2162                                possible_cpus->cpus[n].arch_id, NULL);
2163
2164        cs = CPU(cpuobj);
2165        cs->cpu_index = n;
2166
2167        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2168                          &error_fatal);
2169
2170        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2171
2172        if (!vms->secure) {
2173            object_property_set_bool(cpuobj, "has_el3", false, NULL);
2174        }
2175
2176        if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2177            object_property_set_bool(cpuobj, "has_el2", false, NULL);
2178        }
2179
2180        if (vmc->kvm_no_adjvtime &&
2181            object_property_find(cpuobj, "kvm-no-adjvtime")) {
2182            object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2183        }
2184
2185        if (vmc->no_kvm_steal_time &&
2186            object_property_find(cpuobj, "kvm-steal-time")) {
2187            object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2188        }
2189
2190        if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2191            object_property_set_bool(cpuobj, "pmu", false, NULL);
2192        }
2193
2194        if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2195            object_property_set_bool(cpuobj, "lpa2", false, NULL);
2196        }
2197
2198        if (object_property_find(cpuobj, "reset-cbar")) {
2199            object_property_set_int(cpuobj, "reset-cbar",
2200                                    vms->memmap[VIRT_CPUPERIPHS].base,
2201                                    &error_abort);
2202        }
2203
2204        object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2205                                 &error_abort);
2206        if (vms->secure) {
2207            object_property_set_link(cpuobj, "secure-memory",
2208                                     OBJECT(secure_sysmem), &error_abort);
2209        }
2210
2211        if (vms->mte) {
2212            /* Create the memory region only once, but link to all cpus. */
2213            if (!tag_sysmem) {
2214                /*
2215                 * The property exists only if MemTag is supported.
2216                 * If it is, we must allocate the ram to back that up.
2217                 */
2218                if (!object_property_find(cpuobj, "tag-memory")) {
2219                    error_report("MTE requested, but not supported "
2220                                 "by the guest CPU");
2221                    exit(1);
2222                }
2223
2224                tag_sysmem = g_new(MemoryRegion, 1);
2225                memory_region_init(tag_sysmem, OBJECT(machine),
2226                                   "tag-memory", UINT64_MAX / 32);
2227
2228                if (vms->secure) {
2229                    secure_tag_sysmem = g_new(MemoryRegion, 1);
2230                    memory_region_init(secure_tag_sysmem, OBJECT(machine),
2231                                       "secure-tag-memory", UINT64_MAX / 32);
2232
2233                    /* As with ram, secure-tag takes precedence over tag.  */
2234                    memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2235                                                        tag_sysmem, -1);
2236                }
2237            }
2238
2239            object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2240                                     &error_abort);
2241            if (vms->secure) {
2242                object_property_set_link(cpuobj, "secure-tag-memory",
2243                                         OBJECT(secure_tag_sysmem),
2244                                         &error_abort);
2245            }
2246        }
2247
2248        qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2249        object_unref(cpuobj);
2250    }
2251    fdt_add_timer_nodes(vms);
2252    fdt_add_cpu_nodes(vms);
2253
2254    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2255                                machine->ram);
2256
2257    virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2258
2259    create_gic(vms, sysmem);
2260
2261    virt_cpu_post_init(vms, sysmem);
2262
2263    fdt_add_pmu_nodes(vms);
2264
2265    create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2266
2267    if (vms->secure) {
2268        create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2269        create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2270    }
2271
2272    if (tag_sysmem) {
2273        create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2274                       machine->ram_size, "mach-virt.tag");
2275    }
2276
2277    vms->highmem_ecam &= (!firmware_loaded || aarch64);
2278
2279    create_rtc(vms);
2280
2281    create_pcie(vms);
2282
2283    if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2284        vms->acpi_dev = create_acpi_ged(vms);
2285    } else {
2286        create_gpio_devices(vms, VIRT_GPIO, sysmem);
2287    }
2288
2289    if (vms->secure && !vmc->no_secure_gpio) {
2290        create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2291    }
2292
2293     /* connect powerdown request */
2294     vms->powerdown_notifier.notify = virt_powerdown_req;
2295     qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2296
2297    /* Create mmio transports, so the user can create virtio backends
2298     * (which will be automatically plugged in to the transports). If
2299     * no backend is created the transport will just sit harmlessly idle.
2300     */
2301    create_virtio_devices(vms);
2302
2303    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2304    rom_set_fw(vms->fw_cfg);
2305
2306    create_platform_bus(vms);
2307
2308    if (machine->nvdimms_state->is_enabled) {
2309        const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2310            .space_id = AML_AS_SYSTEM_MEMORY,
2311            .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2312            .bit_width = NVDIMM_ACPI_IO_LEN << 3
2313        };
2314
2315        nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2316                               arm_virt_nvdimm_acpi_dsmio,
2317                               vms->fw_cfg, OBJECT(vms));
2318    }
2319
2320    vms->bootinfo.ram_size = machine->ram_size;
2321    vms->bootinfo.board_id = -1;
2322    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2323    vms->bootinfo.get_dtb = machvirt_dtb;
2324    vms->bootinfo.skip_dtb_autoload = true;
2325    vms->bootinfo.firmware_loaded = firmware_loaded;
2326    vms->bootinfo.psci_conduit = vms->psci_conduit;
2327    arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2328
2329    vms->machine_done.notify = virt_machine_done;
2330    qemu_add_machine_init_done_notifier(&vms->machine_done);
2331}
2332
2333static bool virt_get_secure(Object *obj, Error **errp)
2334{
2335    VirtMachineState *vms = VIRT_MACHINE(obj);
2336
2337    return vms->secure;
2338}
2339
2340static void virt_set_secure(Object *obj, bool value, Error **errp)
2341{
2342    VirtMachineState *vms = VIRT_MACHINE(obj);
2343
2344    vms->secure = value;
2345}
2346
2347static bool virt_get_virt(Object *obj, Error **errp)
2348{
2349    VirtMachineState *vms = VIRT_MACHINE(obj);
2350
2351    return vms->virt;
2352}
2353
2354static void virt_set_virt(Object *obj, bool value, Error **errp)
2355{
2356    VirtMachineState *vms = VIRT_MACHINE(obj);
2357
2358    vms->virt = value;
2359}
2360
2361static bool virt_get_highmem(Object *obj, Error **errp)
2362{
2363    VirtMachineState *vms = VIRT_MACHINE(obj);
2364
2365    return vms->highmem;
2366}
2367
2368static void virt_set_highmem(Object *obj, bool value, Error **errp)
2369{
2370    VirtMachineState *vms = VIRT_MACHINE(obj);
2371
2372    vms->highmem = value;
2373}
2374
2375static bool virt_get_compact_highmem(Object *obj, Error **errp)
2376{
2377    VirtMachineState *vms = VIRT_MACHINE(obj);
2378
2379    return vms->highmem_compact;
2380}
2381
2382static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2383{
2384    VirtMachineState *vms = VIRT_MACHINE(obj);
2385
2386    vms->highmem_compact = value;
2387}
2388
2389static bool virt_get_highmem_redists(Object *obj, Error **errp)
2390{
2391    VirtMachineState *vms = VIRT_MACHINE(obj);
2392
2393    return vms->highmem_redists;
2394}
2395
2396static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2397{
2398    VirtMachineState *vms = VIRT_MACHINE(obj);
2399
2400    vms->highmem_redists = value;
2401}
2402
2403static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2404{
2405    VirtMachineState *vms = VIRT_MACHINE(obj);
2406
2407    return vms->highmem_ecam;
2408}
2409
2410static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2411{
2412    VirtMachineState *vms = VIRT_MACHINE(obj);
2413
2414    vms->highmem_ecam = value;
2415}
2416
2417static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2418{
2419    VirtMachineState *vms = VIRT_MACHINE(obj);
2420
2421    return vms->highmem_mmio;
2422}
2423
2424static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2425{
2426    VirtMachineState *vms = VIRT_MACHINE(obj);
2427
2428    vms->highmem_mmio = value;
2429}
2430
2431
2432static bool virt_get_its(Object *obj, Error **errp)
2433{
2434    VirtMachineState *vms = VIRT_MACHINE(obj);
2435
2436    return vms->its;
2437}
2438
2439static void virt_set_its(Object *obj, bool value, Error **errp)
2440{
2441    VirtMachineState *vms = VIRT_MACHINE(obj);
2442
2443    vms->its = value;
2444}
2445
2446static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2447{
2448    VirtMachineState *vms = VIRT_MACHINE(obj);
2449
2450    return vms->dtb_randomness;
2451}
2452
2453static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2454{
2455    VirtMachineState *vms = VIRT_MACHINE(obj);
2456
2457    vms->dtb_randomness = value;
2458}
2459
2460static char *virt_get_oem_id(Object *obj, Error **errp)
2461{
2462    VirtMachineState *vms = VIRT_MACHINE(obj);
2463
2464    return g_strdup(vms->oem_id);
2465}
2466
2467static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2468{
2469    VirtMachineState *vms = VIRT_MACHINE(obj);
2470    size_t len = strlen(value);
2471
2472    if (len > 6) {
2473        error_setg(errp,
2474                   "User specified oem-id value is bigger than 6 bytes in size");
2475        return;
2476    }
2477
2478    strncpy(vms->oem_id, value, 6);
2479}
2480
2481static char *virt_get_oem_table_id(Object *obj, Error **errp)
2482{
2483    VirtMachineState *vms = VIRT_MACHINE(obj);
2484
2485    return g_strdup(vms->oem_table_id);
2486}
2487
2488static void virt_set_oem_table_id(Object *obj, const char *value,
2489                                  Error **errp)
2490{
2491    VirtMachineState *vms = VIRT_MACHINE(obj);
2492    size_t len = strlen(value);
2493
2494    if (len > 8) {
2495        error_setg(errp,
2496                   "User specified oem-table-id value is bigger than 8 bytes in size");
2497        return;
2498    }
2499    strncpy(vms->oem_table_id, value, 8);
2500}
2501
2502
2503bool virt_is_acpi_enabled(VirtMachineState *vms)
2504{
2505    if (vms->acpi == ON_OFF_AUTO_OFF) {
2506        return false;
2507    }
2508    return true;
2509}
2510
2511static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2512                          void *opaque, Error **errp)
2513{
2514    VirtMachineState *vms = VIRT_MACHINE(obj);
2515    OnOffAuto acpi = vms->acpi;
2516
2517    visit_type_OnOffAuto(v, name, &acpi, errp);
2518}
2519
2520static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2521                          void *opaque, Error **errp)
2522{
2523    VirtMachineState *vms = VIRT_MACHINE(obj);
2524
2525    visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2526}
2527
2528static bool virt_get_ras(Object *obj, Error **errp)
2529{
2530    VirtMachineState *vms = VIRT_MACHINE(obj);
2531
2532    return vms->ras;
2533}
2534
2535static void virt_set_ras(Object *obj, bool value, Error **errp)
2536{
2537    VirtMachineState *vms = VIRT_MACHINE(obj);
2538
2539    vms->ras = value;
2540}
2541
2542static bool virt_get_mte(Object *obj, Error **errp)
2543{
2544    VirtMachineState *vms = VIRT_MACHINE(obj);
2545
2546    return vms->mte;
2547}
2548
2549static void virt_set_mte(Object *obj, bool value, Error **errp)
2550{
2551    VirtMachineState *vms = VIRT_MACHINE(obj);
2552
2553    vms->mte = value;
2554}
2555
2556static char *virt_get_gic_version(Object *obj, Error **errp)
2557{
2558    VirtMachineState *vms = VIRT_MACHINE(obj);
2559    const char *val;
2560
2561    switch (vms->gic_version) {
2562    case VIRT_GIC_VERSION_4:
2563        val = "4";
2564        break;
2565    case VIRT_GIC_VERSION_3:
2566        val = "3";
2567        break;
2568    default:
2569        val = "2";
2570        break;
2571    }
2572    return g_strdup(val);
2573}
2574
2575static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2576{
2577    VirtMachineState *vms = VIRT_MACHINE(obj);
2578
2579    if (!strcmp(value, "4")) {
2580        vms->gic_version = VIRT_GIC_VERSION_4;
2581    } else if (!strcmp(value, "3")) {
2582        vms->gic_version = VIRT_GIC_VERSION_3;
2583    } else if (!strcmp(value, "2")) {
2584        vms->gic_version = VIRT_GIC_VERSION_2;
2585    } else if (!strcmp(value, "host")) {
2586        vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2587    } else if (!strcmp(value, "max")) {
2588        vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2589    } else {
2590        error_setg(errp, "Invalid gic-version value");
2591        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2592    }
2593}
2594
2595static char *virt_get_iommu(Object *obj, Error **errp)
2596{
2597    VirtMachineState *vms = VIRT_MACHINE(obj);
2598
2599    switch (vms->iommu) {
2600    case VIRT_IOMMU_NONE:
2601        return g_strdup("none");
2602    case VIRT_IOMMU_SMMUV3:
2603        return g_strdup("smmuv3");
2604    default:
2605        g_assert_not_reached();
2606    }
2607}
2608
2609static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2610{
2611    VirtMachineState *vms = VIRT_MACHINE(obj);
2612
2613    if (!strcmp(value, "smmuv3")) {
2614        vms->iommu = VIRT_IOMMU_SMMUV3;
2615    } else if (!strcmp(value, "none")) {
2616        vms->iommu = VIRT_IOMMU_NONE;
2617    } else {
2618        error_setg(errp, "Invalid iommu value");
2619        error_append_hint(errp, "Valid values are none, smmuv3.\n");
2620    }
2621}
2622
2623static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2624{
2625    VirtMachineState *vms = VIRT_MACHINE(obj);
2626
2627    return vms->default_bus_bypass_iommu;
2628}
2629
2630static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2631                                              Error **errp)
2632{
2633    VirtMachineState *vms = VIRT_MACHINE(obj);
2634
2635    vms->default_bus_bypass_iommu = value;
2636}
2637
2638static CpuInstanceProperties
2639virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2640{
2641    MachineClass *mc = MACHINE_GET_CLASS(ms);
2642    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2643
2644    assert(cpu_index < possible_cpus->len);
2645    return possible_cpus->cpus[cpu_index].props;
2646}
2647
2648static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2649{
2650    int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2651
2652    return socket_id % ms->numa_state->num_nodes;
2653}
2654
2655static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2656{
2657    int n;
2658    unsigned int max_cpus = ms->smp.max_cpus;
2659    VirtMachineState *vms = VIRT_MACHINE(ms);
2660    MachineClass *mc = MACHINE_GET_CLASS(vms);
2661
2662    if (ms->possible_cpus) {
2663        assert(ms->possible_cpus->len == max_cpus);
2664        return ms->possible_cpus;
2665    }
2666
2667    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2668                                  sizeof(CPUArchId) * max_cpus);
2669    ms->possible_cpus->len = max_cpus;
2670    for (n = 0; n < ms->possible_cpus->len; n++) {
2671        ms->possible_cpus->cpus[n].type = ms->cpu_type;
2672        ms->possible_cpus->cpus[n].arch_id =
2673            virt_cpu_mp_affinity(vms, n);
2674
2675        assert(!mc->smp_props.dies_supported);
2676        ms->possible_cpus->cpus[n].props.has_socket_id = true;
2677        ms->possible_cpus->cpus[n].props.socket_id =
2678            n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2679        ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2680        ms->possible_cpus->cpus[n].props.cluster_id =
2681            (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2682        ms->possible_cpus->cpus[n].props.has_core_id = true;
2683        ms->possible_cpus->cpus[n].props.core_id =
2684            (n / ms->smp.threads) % ms->smp.cores;
2685        ms->possible_cpus->cpus[n].props.has_thread_id = true;
2686        ms->possible_cpus->cpus[n].props.thread_id =
2687            n % ms->smp.threads;
2688    }
2689    return ms->possible_cpus;
2690}
2691
2692static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2693                                 Error **errp)
2694{
2695    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2696    const MachineState *ms = MACHINE(hotplug_dev);
2697    const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2698
2699    if (!vms->acpi_dev) {
2700        error_setg(errp,
2701                   "memory hotplug is not enabled: missing acpi-ged device");
2702        return;
2703    }
2704
2705    if (vms->mte) {
2706        error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2707        return;
2708    }
2709
2710    if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2711        error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2712        return;
2713    }
2714
2715    pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2716}
2717
2718static void virt_memory_plug(HotplugHandler *hotplug_dev,
2719                             DeviceState *dev, Error **errp)
2720{
2721    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2722    MachineState *ms = MACHINE(hotplug_dev);
2723    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2724
2725    pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2726
2727    if (is_nvdimm) {
2728        nvdimm_plug(ms->nvdimms_state);
2729    }
2730
2731    hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2732                         dev, &error_abort);
2733}
2734
2735static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2736                                            DeviceState *dev, Error **errp)
2737{
2738    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2739
2740    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2741        virt_memory_pre_plug(hotplug_dev, dev, errp);
2742    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2743        virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2744    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2745        hwaddr db_start = 0, db_end = 0;
2746        char *resv_prop_str;
2747
2748        if (vms->iommu != VIRT_IOMMU_NONE) {
2749            error_setg(errp, "virt machine does not support multiple IOMMUs");
2750            return;
2751        }
2752
2753        switch (vms->msi_controller) {
2754        case VIRT_MSI_CTRL_NONE:
2755            return;
2756        case VIRT_MSI_CTRL_ITS:
2757            /* GITS_TRANSLATER page */
2758            db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2759            db_end = base_memmap[VIRT_GIC_ITS].base +
2760                     base_memmap[VIRT_GIC_ITS].size - 1;
2761            break;
2762        case VIRT_MSI_CTRL_GICV2M:
2763            /* MSI_SETSPI_NS page */
2764            db_start = base_memmap[VIRT_GIC_V2M].base;
2765            db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2766            break;
2767        }
2768        resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2769                                        db_start, db_end,
2770                                        VIRTIO_IOMMU_RESV_MEM_T_MSI);
2771
2772        object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2773        object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2774                                resv_prop_str, errp);
2775        g_free(resv_prop_str);
2776    }
2777}
2778
2779static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2780                                        DeviceState *dev, Error **errp)
2781{
2782    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2783
2784    if (vms->platform_bus_dev) {
2785        MachineClass *mc = MACHINE_GET_CLASS(vms);
2786
2787        if (device_is_dynamic_sysbus(mc, dev)) {
2788            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2789                                     SYS_BUS_DEVICE(dev));
2790        }
2791    }
2792
2793    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2794        virt_memory_plug(hotplug_dev, dev, errp);
2795    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2796        virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2797    }
2798
2799    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2800        PCIDevice *pdev = PCI_DEVICE(dev);
2801
2802        vms->iommu = VIRT_IOMMU_VIRTIO;
2803        vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2804        create_virtio_iommu_dt_bindings(vms);
2805    }
2806}
2807
2808static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2809                                     DeviceState *dev, Error **errp)
2810{
2811    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2812
2813    if (!vms->acpi_dev) {
2814        error_setg(errp,
2815                   "memory hotplug is not enabled: missing acpi-ged device");
2816        return;
2817    }
2818
2819    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2820        error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2821        return;
2822    }
2823
2824    hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2825                                   errp);
2826}
2827
2828static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2829                             DeviceState *dev, Error **errp)
2830{
2831    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2832    Error *local_err = NULL;
2833
2834    hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2835    if (local_err) {
2836        goto out;
2837    }
2838
2839    pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2840    qdev_unrealize(dev);
2841
2842out:
2843    error_propagate(errp, local_err);
2844}
2845
2846static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2847                                          DeviceState *dev, Error **errp)
2848{
2849    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2850        virt_dimm_unplug_request(hotplug_dev, dev, errp);
2851    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2852        virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2853                                     errp);
2854    } else {
2855        error_setg(errp, "device unplug request for unsupported device"
2856                   " type: %s", object_get_typename(OBJECT(dev)));
2857    }
2858}
2859
2860static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2861                                          DeviceState *dev, Error **errp)
2862{
2863    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2864        virt_dimm_unplug(hotplug_dev, dev, errp);
2865    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2866        virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2867    } else {
2868        error_setg(errp, "virt: device unplug for unsupported device"
2869                   " type: %s", object_get_typename(OBJECT(dev)));
2870    }
2871}
2872
2873static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2874                                                        DeviceState *dev)
2875{
2876    MachineClass *mc = MACHINE_GET_CLASS(machine);
2877
2878    if (device_is_dynamic_sysbus(mc, dev) ||
2879        object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2880        object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2881        object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2882        return HOTPLUG_HANDLER(machine);
2883    }
2884    return NULL;
2885}
2886
2887/*
2888 * for arm64 kvm_type [7-0] encodes the requested number of bits
2889 * in the IPA address space
2890 */
2891static int virt_kvm_type(MachineState *ms, const char *type_str)
2892{
2893    VirtMachineState *vms = VIRT_MACHINE(ms);
2894    int max_vm_pa_size, requested_pa_size;
2895    bool fixed_ipa;
2896
2897    max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2898
2899    /* we freeze the memory map to compute the highest gpa */
2900    virt_set_memmap(vms, max_vm_pa_size);
2901
2902    requested_pa_size = 64 - clz64(vms->highest_gpa);
2903
2904    /*
2905     * KVM requires the IPA size to be at least 32 bits.
2906     */
2907    if (requested_pa_size < 32) {
2908        requested_pa_size = 32;
2909    }
2910
2911    if (requested_pa_size > max_vm_pa_size) {
2912        error_report("-m and ,maxmem option values "
2913                     "require an IPA range (%d bits) larger than "
2914                     "the one supported by the host (%d bits)",
2915                     requested_pa_size, max_vm_pa_size);
2916        exit(1);
2917    }
2918    /*
2919     * We return the requested PA log size, unless KVM only supports
2920     * the implicit legacy 40b IPA setting, in which case the kvm_type
2921     * must be 0.
2922     */
2923    return fixed_ipa ? 0 : requested_pa_size;
2924}
2925
2926static void virt_machine_class_init(ObjectClass *oc, void *data)
2927{
2928    MachineClass *mc = MACHINE_CLASS(oc);
2929    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2930
2931    mc->init = machvirt_init;
2932    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2933     * The value may be reduced later when we have more information about the
2934     * configuration of the particular instance.
2935     */
2936    mc->max_cpus = 512;
2937    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2938    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2939    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2940    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2941#ifdef CONFIG_TPM
2942    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2943#endif
2944    mc->block_default_type = IF_VIRTIO;
2945    mc->no_cdrom = 1;
2946    mc->pci_allow_0_address = true;
2947    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2948    mc->minimum_page_bits = 12;
2949    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2950    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2951#ifdef CONFIG_TCG
2952    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2953#else
2954    mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2955#endif
2956    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2957    mc->kvm_type = virt_kvm_type;
2958    assert(!mc->get_hotplug_handler);
2959    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2960    hc->pre_plug = virt_machine_device_pre_plug_cb;
2961    hc->plug = virt_machine_device_plug_cb;
2962    hc->unplug_request = virt_machine_device_unplug_request_cb;
2963    hc->unplug = virt_machine_device_unplug_cb;
2964    mc->nvdimm_supported = true;
2965    mc->smp_props.clusters_supported = true;
2966    mc->auto_enable_numa_with_memhp = true;
2967    mc->auto_enable_numa_with_memdev = true;
2968    /* platform instead of architectural choice */
2969    mc->cpu_cluster_has_numa_boundary = true;
2970    mc->default_ram_id = "mach-virt.ram";
2971    mc->default_nic = "virtio-net-pci";
2972
2973    object_class_property_add(oc, "acpi", "OnOffAuto",
2974        virt_get_acpi, virt_set_acpi,
2975        NULL, NULL);
2976    object_class_property_set_description(oc, "acpi",
2977        "Enable ACPI");
2978    object_class_property_add_bool(oc, "secure", virt_get_secure,
2979                                   virt_set_secure);
2980    object_class_property_set_description(oc, "secure",
2981                                                "Set on/off to enable/disable the ARM "
2982                                                "Security Extensions (TrustZone)");
2983
2984    object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2985                                   virt_set_virt);
2986    object_class_property_set_description(oc, "virtualization",
2987                                          "Set on/off to enable/disable emulating a "
2988                                          "guest CPU which implements the ARM "
2989                                          "Virtualization Extensions");
2990
2991    object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2992                                   virt_set_highmem);
2993    object_class_property_set_description(oc, "highmem",
2994                                          "Set on/off to enable/disable using "
2995                                          "physical address space above 32 bits");
2996
2997    object_class_property_add_bool(oc, "compact-highmem",
2998                                   virt_get_compact_highmem,
2999                                   virt_set_compact_highmem);
3000    object_class_property_set_description(oc, "compact-highmem",
3001                                          "Set on/off to enable/disable compact "
3002                                          "layout for high memory regions");
3003
3004    object_class_property_add_bool(oc, "highmem-redists",
3005                                   virt_get_highmem_redists,
3006                                   virt_set_highmem_redists);
3007    object_class_property_set_description(oc, "highmem-redists",
3008                                          "Set on/off to enable/disable high "
3009                                          "memory region for GICv3 or GICv4 "
3010                                          "redistributor");
3011
3012    object_class_property_add_bool(oc, "highmem-ecam",
3013                                   virt_get_highmem_ecam,
3014                                   virt_set_highmem_ecam);
3015    object_class_property_set_description(oc, "highmem-ecam",
3016                                          "Set on/off to enable/disable high "
3017                                          "memory region for PCI ECAM");
3018
3019    object_class_property_add_bool(oc, "highmem-mmio",
3020                                   virt_get_highmem_mmio,
3021                                   virt_set_highmem_mmio);
3022    object_class_property_set_description(oc, "highmem-mmio",
3023                                          "Set on/off to enable/disable high "
3024                                          "memory region for PCI MMIO");
3025
3026    object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3027                                  virt_set_gic_version);
3028    object_class_property_set_description(oc, "gic-version",
3029                                          "Set GIC version. "
3030                                          "Valid values are 2, 3, 4, host and max");
3031
3032    object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3033    object_class_property_set_description(oc, "iommu",
3034                                          "Set the IOMMU type. "
3035                                          "Valid values are none and smmuv3");
3036
3037    object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3038                                   virt_get_default_bus_bypass_iommu,
3039                                   virt_set_default_bus_bypass_iommu);
3040    object_class_property_set_description(oc, "default-bus-bypass-iommu",
3041                                          "Set on/off to enable/disable "
3042                                          "bypass_iommu for default root bus");
3043
3044    object_class_property_add_bool(oc, "ras", virt_get_ras,
3045                                   virt_set_ras);
3046    object_class_property_set_description(oc, "ras",
3047                                          "Set on/off to enable/disable reporting host memory errors "
3048                                          "to a KVM guest using ACPI and guest external abort exceptions");
3049
3050    object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3051    object_class_property_set_description(oc, "mte",
3052                                          "Set on/off to enable/disable emulating a "
3053                                          "guest CPU which implements the ARM "
3054                                          "Memory Tagging Extension");
3055
3056    object_class_property_add_bool(oc, "its", virt_get_its,
3057                                   virt_set_its);
3058    object_class_property_set_description(oc, "its",
3059                                          "Set on/off to enable/disable "
3060                                          "ITS instantiation");
3061
3062    object_class_property_add_bool(oc, "dtb-randomness",
3063                                   virt_get_dtb_randomness,
3064                                   virt_set_dtb_randomness);
3065    object_class_property_set_description(oc, "dtb-randomness",
3066                                          "Set off to disable passing random or "
3067                                          "non-deterministic dtb nodes to guest");
3068
3069    object_class_property_add_bool(oc, "dtb-kaslr-seed",
3070                                   virt_get_dtb_randomness,
3071                                   virt_set_dtb_randomness);
3072    object_class_property_set_description(oc, "dtb-kaslr-seed",
3073                                          "Deprecated synonym of dtb-randomness");
3074
3075    object_class_property_add_str(oc, "x-oem-id",
3076                                  virt_get_oem_id,
3077                                  virt_set_oem_id);
3078    object_class_property_set_description(oc, "x-oem-id",
3079                                          "Override the default value of field OEMID "
3080                                          "in ACPI table header."
3081                                          "The string may be up to 6 bytes in size");
3082
3083
3084    object_class_property_add_str(oc, "x-oem-table-id",
3085                                  virt_get_oem_table_id,
3086                                  virt_set_oem_table_id);
3087    object_class_property_set_description(oc, "x-oem-table-id",
3088                                          "Override the default value of field OEM Table ID "
3089                                          "in ACPI table header."
3090                                          "The string may be up to 8 bytes in size");
3091
3092}
3093
3094static void virt_instance_init(Object *obj)
3095{
3096    VirtMachineState *vms = VIRT_MACHINE(obj);
3097    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3098
3099    /* EL3 is disabled by default on virt: this makes us consistent
3100     * between KVM and TCG for this board, and it also allows us to
3101     * boot UEFI blobs which assume no TrustZone support.
3102     */
3103    vms->secure = false;
3104
3105    /* EL2 is also disabled by default, for similar reasons */
3106    vms->virt = false;
3107
3108    /* High memory is enabled by default */
3109    vms->highmem = true;
3110    vms->highmem_compact = !vmc->no_highmem_compact;
3111    vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3112
3113    vms->highmem_ecam = !vmc->no_highmem_ecam;
3114    vms->highmem_mmio = true;
3115    vms->highmem_redists = true;
3116
3117    if (vmc->no_its) {
3118        vms->its = false;
3119    } else {
3120        /* Default allows ITS instantiation */
3121        vms->its = true;
3122
3123        if (vmc->no_tcg_its) {
3124            vms->tcg_its = false;
3125        } else {
3126            vms->tcg_its = true;
3127        }
3128    }
3129
3130    /* Default disallows iommu instantiation */
3131    vms->iommu = VIRT_IOMMU_NONE;
3132
3133    /* The default root bus is attached to iommu by default */
3134    vms->default_bus_bypass_iommu = false;
3135
3136    /* Default disallows RAS instantiation */
3137    vms->ras = false;
3138
3139    /* MTE is disabled by default.  */
3140    vms->mte = false;
3141
3142    /* Supply kaslr-seed and rng-seed by default */
3143    vms->dtb_randomness = true;
3144
3145    vms->irqmap = a15irqmap;
3146
3147    virt_flash_create(vms);
3148
3149    vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3150    vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3151}
3152
3153static const TypeInfo virt_machine_info = {
3154    .name          = TYPE_VIRT_MACHINE,
3155    .parent        = TYPE_MACHINE,
3156    .abstract      = true,
3157    .instance_size = sizeof(VirtMachineState),
3158    .class_size    = sizeof(VirtMachineClass),
3159    .class_init    = virt_machine_class_init,
3160    .instance_init = virt_instance_init,
3161    .interfaces = (InterfaceInfo[]) {
3162         { TYPE_HOTPLUG_HANDLER },
3163         { }
3164    },
3165};
3166
3167static void machvirt_machine_init(void)
3168{
3169    type_register_static(&virt_machine_info);
3170}
3171type_init(machvirt_machine_init);
3172
3173static void virt_machine_8_1_options(MachineClass *mc)
3174{
3175}
3176DEFINE_VIRT_MACHINE_AS_LATEST(8, 1)
3177
3178static void virt_machine_8_0_options(MachineClass *mc)
3179{
3180    virt_machine_8_1_options(mc);
3181    compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3182}
3183DEFINE_VIRT_MACHINE(8, 0)
3184
3185static void virt_machine_7_2_options(MachineClass *mc)
3186{
3187    virt_machine_8_0_options(mc);
3188    compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3189}
3190DEFINE_VIRT_MACHINE(7, 2)
3191
3192static void virt_machine_7_1_options(MachineClass *mc)
3193{
3194    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3195
3196    virt_machine_7_2_options(mc);
3197    compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3198    /* Compact layout for high memory regions was introduced with 7.2 */
3199    vmc->no_highmem_compact = true;
3200}
3201DEFINE_VIRT_MACHINE(7, 1)
3202
3203static void virt_machine_7_0_options(MachineClass *mc)
3204{
3205    virt_machine_7_1_options(mc);
3206    compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3207}
3208DEFINE_VIRT_MACHINE(7, 0)
3209
3210static void virt_machine_6_2_options(MachineClass *mc)
3211{
3212    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3213
3214    virt_machine_7_0_options(mc);
3215    compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3216    vmc->no_tcg_lpa2 = true;
3217}
3218DEFINE_VIRT_MACHINE(6, 2)
3219
3220static void virt_machine_6_1_options(MachineClass *mc)
3221{
3222    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3223
3224    virt_machine_6_2_options(mc);
3225    compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3226    mc->smp_props.prefer_sockets = true;
3227    vmc->no_cpu_topology = true;
3228
3229    /* qemu ITS was introduced with 6.2 */
3230    vmc->no_tcg_its = true;
3231}
3232DEFINE_VIRT_MACHINE(6, 1)
3233
3234static void virt_machine_6_0_options(MachineClass *mc)
3235{
3236    virt_machine_6_1_options(mc);
3237    compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3238}
3239DEFINE_VIRT_MACHINE(6, 0)
3240
3241static void virt_machine_5_2_options(MachineClass *mc)
3242{
3243    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3244
3245    virt_machine_6_0_options(mc);
3246    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3247    vmc->no_secure_gpio = true;
3248}
3249DEFINE_VIRT_MACHINE(5, 2)
3250
3251static void virt_machine_5_1_options(MachineClass *mc)
3252{
3253    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3254
3255    virt_machine_5_2_options(mc);
3256    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3257    vmc->no_kvm_steal_time = true;
3258}
3259DEFINE_VIRT_MACHINE(5, 1)
3260
3261static void virt_machine_5_0_options(MachineClass *mc)
3262{
3263    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3264
3265    virt_machine_5_1_options(mc);
3266    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3267    mc->numa_mem_supported = true;
3268    vmc->acpi_expose_flash = true;
3269    mc->auto_enable_numa_with_memdev = false;
3270}
3271DEFINE_VIRT_MACHINE(5, 0)
3272
3273static void virt_machine_4_2_options(MachineClass *mc)
3274{
3275    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3276
3277    virt_machine_5_0_options(mc);
3278    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3279    vmc->kvm_no_adjvtime = true;
3280}
3281DEFINE_VIRT_MACHINE(4, 2)
3282
3283static void virt_machine_4_1_options(MachineClass *mc)
3284{
3285    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3286
3287    virt_machine_4_2_options(mc);
3288    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3289    vmc->no_ged = true;
3290    mc->auto_enable_numa_with_memhp = false;
3291}
3292DEFINE_VIRT_MACHINE(4, 1)
3293
3294static void virt_machine_4_0_options(MachineClass *mc)
3295{
3296    virt_machine_4_1_options(mc);
3297    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3298}
3299DEFINE_VIRT_MACHINE(4, 0)
3300
3301static void virt_machine_3_1_options(MachineClass *mc)
3302{
3303    virt_machine_4_0_options(mc);
3304    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3305}
3306DEFINE_VIRT_MACHINE(3, 1)
3307
3308static void virt_machine_3_0_options(MachineClass *mc)
3309{
3310    virt_machine_3_1_options(mc);
3311    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3312}
3313DEFINE_VIRT_MACHINE(3, 0)
3314
3315static void virt_machine_2_12_options(MachineClass *mc)
3316{
3317    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3318
3319    virt_machine_3_0_options(mc);
3320    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3321    vmc->no_highmem_ecam = true;
3322    mc->max_cpus = 255;
3323}
3324DEFINE_VIRT_MACHINE(2, 12)
3325
3326static void virt_machine_2_11_options(MachineClass *mc)
3327{
3328    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3329
3330    virt_machine_2_12_options(mc);
3331    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3332    vmc->smbios_old_sys_ver = true;
3333}
3334DEFINE_VIRT_MACHINE(2, 11)
3335
3336static void virt_machine_2_10_options(MachineClass *mc)
3337{
3338    virt_machine_2_11_options(mc);
3339    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3340    /* before 2.11 we never faulted accesses to bad addresses */
3341    mc->ignore_memory_transaction_failures = true;
3342}
3343DEFINE_VIRT_MACHINE(2, 10)
3344
3345static void virt_machine_2_9_options(MachineClass *mc)
3346{
3347    virt_machine_2_10_options(mc);
3348    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3349}
3350DEFINE_VIRT_MACHINE(2, 9)
3351
3352static void virt_machine_2_8_options(MachineClass *mc)
3353{
3354    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3355
3356    virt_machine_2_9_options(mc);
3357    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3358    /* For 2.8 and earlier we falsely claimed in the DT that
3359     * our timers were edge-triggered, not level-triggered.
3360     */
3361    vmc->claim_edge_triggered_timers = true;
3362}
3363DEFINE_VIRT_MACHINE(2, 8)
3364
3365static void virt_machine_2_7_options(MachineClass *mc)
3366{
3367    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3368
3369    virt_machine_2_8_options(mc);
3370    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3371    /* ITS was introduced with 2.8 */
3372    vmc->no_its = true;
3373    /* Stick with 1K pages for migration compatibility */
3374    mc->minimum_page_bits = 0;
3375}
3376DEFINE_VIRT_MACHINE(2, 7)
3377
3378static void virt_machine_2_6_options(MachineClass *mc)
3379{
3380    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3381
3382    virt_machine_2_7_options(mc);
3383    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3384    vmc->disallow_affinity_adjustment = true;
3385    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3386    vmc->no_pmu = true;
3387}
3388DEFINE_VIRT_MACHINE(2, 6)
3389