qemu/hw/core/loader.c
<<
>>
Prefs
   1/*
   2 * QEMU Executable loader
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 *
  24 * Gunzip functionality in this file is derived from u-boot:
  25 *
  26 * (C) Copyright 2008 Semihalf
  27 *
  28 * (C) Copyright 2000-2005
  29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  30 *
  31 * This program is free software; you can redistribute it and/or
  32 * modify it under the terms of the GNU General Public License as
  33 * published by the Free Software Foundation; either version 2 of
  34 * the License, or (at your option) any later version.
  35 *
  36 * This program is distributed in the hope that it will be useful,
  37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  39 * GNU General Public License for more details.
  40 *
  41 * You should have received a copy of the GNU General Public License along
  42 * with this program; if not, see <http://www.gnu.org/licenses/>.
  43 */
  44
  45#include "qemu/osdep.h"
  46#include "qemu/datadir.h"
  47#include "qemu/error-report.h"
  48#include "qapi/error.h"
  49#include "qapi/qapi-commands-machine.h"
  50#include "qapi/type-helpers.h"
  51#include "trace.h"
  52#include "hw/hw.h"
  53#include "disas/disas.h"
  54#include "migration/vmstate.h"
  55#include "monitor/monitor.h"
  56#include "sysemu/reset.h"
  57#include "sysemu/sysemu.h"
  58#include "uboot_image.h"
  59#include "hw/loader.h"
  60#include "hw/nvram/fw_cfg.h"
  61#include "exec/memory.h"
  62#include "hw/boards.h"
  63#include "qemu/cutils.h"
  64#include "sysemu/runstate.h"
  65#include "accel/tcg/debuginfo.h"
  66
  67#include <zlib.h>
  68
  69static int roms_loaded;
  70
  71/* return the size or -1 if error */
  72int64_t get_image_size(const char *filename)
  73{
  74    int fd;
  75    int64_t size;
  76    fd = open(filename, O_RDONLY | O_BINARY);
  77    if (fd < 0)
  78        return -1;
  79    size = lseek(fd, 0, SEEK_END);
  80    close(fd);
  81    return size;
  82}
  83
  84/* return the size or -1 if error */
  85ssize_t load_image_size(const char *filename, void *addr, size_t size)
  86{
  87    int fd;
  88    ssize_t actsize, l = 0;
  89
  90    fd = open(filename, O_RDONLY | O_BINARY);
  91    if (fd < 0) {
  92        return -1;
  93    }
  94
  95    while ((actsize = read(fd, addr + l, size - l)) > 0) {
  96        l += actsize;
  97    }
  98
  99    close(fd);
 100
 101    return actsize < 0 ? -1 : l;
 102}
 103
 104/* read()-like version */
 105ssize_t read_targphys(const char *name,
 106                      int fd, hwaddr dst_addr, size_t nbytes)
 107{
 108    uint8_t *buf;
 109    ssize_t did;
 110
 111    buf = g_malloc(nbytes);
 112    did = read(fd, buf, nbytes);
 113    if (did > 0)
 114        rom_add_blob_fixed("read", buf, did, dst_addr);
 115    g_free(buf);
 116    return did;
 117}
 118
 119ssize_t load_image_targphys(const char *filename,
 120                            hwaddr addr, uint64_t max_sz)
 121{
 122    return load_image_targphys_as(filename, addr, max_sz, NULL);
 123}
 124
 125/* return the size or -1 if error */
 126ssize_t load_image_targphys_as(const char *filename,
 127                               hwaddr addr, uint64_t max_sz, AddressSpace *as)
 128{
 129    ssize_t size;
 130
 131    size = get_image_size(filename);
 132    if (size < 0 || size > max_sz) {
 133        return -1;
 134    }
 135    if (size > 0) {
 136        if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
 137            return -1;
 138        }
 139    }
 140    return size;
 141}
 142
 143ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
 144{
 145    ssize_t size;
 146
 147    if (!memory_access_is_direct(mr, false)) {
 148        /* Can only load an image into RAM or ROM */
 149        return -1;
 150    }
 151
 152    size = get_image_size(filename);
 153
 154    if (size < 0 || size > memory_region_size(mr)) {
 155        return -1;
 156    }
 157    if (size > 0) {
 158        if (rom_add_file_mr(filename, mr, -1) < 0) {
 159            return -1;
 160        }
 161    }
 162    return size;
 163}
 164
 165void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
 166                      const char *source)
 167{
 168    const char *nulp;
 169    char *ptr;
 170
 171    if (buf_size <= 0) return;
 172    nulp = memchr(source, 0, buf_size);
 173    if (nulp) {
 174        rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
 175    } else {
 176        rom_add_blob_fixed(name, source, buf_size, dest);
 177        ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
 178        *ptr = 0;
 179    }
 180}
 181
 182/* A.OUT loader */
 183
 184struct exec
 185{
 186  uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
 187  uint32_t a_text;   /* length of text, in bytes */
 188  uint32_t a_data;   /* length of data, in bytes */
 189  uint32_t a_bss;    /* length of uninitialized data area, in bytes */
 190  uint32_t a_syms;   /* length of symbol table data in file, in bytes */
 191  uint32_t a_entry;  /* start address */
 192  uint32_t a_trsize; /* length of relocation info for text, in bytes */
 193  uint32_t a_drsize; /* length of relocation info for data, in bytes */
 194};
 195
 196static void bswap_ahdr(struct exec *e)
 197{
 198    bswap32s(&e->a_info);
 199    bswap32s(&e->a_text);
 200    bswap32s(&e->a_data);
 201    bswap32s(&e->a_bss);
 202    bswap32s(&e->a_syms);
 203    bswap32s(&e->a_entry);
 204    bswap32s(&e->a_trsize);
 205    bswap32s(&e->a_drsize);
 206}
 207
 208#define N_MAGIC(exec) ((exec).a_info & 0xffff)
 209#define OMAGIC 0407
 210#define NMAGIC 0410
 211#define ZMAGIC 0413
 212#define QMAGIC 0314
 213#define _N_HDROFF(x) (1024 - sizeof (struct exec))
 214#define N_TXTOFF(x)                                                 \
 215    (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
 216     (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
 217#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
 218#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
 219
 220#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
 221
 222#define N_DATADDR(x, target_page_size) \
 223    (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
 224     : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
 225
 226
 227ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
 228                  int bswap_needed, hwaddr target_page_size)
 229{
 230    int fd;
 231    ssize_t size, ret;
 232    struct exec e;
 233    uint32_t magic;
 234
 235    fd = open(filename, O_RDONLY | O_BINARY);
 236    if (fd < 0)
 237        return -1;
 238
 239    size = read(fd, &e, sizeof(e));
 240    if (size < 0)
 241        goto fail;
 242
 243    if (bswap_needed) {
 244        bswap_ahdr(&e);
 245    }
 246
 247    magic = N_MAGIC(e);
 248    switch (magic) {
 249    case ZMAGIC:
 250    case QMAGIC:
 251    case OMAGIC:
 252        if (e.a_text + e.a_data > max_sz)
 253            goto fail;
 254        lseek(fd, N_TXTOFF(e), SEEK_SET);
 255        size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
 256        if (size < 0)
 257            goto fail;
 258        break;
 259    case NMAGIC:
 260        if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
 261            goto fail;
 262        lseek(fd, N_TXTOFF(e), SEEK_SET);
 263        size = read_targphys(filename, fd, addr, e.a_text);
 264        if (size < 0)
 265            goto fail;
 266        ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
 267                            e.a_data);
 268        if (ret < 0)
 269            goto fail;
 270        size += ret;
 271        break;
 272    default:
 273        goto fail;
 274    }
 275    close(fd);
 276    return size;
 277 fail:
 278    close(fd);
 279    return -1;
 280}
 281
 282/* ELF loader */
 283
 284static void *load_at(int fd, off_t offset, size_t size)
 285{
 286    void *ptr;
 287    if (lseek(fd, offset, SEEK_SET) < 0)
 288        return NULL;
 289    ptr = g_malloc(size);
 290    if (read(fd, ptr, size) != size) {
 291        g_free(ptr);
 292        return NULL;
 293    }
 294    return ptr;
 295}
 296
 297#ifdef ELF_CLASS
 298#undef ELF_CLASS
 299#endif
 300
 301#define ELF_CLASS   ELFCLASS32
 302#include "elf.h"
 303
 304#define SZ              32
 305#define elf_word        uint32_t
 306#define elf_sword       int32_t
 307#define bswapSZs        bswap32s
 308#include "hw/elf_ops.h"
 309
 310#undef elfhdr
 311#undef elf_phdr
 312#undef elf_shdr
 313#undef elf_sym
 314#undef elf_rela
 315#undef elf_note
 316#undef elf_word
 317#undef elf_sword
 318#undef bswapSZs
 319#undef SZ
 320#define elfhdr          elf64_hdr
 321#define elf_phdr        elf64_phdr
 322#define elf_note        elf64_note
 323#define elf_shdr        elf64_shdr
 324#define elf_sym         elf64_sym
 325#define elf_rela        elf64_rela
 326#define elf_word        uint64_t
 327#define elf_sword       int64_t
 328#define bswapSZs        bswap64s
 329#define SZ              64
 330#include "hw/elf_ops.h"
 331
 332const char *load_elf_strerror(ssize_t error)
 333{
 334    switch (error) {
 335    case 0:
 336        return "No error";
 337    case ELF_LOAD_FAILED:
 338        return "Failed to load ELF";
 339    case ELF_LOAD_NOT_ELF:
 340        return "The image is not ELF";
 341    case ELF_LOAD_WRONG_ARCH:
 342        return "The image is from incompatible architecture";
 343    case ELF_LOAD_WRONG_ENDIAN:
 344        return "The image has incorrect endianness";
 345    case ELF_LOAD_TOO_BIG:
 346        return "The image segments are too big to load";
 347    default:
 348        return "Unknown error";
 349    }
 350}
 351
 352void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
 353{
 354    int fd;
 355    uint8_t e_ident_local[EI_NIDENT];
 356    uint8_t *e_ident;
 357    size_t hdr_size, off;
 358    bool is64l;
 359
 360    if (!hdr) {
 361        hdr = e_ident_local;
 362    }
 363    e_ident = hdr;
 364
 365    fd = open(filename, O_RDONLY | O_BINARY);
 366    if (fd < 0) {
 367        error_setg_errno(errp, errno, "Failed to open file: %s", filename);
 368        return;
 369    }
 370    if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
 371        error_setg_errno(errp, errno, "Failed to read file: %s", filename);
 372        goto fail;
 373    }
 374    if (e_ident[0] != ELFMAG0 ||
 375        e_ident[1] != ELFMAG1 ||
 376        e_ident[2] != ELFMAG2 ||
 377        e_ident[3] != ELFMAG3) {
 378        error_setg(errp, "Bad ELF magic");
 379        goto fail;
 380    }
 381
 382    is64l = e_ident[EI_CLASS] == ELFCLASS64;
 383    hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
 384    if (is64) {
 385        *is64 = is64l;
 386    }
 387
 388    off = EI_NIDENT;
 389    while (hdr != e_ident_local && off < hdr_size) {
 390        size_t br = read(fd, hdr + off, hdr_size - off);
 391        switch (br) {
 392        case 0:
 393            error_setg(errp, "File too short: %s", filename);
 394            goto fail;
 395        case -1:
 396            error_setg_errno(errp, errno, "Failed to read file: %s",
 397                             filename);
 398            goto fail;
 399        }
 400        off += br;
 401    }
 402
 403fail:
 404    close(fd);
 405}
 406
 407/* return < 0 if error, otherwise the number of bytes loaded in memory */
 408ssize_t load_elf(const char *filename,
 409                 uint64_t (*elf_note_fn)(void *, void *, bool),
 410                 uint64_t (*translate_fn)(void *, uint64_t),
 411                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 412                 uint64_t *highaddr, uint32_t *pflags, int big_endian,
 413                 int elf_machine, int clear_lsb, int data_swab)
 414{
 415    return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
 416                       pentry, lowaddr, highaddr, pflags, big_endian,
 417                       elf_machine, clear_lsb, data_swab, NULL);
 418}
 419
 420/* return < 0 if error, otherwise the number of bytes loaded in memory */
 421ssize_t load_elf_as(const char *filename,
 422                    uint64_t (*elf_note_fn)(void *, void *, bool),
 423                    uint64_t (*translate_fn)(void *, uint64_t),
 424                    void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 425                    uint64_t *highaddr, uint32_t *pflags, int big_endian,
 426                    int elf_machine, int clear_lsb, int data_swab,
 427                    AddressSpace *as)
 428{
 429    return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
 430                        pentry, lowaddr, highaddr, pflags, big_endian,
 431                        elf_machine, clear_lsb, data_swab, as, true);
 432}
 433
 434/* return < 0 if error, otherwise the number of bytes loaded in memory */
 435ssize_t load_elf_ram(const char *filename,
 436                     uint64_t (*elf_note_fn)(void *, void *, bool),
 437                     uint64_t (*translate_fn)(void *, uint64_t),
 438                     void *translate_opaque, uint64_t *pentry,
 439                     uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
 440                     int big_endian, int elf_machine, int clear_lsb,
 441                     int data_swab, AddressSpace *as, bool load_rom)
 442{
 443    return load_elf_ram_sym(filename, elf_note_fn,
 444                            translate_fn, translate_opaque,
 445                            pentry, lowaddr, highaddr, pflags, big_endian,
 446                            elf_machine, clear_lsb, data_swab, as,
 447                            load_rom, NULL);
 448}
 449
 450/* return < 0 if error, otherwise the number of bytes loaded in memory */
 451ssize_t load_elf_ram_sym(const char *filename,
 452                         uint64_t (*elf_note_fn)(void *, void *, bool),
 453                         uint64_t (*translate_fn)(void *, uint64_t),
 454                         void *translate_opaque, uint64_t *pentry,
 455                         uint64_t *lowaddr, uint64_t *highaddr,
 456                         uint32_t *pflags, int big_endian, int elf_machine,
 457                         int clear_lsb, int data_swab,
 458                         AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
 459{
 460    int fd, data_order, target_data_order, must_swab;
 461    ssize_t ret = ELF_LOAD_FAILED;
 462    uint8_t e_ident[EI_NIDENT];
 463
 464    fd = open(filename, O_RDONLY | O_BINARY);
 465    if (fd < 0) {
 466        perror(filename);
 467        return -1;
 468    }
 469    if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
 470        goto fail;
 471    if (e_ident[0] != ELFMAG0 ||
 472        e_ident[1] != ELFMAG1 ||
 473        e_ident[2] != ELFMAG2 ||
 474        e_ident[3] != ELFMAG3) {
 475        ret = ELF_LOAD_NOT_ELF;
 476        goto fail;
 477    }
 478#if HOST_BIG_ENDIAN
 479    data_order = ELFDATA2MSB;
 480#else
 481    data_order = ELFDATA2LSB;
 482#endif
 483    must_swab = data_order != e_ident[EI_DATA];
 484    if (big_endian) {
 485        target_data_order = ELFDATA2MSB;
 486    } else {
 487        target_data_order = ELFDATA2LSB;
 488    }
 489
 490    if (target_data_order != e_ident[EI_DATA]) {
 491        ret = ELF_LOAD_WRONG_ENDIAN;
 492        goto fail;
 493    }
 494
 495    lseek(fd, 0, SEEK_SET);
 496    if (e_ident[EI_CLASS] == ELFCLASS64) {
 497        ret = load_elf64(filename, fd, elf_note_fn,
 498                         translate_fn, translate_opaque, must_swab,
 499                         pentry, lowaddr, highaddr, pflags, elf_machine,
 500                         clear_lsb, data_swab, as, load_rom, sym_cb);
 501    } else {
 502        ret = load_elf32(filename, fd, elf_note_fn,
 503                         translate_fn, translate_opaque, must_swab,
 504                         pentry, lowaddr, highaddr, pflags, elf_machine,
 505                         clear_lsb, data_swab, as, load_rom, sym_cb);
 506    }
 507
 508    if (ret != ELF_LOAD_FAILED) {
 509        debuginfo_report_elf(filename, fd, 0);
 510    }
 511
 512 fail:
 513    close(fd);
 514    return ret;
 515}
 516
 517static void bswap_uboot_header(uboot_image_header_t *hdr)
 518{
 519#if !HOST_BIG_ENDIAN
 520    bswap32s(&hdr->ih_magic);
 521    bswap32s(&hdr->ih_hcrc);
 522    bswap32s(&hdr->ih_time);
 523    bswap32s(&hdr->ih_size);
 524    bswap32s(&hdr->ih_load);
 525    bswap32s(&hdr->ih_ep);
 526    bswap32s(&hdr->ih_dcrc);
 527#endif
 528}
 529
 530
 531#define ZALLOC_ALIGNMENT    16
 532
 533static void *zalloc(void *x, unsigned items, unsigned size)
 534{
 535    void *p;
 536
 537    size *= items;
 538    size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
 539
 540    p = g_malloc(size);
 541
 542    return (p);
 543}
 544
 545static void zfree(void *x, void *addr)
 546{
 547    g_free(addr);
 548}
 549
 550
 551#define HEAD_CRC    2
 552#define EXTRA_FIELD 4
 553#define ORIG_NAME   8
 554#define COMMENT     0x10
 555#define RESERVED    0xe0
 556
 557#define DEFLATED    8
 558
 559ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
 560{
 561    z_stream s;
 562    ssize_t dstbytes;
 563    int r, i, flags;
 564
 565    /* skip header */
 566    i = 10;
 567    if (srclen < 4) {
 568        goto toosmall;
 569    }
 570    flags = src[3];
 571    if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
 572        puts ("Error: Bad gzipped data\n");
 573        return -1;
 574    }
 575    if ((flags & EXTRA_FIELD) != 0) {
 576        if (srclen < 12) {
 577            goto toosmall;
 578        }
 579        i = 12 + src[10] + (src[11] << 8);
 580    }
 581    if ((flags & ORIG_NAME) != 0) {
 582        while (i < srclen && src[i++] != 0) {
 583            /* do nothing */
 584        }
 585    }
 586    if ((flags & COMMENT) != 0) {
 587        while (i < srclen && src[i++] != 0) {
 588            /* do nothing */
 589        }
 590    }
 591    if ((flags & HEAD_CRC) != 0) {
 592        i += 2;
 593    }
 594    if (i >= srclen) {
 595        goto toosmall;
 596    }
 597
 598    s.zalloc = zalloc;
 599    s.zfree = zfree;
 600
 601    r = inflateInit2(&s, -MAX_WBITS);
 602    if (r != Z_OK) {
 603        printf ("Error: inflateInit2() returned %d\n", r);
 604        return (-1);
 605    }
 606    s.next_in = src + i;
 607    s.avail_in = srclen - i;
 608    s.next_out = dst;
 609    s.avail_out = dstlen;
 610    r = inflate(&s, Z_FINISH);
 611    if (r != Z_OK && r != Z_STREAM_END) {
 612        printf ("Error: inflate() returned %d\n", r);
 613        return -1;
 614    }
 615    dstbytes = s.next_out - (unsigned char *) dst;
 616    inflateEnd(&s);
 617
 618    return dstbytes;
 619
 620toosmall:
 621    puts("Error: gunzip out of data in header\n");
 622    return -1;
 623}
 624
 625/* Load a U-Boot image.  */
 626static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
 627                                hwaddr *loadaddr, int *is_linux,
 628                                uint8_t image_type,
 629                                uint64_t (*translate_fn)(void *, uint64_t),
 630                                void *translate_opaque, AddressSpace *as)
 631{
 632    int fd;
 633    ssize_t size;
 634    hwaddr address;
 635    uboot_image_header_t h;
 636    uboot_image_header_t *hdr = &h;
 637    uint8_t *data = NULL;
 638    int ret = -1;
 639    int do_uncompress = 0;
 640
 641    fd = open(filename, O_RDONLY | O_BINARY);
 642    if (fd < 0)
 643        return -1;
 644
 645    size = read(fd, hdr, sizeof(uboot_image_header_t));
 646    if (size < sizeof(uboot_image_header_t)) {
 647        goto out;
 648    }
 649
 650    bswap_uboot_header(hdr);
 651
 652    if (hdr->ih_magic != IH_MAGIC)
 653        goto out;
 654
 655    if (hdr->ih_type != image_type) {
 656        if (!(image_type == IH_TYPE_KERNEL &&
 657            hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
 658            fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
 659                    image_type);
 660            goto out;
 661        }
 662    }
 663
 664    /* TODO: Implement other image types.  */
 665    switch (hdr->ih_type) {
 666    case IH_TYPE_KERNEL_NOLOAD:
 667        if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
 668            fprintf(stderr, "this image format (kernel_noload) cannot be "
 669                    "loaded on this machine type");
 670            goto out;
 671        }
 672
 673        hdr->ih_load = *loadaddr + sizeof(*hdr);
 674        hdr->ih_ep += hdr->ih_load;
 675        /* fall through */
 676    case IH_TYPE_KERNEL:
 677        address = hdr->ih_load;
 678        if (translate_fn) {
 679            address = translate_fn(translate_opaque, address);
 680        }
 681        if (loadaddr) {
 682            *loadaddr = hdr->ih_load;
 683        }
 684
 685        switch (hdr->ih_comp) {
 686        case IH_COMP_NONE:
 687            break;
 688        case IH_COMP_GZIP:
 689            do_uncompress = 1;
 690            break;
 691        default:
 692            fprintf(stderr,
 693                    "Unable to load u-boot images with compression type %d\n",
 694                    hdr->ih_comp);
 695            goto out;
 696        }
 697
 698        if (ep) {
 699            *ep = hdr->ih_ep;
 700        }
 701
 702        /* TODO: Check CPU type.  */
 703        if (is_linux) {
 704            if (hdr->ih_os == IH_OS_LINUX) {
 705                *is_linux = 1;
 706            } else if (hdr->ih_os == IH_OS_VXWORKS) {
 707                /*
 708                 * VxWorks 7 uses the same boot interface as the Linux kernel
 709                 * on Arm (64-bit only), PowerPC and RISC-V architectures.
 710                 */
 711                switch (hdr->ih_arch) {
 712                case IH_ARCH_ARM64:
 713                case IH_ARCH_PPC:
 714                case IH_ARCH_RISCV:
 715                    *is_linux = 1;
 716                    break;
 717                default:
 718                    *is_linux = 0;
 719                    break;
 720                }
 721            } else {
 722                *is_linux = 0;
 723            }
 724        }
 725
 726        break;
 727    case IH_TYPE_RAMDISK:
 728        address = *loadaddr;
 729        break;
 730    default:
 731        fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
 732        goto out;
 733    }
 734
 735    data = g_malloc(hdr->ih_size);
 736
 737    if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
 738        fprintf(stderr, "Error reading file\n");
 739        goto out;
 740    }
 741
 742    if (do_uncompress) {
 743        uint8_t *compressed_data;
 744        size_t max_bytes;
 745        ssize_t bytes;
 746
 747        compressed_data = data;
 748        max_bytes = UBOOT_MAX_GUNZIP_BYTES;
 749        data = g_malloc(max_bytes);
 750
 751        bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
 752        g_free(compressed_data);
 753        if (bytes < 0) {
 754            fprintf(stderr, "Unable to decompress gzipped image!\n");
 755            goto out;
 756        }
 757        hdr->ih_size = bytes;
 758    }
 759
 760    rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
 761
 762    ret = hdr->ih_size;
 763
 764out:
 765    g_free(data);
 766    close(fd);
 767    return ret;
 768}
 769
 770ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 771                    int *is_linux,
 772                    uint64_t (*translate_fn)(void *, uint64_t),
 773                    void *translate_opaque)
 774{
 775    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 776                            translate_fn, translate_opaque, NULL);
 777}
 778
 779ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 780                       int *is_linux,
 781                       uint64_t (*translate_fn)(void *, uint64_t),
 782                       void *translate_opaque, AddressSpace *as)
 783{
 784    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 785                            translate_fn, translate_opaque, as);
 786}
 787
 788/* Load a ramdisk.  */
 789ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
 790{
 791    return load_ramdisk_as(filename, addr, max_sz, NULL);
 792}
 793
 794ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
 795                        AddressSpace *as)
 796{
 797    return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
 798                            NULL, NULL, as);
 799}
 800
 801/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
 802ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
 803                                  uint8_t **buffer)
 804{
 805    uint8_t *compressed_data = NULL;
 806    uint8_t *data = NULL;
 807    gsize len;
 808    ssize_t bytes;
 809    int ret = -1;
 810
 811    if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
 812                             NULL)) {
 813        goto out;
 814    }
 815
 816    /* Is it a gzip-compressed file? */
 817    if (len < 2 ||
 818        compressed_data[0] != 0x1f ||
 819        compressed_data[1] != 0x8b) {
 820        goto out;
 821    }
 822
 823    if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
 824        max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
 825    }
 826
 827    data = g_malloc(max_sz);
 828    bytes = gunzip(data, max_sz, compressed_data, len);
 829    if (bytes < 0) {
 830        fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
 831                filename);
 832        goto out;
 833    }
 834
 835    /* trim to actual size and return to caller */
 836    *buffer = g_realloc(data, bytes);
 837    ret = bytes;
 838    /* ownership has been transferred to caller */
 839    data = NULL;
 840
 841 out:
 842    g_free(compressed_data);
 843    g_free(data);
 844    return ret;
 845}
 846
 847/* Load a gzip-compressed kernel. */
 848ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
 849{
 850    ssize_t bytes;
 851    uint8_t *data;
 852
 853    bytes = load_image_gzipped_buffer(filename, max_sz, &data);
 854    if (bytes != -1) {
 855        rom_add_blob_fixed(filename, data, bytes, addr);
 856        g_free(data);
 857    }
 858    return bytes;
 859}
 860
 861/* The PE/COFF MS-DOS stub magic number */
 862#define EFI_PE_MSDOS_MAGIC        "MZ"
 863
 864/*
 865 * The Linux header magic number for a EFI PE/COFF
 866 * image targeting an unspecified architecture.
 867 */
 868#define EFI_PE_LINUX_MAGIC        "\xcd\x23\x82\x81"
 869
 870/*
 871 * Bootable Linux kernel images may be packaged as EFI zboot images, which are
 872 * self-decompressing executables when loaded via EFI. The compressed payload
 873 * can also be extracted from the image and decompressed by a non-EFI loader.
 874 *
 875 * The de facto specification for this format is at the following URL:
 876 *
 877 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S
 878 *
 879 * This definition is based on Linux upstream commit 29636a5ce87beba.
 880 */
 881struct linux_efi_zboot_header {
 882    uint8_t     msdos_magic[2];         /* PE/COFF 'MZ' magic number */
 883    uint8_t     reserved0[2];
 884    uint8_t     zimg[4];                /* "zimg" for Linux EFI zboot images */
 885    uint32_t    payload_offset;         /* LE offset to compressed payload */
 886    uint32_t    payload_size;           /* LE size of the compressed payload */
 887    uint8_t     reserved1[8];
 888    char        compression_type[32];   /* Compression type, NUL terminated */
 889    uint8_t     linux_magic[4];         /* Linux header magic */
 890    uint32_t    pe_header_offset;       /* LE offset to the PE header */
 891};
 892
 893/*
 894 * Check whether *buffer points to a Linux EFI zboot image in memory.
 895 *
 896 * If it does, attempt to decompress it to a new buffer, and free the old one.
 897 * If any of this fails, return an error to the caller.
 898 *
 899 * If the image is not a Linux EFI zboot image, do nothing and return success.
 900 */
 901ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size)
 902{
 903    const struct linux_efi_zboot_header *header;
 904    uint8_t *data = NULL;
 905    int ploff, plsize;
 906    ssize_t bytes;
 907
 908    /* ignore if this is too small to be a EFI zboot image */
 909    if (*size < sizeof(*header)) {
 910        return 0;
 911    }
 912
 913    header = (struct linux_efi_zboot_header *)*buffer;
 914
 915    /* ignore if this is not a Linux EFI zboot image */
 916    if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 ||
 917        memcmp(&header->zimg, "zimg", 4) != 0 ||
 918        memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) {
 919        return 0;
 920    }
 921
 922    if (strcmp(header->compression_type, "gzip") != 0) {
 923        fprintf(stderr,
 924                "unable to handle EFI zboot image with \"%.*s\" compression\n",
 925                (int)sizeof(header->compression_type) - 1,
 926                header->compression_type);
 927        return -1;
 928    }
 929
 930    ploff = ldl_le_p(&header->payload_offset);
 931    plsize = ldl_le_p(&header->payload_size);
 932
 933    if (ploff < 0 || plsize < 0 || ploff + plsize > *size) {
 934        fprintf(stderr, "unable to handle corrupt EFI zboot image\n");
 935        return -1;
 936    }
 937
 938    data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES);
 939    bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize);
 940    if (bytes < 0) {
 941        fprintf(stderr, "failed to decompress EFI zboot image\n");
 942        g_free(data);
 943        return -1;
 944    }
 945
 946    g_free(*buffer);
 947    *buffer = g_realloc(data, bytes);
 948    *size = bytes;
 949    return bytes;
 950}
 951
 952/*
 953 * Functions for reboot-persistent memory regions.
 954 *  - used for vga bios and option roms.
 955 *  - also linux kernel (-kernel / -initrd).
 956 */
 957
 958typedef struct Rom Rom;
 959
 960struct Rom {
 961    char *name;
 962    char *path;
 963
 964    /* datasize is the amount of memory allocated in "data". If datasize is less
 965     * than romsize, it means that the area from datasize to romsize is filled
 966     * with zeros.
 967     */
 968    size_t romsize;
 969    size_t datasize;
 970
 971    uint8_t *data;
 972    MemoryRegion *mr;
 973    AddressSpace *as;
 974    int isrom;
 975    char *fw_dir;
 976    char *fw_file;
 977    GMappedFile *mapped_file;
 978
 979    bool committed;
 980
 981    hwaddr addr;
 982    QTAILQ_ENTRY(Rom) next;
 983};
 984
 985static FWCfgState *fw_cfg;
 986static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
 987
 988/*
 989 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
 990 * rom_add_elf_program())
 991 */
 992static void rom_free_data(Rom *rom)
 993{
 994    if (rom->mapped_file) {
 995        g_mapped_file_unref(rom->mapped_file);
 996        rom->mapped_file = NULL;
 997    } else {
 998        g_free(rom->data);
 999    }
1000
1001    rom->data = NULL;
1002}
1003
1004static void rom_free(Rom *rom)
1005{
1006    rom_free_data(rom);
1007    g_free(rom->path);
1008    g_free(rom->name);
1009    g_free(rom->fw_dir);
1010    g_free(rom->fw_file);
1011    g_free(rom);
1012}
1013
1014static inline bool rom_order_compare(Rom *rom, Rom *item)
1015{
1016    return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
1017           (rom->as == item->as && rom->addr >= item->addr);
1018}
1019
1020static void rom_insert(Rom *rom)
1021{
1022    Rom *item;
1023
1024    if (roms_loaded) {
1025        hw_error ("ROM images must be loaded at startup\n");
1026    }
1027
1028    /* The user didn't specify an address space, this is the default */
1029    if (!rom->as) {
1030        rom->as = &address_space_memory;
1031    }
1032
1033    rom->committed = false;
1034
1035    /* List is ordered by load address in the same address space */
1036    QTAILQ_FOREACH(item, &roms, next) {
1037        if (rom_order_compare(rom, item)) {
1038            continue;
1039        }
1040        QTAILQ_INSERT_BEFORE(item, rom, next);
1041        return;
1042    }
1043    QTAILQ_INSERT_TAIL(&roms, rom, next);
1044}
1045
1046static void fw_cfg_resized(const char *id, uint64_t length, void *host)
1047{
1048    if (fw_cfg) {
1049        fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
1050    }
1051}
1052
1053static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
1054{
1055    void *data;
1056
1057    rom->mr = g_malloc(sizeof(*rom->mr));
1058    memory_region_init_resizeable_ram(rom->mr, owner, name,
1059                                      rom->datasize, rom->romsize,
1060                                      fw_cfg_resized,
1061                                      &error_fatal);
1062    memory_region_set_readonly(rom->mr, ro);
1063    vmstate_register_ram_global(rom->mr);
1064
1065    data = memory_region_get_ram_ptr(rom->mr);
1066    memcpy(data, rom->data, rom->datasize);
1067
1068    return data;
1069}
1070
1071ssize_t rom_add_file(const char *file, const char *fw_dir,
1072                     hwaddr addr, int32_t bootindex,
1073                     bool option_rom, MemoryRegion *mr,
1074                     AddressSpace *as)
1075{
1076    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1077    Rom *rom;
1078    ssize_t rc;
1079    int fd = -1;
1080    char devpath[100];
1081
1082    if (as && mr) {
1083        fprintf(stderr, "Specifying an Address Space and Memory Region is " \
1084                "not valid when loading a rom\n");
1085        /* We haven't allocated anything so we don't need any cleanup */
1086        return -1;
1087    }
1088
1089    rom = g_malloc0(sizeof(*rom));
1090    rom->name = g_strdup(file);
1091    rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
1092    rom->as = as;
1093    if (rom->path == NULL) {
1094        rom->path = g_strdup(file);
1095    }
1096
1097    fd = open(rom->path, O_RDONLY | O_BINARY);
1098    if (fd == -1) {
1099        fprintf(stderr, "Could not open option rom '%s': %s\n",
1100                rom->path, strerror(errno));
1101        goto err;
1102    }
1103
1104    if (fw_dir) {
1105        rom->fw_dir  = g_strdup(fw_dir);
1106        rom->fw_file = g_strdup(file);
1107    }
1108    rom->addr     = addr;
1109    rom->romsize  = lseek(fd, 0, SEEK_END);
1110    if (rom->romsize == -1) {
1111        fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1112                rom->name, strerror(errno));
1113        goto err;
1114    }
1115
1116    rom->datasize = rom->romsize;
1117    rom->data     = g_malloc0(rom->datasize);
1118    lseek(fd, 0, SEEK_SET);
1119    rc = read(fd, rom->data, rom->datasize);
1120    if (rc != rom->datasize) {
1121        fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1122                rom->name, rc, rom->datasize);
1123        goto err;
1124    }
1125    close(fd);
1126    rom_insert(rom);
1127    if (rom->fw_file && fw_cfg) {
1128        const char *basename;
1129        char fw_file_name[FW_CFG_MAX_FILE_PATH];
1130        void *data;
1131
1132        basename = strrchr(rom->fw_file, '/');
1133        if (basename) {
1134            basename++;
1135        } else {
1136            basename = rom->fw_file;
1137        }
1138        snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1139                 basename);
1140        snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1141
1142        if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1143            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1144        } else {
1145            data = rom->data;
1146        }
1147
1148        fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1149    } else {
1150        if (mr) {
1151            rom->mr = mr;
1152            snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1153        } else {
1154            snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
1155        }
1156    }
1157
1158    add_boot_device_path(bootindex, NULL, devpath);
1159    return 0;
1160
1161err:
1162    if (fd != -1)
1163        close(fd);
1164
1165    rom_free(rom);
1166    return -1;
1167}
1168
1169MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1170                   size_t max_len, hwaddr addr, const char *fw_file_name,
1171                   FWCfgCallback fw_callback, void *callback_opaque,
1172                   AddressSpace *as, bool read_only)
1173{
1174    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1175    Rom *rom;
1176    MemoryRegion *mr = NULL;
1177
1178    rom           = g_malloc0(sizeof(*rom));
1179    rom->name     = g_strdup(name);
1180    rom->as       = as;
1181    rom->addr     = addr;
1182    rom->romsize  = max_len ? max_len : len;
1183    rom->datasize = len;
1184    g_assert(rom->romsize >= rom->datasize);
1185    rom->data     = g_malloc0(rom->datasize);
1186    memcpy(rom->data, blob, len);
1187    rom_insert(rom);
1188    if (fw_file_name && fw_cfg) {
1189        char devpath[100];
1190        void *data;
1191
1192        if (read_only) {
1193            snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1194        } else {
1195            snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1196        }
1197
1198        if (mc->rom_file_has_mr) {
1199            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1200            mr = rom->mr;
1201        } else {
1202            data = rom->data;
1203        }
1204
1205        fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1206                                 fw_callback, NULL, callback_opaque,
1207                                 data, rom->datasize, read_only);
1208    }
1209    return mr;
1210}
1211
1212/* This function is specific for elf program because we don't need to allocate
1213 * all the rom. We just allocate the first part and the rest is just zeros. This
1214 * is why romsize and datasize are different. Also, this function takes its own
1215 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1216 */
1217int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1218                        size_t datasize, size_t romsize, hwaddr addr,
1219                        AddressSpace *as)
1220{
1221    Rom *rom;
1222
1223    rom           = g_malloc0(sizeof(*rom));
1224    rom->name     = g_strdup(name);
1225    rom->addr     = addr;
1226    rom->datasize = datasize;
1227    rom->romsize  = romsize;
1228    rom->data     = data;
1229    rom->as       = as;
1230
1231    if (mapped_file && data) {
1232        g_mapped_file_ref(mapped_file);
1233        rom->mapped_file = mapped_file;
1234    }
1235
1236    rom_insert(rom);
1237    return 0;
1238}
1239
1240ssize_t rom_add_vga(const char *file)
1241{
1242    return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1243}
1244
1245ssize_t rom_add_option(const char *file, int32_t bootindex)
1246{
1247    return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1248}
1249
1250static void rom_reset(void *unused)
1251{
1252    Rom *rom;
1253
1254    QTAILQ_FOREACH(rom, &roms, next) {
1255        if (rom->fw_file) {
1256            continue;
1257        }
1258        /*
1259         * We don't need to fill in the RAM with ROM data because we'll fill
1260         * the data in during the next incoming migration in all cases.  Note
1261         * that some of those RAMs can actually be modified by the guest.
1262         */
1263        if (runstate_check(RUN_STATE_INMIGRATE)) {
1264            if (rom->data && rom->isrom) {
1265                /*
1266                 * Free it so that a rom_reset after migration doesn't
1267                 * overwrite a potentially modified 'rom'.
1268                 */
1269                rom_free_data(rom);
1270            }
1271            continue;
1272        }
1273
1274        if (rom->data == NULL) {
1275            continue;
1276        }
1277        if (rom->mr) {
1278            void *host = memory_region_get_ram_ptr(rom->mr);
1279            memcpy(host, rom->data, rom->datasize);
1280            memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1281        } else {
1282            address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1283                                    rom->data, rom->datasize);
1284            address_space_set(rom->as, rom->addr + rom->datasize, 0,
1285                              rom->romsize - rom->datasize,
1286                              MEMTXATTRS_UNSPECIFIED);
1287        }
1288        if (rom->isrom) {
1289            /* rom needs to be written only once */
1290            rom_free_data(rom);
1291        }
1292        /*
1293         * The rom loader is really on the same level as firmware in the guest
1294         * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1295         * that the instruction cache for that new region is clear, so that the
1296         * CPU definitely fetches its instructions from the just written data.
1297         */
1298        cpu_flush_icache_range(rom->addr, rom->datasize);
1299
1300        trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1301    }
1302}
1303
1304/* Return true if two consecutive ROMs in the ROM list overlap */
1305static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1306{
1307    if (!last_rom) {
1308        return false;
1309    }
1310    return last_rom->as == this_rom->as &&
1311        last_rom->addr + last_rom->romsize > this_rom->addr;
1312}
1313
1314static const char *rom_as_name(Rom *rom)
1315{
1316    const char *name = rom->as ? rom->as->name : NULL;
1317    return name ?: "anonymous";
1318}
1319
1320static void rom_print_overlap_error_header(void)
1321{
1322    error_report("Some ROM regions are overlapping");
1323    error_printf(
1324        "These ROM regions might have been loaded by "
1325        "direct user request or by default.\n"
1326        "They could be BIOS/firmware images, a guest kernel, "
1327        "initrd or some other file loaded into guest memory.\n"
1328        "Check whether you intended to load all this guest code, and "
1329        "whether it has been built to load to the correct addresses.\n");
1330}
1331
1332static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1333{
1334    error_printf(
1335        "\nThe following two regions overlap (in the %s address space):\n",
1336        rom_as_name(rom));
1337    error_printf(
1338        "  %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1339        last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1340    error_printf(
1341        "  %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1342        rom->name, rom->addr, rom->addr + rom->romsize);
1343}
1344
1345int rom_check_and_register_reset(void)
1346{
1347    MemoryRegionSection section;
1348    Rom *rom, *last_rom = NULL;
1349    bool found_overlap = false;
1350
1351    QTAILQ_FOREACH(rom, &roms, next) {
1352        if (rom->fw_file) {
1353            continue;
1354        }
1355        if (!rom->mr) {
1356            if (roms_overlap(last_rom, rom)) {
1357                if (!found_overlap) {
1358                    found_overlap = true;
1359                    rom_print_overlap_error_header();
1360                }
1361                rom_print_one_overlap_error(last_rom, rom);
1362                /* Keep going through the list so we report all overlaps */
1363            }
1364            last_rom = rom;
1365        }
1366        section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1367                                     rom->addr, 1);
1368        rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1369        memory_region_unref(section.mr);
1370    }
1371    if (found_overlap) {
1372        return -1;
1373    }
1374
1375    qemu_register_reset(rom_reset, NULL);
1376    roms_loaded = 1;
1377    return 0;
1378}
1379
1380void rom_set_fw(FWCfgState *f)
1381{
1382    fw_cfg = f;
1383}
1384
1385void rom_set_order_override(int order)
1386{
1387    if (!fw_cfg)
1388        return;
1389    fw_cfg_set_order_override(fw_cfg, order);
1390}
1391
1392void rom_reset_order_override(void)
1393{
1394    if (!fw_cfg)
1395        return;
1396    fw_cfg_reset_order_override(fw_cfg);
1397}
1398
1399void rom_transaction_begin(void)
1400{
1401    Rom *rom;
1402
1403    /* Ignore ROMs added without the transaction API */
1404    QTAILQ_FOREACH(rom, &roms, next) {
1405        rom->committed = true;
1406    }
1407}
1408
1409void rom_transaction_end(bool commit)
1410{
1411    Rom *rom;
1412    Rom *tmp;
1413
1414    QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1415        if (rom->committed) {
1416            continue;
1417        }
1418        if (commit) {
1419            rom->committed = true;
1420        } else {
1421            QTAILQ_REMOVE(&roms, rom, next);
1422            rom_free(rom);
1423        }
1424    }
1425}
1426
1427static Rom *find_rom(hwaddr addr, size_t size)
1428{
1429    Rom *rom;
1430
1431    QTAILQ_FOREACH(rom, &roms, next) {
1432        if (rom->fw_file) {
1433            continue;
1434        }
1435        if (rom->mr) {
1436            continue;
1437        }
1438        if (rom->addr > addr) {
1439            continue;
1440        }
1441        if (rom->addr + rom->romsize < addr + size) {
1442            continue;
1443        }
1444        return rom;
1445    }
1446    return NULL;
1447}
1448
1449typedef struct RomSec {
1450    hwaddr base;
1451    int se; /* start/end flag */
1452} RomSec;
1453
1454
1455/*
1456 * Sort into address order. We break ties between rom-startpoints
1457 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1458 * transition before the 1->0 transition. Either way round would
1459 * work, but this way saves a little work later by avoiding
1460 * dealing with "gaps" of 0 length.
1461 */
1462static gint sort_secs(gconstpointer a, gconstpointer b)
1463{
1464    RomSec *ra = (RomSec *) a;
1465    RomSec *rb = (RomSec *) b;
1466
1467    if (ra->base == rb->base) {
1468        return ra->se - rb->se;
1469    }
1470    return ra->base > rb->base ? 1 : -1;
1471}
1472
1473static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1474{
1475   RomSec *cand = g_new(RomSec, 1);
1476   cand->base = base;
1477   cand->se = se;
1478   return g_list_prepend(secs, cand);
1479}
1480
1481RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1482{
1483    Rom *rom;
1484    RomSec *cand;
1485    RomGap res = {0, 0};
1486    hwaddr gapstart = base;
1487    GList *it, *secs = NULL;
1488    int count = 0;
1489
1490    QTAILQ_FOREACH(rom, &roms, next) {
1491        /* Ignore blobs being loaded to special places */
1492        if (rom->mr || rom->fw_file) {
1493            continue;
1494        }
1495        /* ignore anything finishing below base */
1496        if (rom->addr + rom->romsize <= base) {
1497            continue;
1498        }
1499        /* ignore anything starting above the region */
1500        if (rom->addr >= base + size) {
1501            continue;
1502        }
1503
1504        /* Save the start and end of each relevant ROM */
1505        secs = add_romsec_to_list(secs, rom->addr, 1);
1506
1507        if (rom->addr + rom->romsize < base + size) {
1508            secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1509        }
1510    }
1511
1512    /* sentinel */
1513    secs = add_romsec_to_list(secs, base + size, 1);
1514
1515    secs = g_list_sort(secs, sort_secs);
1516
1517    for (it = g_list_first(secs); it; it = g_list_next(it)) {
1518        cand = (RomSec *) it->data;
1519        if (count == 0 && count + cand->se == 1) {
1520            size_t gap = cand->base - gapstart;
1521            if (gap > res.size) {
1522                res.base = gapstart;
1523                res.size = gap;
1524            }
1525        } else if (count == 1 && count + cand->se == 0) {
1526            gapstart = cand->base;
1527        }
1528        count += cand->se;
1529    }
1530
1531    g_list_free_full(secs, g_free);
1532    return res;
1533}
1534
1535/*
1536 * Copies memory from registered ROMs to dest. Any memory that is contained in
1537 * a ROM between addr and addr + size is copied. Note that this can involve
1538 * multiple ROMs, which need not start at addr and need not end at addr + size.
1539 */
1540int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1541{
1542    hwaddr end = addr + size;
1543    uint8_t *s, *d = dest;
1544    size_t l = 0;
1545    Rom *rom;
1546
1547    QTAILQ_FOREACH(rom, &roms, next) {
1548        if (rom->fw_file) {
1549            continue;
1550        }
1551        if (rom->mr) {
1552            continue;
1553        }
1554        if (rom->addr + rom->romsize < addr) {
1555            continue;
1556        }
1557        if (rom->addr > end || rom->addr < addr) {
1558            break;
1559        }
1560
1561        d = dest + (rom->addr - addr);
1562        s = rom->data;
1563        l = rom->datasize;
1564
1565        if ((d + l) > (dest + size)) {
1566            l = dest - d;
1567        }
1568
1569        if (l > 0) {
1570            memcpy(d, s, l);
1571        }
1572
1573        if (rom->romsize > rom->datasize) {
1574            /* If datasize is less than romsize, it means that we didn't
1575             * allocate all the ROM because the trailing data are only zeros.
1576             */
1577
1578            d += l;
1579            l = rom->romsize - rom->datasize;
1580
1581            if ((d + l) > (dest + size)) {
1582                /* Rom size doesn't fit in the destination area. Adjust to avoid
1583                 * overflow.
1584                 */
1585                l = dest - d;
1586            }
1587
1588            if (l > 0) {
1589                memset(d, 0x0, l);
1590            }
1591        }
1592    }
1593
1594    return (d + l) - dest;
1595}
1596
1597void *rom_ptr(hwaddr addr, size_t size)
1598{
1599    Rom *rom;
1600
1601    rom = find_rom(addr, size);
1602    if (!rom || !rom->data)
1603        return NULL;
1604    return rom->data + (addr - rom->addr);
1605}
1606
1607typedef struct FindRomCBData {
1608    size_t size; /* Amount of data we want from ROM, in bytes */
1609    MemoryRegion *mr; /* MR at the unaliased guest addr */
1610    hwaddr xlat; /* Offset of addr within mr */
1611    void *rom; /* Output: rom data pointer, if found */
1612} FindRomCBData;
1613
1614static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1615                        hwaddr offset_in_region, void *opaque)
1616{
1617    FindRomCBData *cbdata = opaque;
1618    hwaddr alias_addr;
1619
1620    if (mr != cbdata->mr) {
1621        return false;
1622    }
1623
1624    alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1625    cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1626    if (!cbdata->rom) {
1627        return false;
1628    }
1629    /* Found a match, stop iterating */
1630    return true;
1631}
1632
1633void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1634{
1635    /*
1636     * Find any ROM data for the given guest address range.  If there
1637     * is a ROM blob then return a pointer to the host memory
1638     * corresponding to 'addr'; otherwise return NULL.
1639     *
1640     * We look not only for ROM blobs that were loaded directly to
1641     * addr, but also for ROM blobs that were loaded to aliases of
1642     * that memory at other addresses within the AddressSpace.
1643     *
1644     * Note that we do not check @as against the 'as' member in the
1645     * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1646     * AddressSpace which the rom blob should be written to, whereas
1647     * our @as argument is the AddressSpace which we are (effectively)
1648     * reading from, and the same underlying RAM will often be visible
1649     * in multiple AddressSpaces. (A common example is a ROM blob
1650     * written to the 'system' address space but then read back via a
1651     * CPU's cpu->as pointer.) This does mean we might potentially
1652     * return a false-positive match if a ROM blob was loaded into an
1653     * AS which is entirely separate and distinct from the one we're
1654     * querying, but this issue exists also for rom_ptr() and hasn't
1655     * caused any problems in practice.
1656     */
1657    FlatView *fv;
1658    void *rom;
1659    hwaddr len_unused;
1660    FindRomCBData cbdata = {};
1661
1662    /* Easy case: there's data at the actual address */
1663    rom = rom_ptr(addr, size);
1664    if (rom) {
1665        return rom;
1666    }
1667
1668    RCU_READ_LOCK_GUARD();
1669
1670    fv = address_space_to_flatview(as);
1671    cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1672                                   false, MEMTXATTRS_UNSPECIFIED);
1673    if (!cbdata.mr) {
1674        /* Nothing at this address, so there can't be any aliasing */
1675        return NULL;
1676    }
1677    cbdata.size = size;
1678    flatview_for_each_range(fv, find_rom_cb, &cbdata);
1679    return cbdata.rom;
1680}
1681
1682HumanReadableText *qmp_x_query_roms(Error **errp)
1683{
1684    Rom *rom;
1685    g_autoptr(GString) buf = g_string_new("");
1686
1687    QTAILQ_FOREACH(rom, &roms, next) {
1688        if (rom->mr) {
1689            g_string_append_printf(buf, "%s"
1690                                   " size=0x%06zx name=\"%s\"\n",
1691                                   memory_region_name(rom->mr),
1692                                   rom->romsize,
1693                                   rom->name);
1694        } else if (!rom->fw_file) {
1695            g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
1696                                   " size=0x%06zx mem=%s name=\"%s\"\n",
1697                                   rom->addr, rom->romsize,
1698                                   rom->isrom ? "rom" : "ram",
1699                                   rom->name);
1700        } else {
1701            g_string_append_printf(buf, "fw=%s/%s"
1702                                   " size=0x%06zx name=\"%s\"\n",
1703                                   rom->fw_dir,
1704                                   rom->fw_file,
1705                                   rom->romsize,
1706                                   rom->name);
1707        }
1708    }
1709
1710    return human_readable_text_from_str(buf);
1711}
1712
1713typedef enum HexRecord HexRecord;
1714enum HexRecord {
1715    DATA_RECORD = 0,
1716    EOF_RECORD,
1717    EXT_SEG_ADDR_RECORD,
1718    START_SEG_ADDR_RECORD,
1719    EXT_LINEAR_ADDR_RECORD,
1720    START_LINEAR_ADDR_RECORD,
1721};
1722
1723/* Each record contains a 16-bit address which is combined with the upper 16
1724 * bits of the implicit "next address" to form a 32-bit address.
1725 */
1726#define NEXT_ADDR_MASK 0xffff0000
1727
1728#define DATA_FIELD_MAX_LEN 0xff
1729#define LEN_EXCEPT_DATA 0x5
1730/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1731 *       sizeof(checksum) */
1732typedef struct {
1733    uint8_t byte_count;
1734    uint16_t address;
1735    uint8_t record_type;
1736    uint8_t data[DATA_FIELD_MAX_LEN];
1737    uint8_t checksum;
1738} HexLine;
1739
1740/* return 0 or -1 if error */
1741static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1742                         uint32_t *index, const bool in_process)
1743{
1744    /* +-------+---------------+-------+---------------------+--------+
1745     * | byte  |               |record |                     |        |
1746     * | count |    address    | type  |        data         |checksum|
1747     * +-------+---------------+-------+---------------------+--------+
1748     * ^       ^               ^       ^                     ^        ^
1749     * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1750     */
1751    uint8_t value = 0;
1752    uint32_t idx = *index;
1753    /* ignore space */
1754    if (g_ascii_isspace(c)) {
1755        return true;
1756    }
1757    if (!g_ascii_isxdigit(c) || !in_process) {
1758        return false;
1759    }
1760    value = g_ascii_xdigit_value(c);
1761    value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1762    if (idx < 2) {
1763        line->byte_count |= value;
1764    } else if (2 <= idx && idx < 6) {
1765        line->address <<= 4;
1766        line->address += g_ascii_xdigit_value(c);
1767    } else if (6 <= idx && idx < 8) {
1768        line->record_type |= value;
1769    } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1770        line->data[(idx - 8) >> 1] |= value;
1771    } else if (8 + 2 * line->byte_count <= idx &&
1772               idx < 10 + 2 * line->byte_count) {
1773        line->checksum |= value;
1774    } else {
1775        return false;
1776    }
1777    *our_checksum += value;
1778    ++(*index);
1779    return true;
1780}
1781
1782typedef struct {
1783    const char *filename;
1784    HexLine line;
1785    uint8_t *bin_buf;
1786    hwaddr *start_addr;
1787    int total_size;
1788    uint32_t next_address_to_write;
1789    uint32_t current_address;
1790    uint32_t current_rom_index;
1791    uint32_t rom_start_address;
1792    AddressSpace *as;
1793    bool complete;
1794} HexParser;
1795
1796/* return size or -1 if error */
1797static int handle_record_type(HexParser *parser)
1798{
1799    HexLine *line = &(parser->line);
1800    switch (line->record_type) {
1801    case DATA_RECORD:
1802        parser->current_address =
1803            (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1804        /* verify this is a contiguous block of memory */
1805        if (parser->current_address != parser->next_address_to_write) {
1806            if (parser->current_rom_index != 0) {
1807                rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1808                                      parser->current_rom_index,
1809                                      parser->rom_start_address, parser->as);
1810            }
1811            parser->rom_start_address = parser->current_address;
1812            parser->current_rom_index = 0;
1813        }
1814
1815        /* copy from line buffer to output bin_buf */
1816        memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1817               line->byte_count);
1818        parser->current_rom_index += line->byte_count;
1819        parser->total_size += line->byte_count;
1820        /* save next address to write */
1821        parser->next_address_to_write =
1822            parser->current_address + line->byte_count;
1823        break;
1824
1825    case EOF_RECORD:
1826        if (parser->current_rom_index != 0) {
1827            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1828                                  parser->current_rom_index,
1829                                  parser->rom_start_address, parser->as);
1830        }
1831        parser->complete = true;
1832        return parser->total_size;
1833    case EXT_SEG_ADDR_RECORD:
1834    case EXT_LINEAR_ADDR_RECORD:
1835        if (line->byte_count != 2 && line->address != 0) {
1836            return -1;
1837        }
1838
1839        if (parser->current_rom_index != 0) {
1840            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1841                                  parser->current_rom_index,
1842                                  parser->rom_start_address, parser->as);
1843        }
1844
1845        /* save next address to write,
1846         * in case of non-contiguous block of memory */
1847        parser->next_address_to_write = (line->data[0] << 12) |
1848                                        (line->data[1] << 4);
1849        if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1850            parser->next_address_to_write <<= 12;
1851        }
1852
1853        parser->rom_start_address = parser->next_address_to_write;
1854        parser->current_rom_index = 0;
1855        break;
1856
1857    case START_SEG_ADDR_RECORD:
1858        if (line->byte_count != 4 && line->address != 0) {
1859            return -1;
1860        }
1861
1862        /* x86 16-bit CS:IP segmented addressing */
1863        *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1864                                ((line->data[2] << 8) | line->data[3]);
1865        break;
1866
1867    case START_LINEAR_ADDR_RECORD:
1868        if (line->byte_count != 4 && line->address != 0) {
1869            return -1;
1870        }
1871
1872        *(parser->start_addr) = ldl_be_p(line->data);
1873        break;
1874
1875    default:
1876        return -1;
1877    }
1878
1879    return parser->total_size;
1880}
1881
1882/* return size or -1 if error */
1883static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1884                          size_t hex_blob_size, AddressSpace *as)
1885{
1886    bool in_process = false; /* avoid re-enter and
1887                              * check whether record begin with ':' */
1888    uint8_t *end = hex_blob + hex_blob_size;
1889    uint8_t our_checksum = 0;
1890    uint32_t record_index = 0;
1891    HexParser parser = {
1892        .filename = filename,
1893        .bin_buf = g_malloc(hex_blob_size),
1894        .start_addr = addr,
1895        .as = as,
1896        .complete = false
1897    };
1898
1899    rom_transaction_begin();
1900
1901    for (; hex_blob < end && !parser.complete; ++hex_blob) {
1902        switch (*hex_blob) {
1903        case '\r':
1904        case '\n':
1905            if (!in_process) {
1906                break;
1907            }
1908
1909            in_process = false;
1910            if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1911                    record_index ||
1912                our_checksum != 0) {
1913                parser.total_size = -1;
1914                goto out;
1915            }
1916
1917            if (handle_record_type(&parser) == -1) {
1918                parser.total_size = -1;
1919                goto out;
1920            }
1921            break;
1922
1923        /* start of a new record. */
1924        case ':':
1925            memset(&parser.line, 0, sizeof(HexLine));
1926            in_process = true;
1927            record_index = 0;
1928            break;
1929
1930        /* decoding lines */
1931        default:
1932            if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1933                              &record_index, in_process)) {
1934                parser.total_size = -1;
1935                goto out;
1936            }
1937            break;
1938        }
1939    }
1940
1941out:
1942    g_free(parser.bin_buf);
1943    rom_transaction_end(parser.total_size != -1);
1944    return parser.total_size;
1945}
1946
1947/* return size or -1 if error */
1948ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1949                             AddressSpace *as)
1950{
1951    gsize hex_blob_size;
1952    gchar *hex_blob;
1953    ssize_t total_size = 0;
1954
1955    if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1956        return -1;
1957    }
1958
1959    total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1960                                hex_blob_size, as);
1961
1962    g_free(hex_blob);
1963    return total_size;
1964}
1965