qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qemu/main-loop.h"
  25#include "qapi/error.h"
  26#include "hw/sysbus.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/qdev-properties.h"
  31#include "hw/i386/pc.h"
  32#include "hw/i386/apic-msidef.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "sysemu/dma.h"
  37#include "sysemu/sysemu.h"
  38#include "hw/i386/apic_internal.h"
  39#include "kvm/kvm_i386.h"
  40#include "migration/vmstate.h"
  41#include "trace.h"
  42
  43/* context entry operations */
  44#define VTD_CE_GET_RID2PASID(ce) \
  45    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  46#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  47    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  48
  49/* pe operations */
  50#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  51#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  52
  53/*
  54 * PCI bus number (or SID) is not reliable since the device is usaully
  55 * initalized before guest can configure the PCI bridge
  56 * (SECONDARY_BUS_NUMBER).
  57 */
  58struct vtd_as_key {
  59    PCIBus *bus;
  60    uint8_t devfn;
  61    uint32_t pasid;
  62};
  63
  64struct vtd_iotlb_key {
  65    uint64_t gfn;
  66    uint32_t pasid;
  67    uint16_t sid;
  68    uint8_t level;
  69};
  70
  71static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  72static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  73
  74static void vtd_panic_require_caching_mode(void)
  75{
  76    error_report("We need to set caching-mode=on for intel-iommu to enable "
  77                 "device assignment with IOMMU protection.");
  78    exit(1);
  79}
  80
  81static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  82                            uint64_t wmask, uint64_t w1cmask)
  83{
  84    stq_le_p(&s->csr[addr], val);
  85    stq_le_p(&s->wmask[addr], wmask);
  86    stq_le_p(&s->w1cmask[addr], w1cmask);
  87}
  88
  89static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  90{
  91    stq_le_p(&s->womask[addr], mask);
  92}
  93
  94static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  95                            uint32_t wmask, uint32_t w1cmask)
  96{
  97    stl_le_p(&s->csr[addr], val);
  98    stl_le_p(&s->wmask[addr], wmask);
  99    stl_le_p(&s->w1cmask[addr], w1cmask);
 100}
 101
 102static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
 103{
 104    stl_le_p(&s->womask[addr], mask);
 105}
 106
 107/* "External" get/set operations */
 108static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 109{
 110    uint64_t oldval = ldq_le_p(&s->csr[addr]);
 111    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
 112    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
 113    stq_le_p(&s->csr[addr],
 114             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 115}
 116
 117static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 118{
 119    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 120    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 121    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 122    stl_le_p(&s->csr[addr],
 123             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 124}
 125
 126static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 127{
 128    uint64_t val = ldq_le_p(&s->csr[addr]);
 129    uint64_t womask = ldq_le_p(&s->womask[addr]);
 130    return val & ~womask;
 131}
 132
 133static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 134{
 135    uint32_t val = ldl_le_p(&s->csr[addr]);
 136    uint32_t womask = ldl_le_p(&s->womask[addr]);
 137    return val & ~womask;
 138}
 139
 140/* "Internal" get/set operations */
 141static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 142{
 143    return ldq_le_p(&s->csr[addr]);
 144}
 145
 146static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 147{
 148    return ldl_le_p(&s->csr[addr]);
 149}
 150
 151static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 152{
 153    stq_le_p(&s->csr[addr], val);
 154}
 155
 156static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 157                                        uint32_t clear, uint32_t mask)
 158{
 159    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 160    stl_le_p(&s->csr[addr], new_val);
 161    return new_val;
 162}
 163
 164static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 165                                        uint64_t clear, uint64_t mask)
 166{
 167    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 168    stq_le_p(&s->csr[addr], new_val);
 169    return new_val;
 170}
 171
 172static inline void vtd_iommu_lock(IntelIOMMUState *s)
 173{
 174    qemu_mutex_lock(&s->iommu_lock);
 175}
 176
 177static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 178{
 179    qemu_mutex_unlock(&s->iommu_lock);
 180}
 181
 182static void vtd_update_scalable_state(IntelIOMMUState *s)
 183{
 184    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 185
 186    if (s->scalable_mode) {
 187        s->root_scalable = val & VTD_RTADDR_SMT;
 188    }
 189}
 190
 191static void vtd_update_iq_dw(IntelIOMMUState *s)
 192{
 193    uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
 194
 195    if (s->ecap & VTD_ECAP_SMTS &&
 196        val & VTD_IQA_DW_MASK) {
 197        s->iq_dw = true;
 198    } else {
 199        s->iq_dw = false;
 200    }
 201}
 202
 203/* Whether the address space needs to notify new mappings */
 204static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 205{
 206    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 207}
 208
 209/* GHashTable functions */
 210static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
 211{
 212    const struct vtd_iotlb_key *key1 = v1;
 213    const struct vtd_iotlb_key *key2 = v2;
 214
 215    return key1->sid == key2->sid &&
 216           key1->pasid == key2->pasid &&
 217           key1->level == key2->level &&
 218           key1->gfn == key2->gfn;
 219}
 220
 221static guint vtd_iotlb_hash(gconstpointer v)
 222{
 223    const struct vtd_iotlb_key *key = v;
 224    uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
 225        (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
 226        (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
 227
 228    return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
 229}
 230
 231static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
 232{
 233    const struct vtd_as_key *key1 = v1;
 234    const struct vtd_as_key *key2 = v2;
 235
 236    return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
 237           (key1->pasid == key2->pasid);
 238}
 239
 240/*
 241 * Note that we use pointer to PCIBus as the key, so hashing/shifting
 242 * based on the pointer value is intended. Note that we deal with
 243 * collisions through vtd_as_equal().
 244 */
 245static guint vtd_as_hash(gconstpointer v)
 246{
 247    const struct vtd_as_key *key = v;
 248    guint value = (guint)(uintptr_t)key->bus;
 249
 250    return (guint)(value << 8 | key->devfn);
 251}
 252
 253static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 254                                          gpointer user_data)
 255{
 256    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 257    uint16_t domain_id = *(uint16_t *)user_data;
 258    return entry->domain_id == domain_id;
 259}
 260
 261/* The shift of an addr for a certain level of paging structure */
 262static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 263{
 264    assert(level != 0);
 265    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 266}
 267
 268static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 269{
 270    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 271}
 272
 273static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 274                                        gpointer user_data)
 275{
 276    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 277    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 278    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 279    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 280    return (entry->domain_id == info->domain_id) &&
 281            (((entry->gfn & info->mask) == gfn) ||
 282             (entry->gfn == gfn_tlb));
 283}
 284
 285/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 286 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 287 */
 288static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 289{
 290    VTDAddressSpace *vtd_as;
 291    GHashTableIter as_it;
 292
 293    trace_vtd_context_cache_reset();
 294
 295    g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
 296
 297    while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
 298        vtd_as->context_cache_entry.context_cache_gen = 0;
 299    }
 300    s->context_cache_gen = 1;
 301}
 302
 303/* Must be called with IOMMU lock held. */
 304static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 305{
 306    assert(s->iotlb);
 307    g_hash_table_remove_all(s->iotlb);
 308}
 309
 310static void vtd_reset_iotlb(IntelIOMMUState *s)
 311{
 312    vtd_iommu_lock(s);
 313    vtd_reset_iotlb_locked(s);
 314    vtd_iommu_unlock(s);
 315}
 316
 317static void vtd_reset_caches(IntelIOMMUState *s)
 318{
 319    vtd_iommu_lock(s);
 320    vtd_reset_iotlb_locked(s);
 321    vtd_reset_context_cache_locked(s);
 322    vtd_iommu_unlock(s);
 323}
 324
 325static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 326{
 327    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 328}
 329
 330/* Must be called with IOMMU lock held */
 331static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 332                                       uint32_t pasid, hwaddr addr)
 333{
 334    struct vtd_iotlb_key key;
 335    VTDIOTLBEntry *entry;
 336    int level;
 337
 338    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 339        key.gfn = vtd_get_iotlb_gfn(addr, level);
 340        key.level = level;
 341        key.sid = source_id;
 342        key.pasid = pasid;
 343        entry = g_hash_table_lookup(s->iotlb, &key);
 344        if (entry) {
 345            goto out;
 346        }
 347    }
 348
 349out:
 350    return entry;
 351}
 352
 353/* Must be with IOMMU lock held */
 354static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 355                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 356                             uint8_t access_flags, uint32_t level,
 357                             uint32_t pasid)
 358{
 359    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 360    struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
 361    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 362
 363    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 364    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 365        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 366        vtd_reset_iotlb_locked(s);
 367    }
 368
 369    entry->gfn = gfn;
 370    entry->domain_id = domain_id;
 371    entry->slpte = slpte;
 372    entry->access_flags = access_flags;
 373    entry->mask = vtd_slpt_level_page_mask(level);
 374    entry->pasid = pasid;
 375
 376    key->gfn = gfn;
 377    key->sid = source_id;
 378    key->level = level;
 379    key->pasid = pasid;
 380
 381    g_hash_table_replace(s->iotlb, key, entry);
 382}
 383
 384/* Given the reg addr of both the message data and address, generate an
 385 * interrupt via MSI.
 386 */
 387static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 388                                   hwaddr mesg_data_reg)
 389{
 390    MSIMessage msi;
 391
 392    assert(mesg_data_reg < DMAR_REG_SIZE);
 393    assert(mesg_addr_reg < DMAR_REG_SIZE);
 394
 395    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 396    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 397
 398    trace_vtd_irq_generate(msi.address, msi.data);
 399
 400    apic_get_class(NULL)->send_msi(&msi);
 401}
 402
 403/* Generate a fault event to software via MSI if conditions are met.
 404 * Notice that the value of FSTS_REG being passed to it should be the one
 405 * before any update.
 406 */
 407static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 408{
 409    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 410        pre_fsts & VTD_FSTS_IQE) {
 411        error_report_once("There are previous interrupt conditions "
 412                          "to be serviced by software, fault event "
 413                          "is not generated");
 414        return;
 415    }
 416    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 417    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 418        error_report_once("Interrupt Mask set, irq is not generated");
 419    } else {
 420        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 421        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 422    }
 423}
 424
 425/* Check if the Fault (F) field of the Fault Recording Register referenced by
 426 * @index is Set.
 427 */
 428static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 429{
 430    /* Each reg is 128-bit */
 431    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 432    addr += 8; /* Access the high 64-bit half */
 433
 434    assert(index < DMAR_FRCD_REG_NR);
 435
 436    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 437}
 438
 439/* Update the PPF field of Fault Status Register.
 440 * Should be called whenever change the F field of any fault recording
 441 * registers.
 442 */
 443static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 444{
 445    uint32_t i;
 446    uint32_t ppf_mask = 0;
 447
 448    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 449        if (vtd_is_frcd_set(s, i)) {
 450            ppf_mask = VTD_FSTS_PPF;
 451            break;
 452        }
 453    }
 454    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 455    trace_vtd_fsts_ppf(!!ppf_mask);
 456}
 457
 458static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 459{
 460    /* Each reg is 128-bit */
 461    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 462    addr += 8; /* Access the high 64-bit half */
 463
 464    assert(index < DMAR_FRCD_REG_NR);
 465
 466    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 467    vtd_update_fsts_ppf(s);
 468}
 469
 470/* Must not update F field now, should be done later */
 471static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 472                            uint16_t source_id, hwaddr addr,
 473                            VTDFaultReason fault, bool is_write,
 474                            bool is_pasid, uint32_t pasid)
 475{
 476    uint64_t hi = 0, lo;
 477    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 478
 479    assert(index < DMAR_FRCD_REG_NR);
 480
 481    lo = VTD_FRCD_FI(addr);
 482    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
 483         VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
 484    if (!is_write) {
 485        hi |= VTD_FRCD_T;
 486    }
 487    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 488    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 489
 490    trace_vtd_frr_new(index, hi, lo);
 491}
 492
 493/* Try to collapse multiple pending faults from the same requester */
 494static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 495{
 496    uint32_t i;
 497    uint64_t frcd_reg;
 498    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 499
 500    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 501        frcd_reg = vtd_get_quad_raw(s, addr);
 502        if ((frcd_reg & VTD_FRCD_F) &&
 503            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 504            return true;
 505        }
 506        addr += 16; /* 128-bit for each */
 507    }
 508    return false;
 509}
 510
 511/* Log and report an DMAR (address translation) fault to software */
 512static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 513                                  hwaddr addr, VTDFaultReason fault,
 514                                  bool is_write, bool is_pasid,
 515                                  uint32_t pasid)
 516{
 517    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 518
 519    assert(fault < VTD_FR_MAX);
 520
 521    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 522
 523    if (fsts_reg & VTD_FSTS_PFO) {
 524        error_report_once("New fault is not recorded due to "
 525                          "Primary Fault Overflow");
 526        return;
 527    }
 528
 529    if (vtd_try_collapse_fault(s, source_id)) {
 530        error_report_once("New fault is not recorded due to "
 531                          "compression of faults");
 532        return;
 533    }
 534
 535    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 536        error_report_once("Next Fault Recording Reg is used, "
 537                          "new fault is not recorded, set PFO field");
 538        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 539        return;
 540    }
 541
 542    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
 543                    is_write, is_pasid, pasid);
 544
 545    if (fsts_reg & VTD_FSTS_PPF) {
 546        error_report_once("There are pending faults already, "
 547                          "fault event is not generated");
 548        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 549        s->next_frcd_reg++;
 550        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 551            s->next_frcd_reg = 0;
 552        }
 553    } else {
 554        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 555                                VTD_FSTS_FRI(s->next_frcd_reg));
 556        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 557        s->next_frcd_reg++;
 558        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 559            s->next_frcd_reg = 0;
 560        }
 561        /* This case actually cause the PPF to be Set.
 562         * So generate fault event (interrupt).
 563         */
 564         vtd_generate_fault_event(s, fsts_reg);
 565    }
 566}
 567
 568/* Handle Invalidation Queue Errors of queued invalidation interface error
 569 * conditions.
 570 */
 571static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 572{
 573    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 574
 575    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 576    vtd_generate_fault_event(s, fsts_reg);
 577}
 578
 579/* Set the IWC field and try to generate an invalidation completion interrupt */
 580static void vtd_generate_completion_event(IntelIOMMUState *s)
 581{
 582    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 583        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 584        return;
 585    }
 586    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 587    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 588    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 589        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 590                                    "new event not generated");
 591        return;
 592    } else {
 593        /* Generate the interrupt event */
 594        trace_vtd_inv_desc_wait_irq("Generating complete event");
 595        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 596        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 597    }
 598}
 599
 600static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 601                                          VTDRootEntry *re,
 602                                          uint8_t devfn)
 603{
 604    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 605        return re->hi & VTD_ROOT_ENTRY_P;
 606    }
 607
 608    return re->lo & VTD_ROOT_ENTRY_P;
 609}
 610
 611static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 612                              VTDRootEntry *re)
 613{
 614    dma_addr_t addr;
 615
 616    addr = s->root + index * sizeof(*re);
 617    if (dma_memory_read(&address_space_memory, addr,
 618                        re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
 619        re->lo = 0;
 620        return -VTD_FR_ROOT_TABLE_INV;
 621    }
 622    re->lo = le64_to_cpu(re->lo);
 623    re->hi = le64_to_cpu(re->hi);
 624    return 0;
 625}
 626
 627static inline bool vtd_ce_present(VTDContextEntry *context)
 628{
 629    return context->lo & VTD_CONTEXT_ENTRY_P;
 630}
 631
 632static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 633                                           VTDRootEntry *re,
 634                                           uint8_t index,
 635                                           VTDContextEntry *ce)
 636{
 637    dma_addr_t addr, ce_size;
 638
 639    /* we have checked that root entry is present */
 640    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 641              VTD_CTX_ENTRY_LEGACY_SIZE;
 642
 643    if (s->root_scalable && index > UINT8_MAX / 2) {
 644        index = index & (~VTD_DEVFN_CHECK_MASK);
 645        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 646    } else {
 647        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 648    }
 649
 650    addr = addr + index * ce_size;
 651    if (dma_memory_read(&address_space_memory, addr,
 652                        ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
 653        return -VTD_FR_CONTEXT_TABLE_INV;
 654    }
 655
 656    ce->lo = le64_to_cpu(ce->lo);
 657    ce->hi = le64_to_cpu(ce->hi);
 658    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 659        ce->val[2] = le64_to_cpu(ce->val[2]);
 660        ce->val[3] = le64_to_cpu(ce->val[3]);
 661    }
 662    return 0;
 663}
 664
 665static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 666{
 667    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 668}
 669
 670static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 671{
 672    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 673}
 674
 675/* Whether the pte indicates the address of the page frame */
 676static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 677{
 678    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 679}
 680
 681/* Get the content of a spte located in @base_addr[@index] */
 682static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 683{
 684    uint64_t slpte;
 685
 686    assert(index < VTD_SL_PT_ENTRY_NR);
 687
 688    if (dma_memory_read(&address_space_memory,
 689                        base_addr + index * sizeof(slpte),
 690                        &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
 691        slpte = (uint64_t)-1;
 692        return slpte;
 693    }
 694    slpte = le64_to_cpu(slpte);
 695    return slpte;
 696}
 697
 698/* Given an iova and the level of paging structure, return the offset
 699 * of current level.
 700 */
 701static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 702{
 703    return (iova >> vtd_slpt_level_shift(level)) &
 704            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 705}
 706
 707/* Check Capability Register to see if the @level of page-table is supported */
 708static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 709{
 710    return VTD_CAP_SAGAW_MASK & s->cap &
 711           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 712}
 713
 714/* Return true if check passed, otherwise false */
 715static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 716                                     VTDPASIDEntry *pe)
 717{
 718    switch (VTD_PE_GET_TYPE(pe)) {
 719    case VTD_SM_PASID_ENTRY_FLT:
 720    case VTD_SM_PASID_ENTRY_SLT:
 721    case VTD_SM_PASID_ENTRY_NESTED:
 722        break;
 723    case VTD_SM_PASID_ENTRY_PT:
 724        if (!x86_iommu->pt_supported) {
 725            return false;
 726        }
 727        break;
 728    default:
 729        /* Unknown type */
 730        return false;
 731    }
 732    return true;
 733}
 734
 735static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
 736{
 737    return pdire->val & 1;
 738}
 739
 740/**
 741 * Caller of this function should check present bit if wants
 742 * to use pdir entry for further usage except for fpd bit check.
 743 */
 744static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
 745                                         uint32_t pasid,
 746                                         VTDPASIDDirEntry *pdire)
 747{
 748    uint32_t index;
 749    dma_addr_t addr, entry_size;
 750
 751    index = VTD_PASID_DIR_INDEX(pasid);
 752    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 753    addr = pasid_dir_base + index * entry_size;
 754    if (dma_memory_read(&address_space_memory, addr,
 755                        pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
 756        return -VTD_FR_PASID_TABLE_INV;
 757    }
 758
 759    pdire->val = le64_to_cpu(pdire->val);
 760
 761    return 0;
 762}
 763
 764static inline bool vtd_pe_present(VTDPASIDEntry *pe)
 765{
 766    return pe->val[0] & VTD_PASID_ENTRY_P;
 767}
 768
 769static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
 770                                          uint32_t pasid,
 771                                          dma_addr_t addr,
 772                                          VTDPASIDEntry *pe)
 773{
 774    uint32_t index;
 775    dma_addr_t entry_size;
 776    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 777
 778    index = VTD_PASID_TABLE_INDEX(pasid);
 779    entry_size = VTD_PASID_ENTRY_SIZE;
 780    addr = addr + index * entry_size;
 781    if (dma_memory_read(&address_space_memory, addr,
 782                        pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
 783        return -VTD_FR_PASID_TABLE_INV;
 784    }
 785    for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
 786        pe->val[i] = le64_to_cpu(pe->val[i]);
 787    }
 788
 789    /* Do translation type check */
 790    if (!vtd_pe_type_check(x86_iommu, pe)) {
 791        return -VTD_FR_PASID_TABLE_INV;
 792    }
 793
 794    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 795        return -VTD_FR_PASID_TABLE_INV;
 796    }
 797
 798    return 0;
 799}
 800
 801/**
 802 * Caller of this function should check present bit if wants
 803 * to use pasid entry for further usage except for fpd bit check.
 804 */
 805static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
 806                                 uint32_t pasid,
 807                                 VTDPASIDDirEntry *pdire,
 808                                 VTDPASIDEntry *pe)
 809{
 810    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 811
 812    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
 813}
 814
 815/**
 816 * This function gets a pasid entry from a specified pasid
 817 * table (includes dir and leaf table) with a specified pasid.
 818 * Sanity check should be done to ensure return a present
 819 * pasid entry to caller.
 820 */
 821static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
 822                                       dma_addr_t pasid_dir_base,
 823                                       uint32_t pasid,
 824                                       VTDPASIDEntry *pe)
 825{
 826    int ret;
 827    VTDPASIDDirEntry pdire;
 828
 829    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
 830                                        pasid, &pdire);
 831    if (ret) {
 832        return ret;
 833    }
 834
 835    if (!vtd_pdire_present(&pdire)) {
 836        return -VTD_FR_PASID_TABLE_INV;
 837    }
 838
 839    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
 840    if (ret) {
 841        return ret;
 842    }
 843
 844    if (!vtd_pe_present(pe)) {
 845        return -VTD_FR_PASID_TABLE_INV;
 846    }
 847
 848    return 0;
 849}
 850
 851static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 852                                      VTDContextEntry *ce,
 853                                      VTDPASIDEntry *pe,
 854                                      uint32_t pasid)
 855{
 856    dma_addr_t pasid_dir_base;
 857    int ret = 0;
 858
 859    if (pasid == PCI_NO_PASID) {
 860        pasid = VTD_CE_GET_RID2PASID(ce);
 861    }
 862    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 863    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
 864
 865    return ret;
 866}
 867
 868static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 869                                VTDContextEntry *ce,
 870                                bool *pe_fpd_set,
 871                                uint32_t pasid)
 872{
 873    int ret;
 874    dma_addr_t pasid_dir_base;
 875    VTDPASIDDirEntry pdire;
 876    VTDPASIDEntry pe;
 877
 878    if (pasid == PCI_NO_PASID) {
 879        pasid = VTD_CE_GET_RID2PASID(ce);
 880    }
 881    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 882
 883    /*
 884     * No present bit check since fpd is meaningful even
 885     * if the present bit is clear.
 886     */
 887    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
 888    if (ret) {
 889        return ret;
 890    }
 891
 892    if (pdire.val & VTD_PASID_DIR_FPD) {
 893        *pe_fpd_set = true;
 894        return 0;
 895    }
 896
 897    if (!vtd_pdire_present(&pdire)) {
 898        return -VTD_FR_PASID_TABLE_INV;
 899    }
 900
 901    /*
 902     * No present bit check since fpd is meaningful even
 903     * if the present bit is clear.
 904     */
 905    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
 906    if (ret) {
 907        return ret;
 908    }
 909
 910    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 911        *pe_fpd_set = true;
 912    }
 913
 914    return 0;
 915}
 916
 917/* Get the page-table level that hardware should use for the second-level
 918 * page-table walk from the Address Width field of context-entry.
 919 */
 920static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 921{
 922    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 923}
 924
 925static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 926                                   VTDContextEntry *ce,
 927                                   uint32_t pasid)
 928{
 929    VTDPASIDEntry pe;
 930
 931    if (s->root_scalable) {
 932        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
 933        return VTD_PE_GET_LEVEL(&pe);
 934    }
 935
 936    return vtd_ce_get_level(ce);
 937}
 938
 939static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 940{
 941    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 942}
 943
 944static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 945                                  VTDContextEntry *ce,
 946                                  uint32_t pasid)
 947{
 948    VTDPASIDEntry pe;
 949
 950    if (s->root_scalable) {
 951        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
 952        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 953    }
 954
 955    return vtd_ce_get_agaw(ce);
 956}
 957
 958static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 959{
 960    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 961}
 962
 963/* Only for Legacy Mode. Return true if check passed, otherwise false */
 964static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 965                                     VTDContextEntry *ce)
 966{
 967    switch (vtd_ce_get_type(ce)) {
 968    case VTD_CONTEXT_TT_MULTI_LEVEL:
 969        /* Always supported */
 970        break;
 971    case VTD_CONTEXT_TT_DEV_IOTLB:
 972        if (!x86_iommu->dt_supported) {
 973            error_report_once("%s: DT specified but not supported", __func__);
 974            return false;
 975        }
 976        break;
 977    case VTD_CONTEXT_TT_PASS_THROUGH:
 978        if (!x86_iommu->pt_supported) {
 979            error_report_once("%s: PT specified but not supported", __func__);
 980            return false;
 981        }
 982        break;
 983    default:
 984        /* Unknown type */
 985        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 986                          vtd_ce_get_type(ce));
 987        return false;
 988    }
 989    return true;
 990}
 991
 992static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 993                                      VTDContextEntry *ce, uint8_t aw,
 994                                      uint32_t pasid)
 995{
 996    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
 997    return 1ULL << MIN(ce_agaw, aw);
 998}
 999
1000/* Return true if IOVA passes range check, otherwise false. */
1001static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1002                                        uint64_t iova, VTDContextEntry *ce,
1003                                        uint8_t aw, uint32_t pasid)
1004{
1005    /*
1006     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1007     * in CAP_REG and AW in context-entry.
1008     */
1009    return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1010}
1011
1012static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1013                                          VTDContextEntry *ce,
1014                                          uint32_t pasid)
1015{
1016    VTDPASIDEntry pe;
1017
1018    if (s->root_scalable) {
1019        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1020        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1021    }
1022
1023    return vtd_ce_get_slpt_base(ce);
1024}
1025
1026/*
1027 * Rsvd field masks for spte:
1028 *     vtd_spte_rsvd 4k pages
1029 *     vtd_spte_rsvd_large large pages
1030 */
1031static uint64_t vtd_spte_rsvd[5];
1032static uint64_t vtd_spte_rsvd_large[5];
1033
1034static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1035{
1036    uint64_t rsvd_mask = vtd_spte_rsvd[level];
1037
1038    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1039        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1040        /* large page */
1041        rsvd_mask = vtd_spte_rsvd_large[level];
1042    }
1043
1044    return slpte & rsvd_mask;
1045}
1046
1047/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1048 * of the translation, can be used for deciding the size of large page.
1049 */
1050static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1051                             uint64_t iova, bool is_write,
1052                             uint64_t *slptep, uint32_t *slpte_level,
1053                             bool *reads, bool *writes, uint8_t aw_bits,
1054                             uint32_t pasid)
1055{
1056    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1057    uint32_t level = vtd_get_iova_level(s, ce, pasid);
1058    uint32_t offset;
1059    uint64_t slpte;
1060    uint64_t access_right_check;
1061    uint64_t xlat, size;
1062
1063    if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1064        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1065                          "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1066        return -VTD_FR_ADDR_BEYOND_MGAW;
1067    }
1068
1069    /* FIXME: what is the Atomics request here? */
1070    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1071
1072    while (true) {
1073        offset = vtd_iova_level_offset(iova, level);
1074        slpte = vtd_get_slpte(addr, offset);
1075
1076        if (slpte == (uint64_t)-1) {
1077            error_report_once("%s: detected read error on DMAR slpte "
1078                              "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1079                              __func__, iova, pasid);
1080            if (level == vtd_get_iova_level(s, ce, pasid)) {
1081                /* Invalid programming of context-entry */
1082                return -VTD_FR_CONTEXT_ENTRY_INV;
1083            } else {
1084                return -VTD_FR_PAGING_ENTRY_INV;
1085            }
1086        }
1087        *reads = (*reads) && (slpte & VTD_SL_R);
1088        *writes = (*writes) && (slpte & VTD_SL_W);
1089        if (!(slpte & access_right_check)) {
1090            error_report_once("%s: detected slpte permission error "
1091                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1092                              "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1093                              PRIx32 ")", __func__, iova, level,
1094                              slpte, is_write, pasid);
1095            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1096        }
1097        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1098            error_report_once("%s: detected splte reserve non-zero "
1099                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
1100                              "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1101                              __func__, iova, level, slpte, pasid);
1102            return -VTD_FR_PAGING_ENTRY_RSVD;
1103        }
1104
1105        if (vtd_is_last_slpte(slpte, level)) {
1106            *slptep = slpte;
1107            *slpte_level = level;
1108            break;
1109        }
1110        addr = vtd_get_slpte_addr(slpte, aw_bits);
1111        level--;
1112    }
1113
1114    xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1115    size = ~vtd_slpt_level_page_mask(level) + 1;
1116
1117    /*
1118     * From VT-d spec 3.14: Untranslated requests and translation
1119     * requests that result in an address in the interrupt range will be
1120     * blocked with condition code LGN.4 or SGN.8.
1121     */
1122    if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1123         xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1124        return 0;
1125    } else {
1126        error_report_once("%s: xlat address is in interrupt range "
1127                          "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1128                          "slpte=0x%" PRIx64 ", write=%d, "
1129                          "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1130                          "pasid=0x%" PRIx32 ")",
1131                          __func__, iova, level, slpte, is_write,
1132                          xlat, size, pasid);
1133        return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1134                                  -VTD_FR_INTERRUPT_ADDR;
1135    }
1136}
1137
1138typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1139
1140/**
1141 * Constant information used during page walking
1142 *
1143 * @hook_fn: hook func to be called when detected page
1144 * @private: private data to be passed into hook func
1145 * @notify_unmap: whether we should notify invalid entries
1146 * @as: VT-d address space of the device
1147 * @aw: maximum address width
1148 * @domain: domain ID of the page walk
1149 */
1150typedef struct {
1151    VTDAddressSpace *as;
1152    vtd_page_walk_hook hook_fn;
1153    void *private;
1154    bool notify_unmap;
1155    uint8_t aw;
1156    uint16_t domain_id;
1157} vtd_page_walk_info;
1158
1159static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1160{
1161    VTDAddressSpace *as = info->as;
1162    vtd_page_walk_hook hook_fn = info->hook_fn;
1163    void *private = info->private;
1164    IOMMUTLBEntry *entry = &event->entry;
1165    DMAMap target = {
1166        .iova = entry->iova,
1167        .size = entry->addr_mask,
1168        .translated_addr = entry->translated_addr,
1169        .perm = entry->perm,
1170    };
1171    const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1172
1173    if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1174        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1175        return 0;
1176    }
1177
1178    assert(hook_fn);
1179
1180    /* Update local IOVA mapped ranges */
1181    if (event->type == IOMMU_NOTIFIER_MAP) {
1182        if (mapped) {
1183            /* If it's exactly the same translation, skip */
1184            if (!memcmp(mapped, &target, sizeof(target))) {
1185                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1186                                                 entry->translated_addr);
1187                return 0;
1188            } else {
1189                /*
1190                 * Translation changed.  Normally this should not
1191                 * happen, but it can happen when with buggy guest
1192                 * OSes.  Note that there will be a small window that
1193                 * we don't have map at all.  But that's the best
1194                 * effort we can do.  The ideal way to emulate this is
1195                 * atomically modify the PTE to follow what has
1196                 * changed, but we can't.  One example is that vfio
1197                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1198                 * interface to modify a mapping (meanwhile it seems
1199                 * meaningless to even provide one).  Anyway, let's
1200                 * mark this as a TODO in case one day we'll have
1201                 * a better solution.
1202                 */
1203                IOMMUAccessFlags cache_perm = entry->perm;
1204                int ret;
1205
1206                /* Emulate an UNMAP */
1207                event->type = IOMMU_NOTIFIER_UNMAP;
1208                entry->perm = IOMMU_NONE;
1209                trace_vtd_page_walk_one(info->domain_id,
1210                                        entry->iova,
1211                                        entry->translated_addr,
1212                                        entry->addr_mask,
1213                                        entry->perm);
1214                ret = hook_fn(event, private);
1215                if (ret) {
1216                    return ret;
1217                }
1218                /* Drop any existing mapping */
1219                iova_tree_remove(as->iova_tree, target);
1220                /* Recover the correct type */
1221                event->type = IOMMU_NOTIFIER_MAP;
1222                entry->perm = cache_perm;
1223            }
1224        }
1225        iova_tree_insert(as->iova_tree, &target);
1226    } else {
1227        if (!mapped) {
1228            /* Skip since we didn't map this range at all */
1229            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1230            return 0;
1231        }
1232        iova_tree_remove(as->iova_tree, target);
1233    }
1234
1235    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1236                            entry->translated_addr, entry->addr_mask,
1237                            entry->perm);
1238    return hook_fn(event, private);
1239}
1240
1241/**
1242 * vtd_page_walk_level - walk over specific level for IOVA range
1243 *
1244 * @addr: base GPA addr to start the walk
1245 * @start: IOVA range start address
1246 * @end: IOVA range end address (start <= addr < end)
1247 * @read: whether parent level has read permission
1248 * @write: whether parent level has write permission
1249 * @info: constant information for the page walk
1250 */
1251static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1252                               uint64_t end, uint32_t level, bool read,
1253                               bool write, vtd_page_walk_info *info)
1254{
1255    bool read_cur, write_cur, entry_valid;
1256    uint32_t offset;
1257    uint64_t slpte;
1258    uint64_t subpage_size, subpage_mask;
1259    IOMMUTLBEvent event;
1260    uint64_t iova = start;
1261    uint64_t iova_next;
1262    int ret = 0;
1263
1264    trace_vtd_page_walk_level(addr, level, start, end);
1265
1266    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1267    subpage_mask = vtd_slpt_level_page_mask(level);
1268
1269    while (iova < end) {
1270        iova_next = (iova & subpage_mask) + subpage_size;
1271
1272        offset = vtd_iova_level_offset(iova, level);
1273        slpte = vtd_get_slpte(addr, offset);
1274
1275        if (slpte == (uint64_t)-1) {
1276            trace_vtd_page_walk_skip_read(iova, iova_next);
1277            goto next;
1278        }
1279
1280        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1281            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1282            goto next;
1283        }
1284
1285        /* Permissions are stacked with parents' */
1286        read_cur = read && (slpte & VTD_SL_R);
1287        write_cur = write && (slpte & VTD_SL_W);
1288
1289        /*
1290         * As long as we have either read/write permission, this is a
1291         * valid entry. The rule works for both page entries and page
1292         * table entries.
1293         */
1294        entry_valid = read_cur | write_cur;
1295
1296        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1297            /*
1298             * This is a valid PDE (or even bigger than PDE).  We need
1299             * to walk one further level.
1300             */
1301            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1302                                      iova, MIN(iova_next, end), level - 1,
1303                                      read_cur, write_cur, info);
1304        } else {
1305            /*
1306             * This means we are either:
1307             *
1308             * (1) the real page entry (either 4K page, or huge page)
1309             * (2) the whole range is invalid
1310             *
1311             * In either case, we send an IOTLB notification down.
1312             */
1313            event.entry.target_as = &address_space_memory;
1314            event.entry.iova = iova & subpage_mask;
1315            event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1316            event.entry.addr_mask = ~subpage_mask;
1317            /* NOTE: this is only meaningful if entry_valid == true */
1318            event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1319            event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1320                                            IOMMU_NOTIFIER_UNMAP;
1321            ret = vtd_page_walk_one(&event, info);
1322        }
1323
1324        if (ret < 0) {
1325            return ret;
1326        }
1327
1328next:
1329        iova = iova_next;
1330    }
1331
1332    return 0;
1333}
1334
1335/**
1336 * vtd_page_walk - walk specific IOVA range, and call the hook
1337 *
1338 * @s: intel iommu state
1339 * @ce: context entry to walk upon
1340 * @start: IOVA address to start the walk
1341 * @end: IOVA range end address (start <= addr < end)
1342 * @info: page walking information struct
1343 */
1344static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1345                         uint64_t start, uint64_t end,
1346                         vtd_page_walk_info *info,
1347                         uint32_t pasid)
1348{
1349    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1350    uint32_t level = vtd_get_iova_level(s, ce, pasid);
1351
1352    if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1353        return -VTD_FR_ADDR_BEYOND_MGAW;
1354    }
1355
1356    if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1357        /* Fix end so that it reaches the maximum */
1358        end = vtd_iova_limit(s, ce, info->aw, pasid);
1359    }
1360
1361    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1362}
1363
1364static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1365                                          VTDRootEntry *re)
1366{
1367    /* Legacy Mode reserved bits check */
1368    if (!s->root_scalable &&
1369        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1370        goto rsvd_err;
1371
1372    /* Scalable Mode reserved bits check */
1373    if (s->root_scalable &&
1374        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1375         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1376        goto rsvd_err;
1377
1378    return 0;
1379
1380rsvd_err:
1381    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1382                      ", lo=0x%"PRIx64,
1383                      __func__, re->hi, re->lo);
1384    return -VTD_FR_ROOT_ENTRY_RSVD;
1385}
1386
1387static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1388                                                    VTDContextEntry *ce)
1389{
1390    if (!s->root_scalable &&
1391        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1392         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1393        error_report_once("%s: invalid context entry: hi=%"PRIx64
1394                          ", lo=%"PRIx64" (reserved nonzero)",
1395                          __func__, ce->hi, ce->lo);
1396        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1397    }
1398
1399    if (s->root_scalable &&
1400        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1401         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1402         ce->val[2] ||
1403         ce->val[3])) {
1404        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1405                          ", val[2]=%"PRIx64
1406                          ", val[1]=%"PRIx64
1407                          ", val[0]=%"PRIx64" (reserved nonzero)",
1408                          __func__, ce->val[3], ce->val[2],
1409                          ce->val[1], ce->val[0]);
1410        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1411    }
1412
1413    return 0;
1414}
1415
1416static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1417                                  VTDContextEntry *ce)
1418{
1419    VTDPASIDEntry pe;
1420
1421    /*
1422     * Make sure in Scalable Mode, a present context entry
1423     * has valid rid2pasid setting, which includes valid
1424     * rid2pasid field and corresponding pasid entry setting
1425     */
1426    return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1427}
1428
1429/* Map a device to its corresponding domain (context-entry) */
1430static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1431                                    uint8_t devfn, VTDContextEntry *ce)
1432{
1433    VTDRootEntry re;
1434    int ret_fr;
1435    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1436
1437    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1438    if (ret_fr) {
1439        return ret_fr;
1440    }
1441
1442    if (!vtd_root_entry_present(s, &re, devfn)) {
1443        /* Not error - it's okay we don't have root entry. */
1444        trace_vtd_re_not_present(bus_num);
1445        return -VTD_FR_ROOT_ENTRY_P;
1446    }
1447
1448    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1449    if (ret_fr) {
1450        return ret_fr;
1451    }
1452
1453    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1454    if (ret_fr) {
1455        return ret_fr;
1456    }
1457
1458    if (!vtd_ce_present(ce)) {
1459        /* Not error - it's okay we don't have context entry. */
1460        trace_vtd_ce_not_present(bus_num, devfn);
1461        return -VTD_FR_CONTEXT_ENTRY_P;
1462    }
1463
1464    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1465    if (ret_fr) {
1466        return ret_fr;
1467    }
1468
1469    /* Check if the programming of context-entry is valid */
1470    if (!s->root_scalable &&
1471        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1472        error_report_once("%s: invalid context entry: hi=%"PRIx64
1473                          ", lo=%"PRIx64" (level %d not supported)",
1474                          __func__, ce->hi, ce->lo,
1475                          vtd_ce_get_level(ce));
1476        return -VTD_FR_CONTEXT_ENTRY_INV;
1477    }
1478
1479    if (!s->root_scalable) {
1480        /* Do translation type check */
1481        if (!vtd_ce_type_check(x86_iommu, ce)) {
1482            /* Errors dumped in vtd_ce_type_check() */
1483            return -VTD_FR_CONTEXT_ENTRY_INV;
1484        }
1485    } else {
1486        /*
1487         * Check if the programming of context-entry.rid2pasid
1488         * and corresponding pasid setting is valid, and thus
1489         * avoids to check pasid entry fetching result in future
1490         * helper function calling.
1491         */
1492        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1493        if (ret_fr) {
1494            return ret_fr;
1495        }
1496    }
1497
1498    return 0;
1499}
1500
1501static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1502                                     void *private)
1503{
1504    memory_region_notify_iommu(private, 0, *event);
1505    return 0;
1506}
1507
1508static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1509                                  VTDContextEntry *ce,
1510                                  uint32_t pasid)
1511{
1512    VTDPASIDEntry pe;
1513
1514    if (s->root_scalable) {
1515        vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1516        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1517    }
1518
1519    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1520}
1521
1522static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1523                                            VTDContextEntry *ce,
1524                                            hwaddr addr, hwaddr size)
1525{
1526    IntelIOMMUState *s = vtd_as->iommu_state;
1527    vtd_page_walk_info info = {
1528        .hook_fn = vtd_sync_shadow_page_hook,
1529        .private = (void *)&vtd_as->iommu,
1530        .notify_unmap = true,
1531        .aw = s->aw_bits,
1532        .as = vtd_as,
1533        .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1534    };
1535
1536    return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1537}
1538
1539static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1540{
1541    int ret;
1542    VTDContextEntry ce;
1543    IOMMUNotifier *n;
1544
1545    /* If no MAP notifier registered, we simply invalidate all the cache */
1546    if (!vtd_as_has_map_notifier(vtd_as)) {
1547        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1548            memory_region_unmap_iommu_notifier_range(n);
1549        }
1550        return 0;
1551    }
1552
1553    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1554                                   pci_bus_num(vtd_as->bus),
1555                                   vtd_as->devfn, &ce);
1556    if (ret) {
1557        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1558            /*
1559             * It's a valid scenario to have a context entry that is
1560             * not present.  For example, when a device is removed
1561             * from an existing domain then the context entry will be
1562             * zeroed by the guest before it was put into another
1563             * domain.  When this happens, instead of synchronizing
1564             * the shadow pages we should invalidate all existing
1565             * mappings and notify the backends.
1566             */
1567            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1568                vtd_address_space_unmap(vtd_as, n);
1569            }
1570            ret = 0;
1571        }
1572        return ret;
1573    }
1574
1575    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1576}
1577
1578/*
1579 * Check if specific device is configured to bypass address
1580 * translation for DMA requests. In Scalable Mode, bypass
1581 * 1st-level translation or 2nd-level translation, it depends
1582 * on PGTT setting.
1583 */
1584static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1585                               uint32_t pasid)
1586{
1587    VTDPASIDEntry pe;
1588    int ret;
1589
1590    if (s->root_scalable) {
1591        ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1592        if (ret) {
1593            /*
1594             * This error is guest triggerable. We should assumt PT
1595             * not enabled for safety.
1596             */
1597            return false;
1598        }
1599        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1600    }
1601
1602    return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1603
1604}
1605
1606static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1607{
1608    IntelIOMMUState *s;
1609    VTDContextEntry ce;
1610
1611    assert(as);
1612
1613    s = as->iommu_state;
1614    if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1615                                 &ce)) {
1616        /*
1617         * Possibly failed to parse the context entry for some reason
1618         * (e.g., during init, or any guest configuration errors on
1619         * context entries). We should assume PT not enabled for
1620         * safety.
1621         */
1622        return false;
1623    }
1624
1625    return vtd_dev_pt_enabled(s, &ce, as->pasid);
1626}
1627
1628/* Return whether the device is using IOMMU translation. */
1629static bool vtd_switch_address_space(VTDAddressSpace *as)
1630{
1631    bool use_iommu, pt;
1632    /* Whether we need to take the BQL on our own */
1633    bool take_bql = !qemu_mutex_iothread_locked();
1634
1635    assert(as);
1636
1637    use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1638    pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1639
1640    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1641                                   VTD_PCI_SLOT(as->devfn),
1642                                   VTD_PCI_FUNC(as->devfn),
1643                                   use_iommu);
1644
1645    /*
1646     * It's possible that we reach here without BQL, e.g., when called
1647     * from vtd_pt_enable_fast_path(). However the memory APIs need
1648     * it. We'd better make sure we have had it already, or, take it.
1649     */
1650    if (take_bql) {
1651        qemu_mutex_lock_iothread();
1652    }
1653
1654    /* Turn off first then on the other */
1655    if (use_iommu) {
1656        memory_region_set_enabled(&as->nodmar, false);
1657        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1658        /*
1659         * vt-d spec v3.4 3.14:
1660         *
1661         * """
1662         * Requests-with-PASID with input address in range 0xFEEx_xxxx
1663         * are translated normally like any other request-with-PASID
1664         * through DMA-remapping hardware.
1665         * """
1666         *
1667         * Need to disable ir for as with PASID.
1668         */
1669        if (as->pasid != PCI_NO_PASID) {
1670            memory_region_set_enabled(&as->iommu_ir, false);
1671        } else {
1672            memory_region_set_enabled(&as->iommu_ir, true);
1673        }
1674    } else {
1675        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1676        memory_region_set_enabled(&as->nodmar, true);
1677    }
1678
1679    /*
1680     * vtd-spec v3.4 3.14:
1681     *
1682     * """
1683     * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1684     * translated normally like any other request-with-PASID through
1685     * DMA-remapping hardware. However, if such a request is processed
1686     * using pass-through translation, it will be blocked as described
1687     * in the paragraph below.
1688     *
1689     * Software must not program paging-structure entries to remap any
1690     * address to the interrupt address range. Untranslated requests
1691     * and translation requests that result in an address in the
1692     * interrupt range will be blocked with condition code LGN.4 or
1693     * SGN.8.
1694     * """
1695     *
1696     * We enable per as memory region (iommu_ir_fault) for catching
1697     * the tranlsation for interrupt range through PASID + PT.
1698     */
1699    if (pt && as->pasid != PCI_NO_PASID) {
1700        memory_region_set_enabled(&as->iommu_ir_fault, true);
1701    } else {
1702        memory_region_set_enabled(&as->iommu_ir_fault, false);
1703    }
1704
1705    if (take_bql) {
1706        qemu_mutex_unlock_iothread();
1707    }
1708
1709    return use_iommu;
1710}
1711
1712static void vtd_switch_address_space_all(IntelIOMMUState *s)
1713{
1714    VTDAddressSpace *vtd_as;
1715    GHashTableIter iter;
1716
1717    g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1718    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1719        vtd_switch_address_space(vtd_as);
1720    }
1721}
1722
1723static const bool vtd_qualified_faults[] = {
1724    [VTD_FR_RESERVED] = false,
1725    [VTD_FR_ROOT_ENTRY_P] = false,
1726    [VTD_FR_CONTEXT_ENTRY_P] = true,
1727    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1728    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1729    [VTD_FR_WRITE] = true,
1730    [VTD_FR_READ] = true,
1731    [VTD_FR_PAGING_ENTRY_INV] = true,
1732    [VTD_FR_ROOT_TABLE_INV] = false,
1733    [VTD_FR_CONTEXT_TABLE_INV] = false,
1734    [VTD_FR_INTERRUPT_ADDR] = true,
1735    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1736    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1737    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1738    [VTD_FR_PASID_TABLE_INV] = false,
1739    [VTD_FR_SM_INTERRUPT_ADDR] = true,
1740    [VTD_FR_MAX] = false,
1741};
1742
1743/* To see if a fault condition is "qualified", which is reported to software
1744 * only if the FPD field in the context-entry used to process the faulting
1745 * request is 0.
1746 */
1747static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1748{
1749    return vtd_qualified_faults[fault];
1750}
1751
1752static inline bool vtd_is_interrupt_addr(hwaddr addr)
1753{
1754    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1755}
1756
1757static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1758                                   gpointer user_data)
1759{
1760    struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1761    uint16_t target_sid = *(uint16_t *)user_data;
1762    uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1763    return sid == target_sid;
1764}
1765
1766static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1767{
1768    uint8_t bus_num = PCI_BUS_NUM(sid);
1769    VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1770
1771    if (vtd_as &&
1772        (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1773        return vtd_as;
1774    }
1775
1776    vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1777    s->vtd_as_cache[bus_num] = vtd_as;
1778
1779    return vtd_as;
1780}
1781
1782static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1783{
1784    VTDAddressSpace *vtd_as;
1785    bool success = false;
1786
1787    vtd_as = vtd_get_as_by_sid(s, source_id);
1788    if (!vtd_as) {
1789        goto out;
1790    }
1791
1792    if (vtd_switch_address_space(vtd_as) == false) {
1793        /* We switched off IOMMU region successfully. */
1794        success = true;
1795    }
1796
1797out:
1798    trace_vtd_pt_enable_fast_path(source_id, success);
1799}
1800
1801static void vtd_report_fault(IntelIOMMUState *s,
1802                             int err, bool is_fpd_set,
1803                             uint16_t source_id,
1804                             hwaddr addr,
1805                             bool is_write,
1806                             bool is_pasid,
1807                             uint32_t pasid)
1808{
1809    if (is_fpd_set && vtd_is_qualified_fault(err)) {
1810        trace_vtd_fault_disabled();
1811    } else {
1812        vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1813                              is_pasid, pasid);
1814    }
1815}
1816
1817/* Map dev to context-entry then do a paging-structures walk to do a iommu
1818 * translation.
1819 *
1820 * Called from RCU critical section.
1821 *
1822 * @bus_num: The bus number
1823 * @devfn: The devfn, which is the  combined of device and function number
1824 * @is_write: The access is a write operation
1825 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1826 *
1827 * Returns true if translation is successful, otherwise false.
1828 */
1829static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1830                                   uint8_t devfn, hwaddr addr, bool is_write,
1831                                   IOMMUTLBEntry *entry)
1832{
1833    IntelIOMMUState *s = vtd_as->iommu_state;
1834    VTDContextEntry ce;
1835    uint8_t bus_num = pci_bus_num(bus);
1836    VTDContextCacheEntry *cc_entry;
1837    uint64_t slpte, page_mask;
1838    uint32_t level, pasid = vtd_as->pasid;
1839    uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1840    int ret_fr;
1841    bool is_fpd_set = false;
1842    bool reads = true;
1843    bool writes = true;
1844    uint8_t access_flags;
1845    bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1846    VTDIOTLBEntry *iotlb_entry;
1847
1848    /*
1849     * We have standalone memory region for interrupt addresses, we
1850     * should never receive translation requests in this region.
1851     */
1852    assert(!vtd_is_interrupt_addr(addr));
1853
1854    vtd_iommu_lock(s);
1855
1856    cc_entry = &vtd_as->context_cache_entry;
1857
1858    /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1859    if (!rid2pasid) {
1860        iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1861        if (iotlb_entry) {
1862            trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1863                                     iotlb_entry->domain_id);
1864            slpte = iotlb_entry->slpte;
1865            access_flags = iotlb_entry->access_flags;
1866            page_mask = iotlb_entry->mask;
1867            goto out;
1868        }
1869    }
1870
1871    /* Try to fetch context-entry from cache first */
1872    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1873        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1874                               cc_entry->context_entry.lo,
1875                               cc_entry->context_cache_gen);
1876        ce = cc_entry->context_entry;
1877        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1878        if (!is_fpd_set && s->root_scalable) {
1879            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1880            if (ret_fr) {
1881                vtd_report_fault(s, -ret_fr, is_fpd_set,
1882                                 source_id, addr, is_write,
1883                                 false, 0);
1884                goto error;
1885            }
1886        }
1887    } else {
1888        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1889        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1890        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1891            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1892        }
1893        if (ret_fr) {
1894            vtd_report_fault(s, -ret_fr, is_fpd_set,
1895                             source_id, addr, is_write,
1896                             false, 0);
1897            goto error;
1898        }
1899        /* Update context-cache */
1900        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1901                                  cc_entry->context_cache_gen,
1902                                  s->context_cache_gen);
1903        cc_entry->context_entry = ce;
1904        cc_entry->context_cache_gen = s->context_cache_gen;
1905    }
1906
1907    if (rid2pasid) {
1908        pasid = VTD_CE_GET_RID2PASID(&ce);
1909    }
1910
1911    /*
1912     * We don't need to translate for pass-through context entries.
1913     * Also, let's ignore IOTLB caching as well for PT devices.
1914     */
1915    if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1916        entry->iova = addr & VTD_PAGE_MASK_4K;
1917        entry->translated_addr = entry->iova;
1918        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1919        entry->perm = IOMMU_RW;
1920        trace_vtd_translate_pt(source_id, entry->iova);
1921
1922        /*
1923         * When this happens, it means firstly caching-mode is not
1924         * enabled, and this is the first passthrough translation for
1925         * the device. Let's enable the fast path for passthrough.
1926         *
1927         * When passthrough is disabled again for the device, we can
1928         * capture it via the context entry invalidation, then the
1929         * IOMMU region can be swapped back.
1930         */
1931        vtd_pt_enable_fast_path(s, source_id);
1932        vtd_iommu_unlock(s);
1933        return true;
1934    }
1935
1936    /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1937    if (rid2pasid) {
1938        iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1939        if (iotlb_entry) {
1940            trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1941                                     iotlb_entry->domain_id);
1942            slpte = iotlb_entry->slpte;
1943            access_flags = iotlb_entry->access_flags;
1944            page_mask = iotlb_entry->mask;
1945            goto out;
1946        }
1947    }
1948
1949    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1950                               &reads, &writes, s->aw_bits, pasid);
1951    if (ret_fr) {
1952        vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1953                         addr, is_write, pasid != PCI_NO_PASID, pasid);
1954        goto error;
1955    }
1956
1957    page_mask = vtd_slpt_level_page_mask(level);
1958    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1959    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1960                     addr, slpte, access_flags, level, pasid);
1961out:
1962    vtd_iommu_unlock(s);
1963    entry->iova = addr & page_mask;
1964    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1965    entry->addr_mask = ~page_mask;
1966    entry->perm = access_flags;
1967    return true;
1968
1969error:
1970    vtd_iommu_unlock(s);
1971    entry->iova = 0;
1972    entry->translated_addr = 0;
1973    entry->addr_mask = 0;
1974    entry->perm = IOMMU_NONE;
1975    return false;
1976}
1977
1978static void vtd_root_table_setup(IntelIOMMUState *s)
1979{
1980    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1981    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1982
1983    vtd_update_scalable_state(s);
1984
1985    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1986}
1987
1988static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1989                               uint32_t index, uint32_t mask)
1990{
1991    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1992}
1993
1994static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1995{
1996    uint64_t value = 0;
1997    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1998    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1999    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2000    s->intr_eime = value & VTD_IRTA_EIME;
2001
2002    /* Notify global invalidation */
2003    vtd_iec_notify_all(s, true, 0, 0);
2004
2005    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2006}
2007
2008static void vtd_iommu_replay_all(IntelIOMMUState *s)
2009{
2010    VTDAddressSpace *vtd_as;
2011
2012    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2013        vtd_address_space_sync(vtd_as);
2014    }
2015}
2016
2017static void vtd_context_global_invalidate(IntelIOMMUState *s)
2018{
2019    trace_vtd_inv_desc_cc_global();
2020    /* Protects context cache */
2021    vtd_iommu_lock(s);
2022    s->context_cache_gen++;
2023    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2024        vtd_reset_context_cache_locked(s);
2025    }
2026    vtd_iommu_unlock(s);
2027    vtd_address_space_refresh_all(s);
2028    /*
2029     * From VT-d spec 6.5.2.1, a global context entry invalidation
2030     * should be followed by a IOTLB global invalidation, so we should
2031     * be safe even without this. Hoewever, let's replay the region as
2032     * well to be safer, and go back here when we need finer tunes for
2033     * VT-d emulation codes.
2034     */
2035    vtd_iommu_replay_all(s);
2036}
2037
2038/* Do a context-cache device-selective invalidation.
2039 * @func_mask: FM field after shifting
2040 */
2041static void vtd_context_device_invalidate(IntelIOMMUState *s,
2042                                          uint16_t source_id,
2043                                          uint16_t func_mask)
2044{
2045    GHashTableIter as_it;
2046    uint16_t mask;
2047    VTDAddressSpace *vtd_as;
2048    uint8_t bus_n, devfn;
2049
2050    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2051
2052    switch (func_mask & 3) {
2053    case 0:
2054        mask = 0;   /* No bits in the SID field masked */
2055        break;
2056    case 1:
2057        mask = 4;   /* Mask bit 2 in the SID field */
2058        break;
2059    case 2:
2060        mask = 6;   /* Mask bit 2:1 in the SID field */
2061        break;
2062    case 3:
2063        mask = 7;   /* Mask bit 2:0 in the SID field */
2064        break;
2065    default:
2066        g_assert_not_reached();
2067    }
2068    mask = ~mask;
2069
2070    bus_n = VTD_SID_TO_BUS(source_id);
2071    devfn = VTD_SID_TO_DEVFN(source_id);
2072
2073    g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2074    while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2075        if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2076            (vtd_as->devfn & mask) == (devfn & mask)) {
2077            trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2078                                         VTD_PCI_FUNC(vtd_as->devfn));
2079            vtd_iommu_lock(s);
2080            vtd_as->context_cache_entry.context_cache_gen = 0;
2081            vtd_iommu_unlock(s);
2082            /*
2083             * Do switch address space when needed, in case if the
2084             * device passthrough bit is switched.
2085             */
2086            vtd_switch_address_space(vtd_as);
2087            /*
2088             * So a device is moving out of (or moving into) a
2089             * domain, resync the shadow page table.
2090             * This won't bring bad even if we have no such
2091             * notifier registered - the IOMMU notification
2092             * framework will skip MAP notifications if that
2093             * happened.
2094             */
2095            vtd_address_space_sync(vtd_as);
2096        }
2097    }
2098}
2099
2100/* Context-cache invalidation
2101 * Returns the Context Actual Invalidation Granularity.
2102 * @val: the content of the CCMD_REG
2103 */
2104static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2105{
2106    uint64_t caig;
2107    uint64_t type = val & VTD_CCMD_CIRG_MASK;
2108
2109    switch (type) {
2110    case VTD_CCMD_DOMAIN_INVL:
2111        /* Fall through */
2112    case VTD_CCMD_GLOBAL_INVL:
2113        caig = VTD_CCMD_GLOBAL_INVL_A;
2114        vtd_context_global_invalidate(s);
2115        break;
2116
2117    case VTD_CCMD_DEVICE_INVL:
2118        caig = VTD_CCMD_DEVICE_INVL_A;
2119        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2120        break;
2121
2122    default:
2123        error_report_once("%s: invalid context: 0x%" PRIx64,
2124                          __func__, val);
2125        caig = 0;
2126    }
2127    return caig;
2128}
2129
2130static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2131{
2132    trace_vtd_inv_desc_iotlb_global();
2133    vtd_reset_iotlb(s);
2134    vtd_iommu_replay_all(s);
2135}
2136
2137static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2138{
2139    VTDContextEntry ce;
2140    VTDAddressSpace *vtd_as;
2141
2142    trace_vtd_inv_desc_iotlb_domain(domain_id);
2143
2144    vtd_iommu_lock(s);
2145    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2146                                &domain_id);
2147    vtd_iommu_unlock(s);
2148
2149    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2150        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2151                                      vtd_as->devfn, &ce) &&
2152            domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2153            vtd_address_space_sync(vtd_as);
2154        }
2155    }
2156}
2157
2158static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2159                                           uint16_t domain_id, hwaddr addr,
2160                                             uint8_t am, uint32_t pasid)
2161{
2162    VTDAddressSpace *vtd_as;
2163    VTDContextEntry ce;
2164    int ret;
2165    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2166
2167    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2168        if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2169            continue;
2170        }
2171        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2172                                       vtd_as->devfn, &ce);
2173        if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2174            if (vtd_as_has_map_notifier(vtd_as)) {
2175                /*
2176                 * As long as we have MAP notifications registered in
2177                 * any of our IOMMU notifiers, we need to sync the
2178                 * shadow page table.
2179                 */
2180                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2181            } else {
2182                /*
2183                 * For UNMAP-only notifiers, we don't need to walk the
2184                 * page tables.  We just deliver the PSI down to
2185                 * invalidate caches.
2186                 */
2187                IOMMUTLBEvent event = {
2188                    .type = IOMMU_NOTIFIER_UNMAP,
2189                    .entry = {
2190                        .target_as = &address_space_memory,
2191                        .iova = addr,
2192                        .translated_addr = 0,
2193                        .addr_mask = size - 1,
2194                        .perm = IOMMU_NONE,
2195                    },
2196                };
2197                memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2198            }
2199        }
2200    }
2201}
2202
2203static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2204                                      hwaddr addr, uint8_t am)
2205{
2206    VTDIOTLBPageInvInfo info;
2207
2208    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2209
2210    assert(am <= VTD_MAMV);
2211    info.domain_id = domain_id;
2212    info.addr = addr;
2213    info.mask = ~((1 << am) - 1);
2214    vtd_iommu_lock(s);
2215    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2216    vtd_iommu_unlock(s);
2217    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2218}
2219
2220/* Flush IOTLB
2221 * Returns the IOTLB Actual Invalidation Granularity.
2222 * @val: the content of the IOTLB_REG
2223 */
2224static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2225{
2226    uint64_t iaig;
2227    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2228    uint16_t domain_id;
2229    hwaddr addr;
2230    uint8_t am;
2231
2232    switch (type) {
2233    case VTD_TLB_GLOBAL_FLUSH:
2234        iaig = VTD_TLB_GLOBAL_FLUSH_A;
2235        vtd_iotlb_global_invalidate(s);
2236        break;
2237
2238    case VTD_TLB_DSI_FLUSH:
2239        domain_id = VTD_TLB_DID(val);
2240        iaig = VTD_TLB_DSI_FLUSH_A;
2241        vtd_iotlb_domain_invalidate(s, domain_id);
2242        break;
2243
2244    case VTD_TLB_PSI_FLUSH:
2245        domain_id = VTD_TLB_DID(val);
2246        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2247        am = VTD_IVA_AM(addr);
2248        addr = VTD_IVA_ADDR(addr);
2249        if (am > VTD_MAMV) {
2250            error_report_once("%s: address mask overflow: 0x%" PRIx64,
2251                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2252            iaig = 0;
2253            break;
2254        }
2255        iaig = VTD_TLB_PSI_FLUSH_A;
2256        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2257        break;
2258
2259    default:
2260        error_report_once("%s: invalid granularity: 0x%" PRIx64,
2261                          __func__, val);
2262        iaig = 0;
2263    }
2264    return iaig;
2265}
2266
2267static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2268
2269static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2270{
2271    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2272           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2273}
2274
2275static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2276{
2277    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2278
2279    trace_vtd_inv_qi_enable(en);
2280
2281    if (en) {
2282        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2283        /* 2^(x+8) entries */
2284        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2285        s->qi_enabled = true;
2286        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2287        /* Ok - report back to driver */
2288        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2289
2290        if (s->iq_tail != 0) {
2291            /*
2292             * This is a spec violation but Windows guests are known to set up
2293             * Queued Invalidation this way so we allow the write and process
2294             * Invalidation Descriptors right away.
2295             */
2296            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2297            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2298                vtd_fetch_inv_desc(s);
2299            }
2300        }
2301    } else {
2302        if (vtd_queued_inv_disable_check(s)) {
2303            /* disable Queued Invalidation */
2304            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2305            s->iq_head = 0;
2306            s->qi_enabled = false;
2307            /* Ok - report back to driver */
2308            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2309        } else {
2310            error_report_once("%s: detected improper state when disable QI "
2311                              "(head=0x%x, tail=0x%x, last_type=%d)",
2312                              __func__,
2313                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2314        }
2315    }
2316}
2317
2318/* Set Root Table Pointer */
2319static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2320{
2321    vtd_root_table_setup(s);
2322    /* Ok - report back to driver */
2323    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2324    vtd_reset_caches(s);
2325    vtd_address_space_refresh_all(s);
2326}
2327
2328/* Set Interrupt Remap Table Pointer */
2329static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2330{
2331    vtd_interrupt_remap_table_setup(s);
2332    /* Ok - report back to driver */
2333    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2334}
2335
2336/* Handle Translation Enable/Disable */
2337static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2338{
2339    if (s->dmar_enabled == en) {
2340        return;
2341    }
2342
2343    trace_vtd_dmar_enable(en);
2344
2345    if (en) {
2346        s->dmar_enabled = true;
2347        /* Ok - report back to driver */
2348        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2349    } else {
2350        s->dmar_enabled = false;
2351
2352        /* Clear the index of Fault Recording Register */
2353        s->next_frcd_reg = 0;
2354        /* Ok - report back to driver */
2355        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2356    }
2357
2358    vtd_reset_caches(s);
2359    vtd_address_space_refresh_all(s);
2360}
2361
2362/* Handle Interrupt Remap Enable/Disable */
2363static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2364{
2365    trace_vtd_ir_enable(en);
2366
2367    if (en) {
2368        s->intr_enabled = true;
2369        /* Ok - report back to driver */
2370        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2371    } else {
2372        s->intr_enabled = false;
2373        /* Ok - report back to driver */
2374        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2375    }
2376}
2377
2378/* Handle write to Global Command Register */
2379static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2380{
2381    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2382    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2383    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2384    uint32_t changed = status ^ val;
2385
2386    trace_vtd_reg_write_gcmd(status, val);
2387    if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2388        /* Translation enable/disable */
2389        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2390    }
2391    if (val & VTD_GCMD_SRTP) {
2392        /* Set/update the root-table pointer */
2393        vtd_handle_gcmd_srtp(s);
2394    }
2395    if (changed & VTD_GCMD_QIE) {
2396        /* Queued Invalidation Enable */
2397        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2398    }
2399    if (val & VTD_GCMD_SIRTP) {
2400        /* Set/update the interrupt remapping root-table pointer */
2401        vtd_handle_gcmd_sirtp(s);
2402    }
2403    if ((changed & VTD_GCMD_IRE) &&
2404        x86_iommu_ir_supported(x86_iommu)) {
2405        /* Interrupt remap enable/disable */
2406        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2407    }
2408}
2409
2410/* Handle write to Context Command Register */
2411static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2412{
2413    uint64_t ret;
2414    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2415
2416    /* Context-cache invalidation request */
2417    if (val & VTD_CCMD_ICC) {
2418        if (s->qi_enabled) {
2419            error_report_once("Queued Invalidation enabled, "
2420                              "should not use register-based invalidation");
2421            return;
2422        }
2423        ret = vtd_context_cache_invalidate(s, val);
2424        /* Invalidation completed. Change something to show */
2425        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2426        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2427                                      ret);
2428    }
2429}
2430
2431/* Handle write to IOTLB Invalidation Register */
2432static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2433{
2434    uint64_t ret;
2435    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2436
2437    /* IOTLB invalidation request */
2438    if (val & VTD_TLB_IVT) {
2439        if (s->qi_enabled) {
2440            error_report_once("Queued Invalidation enabled, "
2441                              "should not use register-based invalidation");
2442            return;
2443        }
2444        ret = vtd_iotlb_flush(s, val);
2445        /* Invalidation completed. Change something to show */
2446        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2447        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2448                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2449    }
2450}
2451
2452/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2453static bool vtd_get_inv_desc(IntelIOMMUState *s,
2454                             VTDInvDesc *inv_desc)
2455{
2456    dma_addr_t base_addr = s->iq;
2457    uint32_t offset = s->iq_head;
2458    uint32_t dw = s->iq_dw ? 32 : 16;
2459    dma_addr_t addr = base_addr + offset * dw;
2460
2461    if (dma_memory_read(&address_space_memory, addr,
2462                        inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2463        error_report_once("Read INV DESC failed.");
2464        return false;
2465    }
2466    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2467    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2468    if (dw == 32) {
2469        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2470        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2471    }
2472    return true;
2473}
2474
2475static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2476{
2477    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2478        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2479        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2480                          " (reserved nonzero)", __func__, inv_desc->hi,
2481                          inv_desc->lo);
2482        return false;
2483    }
2484    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2485        /* Status Write */
2486        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2487                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2488
2489        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2490
2491        /* FIXME: need to be masked with HAW? */
2492        dma_addr_t status_addr = inv_desc->hi;
2493        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2494        status_data = cpu_to_le32(status_data);
2495        if (dma_memory_write(&address_space_memory, status_addr,
2496                             &status_data, sizeof(status_data),
2497                             MEMTXATTRS_UNSPECIFIED)) {
2498            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2499            return false;
2500        }
2501    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2502        /* Interrupt flag */
2503        vtd_generate_completion_event(s);
2504    } else {
2505        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2506                          " (unknown type)", __func__, inv_desc->hi,
2507                          inv_desc->lo);
2508        return false;
2509    }
2510    return true;
2511}
2512
2513static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2514                                           VTDInvDesc *inv_desc)
2515{
2516    uint16_t sid, fmask;
2517
2518    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2519        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2520                          " (reserved nonzero)", __func__, inv_desc->hi,
2521                          inv_desc->lo);
2522        return false;
2523    }
2524    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2525    case VTD_INV_DESC_CC_DOMAIN:
2526        trace_vtd_inv_desc_cc_domain(
2527            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2528        /* Fall through */
2529    case VTD_INV_DESC_CC_GLOBAL:
2530        vtd_context_global_invalidate(s);
2531        break;
2532
2533    case VTD_INV_DESC_CC_DEVICE:
2534        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2535        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2536        vtd_context_device_invalidate(s, sid, fmask);
2537        break;
2538
2539    default:
2540        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2541                          " (invalid type)", __func__, inv_desc->hi,
2542                          inv_desc->lo);
2543        return false;
2544    }
2545    return true;
2546}
2547
2548static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2549{
2550    uint16_t domain_id;
2551    uint8_t am;
2552    hwaddr addr;
2553
2554    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2555        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2556        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2557                          ", lo=0x%"PRIx64" (reserved bits unzero)",
2558                          __func__, inv_desc->hi, inv_desc->lo);
2559        return false;
2560    }
2561
2562    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2563    case VTD_INV_DESC_IOTLB_GLOBAL:
2564        vtd_iotlb_global_invalidate(s);
2565        break;
2566
2567    case VTD_INV_DESC_IOTLB_DOMAIN:
2568        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2569        vtd_iotlb_domain_invalidate(s, domain_id);
2570        break;
2571
2572    case VTD_INV_DESC_IOTLB_PAGE:
2573        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2574        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2575        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2576        if (am > VTD_MAMV) {
2577            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2578                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2579                              __func__, inv_desc->hi, inv_desc->lo,
2580                              am, (unsigned)VTD_MAMV);
2581            return false;
2582        }
2583        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2584        break;
2585
2586    default:
2587        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2588                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2589                          __func__, inv_desc->hi, inv_desc->lo,
2590                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2591        return false;
2592    }
2593    return true;
2594}
2595
2596static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2597                                     VTDInvDesc *inv_desc)
2598{
2599    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2600                           inv_desc->iec.index,
2601                           inv_desc->iec.index_mask);
2602
2603    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2604                       inv_desc->iec.index,
2605                       inv_desc->iec.index_mask);
2606    return true;
2607}
2608
2609static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2610                                          VTDInvDesc *inv_desc)
2611{
2612    VTDAddressSpace *vtd_dev_as;
2613    IOMMUTLBEvent event;
2614    hwaddr addr;
2615    uint64_t sz;
2616    uint16_t sid;
2617    bool size;
2618
2619    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2620    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2621    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2622
2623    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2624        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2625        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2626                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2627                          inv_desc->hi, inv_desc->lo);
2628        return false;
2629    }
2630
2631    /*
2632     * Using sid is OK since the guest should have finished the
2633     * initialization of both the bus and device.
2634     */
2635    vtd_dev_as = vtd_get_as_by_sid(s, sid);
2636    if (!vtd_dev_as) {
2637        goto done;
2638    }
2639
2640    /* According to ATS spec table 2.4:
2641     * S = 0, bits 15:12 = xxxx     range size: 4K
2642     * S = 1, bits 15:12 = xxx0     range size: 8K
2643     * S = 1, bits 15:12 = xx01     range size: 16K
2644     * S = 1, bits 15:12 = x011     range size: 32K
2645     * S = 1, bits 15:12 = 0111     range size: 64K
2646     * ...
2647     */
2648    if (size) {
2649        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2650        addr &= ~(sz - 1);
2651    } else {
2652        sz = VTD_PAGE_SIZE;
2653    }
2654
2655    event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2656    event.entry.target_as = &vtd_dev_as->as;
2657    event.entry.addr_mask = sz - 1;
2658    event.entry.iova = addr;
2659    event.entry.perm = IOMMU_NONE;
2660    event.entry.translated_addr = 0;
2661    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2662
2663done:
2664    return true;
2665}
2666
2667static bool vtd_process_inv_desc(IntelIOMMUState *s)
2668{
2669    VTDInvDesc inv_desc;
2670    uint8_t desc_type;
2671
2672    trace_vtd_inv_qi_head(s->iq_head);
2673    if (!vtd_get_inv_desc(s, &inv_desc)) {
2674        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2675        return false;
2676    }
2677
2678    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2679    /* FIXME: should update at first or at last? */
2680    s->iq_last_desc_type = desc_type;
2681
2682    switch (desc_type) {
2683    case VTD_INV_DESC_CC:
2684        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2685        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2686            return false;
2687        }
2688        break;
2689
2690    case VTD_INV_DESC_IOTLB:
2691        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2692        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2693            return false;
2694        }
2695        break;
2696
2697    /*
2698     * TODO: the entity of below two cases will be implemented in future series.
2699     * To make guest (which integrates scalable mode support patch set in
2700     * iommu driver) work, just return true is enough so far.
2701     */
2702    case VTD_INV_DESC_PC:
2703        break;
2704
2705    case VTD_INV_DESC_PIOTLB:
2706        break;
2707
2708    case VTD_INV_DESC_WAIT:
2709        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2710        if (!vtd_process_wait_desc(s, &inv_desc)) {
2711            return false;
2712        }
2713        break;
2714
2715    case VTD_INV_DESC_IEC:
2716        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2717        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2718            return false;
2719        }
2720        break;
2721
2722    case VTD_INV_DESC_DEVICE:
2723        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2724        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2725            return false;
2726        }
2727        break;
2728
2729    default:
2730        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2731                          " (unknown type)", __func__, inv_desc.hi,
2732                          inv_desc.lo);
2733        return false;
2734    }
2735    s->iq_head++;
2736    if (s->iq_head == s->iq_size) {
2737        s->iq_head = 0;
2738    }
2739    return true;
2740}
2741
2742/* Try to fetch and process more Invalidation Descriptors */
2743static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2744{
2745    int qi_shift;
2746
2747    /* Refer to 10.4.23 of VT-d spec 3.0 */
2748    qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2749
2750    trace_vtd_inv_qi_fetch();
2751
2752    if (s->iq_tail >= s->iq_size) {
2753        /* Detects an invalid Tail pointer */
2754        error_report_once("%s: detected invalid QI tail "
2755                          "(tail=0x%x, size=0x%x)",
2756                          __func__, s->iq_tail, s->iq_size);
2757        vtd_handle_inv_queue_error(s);
2758        return;
2759    }
2760    while (s->iq_head != s->iq_tail) {
2761        if (!vtd_process_inv_desc(s)) {
2762            /* Invalidation Queue Errors */
2763            vtd_handle_inv_queue_error(s);
2764            break;
2765        }
2766        /* Must update the IQH_REG in time */
2767        vtd_set_quad_raw(s, DMAR_IQH_REG,
2768                         (((uint64_t)(s->iq_head)) << qi_shift) &
2769                         VTD_IQH_QH_MASK);
2770    }
2771}
2772
2773/* Handle write to Invalidation Queue Tail Register */
2774static void vtd_handle_iqt_write(IntelIOMMUState *s)
2775{
2776    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2777
2778    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2779        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2780                          __func__, val);
2781        return;
2782    }
2783    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2784    trace_vtd_inv_qi_tail(s->iq_tail);
2785
2786    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2787        /* Process Invalidation Queue here */
2788        vtd_fetch_inv_desc(s);
2789    }
2790}
2791
2792static void vtd_handle_fsts_write(IntelIOMMUState *s)
2793{
2794    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2795    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2796    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2797
2798    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2799        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2800        trace_vtd_fsts_clear_ip();
2801    }
2802    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2803     * Descriptors if there are any when Queued Invalidation is enabled?
2804     */
2805}
2806
2807static void vtd_handle_fectl_write(IntelIOMMUState *s)
2808{
2809    uint32_t fectl_reg;
2810    /* FIXME: when software clears the IM field, check the IP field. But do we
2811     * need to compare the old value and the new value to conclude that
2812     * software clears the IM field? Or just check if the IM field is zero?
2813     */
2814    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2815
2816    trace_vtd_reg_write_fectl(fectl_reg);
2817
2818    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2819        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2820        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2821    }
2822}
2823
2824static void vtd_handle_ics_write(IntelIOMMUState *s)
2825{
2826    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2827    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2828
2829    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2830        trace_vtd_reg_ics_clear_ip();
2831        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2832    }
2833}
2834
2835static void vtd_handle_iectl_write(IntelIOMMUState *s)
2836{
2837    uint32_t iectl_reg;
2838    /* FIXME: when software clears the IM field, check the IP field. But do we
2839     * need to compare the old value and the new value to conclude that
2840     * software clears the IM field? Or just check if the IM field is zero?
2841     */
2842    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2843
2844    trace_vtd_reg_write_iectl(iectl_reg);
2845
2846    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2847        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2848        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2849    }
2850}
2851
2852static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2853{
2854    IntelIOMMUState *s = opaque;
2855    uint64_t val;
2856
2857    trace_vtd_reg_read(addr, size);
2858
2859    if (addr + size > DMAR_REG_SIZE) {
2860        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2861                          " size=0x%x", __func__, addr, size);
2862        return (uint64_t)-1;
2863    }
2864
2865    switch (addr) {
2866    /* Root Table Address Register, 64-bit */
2867    case DMAR_RTADDR_REG:
2868        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2869        if (size == 4) {
2870            val = val & ((1ULL << 32) - 1);
2871        }
2872        break;
2873
2874    case DMAR_RTADDR_REG_HI:
2875        assert(size == 4);
2876        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2877        break;
2878
2879    /* Invalidation Queue Address Register, 64-bit */
2880    case DMAR_IQA_REG:
2881        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2882        if (size == 4) {
2883            val = val & ((1ULL << 32) - 1);
2884        }
2885        break;
2886
2887    case DMAR_IQA_REG_HI:
2888        assert(size == 4);
2889        val = s->iq >> 32;
2890        break;
2891
2892    default:
2893        if (size == 4) {
2894            val = vtd_get_long(s, addr);
2895        } else {
2896            val = vtd_get_quad(s, addr);
2897        }
2898    }
2899
2900    return val;
2901}
2902
2903static void vtd_mem_write(void *opaque, hwaddr addr,
2904                          uint64_t val, unsigned size)
2905{
2906    IntelIOMMUState *s = opaque;
2907
2908    trace_vtd_reg_write(addr, size, val);
2909
2910    if (addr + size > DMAR_REG_SIZE) {
2911        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2912                          " size=0x%x", __func__, addr, size);
2913        return;
2914    }
2915
2916    switch (addr) {
2917    /* Global Command Register, 32-bit */
2918    case DMAR_GCMD_REG:
2919        vtd_set_long(s, addr, val);
2920        vtd_handle_gcmd_write(s);
2921        break;
2922
2923    /* Context Command Register, 64-bit */
2924    case DMAR_CCMD_REG:
2925        if (size == 4) {
2926            vtd_set_long(s, addr, val);
2927        } else {
2928            vtd_set_quad(s, addr, val);
2929            vtd_handle_ccmd_write(s);
2930        }
2931        break;
2932
2933    case DMAR_CCMD_REG_HI:
2934        assert(size == 4);
2935        vtd_set_long(s, addr, val);
2936        vtd_handle_ccmd_write(s);
2937        break;
2938
2939    /* IOTLB Invalidation Register, 64-bit */
2940    case DMAR_IOTLB_REG:
2941        if (size == 4) {
2942            vtd_set_long(s, addr, val);
2943        } else {
2944            vtd_set_quad(s, addr, val);
2945            vtd_handle_iotlb_write(s);
2946        }
2947        break;
2948
2949    case DMAR_IOTLB_REG_HI:
2950        assert(size == 4);
2951        vtd_set_long(s, addr, val);
2952        vtd_handle_iotlb_write(s);
2953        break;
2954
2955    /* Invalidate Address Register, 64-bit */
2956    case DMAR_IVA_REG:
2957        if (size == 4) {
2958            vtd_set_long(s, addr, val);
2959        } else {
2960            vtd_set_quad(s, addr, val);
2961        }
2962        break;
2963
2964    case DMAR_IVA_REG_HI:
2965        assert(size == 4);
2966        vtd_set_long(s, addr, val);
2967        break;
2968
2969    /* Fault Status Register, 32-bit */
2970    case DMAR_FSTS_REG:
2971        assert(size == 4);
2972        vtd_set_long(s, addr, val);
2973        vtd_handle_fsts_write(s);
2974        break;
2975
2976    /* Fault Event Control Register, 32-bit */
2977    case DMAR_FECTL_REG:
2978        assert(size == 4);
2979        vtd_set_long(s, addr, val);
2980        vtd_handle_fectl_write(s);
2981        break;
2982
2983    /* Fault Event Data Register, 32-bit */
2984    case DMAR_FEDATA_REG:
2985        assert(size == 4);
2986        vtd_set_long(s, addr, val);
2987        break;
2988
2989    /* Fault Event Address Register, 32-bit */
2990    case DMAR_FEADDR_REG:
2991        if (size == 4) {
2992            vtd_set_long(s, addr, val);
2993        } else {
2994            /*
2995             * While the register is 32-bit only, some guests (Xen...) write to
2996             * it with 64-bit.
2997             */
2998            vtd_set_quad(s, addr, val);
2999        }
3000        break;
3001
3002    /* Fault Event Upper Address Register, 32-bit */
3003    case DMAR_FEUADDR_REG:
3004        assert(size == 4);
3005        vtd_set_long(s, addr, val);
3006        break;
3007
3008    /* Protected Memory Enable Register, 32-bit */
3009    case DMAR_PMEN_REG:
3010        assert(size == 4);
3011        vtd_set_long(s, addr, val);
3012        break;
3013
3014    /* Root Table Address Register, 64-bit */
3015    case DMAR_RTADDR_REG:
3016        if (size == 4) {
3017            vtd_set_long(s, addr, val);
3018        } else {
3019            vtd_set_quad(s, addr, val);
3020        }
3021        break;
3022
3023    case DMAR_RTADDR_REG_HI:
3024        assert(size == 4);
3025        vtd_set_long(s, addr, val);
3026        break;
3027
3028    /* Invalidation Queue Tail Register, 64-bit */
3029    case DMAR_IQT_REG:
3030        if (size == 4) {
3031            vtd_set_long(s, addr, val);
3032        } else {
3033            vtd_set_quad(s, addr, val);
3034        }
3035        vtd_handle_iqt_write(s);
3036        break;
3037
3038    case DMAR_IQT_REG_HI:
3039        assert(size == 4);
3040        vtd_set_long(s, addr, val);
3041        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3042        break;
3043
3044    /* Invalidation Queue Address Register, 64-bit */
3045    case DMAR_IQA_REG:
3046        if (size == 4) {
3047            vtd_set_long(s, addr, val);
3048        } else {
3049            vtd_set_quad(s, addr, val);
3050        }
3051        vtd_update_iq_dw(s);
3052        break;
3053
3054    case DMAR_IQA_REG_HI:
3055        assert(size == 4);
3056        vtd_set_long(s, addr, val);
3057        break;
3058
3059    /* Invalidation Completion Status Register, 32-bit */
3060    case DMAR_ICS_REG:
3061        assert(size == 4);
3062        vtd_set_long(s, addr, val);
3063        vtd_handle_ics_write(s);
3064        break;
3065
3066    /* Invalidation Event Control Register, 32-bit */
3067    case DMAR_IECTL_REG:
3068        assert(size == 4);
3069        vtd_set_long(s, addr, val);
3070        vtd_handle_iectl_write(s);
3071        break;
3072
3073    /* Invalidation Event Data Register, 32-bit */
3074    case DMAR_IEDATA_REG:
3075        assert(size == 4);
3076        vtd_set_long(s, addr, val);
3077        break;
3078
3079    /* Invalidation Event Address Register, 32-bit */
3080    case DMAR_IEADDR_REG:
3081        assert(size == 4);
3082        vtd_set_long(s, addr, val);
3083        break;
3084
3085    /* Invalidation Event Upper Address Register, 32-bit */
3086    case DMAR_IEUADDR_REG:
3087        assert(size == 4);
3088        vtd_set_long(s, addr, val);
3089        break;
3090
3091    /* Fault Recording Registers, 128-bit */
3092    case DMAR_FRCD_REG_0_0:
3093        if (size == 4) {
3094            vtd_set_long(s, addr, val);
3095        } else {
3096            vtd_set_quad(s, addr, val);
3097        }
3098        break;
3099
3100    case DMAR_FRCD_REG_0_1:
3101        assert(size == 4);
3102        vtd_set_long(s, addr, val);
3103        break;
3104
3105    case DMAR_FRCD_REG_0_2:
3106        if (size == 4) {
3107            vtd_set_long(s, addr, val);
3108        } else {
3109            vtd_set_quad(s, addr, val);
3110            /* May clear bit 127 (Fault), update PPF */
3111            vtd_update_fsts_ppf(s);
3112        }
3113        break;
3114
3115    case DMAR_FRCD_REG_0_3:
3116        assert(size == 4);
3117        vtd_set_long(s, addr, val);
3118        /* May clear bit 127 (Fault), update PPF */
3119        vtd_update_fsts_ppf(s);
3120        break;
3121
3122    case DMAR_IRTA_REG:
3123        if (size == 4) {
3124            vtd_set_long(s, addr, val);
3125        } else {
3126            vtd_set_quad(s, addr, val);
3127        }
3128        break;
3129
3130    case DMAR_IRTA_REG_HI:
3131        assert(size == 4);
3132        vtd_set_long(s, addr, val);
3133        break;
3134
3135    default:
3136        if (size == 4) {
3137            vtd_set_long(s, addr, val);
3138        } else {
3139            vtd_set_quad(s, addr, val);
3140        }
3141    }
3142}
3143
3144static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3145                                         IOMMUAccessFlags flag, int iommu_idx)
3146{
3147    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3148    IntelIOMMUState *s = vtd_as->iommu_state;
3149    IOMMUTLBEntry iotlb = {
3150        /* We'll fill in the rest later. */
3151        .target_as = &address_space_memory,
3152    };
3153    bool success;
3154
3155    if (likely(s->dmar_enabled)) {
3156        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3157                                         addr, flag & IOMMU_WO, &iotlb);
3158    } else {
3159        /* DMAR disabled, passthrough, use 4k-page*/
3160        iotlb.iova = addr & VTD_PAGE_MASK_4K;
3161        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3162        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3163        iotlb.perm = IOMMU_RW;
3164        success = true;
3165    }
3166
3167    if (likely(success)) {
3168        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3169                                 VTD_PCI_SLOT(vtd_as->devfn),
3170                                 VTD_PCI_FUNC(vtd_as->devfn),
3171                                 iotlb.iova, iotlb.translated_addr,
3172                                 iotlb.addr_mask);
3173    } else {
3174        error_report_once("%s: detected translation failure "
3175                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3176                          __func__, pci_bus_num(vtd_as->bus),
3177                          VTD_PCI_SLOT(vtd_as->devfn),
3178                          VTD_PCI_FUNC(vtd_as->devfn),
3179                          addr);
3180    }
3181
3182    return iotlb;
3183}
3184
3185static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3186                                         IOMMUNotifierFlag old,
3187                                         IOMMUNotifierFlag new,
3188                                         Error **errp)
3189{
3190    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3191    IntelIOMMUState *s = vtd_as->iommu_state;
3192    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3193
3194    /* TODO: add support for VFIO and vhost users */
3195    if (s->snoop_control) {
3196        error_setg_errno(errp, ENOTSUP,
3197                         "Snoop Control with vhost or VFIO is not supported");
3198        return -ENOTSUP;
3199    }
3200    if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3201        error_setg_errno(errp, ENOTSUP,
3202                         "device %02x.%02x.%x requires caching mode",
3203                         pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3204                         PCI_FUNC(vtd_as->devfn));
3205        return -ENOTSUP;
3206    }
3207    if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3208        error_setg_errno(errp, ENOTSUP,
3209                         "device %02x.%02x.%x requires device IOTLB mode",
3210                         pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3211                         PCI_FUNC(vtd_as->devfn));
3212        return -ENOTSUP;
3213    }
3214
3215    /* Update per-address-space notifier flags */
3216    vtd_as->notifier_flags = new;
3217
3218    if (old == IOMMU_NOTIFIER_NONE) {
3219        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3220    } else if (new == IOMMU_NOTIFIER_NONE) {
3221        QLIST_REMOVE(vtd_as, next);
3222    }
3223    return 0;
3224}
3225
3226static int vtd_post_load(void *opaque, int version_id)
3227{
3228    IntelIOMMUState *iommu = opaque;
3229
3230    /*
3231     * We don't need to migrate the root_scalable because we can
3232     * simply do the calculation after the loading is complete.  We
3233     * can actually do similar things with root, dmar_enabled, etc.
3234     * however since we've had them already so we'd better keep them
3235     * for compatibility of migration.
3236     */
3237    vtd_update_scalable_state(iommu);
3238
3239    vtd_update_iq_dw(iommu);
3240
3241    /*
3242     * Memory regions are dynamically turned on/off depending on
3243     * context entry configurations from the guest. After migration,
3244     * we need to make sure the memory regions are still correct.
3245     */
3246    vtd_switch_address_space_all(iommu);
3247
3248    return 0;
3249}
3250
3251static const VMStateDescription vtd_vmstate = {
3252    .name = "iommu-intel",
3253    .version_id = 1,
3254    .minimum_version_id = 1,
3255    .priority = MIG_PRI_IOMMU,
3256    .post_load = vtd_post_load,
3257    .fields = (VMStateField[]) {
3258        VMSTATE_UINT64(root, IntelIOMMUState),
3259        VMSTATE_UINT64(intr_root, IntelIOMMUState),
3260        VMSTATE_UINT64(iq, IntelIOMMUState),
3261        VMSTATE_UINT32(intr_size, IntelIOMMUState),
3262        VMSTATE_UINT16(iq_head, IntelIOMMUState),
3263        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3264        VMSTATE_UINT16(iq_size, IntelIOMMUState),
3265        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3266        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3267        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3268        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3269        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3270        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3271        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3272        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3273        VMSTATE_END_OF_LIST()
3274    }
3275};
3276
3277static const MemoryRegionOps vtd_mem_ops = {
3278    .read = vtd_mem_read,
3279    .write = vtd_mem_write,
3280    .endianness = DEVICE_LITTLE_ENDIAN,
3281    .impl = {
3282        .min_access_size = 4,
3283        .max_access_size = 8,
3284    },
3285    .valid = {
3286        .min_access_size = 4,
3287        .max_access_size = 8,
3288    },
3289};
3290
3291static Property vtd_properties[] = {
3292    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3293    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3294                            ON_OFF_AUTO_AUTO),
3295    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3296    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3297                      VTD_HOST_ADDRESS_WIDTH),
3298    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3299    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3300    DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3301    DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3302    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3303    DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3304    DEFINE_PROP_END_OF_LIST(),
3305};
3306
3307/* Read IRTE entry with specific index */
3308static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3309                        VTD_IR_TableEntry *entry, uint16_t sid)
3310{
3311    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3312        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3313    dma_addr_t addr = 0x00;
3314    uint16_t mask, source_id;
3315    uint8_t bus, bus_max, bus_min;
3316
3317    if (index >= iommu->intr_size) {
3318        error_report_once("%s: index too large: ind=0x%x",
3319                          __func__, index);
3320        return -VTD_FR_IR_INDEX_OVER;
3321    }
3322
3323    addr = iommu->intr_root + index * sizeof(*entry);
3324    if (dma_memory_read(&address_space_memory, addr,
3325                        entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3326        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3327                          __func__, index, addr);
3328        return -VTD_FR_IR_ROOT_INVAL;
3329    }
3330
3331    entry->data[0] = le64_to_cpu(entry->data[0]);
3332    entry->data[1] = le64_to_cpu(entry->data[1]);
3333
3334    trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3335
3336    if (!entry->irte.present) {
3337        error_report_once("%s: detected non-present IRTE "
3338                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3339                          __func__, index, entry->data[1], entry->data[0]);
3340        return -VTD_FR_IR_ENTRY_P;
3341    }
3342
3343    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3344        entry->irte.__reserved_2) {
3345        error_report_once("%s: detected non-zero reserved IRTE "
3346                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3347                          __func__, index, entry->data[1], entry->data[0]);
3348        return -VTD_FR_IR_IRTE_RSVD;
3349    }
3350
3351    if (sid != X86_IOMMU_SID_INVALID) {
3352        /* Validate IRTE SID */
3353        source_id = entry->irte.source_id;
3354        switch (entry->irte.sid_vtype) {
3355        case VTD_SVT_NONE:
3356            break;
3357
3358        case VTD_SVT_ALL:
3359            mask = vtd_svt_mask[entry->irte.sid_q];
3360            if ((source_id & mask) != (sid & mask)) {
3361                error_report_once("%s: invalid IRTE SID "
3362                                  "(index=%u, sid=%u, source_id=%u)",
3363                                  __func__, index, sid, source_id);
3364                return -VTD_FR_IR_SID_ERR;
3365            }
3366            break;
3367
3368        case VTD_SVT_BUS:
3369            bus_max = source_id >> 8;
3370            bus_min = source_id & 0xff;
3371            bus = sid >> 8;
3372            if (bus > bus_max || bus < bus_min) {
3373                error_report_once("%s: invalid SVT_BUS "
3374                                  "(index=%u, bus=%u, min=%u, max=%u)",
3375                                  __func__, index, bus, bus_min, bus_max);
3376                return -VTD_FR_IR_SID_ERR;
3377            }
3378            break;
3379
3380        default:
3381            error_report_once("%s: detected invalid IRTE SVT "
3382                              "(index=%u, type=%d)", __func__,
3383                              index, entry->irte.sid_vtype);
3384            /* Take this as verification failure. */
3385            return -VTD_FR_IR_SID_ERR;
3386        }
3387    }
3388
3389    return 0;
3390}
3391
3392/* Fetch IRQ information of specific IR index */
3393static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3394                             X86IOMMUIrq *irq, uint16_t sid)
3395{
3396    VTD_IR_TableEntry irte = {};
3397    int ret = 0;
3398
3399    ret = vtd_irte_get(iommu, index, &irte, sid);
3400    if (ret) {
3401        return ret;
3402    }
3403
3404    irq->trigger_mode = irte.irte.trigger_mode;
3405    irq->vector = irte.irte.vector;
3406    irq->delivery_mode = irte.irte.delivery_mode;
3407    irq->dest = irte.irte.dest_id;
3408    if (!iommu->intr_eime) {
3409#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3410#define  VTD_IR_APIC_DEST_SHIFT        (8)
3411        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3412            VTD_IR_APIC_DEST_SHIFT;
3413    }
3414    irq->dest_mode = irte.irte.dest_mode;
3415    irq->redir_hint = irte.irte.redir_hint;
3416
3417    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3418                       irq->delivery_mode, irq->dest, irq->dest_mode);
3419
3420    return 0;
3421}
3422
3423/* Interrupt remapping for MSI/MSI-X entry */
3424static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3425                                   MSIMessage *origin,
3426                                   MSIMessage *translated,
3427                                   uint16_t sid)
3428{
3429    int ret = 0;
3430    VTD_IR_MSIAddress addr;
3431    uint16_t index;
3432    X86IOMMUIrq irq = {};
3433
3434    assert(origin && translated);
3435
3436    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3437
3438    if (!iommu || !iommu->intr_enabled) {
3439        memcpy(translated, origin, sizeof(*origin));
3440        goto out;
3441    }
3442
3443    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3444        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3445                          "address=0x%" PRIx64, __func__, origin->address);
3446        return -VTD_FR_IR_REQ_RSVD;
3447    }
3448
3449    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3450    if (addr.addr.__head != 0xfee) {
3451        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3452                          __func__, addr.data);
3453        return -VTD_FR_IR_REQ_RSVD;
3454    }
3455
3456    /* This is compatible mode. */
3457    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3458        memcpy(translated, origin, sizeof(*origin));
3459        goto out;
3460    }
3461
3462    index = addr.addr.index_h << 15 | addr.addr.index_l;
3463
3464#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3465#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3466
3467    if (addr.addr.sub_valid) {
3468        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3469        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3470    }
3471
3472    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3473    if (ret) {
3474        return ret;
3475    }
3476
3477    if (addr.addr.sub_valid) {
3478        trace_vtd_ir_remap_type("MSI");
3479        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3480            error_report_once("%s: invalid IR MSI "
3481                              "(sid=%u, address=0x%" PRIx64
3482                              ", data=0x%" PRIx32 ")",
3483                              __func__, sid, origin->address, origin->data);
3484            return -VTD_FR_IR_REQ_RSVD;
3485        }
3486    } else {
3487        uint8_t vector = origin->data & 0xff;
3488        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3489
3490        trace_vtd_ir_remap_type("IOAPIC");
3491        /* IOAPIC entry vector should be aligned with IRTE vector
3492         * (see vt-d spec 5.1.5.1). */
3493        if (vector != irq.vector) {
3494            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3495        }
3496
3497        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3498         * (see vt-d spec 5.1.5.1). */
3499        if (trigger_mode != irq.trigger_mode) {
3500            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3501                                      irq.trigger_mode);
3502        }
3503    }
3504
3505    /*
3506     * We'd better keep the last two bits, assuming that guest OS
3507     * might modify it. Keep it does not hurt after all.
3508     */
3509    irq.msi_addr_last_bits = addr.addr.__not_care;
3510
3511    /* Translate X86IOMMUIrq to MSI message */
3512    x86_iommu_irq_to_msi_message(&irq, translated);
3513
3514out:
3515    trace_vtd_ir_remap_msi(origin->address, origin->data,
3516                           translated->address, translated->data);
3517    return 0;
3518}
3519
3520static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3521                         MSIMessage *dst, uint16_t sid)
3522{
3523    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3524                                   src, dst, sid);
3525}
3526
3527static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3528                                   uint64_t *data, unsigned size,
3529                                   MemTxAttrs attrs)
3530{
3531    return MEMTX_OK;
3532}
3533
3534static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3535                                    uint64_t value, unsigned size,
3536                                    MemTxAttrs attrs)
3537{
3538    int ret = 0;
3539    MSIMessage from = {}, to = {};
3540    uint16_t sid = X86_IOMMU_SID_INVALID;
3541
3542    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3543    from.data = (uint32_t) value;
3544
3545    if (!attrs.unspecified) {
3546        /* We have explicit Source ID */
3547        sid = attrs.requester_id;
3548    }
3549
3550    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3551    if (ret) {
3552        /* TODO: report error */
3553        /* Drop this interrupt */
3554        return MEMTX_ERROR;
3555    }
3556
3557    apic_get_class(NULL)->send_msi(&to);
3558
3559    return MEMTX_OK;
3560}
3561
3562static const MemoryRegionOps vtd_mem_ir_ops = {
3563    .read_with_attrs = vtd_mem_ir_read,
3564    .write_with_attrs = vtd_mem_ir_write,
3565    .endianness = DEVICE_LITTLE_ENDIAN,
3566    .impl = {
3567        .min_access_size = 4,
3568        .max_access_size = 4,
3569    },
3570    .valid = {
3571        .min_access_size = 4,
3572        .max_access_size = 4,
3573    },
3574};
3575
3576static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3577                                         hwaddr addr, bool is_write)
3578{
3579    IntelIOMMUState *s = vtd_as->iommu_state;
3580    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3581    uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3582    bool is_fpd_set = false;
3583    VTDContextEntry ce;
3584
3585    assert(vtd_as->pasid != PCI_NO_PASID);
3586
3587    /* Try out best to fetch FPD, we can't do anything more */
3588    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3589        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3590        if (!is_fpd_set && s->root_scalable) {
3591            vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3592        }
3593    }
3594
3595    vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3596                     is_fpd_set, sid, addr, is_write,
3597                     true, vtd_as->pasid);
3598}
3599
3600static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3601                                         uint64_t *data, unsigned size,
3602                                         MemTxAttrs attrs)
3603{
3604    vtd_report_ir_illegal_access(opaque, addr, false);
3605
3606    return MEMTX_ERROR;
3607}
3608
3609static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3610                                          uint64_t value, unsigned size,
3611                                          MemTxAttrs attrs)
3612{
3613    vtd_report_ir_illegal_access(opaque, addr, true);
3614
3615    return MEMTX_ERROR;
3616}
3617
3618static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3619    .read_with_attrs = vtd_mem_ir_fault_read,
3620    .write_with_attrs = vtd_mem_ir_fault_write,
3621    .endianness = DEVICE_LITTLE_ENDIAN,
3622    .impl = {
3623        .min_access_size = 1,
3624        .max_access_size = 8,
3625    },
3626    .valid = {
3627        .min_access_size = 1,
3628        .max_access_size = 8,
3629    },
3630};
3631
3632VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3633                                 int devfn, unsigned int pasid)
3634{
3635    /*
3636     * We can't simply use sid here since the bus number might not be
3637     * initialized by the guest.
3638     */
3639    struct vtd_as_key key = {
3640        .bus = bus,
3641        .devfn = devfn,
3642        .pasid = pasid,
3643    };
3644    VTDAddressSpace *vtd_dev_as;
3645    char name[128];
3646
3647    vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3648    if (!vtd_dev_as) {
3649        struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3650
3651        new_key->bus = bus;
3652        new_key->devfn = devfn;
3653        new_key->pasid = pasid;
3654
3655        if (pasid == PCI_NO_PASID) {
3656            snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3657                     PCI_FUNC(devfn));
3658        } else {
3659            snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3660                     PCI_FUNC(devfn), pasid);
3661        }
3662
3663        vtd_dev_as = g_new0(VTDAddressSpace, 1);
3664
3665        vtd_dev_as->bus = bus;
3666        vtd_dev_as->devfn = (uint8_t)devfn;
3667        vtd_dev_as->pasid = pasid;
3668        vtd_dev_as->iommu_state = s;
3669        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3670        vtd_dev_as->iova_tree = iova_tree_new();
3671
3672        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3673        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3674
3675        /*
3676         * Build the DMAR-disabled container with aliases to the
3677         * shared MRs.  Note that aliasing to a shared memory region
3678         * could help the memory API to detect same FlatViews so we
3679         * can have devices to share the same FlatView when DMAR is
3680         * disabled (either by not providing "intel_iommu=on" or with
3681         * "iommu=pt").  It will greatly reduce the total number of
3682         * FlatViews of the system hence VM runs faster.
3683         */
3684        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3685                                 "vtd-nodmar", &s->mr_nodmar, 0,
3686                                 memory_region_size(&s->mr_nodmar));
3687
3688        /*
3689         * Build the per-device DMAR-enabled container.
3690         *
3691         * TODO: currently we have per-device IOMMU memory region only
3692         * because we have per-device IOMMU notifiers for devices.  If
3693         * one day we can abstract the IOMMU notifiers out of the
3694         * memory regions then we can also share the same memory
3695         * region here just like what we've done above with the nodmar
3696         * region.
3697         */
3698        strcat(name, "-dmar");
3699        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3700                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3701                                 name, UINT64_MAX);
3702        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3703                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3704        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3705                                            VTD_INTERRUPT_ADDR_FIRST,
3706                                            &vtd_dev_as->iommu_ir, 1);
3707
3708        /*
3709         * This region is used for catching fault to access interrupt
3710         * range via passthrough + PASID. See also
3711         * vtd_switch_address_space(). We can't use alias since we
3712         * need to know the sid which is valid for MSI who uses
3713         * bus_master_as (see msi_send_message()).
3714         */
3715        memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3716                              &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3717                              VTD_INTERRUPT_ADDR_SIZE);
3718        /*
3719         * Hook to root since when PT is enabled vtd_dev_as->iommu
3720         * will be disabled.
3721         */
3722        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3723                                            VTD_INTERRUPT_ADDR_FIRST,
3724                                            &vtd_dev_as->iommu_ir_fault, 2);
3725
3726        /*
3727         * Hook both the containers under the root container, we
3728         * switch between DMAR & noDMAR by enable/disable
3729         * corresponding sub-containers
3730         */
3731        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3732                                            MEMORY_REGION(&vtd_dev_as->iommu),
3733                                            0);
3734        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3735                                            &vtd_dev_as->nodmar, 0);
3736
3737        vtd_switch_address_space(vtd_dev_as);
3738
3739        g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3740    }
3741    return vtd_dev_as;
3742}
3743
3744/* Unmap the whole range in the notifier's scope. */
3745static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3746{
3747    hwaddr size, remain;
3748    hwaddr start = n->start;
3749    hwaddr end = n->end;
3750    IntelIOMMUState *s = as->iommu_state;
3751    DMAMap map;
3752
3753    /*
3754     * Note: all the codes in this function has a assumption that IOVA
3755     * bits are no more than VTD_MGAW bits (which is restricted by
3756     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3757     */
3758
3759    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3760        /*
3761         * Don't need to unmap regions that is bigger than the whole
3762         * VT-d supported address space size
3763         */
3764        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3765    }
3766
3767    assert(start <= end);
3768    size = remain = end - start + 1;
3769
3770    while (remain >= VTD_PAGE_SIZE) {
3771        IOMMUTLBEvent event;
3772        uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3773        uint64_t size = mask + 1;
3774
3775        assert(size);
3776
3777        event.type = IOMMU_NOTIFIER_UNMAP;
3778        event.entry.iova = start;
3779        event.entry.addr_mask = mask;
3780        event.entry.target_as = &address_space_memory;
3781        event.entry.perm = IOMMU_NONE;
3782        /* This field is meaningless for unmap */
3783        event.entry.translated_addr = 0;
3784
3785        memory_region_notify_iommu_one(n, &event);
3786
3787        start += size;
3788        remain -= size;
3789    }
3790
3791    assert(!remain);
3792
3793    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3794                             VTD_PCI_SLOT(as->devfn),
3795                             VTD_PCI_FUNC(as->devfn),
3796                             n->start, size);
3797
3798    map.iova = n->start;
3799    map.size = size - 1; /* Inclusive */
3800    iova_tree_remove(as->iova_tree, map);
3801}
3802
3803static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3804{
3805    VTDAddressSpace *vtd_as;
3806    IOMMUNotifier *n;
3807
3808    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3809        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3810            vtd_address_space_unmap(vtd_as, n);
3811        }
3812    }
3813}
3814
3815static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3816{
3817    vtd_address_space_unmap_all(s);
3818    vtd_switch_address_space_all(s);
3819}
3820
3821static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3822{
3823    memory_region_notify_iommu_one(private, event);
3824    return 0;
3825}
3826
3827static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3828{
3829    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3830    IntelIOMMUState *s = vtd_as->iommu_state;
3831    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3832    VTDContextEntry ce;
3833    DMAMap map = { .iova = 0, .size = HWADDR_MAX };
3834
3835    /* replay is protected by BQL, page walk will re-setup it safely */
3836    iova_tree_remove(vtd_as->iova_tree, map);
3837
3838    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3839        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3840                                  "legacy mode",
3841                                  bus_n, PCI_SLOT(vtd_as->devfn),
3842                                  PCI_FUNC(vtd_as->devfn),
3843                                  vtd_get_domain_id(s, &ce, vtd_as->pasid),
3844                                  ce.hi, ce.lo);
3845        if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
3846            /* This is required only for MAP typed notifiers */
3847            vtd_page_walk_info info = {
3848                .hook_fn = vtd_replay_hook,
3849                .private = (void *)n,
3850                .notify_unmap = false,
3851                .aw = s->aw_bits,
3852                .as = vtd_as,
3853                .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3854            };
3855
3856            vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3857        }
3858    } else {
3859        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3860                                    PCI_FUNC(vtd_as->devfn));
3861    }
3862
3863    return;
3864}
3865
3866/* Do the initialization. It will also be called when reset, so pay
3867 * attention when adding new initialization stuff.
3868 */
3869static void vtd_init(IntelIOMMUState *s)
3870{
3871    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3872
3873    memset(s->csr, 0, DMAR_REG_SIZE);
3874    memset(s->wmask, 0, DMAR_REG_SIZE);
3875    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3876    memset(s->womask, 0, DMAR_REG_SIZE);
3877
3878    s->root = 0;
3879    s->root_scalable = false;
3880    s->dmar_enabled = false;
3881    s->intr_enabled = false;
3882    s->iq_head = 0;
3883    s->iq_tail = 0;
3884    s->iq = 0;
3885    s->iq_size = 0;
3886    s->qi_enabled = false;
3887    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3888    s->iq_dw = false;
3889    s->next_frcd_reg = 0;
3890    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3891             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3892             VTD_CAP_MGAW(s->aw_bits);
3893    if (s->dma_drain) {
3894        s->cap |= VTD_CAP_DRAIN;
3895    }
3896    if (s->dma_translation) {
3897            if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3898                    s->cap |= VTD_CAP_SAGAW_39bit;
3899            }
3900            if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3901                    s->cap |= VTD_CAP_SAGAW_48bit;
3902            }
3903    }
3904    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3905
3906    /*
3907     * Rsvd field masks for spte
3908     */
3909    vtd_spte_rsvd[0] = ~0ULL;
3910    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3911                                                  x86_iommu->dt_supported);
3912    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3913    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3914    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3915
3916    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3917                                                         x86_iommu->dt_supported);
3918    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3919                                                         x86_iommu->dt_supported);
3920
3921    if (s->scalable_mode || s->snoop_control) {
3922        vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3923        vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3924        vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3925    }
3926
3927    if (x86_iommu_ir_supported(x86_iommu)) {
3928        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3929        if (s->intr_eim == ON_OFF_AUTO_ON) {
3930            s->ecap |= VTD_ECAP_EIM;
3931        }
3932        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3933    }
3934
3935    if (x86_iommu->dt_supported) {
3936        s->ecap |= VTD_ECAP_DT;
3937    }
3938
3939    if (x86_iommu->pt_supported) {
3940        s->ecap |= VTD_ECAP_PT;
3941    }
3942
3943    if (s->caching_mode) {
3944        s->cap |= VTD_CAP_CM;
3945    }
3946
3947    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3948    if (s->scalable_mode) {
3949        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3950    }
3951
3952    if (s->snoop_control) {
3953        s->ecap |= VTD_ECAP_SC;
3954    }
3955
3956    if (s->pasid) {
3957        s->ecap |= VTD_ECAP_PASID;
3958    }
3959
3960    vtd_reset_caches(s);
3961
3962    /* Define registers with default values and bit semantics */
3963    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3964    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3965    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3966    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3967    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3968    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3969    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3970    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3971    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3972
3973    /* Advanced Fault Logging not supported */
3974    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3975    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3976    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3977    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3978
3979    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3980     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3981     */
3982    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3983
3984    /* Treated as RO for implementations that PLMR and PHMR fields reported
3985     * as Clear in the CAP_REG.
3986     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3987     */
3988    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3989
3990    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3991    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3992    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3993    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3994    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3995    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3996    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3997    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3998    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3999
4000    /* IOTLB registers */
4001    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4002    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4003    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4004
4005    /* Fault Recording Registers, 128-bit */
4006    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4007    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4008
4009    /*
4010     * Interrupt remapping registers.
4011     */
4012    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4013}
4014
4015/* Should not reset address_spaces when reset because devices will still use
4016 * the address space they got at first (won't ask the bus again).
4017 */
4018static void vtd_reset(DeviceState *dev)
4019{
4020    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4021
4022    vtd_init(s);
4023    vtd_address_space_refresh_all(s);
4024}
4025
4026static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4027{
4028    IntelIOMMUState *s = opaque;
4029    VTDAddressSpace *vtd_as;
4030
4031    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4032
4033    vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4034    return &vtd_as->as;
4035}
4036
4037static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4038{
4039    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4040
4041    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4042        error_setg(errp, "eim=on cannot be selected without intremap=on");
4043        return false;
4044    }
4045
4046    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4047        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4048                      && x86_iommu_ir_supported(x86_iommu) ?
4049                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4050    }
4051    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4052        if (!kvm_irqchip_is_split()) {
4053            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4054            return false;
4055        }
4056        if (!kvm_enable_x2apic()) {
4057            error_setg(errp, "eim=on requires support on the KVM side"
4058                             "(X2APIC_API, first shipped in v4.7)");
4059            return false;
4060        }
4061    }
4062
4063    /* Currently only address widths supported are 39 and 48 bits */
4064    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4065        (s->aw_bits != VTD_HOST_AW_48BIT)) {
4066        error_setg(errp, "Supported values for aw-bits are: %d, %d",
4067                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4068        return false;
4069    }
4070
4071    if (s->scalable_mode && !s->dma_drain) {
4072        error_setg(errp, "Need to set dma_drain for scalable mode");
4073        return false;
4074    }
4075
4076    if (s->pasid && !s->scalable_mode) {
4077        error_setg(errp, "Need to set scalable mode for PASID");
4078        return false;
4079    }
4080
4081    return true;
4082}
4083
4084static int vtd_machine_done_notify_one(Object *child, void *unused)
4085{
4086    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4087
4088    /*
4089     * We hard-coded here because vfio-pci is the only special case
4090     * here.  Let's be more elegant in the future when we can, but so
4091     * far there seems to be no better way.
4092     */
4093    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4094        vtd_panic_require_caching_mode();
4095    }
4096
4097    return 0;
4098}
4099
4100static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4101{
4102    object_child_foreach_recursive(object_get_root(),
4103                                   vtd_machine_done_notify_one, NULL);
4104}
4105
4106static Notifier vtd_machine_done_notify = {
4107    .notify = vtd_machine_done_hook,
4108};
4109
4110static void vtd_realize(DeviceState *dev, Error **errp)
4111{
4112    MachineState *ms = MACHINE(qdev_get_machine());
4113    PCMachineState *pcms = PC_MACHINE(ms);
4114    X86MachineState *x86ms = X86_MACHINE(ms);
4115    PCIBus *bus = pcms->bus;
4116    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4117    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4118
4119    if (s->pasid && x86_iommu->dt_supported) {
4120        /*
4121         * PASID-based-Device-TLB Invalidate Descriptor is not
4122         * implemented and it requires support from vhost layer which
4123         * needs to be implemented in the future.
4124         */
4125        error_setg(errp, "PASID based device IOTLB is not supported");
4126        return;
4127    }
4128
4129    if (!vtd_decide_config(s, errp)) {
4130        return;
4131    }
4132
4133    QLIST_INIT(&s->vtd_as_with_notifiers);
4134    qemu_mutex_init(&s->iommu_lock);
4135    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4136                          "intel_iommu", DMAR_REG_SIZE);
4137
4138    /* Create the shared memory regions by all devices */
4139    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4140                       UINT64_MAX);
4141    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4142                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4143    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4144                             "vtd-sys-alias", get_system_memory(), 0,
4145                             memory_region_size(get_system_memory()));
4146    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4147                                        &s->mr_sys_alias, 0);
4148    memory_region_add_subregion_overlap(&s->mr_nodmar,
4149                                        VTD_INTERRUPT_ADDR_FIRST,
4150                                        &s->mr_ir, 1);
4151
4152    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4153    /* No corresponding destroy */
4154    s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4155                                     g_free, g_free);
4156    s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4157                                      g_free, g_free);
4158    vtd_init(s);
4159    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4160    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4161    /* Pseudo address space under root PCI bus. */
4162    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4163    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4164}
4165
4166static void vtd_class_init(ObjectClass *klass, void *data)
4167{
4168    DeviceClass *dc = DEVICE_CLASS(klass);
4169    X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4170
4171    dc->reset = vtd_reset;
4172    dc->vmsd = &vtd_vmstate;
4173    device_class_set_props(dc, vtd_properties);
4174    dc->hotpluggable = false;
4175    x86_class->realize = vtd_realize;
4176    x86_class->int_remap = vtd_int_remap;
4177    /* Supported by the pc-q35-* machine types */
4178    dc->user_creatable = true;
4179    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4180    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4181}
4182
4183static const TypeInfo vtd_info = {
4184    .name          = TYPE_INTEL_IOMMU_DEVICE,
4185    .parent        = TYPE_X86_IOMMU_DEVICE,
4186    .instance_size = sizeof(IntelIOMMUState),
4187    .class_init    = vtd_class_init,
4188};
4189
4190static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4191                                                     void *data)
4192{
4193    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4194
4195    imrc->translate = vtd_iommu_translate;
4196    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4197    imrc->replay = vtd_iommu_replay;
4198}
4199
4200static const TypeInfo vtd_iommu_memory_region_info = {
4201    .parent = TYPE_IOMMU_MEMORY_REGION,
4202    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4203    .class_init = vtd_iommu_memory_region_class_init,
4204};
4205
4206static void vtd_register_types(void)
4207{
4208    type_register_static(&vtd_info);
4209    type_register_static(&vtd_iommu_memory_region_info);
4210}
4211
4212type_init(vtd_register_types)
4213