qemu/hw/char/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Reference: Xilinx Zynq 7000 reference manual
   5 *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
   6 *   - Chapter 19 UART Controller
   7 *   - Appendix B for Register details
   8 *
   9 * Copyright (c) 2010 Xilinx Inc.
  10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11 * Copyright (c) 2012 PetaLogix Pty Ltd.
  12 * Written by Haibing Ma
  13 *            M.Habib
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/sysbus.h"
  26#include "migration/vmstate.h"
  27#include "chardev/char-fe.h"
  28#include "chardev/char-serial.h"
  29#include "qemu/timer.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "hw/char/cadence_uart.h"
  33#include "hw/irq.h"
  34#include "hw/qdev-clock.h"
  35#include "hw/qdev-properties-system.h"
  36#include "trace.h"
  37
  38#ifdef CADENCE_UART_ERR_DEBUG
  39#define DB_PRINT(...) do { \
  40    fprintf(stderr,  ": %s: ", __func__); \
  41    fprintf(stderr, ## __VA_ARGS__); \
  42    } while (0)
  43#else
  44    #define DB_PRINT(...)
  45#endif
  46
  47#define UART_SR_INTR_RTRIG     0x00000001
  48#define UART_SR_INTR_REMPTY    0x00000002
  49#define UART_SR_INTR_RFUL      0x00000004
  50#define UART_SR_INTR_TEMPTY    0x00000008
  51#define UART_SR_INTR_TFUL      0x00000010
  52/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  53#define UART_SR_TTRIG          0x00002000
  54#define UART_INTR_TTRIG        0x00000400
  55/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  56 * SR, then the same bit in CISR is set high too */
  57#define UART_SR_TO_CISR_MASK   0x0000001F
  58
  59#define UART_INTR_ROVR         0x00000020
  60#define UART_INTR_FRAME        0x00000040
  61#define UART_INTR_PARE         0x00000080
  62#define UART_INTR_TIMEOUT      0x00000100
  63#define UART_INTR_DMSI         0x00000200
  64#define UART_INTR_TOVR         0x00001000
  65
  66#define UART_SR_RACTIVE    0x00000400
  67#define UART_SR_TACTIVE    0x00000800
  68#define UART_SR_FDELT      0x00001000
  69
  70#define UART_CR_RXRST       0x00000001
  71#define UART_CR_TXRST       0x00000002
  72#define UART_CR_RX_EN       0x00000004
  73#define UART_CR_RX_DIS      0x00000008
  74#define UART_CR_TX_EN       0x00000010
  75#define UART_CR_TX_DIS      0x00000020
  76#define UART_CR_RST_TO      0x00000040
  77#define UART_CR_STARTBRK    0x00000080
  78#define UART_CR_STOPBRK     0x00000100
  79
  80#define UART_MR_CLKS            0x00000001
  81#define UART_MR_CHRL            0x00000006
  82#define UART_MR_CHRL_SH         1
  83#define UART_MR_PAR             0x00000038
  84#define UART_MR_PAR_SH          3
  85#define UART_MR_NBSTOP          0x000000C0
  86#define UART_MR_NBSTOP_SH       6
  87#define UART_MR_CHMODE          0x00000300
  88#define UART_MR_CHMODE_SH       8
  89#define UART_MR_UCLKEN          0x00000400
  90#define UART_MR_IRMODE          0x00000800
  91
  92#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  93#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  94#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  95#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  96#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  97#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  98#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  99#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
 100#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
 101#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
 102
 103#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
 104
 105#define R_CR       (0x00/4)
 106#define R_MR       (0x04/4)
 107#define R_IER      (0x08/4)
 108#define R_IDR      (0x0C/4)
 109#define R_IMR      (0x10/4)
 110#define R_CISR     (0x14/4)
 111#define R_BRGR     (0x18/4)
 112#define R_RTOR     (0x1C/4)
 113#define R_RTRIG    (0x20/4)
 114#define R_MCR      (0x24/4)
 115#define R_MSR      (0x28/4)
 116#define R_SR       (0x2C/4)
 117#define R_TX_RX    (0x30/4)
 118#define R_BDIV     (0x34/4)
 119#define R_FDEL     (0x38/4)
 120#define R_PMIN     (0x3C/4)
 121#define R_PWID     (0x40/4)
 122#define R_TTRIG    (0x44/4)
 123
 124
 125static void uart_update_status(CadenceUARTState *s)
 126{
 127    s->r[R_SR] = 0;
 128
 129    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 130                                                           : 0;
 131    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 132    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 133
 134    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 135                                                           : 0;
 136    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 137    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 138
 139    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 140    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 141    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 142}
 143
 144static void fifo_trigger_update(void *opaque)
 145{
 146    CadenceUARTState *s = opaque;
 147
 148    if (s->r[R_RTOR]) {
 149        s->r[R_CISR] |= UART_INTR_TIMEOUT;
 150        uart_update_status(s);
 151    }
 152}
 153
 154static void uart_rx_reset(CadenceUARTState *s)
 155{
 156    s->rx_wpos = 0;
 157    s->rx_count = 0;
 158    qemu_chr_fe_accept_input(&s->chr);
 159}
 160
 161static void uart_tx_reset(CadenceUARTState *s)
 162{
 163    s->tx_count = 0;
 164}
 165
 166static void uart_send_breaks(CadenceUARTState *s)
 167{
 168    int break_enabled = 1;
 169
 170    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 171                      &break_enabled);
 172}
 173
 174static void uart_parameters_setup(CadenceUARTState *s)
 175{
 176    QEMUSerialSetParams ssp;
 177    unsigned int baud_rate, packet_size, input_clk;
 178    input_clk = clock_get_hz(s->refclk);
 179
 180    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
 181    baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 182    trace_cadence_uart_baudrate(baud_rate);
 183
 184    ssp.speed = baud_rate;
 185
 186    packet_size = 1;
 187
 188    switch (s->r[R_MR] & UART_MR_PAR) {
 189    case UART_PARITY_EVEN:
 190        ssp.parity = 'E';
 191        packet_size++;
 192        break;
 193    case UART_PARITY_ODD:
 194        ssp.parity = 'O';
 195        packet_size++;
 196        break;
 197    default:
 198        ssp.parity = 'N';
 199        break;
 200    }
 201
 202    switch (s->r[R_MR] & UART_MR_CHRL) {
 203    case UART_DATA_BITS_6:
 204        ssp.data_bits = 6;
 205        break;
 206    case UART_DATA_BITS_7:
 207        ssp.data_bits = 7;
 208        break;
 209    default:
 210        ssp.data_bits = 8;
 211        break;
 212    }
 213
 214    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 215    case UART_STOP_BITS_1:
 216        ssp.stop_bits = 1;
 217        break;
 218    default:
 219        ssp.stop_bits = 2;
 220        break;
 221    }
 222
 223    packet_size += ssp.data_bits + ssp.stop_bits;
 224    if (ssp.speed == 0) {
 225        /*
 226         * Avoid division-by-zero below.
 227         * TODO: find something better
 228         */
 229        ssp.speed = 1;
 230    }
 231    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 232    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 233}
 234
 235static int uart_can_receive(void *opaque)
 236{
 237    CadenceUARTState *s = opaque;
 238    int ret;
 239    uint32_t ch_mode;
 240
 241    /* ignore characters when unclocked or in reset */
 242    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
 243        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
 244                      __func__);
 245        return 0;
 246    }
 247
 248    ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 249    ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 250
 251    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 252        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 253    }
 254    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 255        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 256    }
 257    return ret;
 258}
 259
 260static void uart_ctrl_update(CadenceUARTState *s)
 261{
 262    if (s->r[R_CR] & UART_CR_TXRST) {
 263        uart_tx_reset(s);
 264    }
 265
 266    if (s->r[R_CR] & UART_CR_RXRST) {
 267        uart_rx_reset(s);
 268    }
 269
 270    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 271
 272    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 273        uart_send_breaks(s);
 274    }
 275}
 276
 277static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 278{
 279    CadenceUARTState *s = opaque;
 280    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 281    int i;
 282
 283    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 284        return;
 285    }
 286
 287    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 288        s->r[R_CISR] |= UART_INTR_ROVR;
 289    } else {
 290        for (i = 0; i < size; i++) {
 291            s->rx_fifo[s->rx_wpos] = buf[i];
 292            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 293            s->rx_count++;
 294        }
 295        timer_mod(s->fifo_trigger_handle, new_rx_time +
 296                                                (s->char_tx_time * 4));
 297    }
 298    uart_update_status(s);
 299}
 300
 301static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond,
 302                                  void *opaque)
 303{
 304    CadenceUARTState *s = opaque;
 305    int ret;
 306
 307    /* instant drain the fifo when there's no back-end */
 308    if (!qemu_chr_fe_backend_connected(&s->chr)) {
 309        s->tx_count = 0;
 310        return FALSE;
 311    }
 312
 313    if (!s->tx_count) {
 314        return FALSE;
 315    }
 316
 317    ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
 318
 319    if (ret >= 0) {
 320        s->tx_count -= ret;
 321        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 322    }
 323
 324    if (s->tx_count) {
 325        guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
 326                                        cadence_uart_xmit, s);
 327        if (!r) {
 328            s->tx_count = 0;
 329            return FALSE;
 330        }
 331    }
 332
 333    uart_update_status(s);
 334    return FALSE;
 335}
 336
 337static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 338                               int size)
 339{
 340    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 341        return;
 342    }
 343
 344    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 345        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 346        /*
 347         * This can only be a guest error via a bad tx fifo register push,
 348         * as can_receive() should stop remote loop and echo modes ever getting
 349         * us to here.
 350         */
 351        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 352        s->r[R_CISR] |= UART_INTR_ROVR;
 353    }
 354
 355    memcpy(s->tx_fifo + s->tx_count, buf, size);
 356    s->tx_count += size;
 357
 358    cadence_uart_xmit(NULL, G_IO_OUT, s);
 359}
 360
 361static void uart_receive(void *opaque, const uint8_t *buf, int size)
 362{
 363    CadenceUARTState *s = opaque;
 364    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 365
 366    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 367        uart_write_rx_fifo(opaque, buf, size);
 368    }
 369    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 370        uart_write_tx_fifo(s, buf, size);
 371    }
 372}
 373
 374static void uart_event(void *opaque, QEMUChrEvent event)
 375{
 376    CadenceUARTState *s = opaque;
 377    uint8_t buf = '\0';
 378
 379    /* ignore characters when unclocked or in reset */
 380    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
 381        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
 382                      __func__);
 383        return;
 384    }
 385
 386    if (event == CHR_EVENT_BREAK) {
 387        uart_write_rx_fifo(opaque, &buf, 1);
 388    }
 389
 390    uart_update_status(s);
 391}
 392
 393static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 394{
 395    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 396        return;
 397    }
 398
 399    if (s->rx_count) {
 400        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 401                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 402        *c = s->rx_fifo[rx_rpos];
 403        s->rx_count--;
 404
 405        qemu_chr_fe_accept_input(&s->chr);
 406    } else {
 407        *c = 0;
 408    }
 409
 410    uart_update_status(s);
 411}
 412
 413static MemTxResult uart_write(void *opaque, hwaddr offset,
 414                              uint64_t value, unsigned size, MemTxAttrs attrs)
 415{
 416    CadenceUARTState *s = opaque;
 417
 418    /* ignore access when unclocked or in reset */
 419    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
 420        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
 421                      __func__);
 422        return MEMTX_ERROR;
 423    }
 424
 425    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 426    offset >>= 2;
 427    if (offset >= CADENCE_UART_R_MAX) {
 428        return MEMTX_DECODE_ERROR;
 429    }
 430    switch (offset) {
 431    case R_IER: /* ier (wts imr) */
 432        s->r[R_IMR] |= value;
 433        break;
 434    case R_IDR: /* idr (wtc imr) */
 435        s->r[R_IMR] &= ~value;
 436        break;
 437    case R_IMR: /* imr (read only) */
 438        break;
 439    case R_CISR: /* cisr (wtc) */
 440        s->r[R_CISR] &= ~value;
 441        break;
 442    case R_TX_RX: /* UARTDR */
 443        switch (s->r[R_MR] & UART_MR_CHMODE) {
 444        case NORMAL_MODE:
 445            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 446            break;
 447        case LOCAL_LOOPBACK:
 448            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 449            break;
 450        }
 451        break;
 452    case R_BRGR: /* Baud rate generator */
 453        value &= 0xffff;
 454        if (value >= 0x01) {
 455            s->r[offset] = value;
 456        }
 457        break;
 458    case R_BDIV:    /* Baud rate divider */
 459        value &= 0xff;
 460        if (value >= 0x04) {
 461            s->r[offset] = value;
 462        }
 463        break;
 464    default:
 465        s->r[offset] = value;
 466    }
 467
 468    switch (offset) {
 469    case R_CR:
 470        uart_ctrl_update(s);
 471        break;
 472    case R_MR:
 473        uart_parameters_setup(s);
 474        break;
 475    }
 476    uart_update_status(s);
 477
 478    return MEMTX_OK;
 479}
 480
 481static MemTxResult uart_read(void *opaque, hwaddr offset,
 482                             uint64_t *value, unsigned size, MemTxAttrs attrs)
 483{
 484    CadenceUARTState *s = opaque;
 485    uint32_t c = 0;
 486
 487    /* ignore access when unclocked or in reset */
 488    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
 489        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
 490                      __func__);
 491        return MEMTX_ERROR;
 492    }
 493
 494    offset >>= 2;
 495    if (offset >= CADENCE_UART_R_MAX) {
 496        return MEMTX_DECODE_ERROR;
 497    }
 498    if (offset == R_TX_RX) {
 499        uart_read_rx_fifo(s, &c);
 500    } else {
 501        c = s->r[offset];
 502    }
 503
 504    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 505    *value = c;
 506    return MEMTX_OK;
 507}
 508
 509static const MemoryRegionOps uart_ops = {
 510    .read_with_attrs = uart_read,
 511    .write_with_attrs = uart_write,
 512    .endianness = DEVICE_NATIVE_ENDIAN,
 513};
 514
 515static void cadence_uart_reset_init(Object *obj, ResetType type)
 516{
 517    CadenceUARTState *s = CADENCE_UART(obj);
 518
 519    s->r[R_CR] = 0x00000128;
 520    s->r[R_IMR] = 0;
 521    s->r[R_CISR] = 0;
 522    s->r[R_RTRIG] = 0x00000020;
 523    s->r[R_BRGR] = 0x0000028B;
 524    s->r[R_BDIV] = 0x0000000F;
 525    s->r[R_TTRIG] = 0x00000020;
 526}
 527
 528static void cadence_uart_reset_hold(Object *obj)
 529{
 530    CadenceUARTState *s = CADENCE_UART(obj);
 531
 532    uart_rx_reset(s);
 533    uart_tx_reset(s);
 534
 535    uart_update_status(s);
 536}
 537
 538static void cadence_uart_realize(DeviceState *dev, Error **errp)
 539{
 540    CadenceUARTState *s = CADENCE_UART(dev);
 541
 542    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 543                                          fifo_trigger_update, s);
 544
 545    qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
 546                             uart_event, NULL, s, NULL, true);
 547}
 548
 549static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
 550{
 551    CadenceUARTState *s = opaque;
 552
 553    /* recompute uart's speed on clock change */
 554    uart_parameters_setup(s);
 555}
 556
 557static void cadence_uart_init(Object *obj)
 558{
 559    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 560    CadenceUARTState *s = CADENCE_UART(obj);
 561
 562    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 563    sysbus_init_mmio(sbd, &s->iomem);
 564    sysbus_init_irq(sbd, &s->irq);
 565
 566    s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
 567                                   cadence_uart_refclk_update, s, ClockUpdate);
 568    /* initialize the frequency in case the clock remains unconnected */
 569    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
 570
 571    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 572}
 573
 574static int cadence_uart_pre_load(void *opaque)
 575{
 576    CadenceUARTState *s = opaque;
 577
 578    /* the frequency will be overriden if the refclk field is present */
 579    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
 580    return 0;
 581}
 582
 583static int cadence_uart_post_load(void *opaque, int version_id)
 584{
 585    CadenceUARTState *s = opaque;
 586
 587    /* Ensure these two aren't invalid numbers */
 588    if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
 589        s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
 590        /* Value is invalid, abort */
 591        return 1;
 592    }
 593
 594    uart_parameters_setup(s);
 595    uart_update_status(s);
 596    return 0;
 597}
 598
 599static const VMStateDescription vmstate_cadence_uart = {
 600    .name = "cadence_uart",
 601    .version_id = 3,
 602    .minimum_version_id = 2,
 603    .pre_load = cadence_uart_pre_load,
 604    .post_load = cadence_uart_post_load,
 605    .fields = (VMStateField[]) {
 606        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 607        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 608                            CADENCE_UART_RX_FIFO_SIZE),
 609        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 610                            CADENCE_UART_TX_FIFO_SIZE),
 611        VMSTATE_UINT32(rx_count, CadenceUARTState),
 612        VMSTATE_UINT32(tx_count, CadenceUARTState),
 613        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 614        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 615        VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
 616        VMSTATE_END_OF_LIST()
 617    },
 618};
 619
 620static Property cadence_uart_properties[] = {
 621    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
 622    DEFINE_PROP_END_OF_LIST(),
 623};
 624
 625static void cadence_uart_class_init(ObjectClass *klass, void *data)
 626{
 627    DeviceClass *dc = DEVICE_CLASS(klass);
 628    ResettableClass *rc = RESETTABLE_CLASS(klass);
 629
 630    dc->realize = cadence_uart_realize;
 631    dc->vmsd = &vmstate_cadence_uart;
 632    rc->phases.enter = cadence_uart_reset_init;
 633    rc->phases.hold  = cadence_uart_reset_hold;
 634    device_class_set_props(dc, cadence_uart_properties);
 635  }
 636
 637static const TypeInfo cadence_uart_info = {
 638    .name          = TYPE_CADENCE_UART,
 639    .parent        = TYPE_SYS_BUS_DEVICE,
 640    .instance_size = sizeof(CadenceUARTState),
 641    .instance_init = cadence_uart_init,
 642    .class_init    = cadence_uart_class_init,
 643};
 644
 645static void cadence_uart_register_types(void)
 646{
 647    type_register_static(&cadence_uart_info);
 648}
 649
 650type_init(cadence_uart_register_types)
 651