qemu/hw/dma/sparc32_dma.c
<<
>>
Prefs
   1/*
   2 * QEMU Sparc32 DMA controller emulation
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Modifications:
   7 *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
   8 *
   9 * Permission is hereby granted, free of charge, to any person obtaining a copy
  10 * of this software and associated documentation files (the "Software"), to deal
  11 * in the Software without restriction, including without limitation the rights
  12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13 * copies of the Software, and to permit persons to whom the Software is
  14 * furnished to do so, subject to the following conditions:
  15 *
  16 * The above copyright notice and this permission notice shall be included in
  17 * all copies or substantial portions of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25 * THE SOFTWARE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "hw/irq.h"
  30#include "hw/qdev-properties.h"
  31#include "hw/sparc/sparc32_dma.h"
  32#include "hw/sparc/sun4m_iommu.h"
  33#include "hw/sysbus.h"
  34#include "migration/vmstate.h"
  35#include "sysemu/dma.h"
  36#include "qapi/error.h"
  37#include "qemu/module.h"
  38#include "trace.h"
  39
  40/*
  41 * This is the DMA controller part of chip STP2000 (Master I/O), also
  42 * produced as NCR89C100. See
  43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
  44 * and
  45 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
  46 */
  47
  48#define DMA_SIZE (4 * sizeof(uint32_t))
  49/* We need the mask, because one instance of the device is not page
  50   aligned (ledma, start address 0x0010) */
  51#define DMA_MASK (DMA_SIZE - 1)
  52/* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
  53#define DMA_ETH_SIZE (8 * sizeof(uint32_t))
  54#define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
  55
  56#define DMA_VER 0xa0000000
  57#define DMA_INTR 1
  58#define DMA_INTREN 0x10
  59#define DMA_WRITE_MEM 0x100
  60#define DMA_EN 0x200
  61#define DMA_LOADED 0x04000000
  62#define DMA_DRAIN_FIFO 0x40
  63#define DMA_RESET 0x80
  64
  65/* XXX SCSI and ethernet should have different read-only bit masks */
  66#define DMA_CSR_RO_MASK 0xfe000007
  67
  68enum {
  69    GPIO_RESET = 0,
  70    GPIO_DMA,
  71};
  72
  73/* Note: on sparc, the lance 16 bit bus is swapped */
  74void ledma_memory_read(void *opaque, hwaddr addr,
  75                       uint8_t *buf, int len, int do_bswap)
  76{
  77    DMADeviceState *s = opaque;
  78    IOMMUState *is = (IOMMUState *)s->iommu;
  79    int i;
  80
  81    addr |= s->dmaregs[3];
  82    trace_ledma_memory_read(addr, len);
  83    if (do_bswap) {
  84        dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
  85    } else {
  86        addr &= ~1;
  87        len &= ~1;
  88        dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
  89        for(i = 0; i < len; i += 2) {
  90            bswap16s((uint16_t *)(buf + i));
  91        }
  92    }
  93}
  94
  95void ledma_memory_write(void *opaque, hwaddr addr,
  96                        uint8_t *buf, int len, int do_bswap)
  97{
  98    DMADeviceState *s = opaque;
  99    IOMMUState *is = (IOMMUState *)s->iommu;
 100    int l, i;
 101    uint16_t tmp_buf[32];
 102
 103    addr |= s->dmaregs[3];
 104    trace_ledma_memory_write(addr, len);
 105    if (do_bswap) {
 106        dma_memory_write(&is->iommu_as, addr, buf, len,
 107                         MEMTXATTRS_UNSPECIFIED);
 108    } else {
 109        addr &= ~1;
 110        len &= ~1;
 111        while (len > 0) {
 112            l = len;
 113            if (l > sizeof(tmp_buf))
 114                l = sizeof(tmp_buf);
 115            for(i = 0; i < l; i += 2) {
 116                tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
 117            }
 118            dma_memory_write(&is->iommu_as, addr, tmp_buf, l,
 119                             MEMTXATTRS_UNSPECIFIED);
 120            len -= l;
 121            buf += l;
 122            addr += l;
 123        }
 124    }
 125}
 126
 127static void dma_set_irq(void *opaque, int irq, int level)
 128{
 129    DMADeviceState *s = opaque;
 130    if (level) {
 131        s->dmaregs[0] |= DMA_INTR;
 132        if (s->dmaregs[0] & DMA_INTREN) {
 133            trace_sparc32_dma_set_irq_raise();
 134            qemu_irq_raise(s->irq);
 135        }
 136    } else {
 137        if (s->dmaregs[0] & DMA_INTR) {
 138            s->dmaregs[0] &= ~DMA_INTR;
 139            if (s->dmaregs[0] & DMA_INTREN) {
 140                trace_sparc32_dma_set_irq_lower();
 141                qemu_irq_lower(s->irq);
 142            }
 143        }
 144    }
 145}
 146
 147void espdma_memory_read(void *opaque, uint8_t *buf, int len)
 148{
 149    DMADeviceState *s = opaque;
 150    IOMMUState *is = (IOMMUState *)s->iommu;
 151
 152    trace_espdma_memory_read(s->dmaregs[1], len);
 153    dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len,
 154                    MEMTXATTRS_UNSPECIFIED);
 155    s->dmaregs[1] += len;
 156}
 157
 158void espdma_memory_write(void *opaque, uint8_t *buf, int len)
 159{
 160    DMADeviceState *s = opaque;
 161    IOMMUState *is = (IOMMUState *)s->iommu;
 162
 163    trace_espdma_memory_write(s->dmaregs[1], len);
 164    dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len,
 165                     MEMTXATTRS_UNSPECIFIED);
 166    s->dmaregs[1] += len;
 167}
 168
 169static uint64_t dma_mem_read(void *opaque, hwaddr addr,
 170                             unsigned size)
 171{
 172    DMADeviceState *s = opaque;
 173    uint32_t saddr;
 174
 175    saddr = (addr & DMA_MASK) >> 2;
 176    trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
 177    return s->dmaregs[saddr];
 178}
 179
 180static void dma_mem_write(void *opaque, hwaddr addr,
 181                          uint64_t val, unsigned size)
 182{
 183    DMADeviceState *s = opaque;
 184    uint32_t saddr;
 185
 186    saddr = (addr & DMA_MASK) >> 2;
 187    trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
 188    switch (saddr) {
 189    case 0:
 190        if (val & DMA_INTREN) {
 191            if (s->dmaregs[0] & DMA_INTR) {
 192                trace_sparc32_dma_set_irq_raise();
 193                qemu_irq_raise(s->irq);
 194            }
 195        } else {
 196            if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
 197                trace_sparc32_dma_set_irq_lower();
 198                qemu_irq_lower(s->irq);
 199            }
 200        }
 201        if (val & DMA_RESET) {
 202            qemu_irq_raise(s->gpio[GPIO_RESET]);
 203            qemu_irq_lower(s->gpio[GPIO_RESET]);
 204        } else if (val & DMA_DRAIN_FIFO) {
 205            val &= ~DMA_DRAIN_FIFO;
 206        } else if (val == 0)
 207            val = DMA_DRAIN_FIFO;
 208
 209        if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
 210            trace_sparc32_dma_enable_raise();
 211            qemu_irq_raise(s->gpio[GPIO_DMA]);
 212        } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
 213            trace_sparc32_dma_enable_lower();
 214            qemu_irq_lower(s->gpio[GPIO_DMA]);
 215        }
 216
 217        val &= ~DMA_CSR_RO_MASK;
 218        val |= DMA_VER;
 219        s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
 220        break;
 221    case 1:
 222        s->dmaregs[0] |= DMA_LOADED;
 223        /* fall through */
 224    default:
 225        s->dmaregs[saddr] = val;
 226        break;
 227    }
 228}
 229
 230static const MemoryRegionOps dma_mem_ops = {
 231    .read = dma_mem_read,
 232    .write = dma_mem_write,
 233    .endianness = DEVICE_NATIVE_ENDIAN,
 234    .valid = {
 235        .min_access_size = 4,
 236        .max_access_size = 4,
 237    },
 238};
 239
 240static void sparc32_dma_device_reset(DeviceState *d)
 241{
 242    DMADeviceState *s = SPARC32_DMA_DEVICE(d);
 243
 244    memset(s->dmaregs, 0, DMA_SIZE);
 245    s->dmaregs[0] = DMA_VER;
 246}
 247
 248static const VMStateDescription vmstate_sparc32_dma_device = {
 249    .name ="sparc32_dma",
 250    .version_id = 2,
 251    .minimum_version_id = 2,
 252    .fields = (VMStateField[]) {
 253        VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
 254        VMSTATE_END_OF_LIST()
 255    }
 256};
 257
 258static void sparc32_dma_device_init(Object *obj)
 259{
 260    DeviceState *dev = DEVICE(obj);
 261    DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
 262    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 263
 264    sysbus_init_irq(sbd, &s->irq);
 265
 266    sysbus_init_mmio(sbd, &s->iomem);
 267
 268    object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
 269                             (Object **) &s->iommu,
 270                             qdev_prop_allow_set_link_before_realize,
 271                             0);
 272
 273    qdev_init_gpio_in(dev, dma_set_irq, 1);
 274    qdev_init_gpio_out(dev, s->gpio, 2);
 275}
 276
 277static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
 278{
 279    DeviceClass *dc = DEVICE_CLASS(klass);
 280
 281    dc->reset = sparc32_dma_device_reset;
 282    dc->vmsd = &vmstate_sparc32_dma_device;
 283}
 284
 285static const TypeInfo sparc32_dma_device_info = {
 286    .name          = TYPE_SPARC32_DMA_DEVICE,
 287    .parent        = TYPE_SYS_BUS_DEVICE,
 288    .abstract      = true,
 289    .instance_size = sizeof(DMADeviceState),
 290    .instance_init = sparc32_dma_device_init,
 291    .class_init    = sparc32_dma_device_class_init,
 292};
 293
 294static void sparc32_espdma_device_init(Object *obj)
 295{
 296    DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
 297    ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
 298
 299    memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
 300                          "espdma-mmio", DMA_SIZE);
 301
 302    object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP);
 303}
 304
 305static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
 306{
 307    ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
 308    SysBusESPState *sysbus = SYSBUS_ESP(&es->esp);
 309    ESPState *esp = &sysbus->esp;
 310
 311    esp->dma_memory_read = espdma_memory_read;
 312    esp->dma_memory_write = espdma_memory_write;
 313    esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
 314    sysbus->it_shift = 2;
 315    esp->dma_enabled = 1;
 316    sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
 317}
 318
 319static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
 320{
 321    DeviceClass *dc = DEVICE_CLASS(klass);
 322
 323    dc->realize = sparc32_espdma_device_realize;
 324}
 325
 326static const TypeInfo sparc32_espdma_device_info = {
 327    .name          = TYPE_SPARC32_ESPDMA_DEVICE,
 328    .parent        = TYPE_SPARC32_DMA_DEVICE,
 329    .instance_size = sizeof(ESPDMADeviceState),
 330    .instance_init = sparc32_espdma_device_init,
 331    .class_init    = sparc32_espdma_device_class_init,
 332};
 333
 334static void sparc32_ledma_device_init(Object *obj)
 335{
 336    DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
 337    LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
 338
 339    memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
 340                          "ledma-mmio", DMA_SIZE);
 341
 342    object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
 343}
 344
 345static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
 346{
 347    LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
 348    SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
 349
 350    object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
 351    sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
 352}
 353
 354static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
 355{
 356    DeviceClass *dc = DEVICE_CLASS(klass);
 357
 358    dc->realize = sparc32_ledma_device_realize;
 359}
 360
 361static const TypeInfo sparc32_ledma_device_info = {
 362    .name          = TYPE_SPARC32_LEDMA_DEVICE,
 363    .parent        = TYPE_SPARC32_DMA_DEVICE,
 364    .instance_size = sizeof(LEDMADeviceState),
 365    .instance_init = sparc32_ledma_device_init,
 366    .class_init    = sparc32_ledma_device_class_init,
 367};
 368
 369static void sparc32_dma_realize(DeviceState *dev, Error **errp)
 370{
 371    SPARC32DMAState *s = SPARC32_DMA(dev);
 372    DeviceState *espdma, *esp, *ledma, *lance;
 373    SysBusDevice *sbd;
 374    Object *iommu;
 375
 376    iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
 377    if (!iommu) {
 378        error_setg(errp, "unable to locate sun4m IOMMU device");
 379        return;
 380    }
 381
 382    espdma = DEVICE(&s->espdma);
 383    object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
 384    sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
 385
 386    esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
 387    sbd = SYS_BUS_DEVICE(esp);
 388    sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
 389    qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
 390    qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
 391
 392    sbd = SYS_BUS_DEVICE(espdma);
 393    memory_region_add_subregion(&s->dmamem, 0x0,
 394                                sysbus_mmio_get_region(sbd, 0));
 395
 396    ledma = DEVICE(&s->ledma);
 397    object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
 398    sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
 399
 400    lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
 401    sbd = SYS_BUS_DEVICE(lance);
 402    sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
 403    qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
 404
 405    sbd = SYS_BUS_DEVICE(ledma);
 406    memory_region_add_subregion(&s->dmamem, 0x10,
 407                                sysbus_mmio_get_region(sbd, 0));
 408
 409    /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
 410    memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
 411                             sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
 412    memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
 413}
 414
 415static void sparc32_dma_init(Object *obj)
 416{
 417    SPARC32DMAState *s = SPARC32_DMA(obj);
 418    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 419
 420    memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
 421    sysbus_init_mmio(sbd, &s->dmamem);
 422
 423    object_initialize_child(obj, "espdma", &s->espdma,
 424                            TYPE_SPARC32_ESPDMA_DEVICE);
 425    object_initialize_child(obj, "ledma", &s->ledma,
 426                            TYPE_SPARC32_LEDMA_DEVICE);
 427}
 428
 429static void sparc32_dma_class_init(ObjectClass *klass, void *data)
 430{
 431    DeviceClass *dc = DEVICE_CLASS(klass);
 432
 433    dc->realize = sparc32_dma_realize;
 434}
 435
 436static const TypeInfo sparc32_dma_info = {
 437    .name          = TYPE_SPARC32_DMA,
 438    .parent        = TYPE_SYS_BUS_DEVICE,
 439    .instance_size = sizeof(SPARC32DMAState),
 440    .instance_init = sparc32_dma_init,
 441    .class_init    = sparc32_dma_class_init,
 442};
 443
 444
 445static void sparc32_dma_register_types(void)
 446{
 447    type_register_static(&sparc32_dma_device_info);
 448    type_register_static(&sparc32_espdma_device_info);
 449    type_register_static(&sparc32_ledma_device_info);
 450    type_register_static(&sparc32_dma_info);
 451}
 452
 453type_init(sparc32_dma_register_types)
 454