qemu/hw/intc/spapr_xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC sPAPR XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2018, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "qemu/error-report.h"
  15#include "target/ppc/cpu.h"
  16#include "sysemu/cpus.h"
  17#include "sysemu/reset.h"
  18#include "migration/vmstate.h"
  19#include "monitor/monitor.h"
  20#include "hw/ppc/fdt.h"
  21#include "hw/ppc/spapr.h"
  22#include "hw/ppc/spapr_cpu_core.h"
  23#include "hw/ppc/spapr_xive.h"
  24#include "hw/ppc/xive.h"
  25#include "hw/ppc/xive_regs.h"
  26#include "hw/qdev-properties.h"
  27#include "trace.h"
  28
  29/*
  30 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
  31 * use for the ESB pages and the TIMA pages
  32 */
  33#define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
  34#define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
  35
  36/*
  37 * The allocation of VP blocks is a complex operation in OPAL and the
  38 * VP identifiers have a relation with the number of HW chips, the
  39 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
  40 * controller model does not have the same constraints and can use a
  41 * simple mapping scheme of the CPU vcpu_id
  42 *
  43 * These identifiers are never returned to the OS.
  44 */
  45
  46#define SPAPR_XIVE_NVT_BASE 0x400
  47
  48/*
  49 * sPAPR NVT and END indexing helpers
  50 */
  51static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
  52{
  53    return nvt_idx - SPAPR_XIVE_NVT_BASE;
  54}
  55
  56static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
  57                                  uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
  58{
  59    assert(cpu);
  60
  61    if (out_nvt_blk) {
  62        *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
  63    }
  64
  65    if (out_nvt_blk) {
  66        *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
  67    }
  68}
  69
  70static int spapr_xive_target_to_nvt(uint32_t target,
  71                                    uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
  72{
  73    PowerPCCPU *cpu = spapr_find_cpu(target);
  74
  75    if (!cpu) {
  76        return -1;
  77    }
  78
  79    spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
  80    return 0;
  81}
  82
  83/*
  84 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
  85 * priorities per CPU
  86 */
  87int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
  88                             uint32_t *out_server, uint8_t *out_prio)
  89{
  90
  91    assert(end_blk == SPAPR_XIVE_BLOCK_ID);
  92
  93    if (out_server) {
  94        *out_server = end_idx >> 3;
  95    }
  96
  97    if (out_prio) {
  98        *out_prio = end_idx & 0x7;
  99    }
 100    return 0;
 101}
 102
 103static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
 104                                  uint8_t *out_end_blk, uint32_t *out_end_idx)
 105{
 106    assert(cpu);
 107
 108    if (out_end_blk) {
 109        *out_end_blk = SPAPR_XIVE_BLOCK_ID;
 110    }
 111
 112    if (out_end_idx) {
 113        *out_end_idx = (cpu->vcpu_id << 3) + prio;
 114    }
 115}
 116
 117static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
 118                                    uint8_t *out_end_blk, uint32_t *out_end_idx)
 119{
 120    PowerPCCPU *cpu = spapr_find_cpu(target);
 121
 122    if (!cpu) {
 123        return -1;
 124    }
 125
 126    spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
 127    return 0;
 128}
 129
 130/*
 131 * On sPAPR machines, use a simplified output for the XIVE END
 132 * structure dumping only the information related to the OS EQ.
 133 */
 134static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
 135                                          Monitor *mon)
 136{
 137    uint64_t qaddr_base = xive_end_qaddr(end);
 138    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
 139    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
 140    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
 141    uint32_t qentries = 1 << (qsize + 10);
 142    uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
 143    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
 144
 145    monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
 146                   spapr_xive_nvt_to_target(0, nvt),
 147                   priority, qindex, qentries, qaddr_base, qgen);
 148
 149    xive_end_queue_pic_print_info(end, 6, mon);
 150}
 151
 152/*
 153 * kvm_irqchip_in_kernel() will cause the compiler to turn this
 154 * info a nop if CONFIG_KVM isn't defined.
 155 */
 156#define spapr_xive_in_kernel(xive) \
 157    (kvm_irqchip_in_kernel() && (xive)->fd != -1)
 158
 159static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
 160{
 161    XiveSource *xsrc = &xive->source;
 162    int i;
 163
 164    if (spapr_xive_in_kernel(xive)) {
 165        Error *local_err = NULL;
 166
 167        kvmppc_xive_synchronize_state(xive, &local_err);
 168        if (local_err) {
 169            error_report_err(local_err);
 170            return;
 171        }
 172    }
 173
 174    monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
 175
 176    for (i = 0; i < xive->nr_irqs; i++) {
 177        uint8_t pq = xive_source_esb_get(xsrc, i);
 178        XiveEAS *eas = &xive->eat[i];
 179
 180        if (!xive_eas_is_valid(eas)) {
 181            continue;
 182        }
 183
 184        monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
 185                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
 186                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
 187                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
 188                       xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
 189                       xive_eas_is_masked(eas) ? "M" : " ",
 190                       (int) xive_get_field64(EAS_END_DATA, eas->w));
 191
 192        if (!xive_eas_is_masked(eas)) {
 193            uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
 194            XiveEND *end;
 195
 196            assert(end_idx < xive->nr_ends);
 197            end = &xive->endt[end_idx];
 198
 199            if (xive_end_is_valid(end)) {
 200                spapr_xive_end_pic_print_info(xive, end, mon);
 201            }
 202        }
 203        monitor_printf(mon, "\n");
 204    }
 205}
 206
 207void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
 208{
 209    memory_region_set_enabled(&xive->source.esb_mmio, enable);
 210    memory_region_set_enabled(&xive->tm_mmio, enable);
 211
 212    /* Disable the END ESBs until a guest OS makes use of them */
 213    memory_region_set_enabled(&xive->end_source.esb_mmio, false);
 214}
 215
 216static void spapr_xive_tm_write(void *opaque, hwaddr offset,
 217                          uint64_t value, unsigned size)
 218{
 219    XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
 220
 221    xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
 222}
 223
 224static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
 225{
 226    XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
 227
 228    return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
 229}
 230
 231const MemoryRegionOps spapr_xive_tm_ops = {
 232    .read = spapr_xive_tm_read,
 233    .write = spapr_xive_tm_write,
 234    .endianness = DEVICE_BIG_ENDIAN,
 235    .valid = {
 236        .min_access_size = 1,
 237        .max_access_size = 8,
 238    },
 239    .impl = {
 240        .min_access_size = 1,
 241        .max_access_size = 8,
 242    },
 243};
 244
 245static void spapr_xive_end_reset(XiveEND *end)
 246{
 247    memset(end, 0, sizeof(*end));
 248
 249    /* switch off the escalation and notification ESBs */
 250    end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
 251}
 252
 253static void spapr_xive_reset(void *dev)
 254{
 255    SpaprXive *xive = SPAPR_XIVE(dev);
 256    int i;
 257
 258    /*
 259     * The XiveSource has its own reset handler, which mask off all
 260     * IRQs (!P|Q)
 261     */
 262
 263    /* Mask all valid EASs in the IRQ number space. */
 264    for (i = 0; i < xive->nr_irqs; i++) {
 265        XiveEAS *eas = &xive->eat[i];
 266        if (xive_eas_is_valid(eas)) {
 267            eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
 268        } else {
 269            eas->w = 0;
 270        }
 271    }
 272
 273    /* Clear all ENDs */
 274    for (i = 0; i < xive->nr_ends; i++) {
 275        spapr_xive_end_reset(&xive->endt[i]);
 276    }
 277}
 278
 279static void spapr_xive_instance_init(Object *obj)
 280{
 281    SpaprXive *xive = SPAPR_XIVE(obj);
 282
 283    object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
 284
 285    object_initialize_child(obj, "end_source", &xive->end_source,
 286                            TYPE_XIVE_END_SOURCE);
 287
 288    /* Not connected to the KVM XIVE device */
 289    xive->fd = -1;
 290}
 291
 292static void spapr_xive_realize(DeviceState *dev, Error **errp)
 293{
 294    SpaprXive *xive = SPAPR_XIVE(dev);
 295    SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
 296    XiveSource *xsrc = &xive->source;
 297    XiveENDSource *end_xsrc = &xive->end_source;
 298    Error *local_err = NULL;
 299
 300    /* Set by spapr_irq_init() */
 301    g_assert(xive->nr_irqs);
 302    g_assert(xive->nr_ends);
 303
 304    sxc->parent_realize(dev, &local_err);
 305    if (local_err) {
 306        error_propagate(errp, local_err);
 307        return;
 308    }
 309
 310    /*
 311     * Initialize the internal sources, for IPIs and virtual devices.
 312     */
 313    object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
 314                            &error_fatal);
 315    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
 316    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
 317        return;
 318    }
 319    sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
 320
 321    /*
 322     * Initialize the END ESB source
 323     */
 324    object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
 325                            &error_fatal);
 326    object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
 327                             &error_abort);
 328    if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
 329        return;
 330    }
 331    sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
 332
 333    /* Set the mapping address of the END ESB pages after the source ESBs */
 334    xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
 335
 336    /*
 337     * Allocate the routing tables
 338     */
 339    xive->eat = g_new0(XiveEAS, xive->nr_irqs);
 340    xive->endt = g_new0(XiveEND, xive->nr_ends);
 341
 342    xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
 343                           xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
 344
 345    qemu_register_reset(spapr_xive_reset, dev);
 346
 347    /* TIMA initialization */
 348    memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
 349                          xive, "xive.tima", 4ull << TM_SHIFT);
 350    sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
 351
 352    /*
 353     * Map all regions. These will be enabled or disabled at reset and
 354     * can also be overridden by KVM memory regions if active
 355     */
 356    sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
 357    sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
 358    sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
 359}
 360
 361static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
 362                              uint32_t eas_idx, XiveEAS *eas)
 363{
 364    SpaprXive *xive = SPAPR_XIVE(xrtr);
 365
 366    if (eas_idx >= xive->nr_irqs) {
 367        return -1;
 368    }
 369
 370    *eas = xive->eat[eas_idx];
 371    return 0;
 372}
 373
 374static int spapr_xive_get_end(XiveRouter *xrtr,
 375                              uint8_t end_blk, uint32_t end_idx, XiveEND *end)
 376{
 377    SpaprXive *xive = SPAPR_XIVE(xrtr);
 378
 379    if (end_idx >= xive->nr_ends) {
 380        return -1;
 381    }
 382
 383    memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
 384    return 0;
 385}
 386
 387static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
 388                                uint32_t end_idx, XiveEND *end,
 389                                uint8_t word_number)
 390{
 391    SpaprXive *xive = SPAPR_XIVE(xrtr);
 392
 393    if (end_idx >= xive->nr_ends) {
 394        return -1;
 395    }
 396
 397    memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
 398    return 0;
 399}
 400
 401static int spapr_xive_get_nvt(XiveRouter *xrtr,
 402                              uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
 403{
 404    uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
 405    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
 406
 407    if (!cpu) {
 408        /* TODO: should we assert() if we can find a NVT ? */
 409        return -1;
 410    }
 411
 412    /*
 413     * sPAPR does not maintain a NVT table. Return that the NVT is
 414     * valid if we have found a matching CPU
 415     */
 416    nvt->w0 = cpu_to_be32(NVT_W0_VALID);
 417    return 0;
 418}
 419
 420static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
 421                                uint32_t nvt_idx, XiveNVT *nvt,
 422                                uint8_t word_number)
 423{
 424    /*
 425     * We don't need to write back to the NVTs because the sPAPR
 426     * machine should never hit a non-scheduled NVT. It should never
 427     * get called.
 428     */
 429    g_assert_not_reached();
 430}
 431
 432static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
 433                                uint8_t nvt_blk, uint32_t nvt_idx,
 434                                bool cam_ignore, uint8_t priority,
 435                                uint32_t logic_serv, XiveTCTXMatch *match)
 436{
 437    CPUState *cs;
 438    int count = 0;
 439
 440    CPU_FOREACH(cs) {
 441        PowerPCCPU *cpu = POWERPC_CPU(cs);
 442        XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
 443        int ring;
 444
 445        /*
 446         * Skip partially initialized vCPUs. This can happen when
 447         * vCPUs are hotplugged.
 448         */
 449        if (!tctx) {
 450            continue;
 451        }
 452
 453        /*
 454         * Check the thread context CAM lines and record matches.
 455         */
 456        ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
 457                                         cam_ignore, logic_serv);
 458        /*
 459         * Save the matching thread interrupt context and follow on to
 460         * check for duplicates which are invalid.
 461         */
 462        if (ring != -1) {
 463            if (match->tctx) {
 464                qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
 465                              "context NVT %x/%x\n", nvt_blk, nvt_idx);
 466                return -1;
 467            }
 468
 469            match->ring = ring;
 470            match->tctx = tctx;
 471            count++;
 472        }
 473    }
 474
 475    return count;
 476}
 477
 478static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
 479{
 480    uint32_t cfg = 0;
 481
 482    /*
 483     * Let's claim GEN1 TIMA format. If running with KVM on P10, the
 484     * correct answer is deep in the hardware and not accessible to
 485     * us.  But it shouldn't matter as it only affects the presenter
 486     * as seen by a guest OS.
 487     */
 488    cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
 489
 490    return cfg;
 491}
 492
 493static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
 494{
 495    return SPAPR_XIVE_BLOCK_ID;
 496}
 497
 498static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 499                             uint8_t *pq)
 500{
 501    SpaprXive *xive = SPAPR_XIVE(xrtr);
 502
 503    assert(SPAPR_XIVE_BLOCK_ID == blk);
 504
 505    *pq = xive_source_esb_get(&xive->source, idx);
 506    return 0;
 507}
 508
 509static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 510                             uint8_t *pq)
 511{
 512    SpaprXive *xive = SPAPR_XIVE(xrtr);
 513
 514    assert(SPAPR_XIVE_BLOCK_ID == blk);
 515
 516    *pq = xive_source_esb_set(&xive->source, idx, *pq);
 517    return 0;
 518}
 519
 520
 521static const VMStateDescription vmstate_spapr_xive_end = {
 522    .name = TYPE_SPAPR_XIVE "/end",
 523    .version_id = 1,
 524    .minimum_version_id = 1,
 525    .fields = (VMStateField []) {
 526        VMSTATE_UINT32(w0, XiveEND),
 527        VMSTATE_UINT32(w1, XiveEND),
 528        VMSTATE_UINT32(w2, XiveEND),
 529        VMSTATE_UINT32(w3, XiveEND),
 530        VMSTATE_UINT32(w4, XiveEND),
 531        VMSTATE_UINT32(w5, XiveEND),
 532        VMSTATE_UINT32(w6, XiveEND),
 533        VMSTATE_UINT32(w7, XiveEND),
 534        VMSTATE_END_OF_LIST()
 535    },
 536};
 537
 538static const VMStateDescription vmstate_spapr_xive_eas = {
 539    .name = TYPE_SPAPR_XIVE "/eas",
 540    .version_id = 1,
 541    .minimum_version_id = 1,
 542    .fields = (VMStateField []) {
 543        VMSTATE_UINT64(w, XiveEAS),
 544        VMSTATE_END_OF_LIST()
 545    },
 546};
 547
 548static int vmstate_spapr_xive_pre_save(void *opaque)
 549{
 550    SpaprXive *xive = SPAPR_XIVE(opaque);
 551
 552    if (spapr_xive_in_kernel(xive)) {
 553        return kvmppc_xive_pre_save(xive);
 554    }
 555
 556    return 0;
 557}
 558
 559/*
 560 * Called by the sPAPR IRQ backend 'post_load' method at the machine
 561 * level.
 562 */
 563static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
 564{
 565    SpaprXive *xive = SPAPR_XIVE(intc);
 566
 567    if (spapr_xive_in_kernel(xive)) {
 568        return kvmppc_xive_post_load(xive, version_id);
 569    }
 570
 571    return 0;
 572}
 573
 574static const VMStateDescription vmstate_spapr_xive = {
 575    .name = TYPE_SPAPR_XIVE,
 576    .version_id = 1,
 577    .minimum_version_id = 1,
 578    .pre_save = vmstate_spapr_xive_pre_save,
 579    .post_load = NULL, /* handled at the machine level */
 580    .fields = (VMStateField[]) {
 581        VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
 582        VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
 583                                     vmstate_spapr_xive_eas, XiveEAS),
 584        VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
 585                                             vmstate_spapr_xive_end, XiveEND),
 586        VMSTATE_END_OF_LIST()
 587    },
 588};
 589
 590static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
 591                                bool lsi, Error **errp)
 592{
 593    SpaprXive *xive = SPAPR_XIVE(intc);
 594    XiveSource *xsrc = &xive->source;
 595
 596    assert(lisn < xive->nr_irqs);
 597
 598    trace_spapr_xive_claim_irq(lisn, lsi);
 599
 600    if (xive_eas_is_valid(&xive->eat[lisn])) {
 601        error_setg(errp, "IRQ %d is not free", lisn);
 602        return -EBUSY;
 603    }
 604
 605    /*
 606     * Set default values when allocating an IRQ number
 607     */
 608    xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
 609    if (lsi) {
 610        xive_source_irq_set_lsi(xsrc, lisn);
 611    }
 612
 613    if (spapr_xive_in_kernel(xive)) {
 614        return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
 615    }
 616
 617    return 0;
 618}
 619
 620static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
 621{
 622    SpaprXive *xive = SPAPR_XIVE(intc);
 623    assert(lisn < xive->nr_irqs);
 624
 625    trace_spapr_xive_free_irq(lisn);
 626
 627    xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
 628}
 629
 630static Property spapr_xive_properties[] = {
 631    DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
 632    DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
 633    DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
 634    DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
 635    DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
 636    DEFINE_PROP_END_OF_LIST(),
 637};
 638
 639static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
 640                                      PowerPCCPU *cpu, Error **errp)
 641{
 642    SpaprXive *xive = SPAPR_XIVE(intc);
 643    Object *obj;
 644    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 645
 646    obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
 647    if (!obj) {
 648        return -1;
 649    }
 650
 651    spapr_cpu->tctx = XIVE_TCTX(obj);
 652    return 0;
 653}
 654
 655static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
 656{
 657    uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
 658    memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
 659}
 660
 661static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
 662                                     PowerPCCPU *cpu)
 663{
 664    XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
 665    uint8_t  nvt_blk;
 666    uint32_t nvt_idx;
 667
 668    xive_tctx_reset(tctx);
 669
 670    /*
 671     * When a Virtual Processor is scheduled to run on a HW thread,
 672     * the hypervisor pushes its identifier in the OS CAM line.
 673     * Emulate the same behavior under QEMU.
 674     */
 675    spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
 676
 677    xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
 678}
 679
 680static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
 681                                        PowerPCCPU *cpu)
 682{
 683    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 684
 685    xive_tctx_destroy(spapr_cpu->tctx);
 686    spapr_cpu->tctx = NULL;
 687}
 688
 689static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
 690{
 691    SpaprXive *xive = SPAPR_XIVE(intc);
 692
 693    trace_spapr_xive_set_irq(irq, val);
 694
 695    if (spapr_xive_in_kernel(xive)) {
 696        kvmppc_xive_source_set_irq(&xive->source, irq, val);
 697    } else {
 698        xive_source_set_irq(&xive->source, irq, val);
 699    }
 700}
 701
 702static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
 703{
 704    SpaprXive *xive = SPAPR_XIVE(intc);
 705    CPUState *cs;
 706
 707    CPU_FOREACH(cs) {
 708        PowerPCCPU *cpu = POWERPC_CPU(cs);
 709
 710        xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
 711    }
 712
 713    spapr_xive_pic_print_info(xive, mon);
 714}
 715
 716static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
 717                          void *fdt, uint32_t phandle)
 718{
 719    SpaprXive *xive = SPAPR_XIVE(intc);
 720    int node;
 721    uint64_t timas[2 * 2];
 722    /* Interrupt number ranges for the IPIs */
 723    uint32_t lisn_ranges[] = {
 724        cpu_to_be32(SPAPR_IRQ_IPI),
 725        cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
 726    };
 727    /*
 728     * EQ size - the sizes of pages supported by the system 4K, 64K,
 729     * 2M, 16M. We only advertise 64K for the moment.
 730     */
 731    uint32_t eq_sizes[] = {
 732        cpu_to_be32(16), /* 64K */
 733    };
 734    /*
 735     * QEMU/KVM only needs to define a single range to reserve the
 736     * escalation priority. A priority bitmask would have been more
 737     * appropriate.
 738     */
 739    uint32_t plat_res_int_priorities[] = {
 740        cpu_to_be32(xive->hv_prio),    /* start */
 741        cpu_to_be32(0xff - xive->hv_prio), /* count */
 742    };
 743
 744    /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
 745    timas[0] = cpu_to_be64(xive->tm_base +
 746                           XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
 747    timas[1] = cpu_to_be64(1ull << TM_SHIFT);
 748    timas[2] = cpu_to_be64(xive->tm_base +
 749                           XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
 750    timas[3] = cpu_to_be64(1ull << TM_SHIFT);
 751
 752    _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
 753
 754    _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
 755    _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
 756
 757    _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
 758    _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
 759                     sizeof(eq_sizes)));
 760    _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
 761                     sizeof(lisn_ranges)));
 762
 763    /* For Linux to link the LSIs to the interrupt controller. */
 764    _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
 765    _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
 766
 767    /* For SLOF */
 768    _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
 769    _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
 770
 771    /*
 772     * The "ibm,plat-res-int-priorities" property defines the priority
 773     * ranges reserved by the hypervisor
 774     */
 775    _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
 776                     plat_res_int_priorities, sizeof(plat_res_int_priorities)));
 777}
 778
 779static int spapr_xive_activate(SpaprInterruptController *intc,
 780                               uint32_t nr_servers, Error **errp)
 781{
 782    SpaprXive *xive = SPAPR_XIVE(intc);
 783
 784    if (kvm_enabled()) {
 785        int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
 786                                    errp);
 787        if (rc < 0) {
 788            return rc;
 789        }
 790    }
 791
 792    /* Activate the XIVE MMIOs */
 793    spapr_xive_mmio_set_enabled(xive, true);
 794
 795    return 0;
 796}
 797
 798static void spapr_xive_deactivate(SpaprInterruptController *intc)
 799{
 800    SpaprXive *xive = SPAPR_XIVE(intc);
 801
 802    spapr_xive_mmio_set_enabled(xive, false);
 803
 804    if (spapr_xive_in_kernel(xive)) {
 805        kvmppc_xive_disconnect(intc);
 806    }
 807}
 808
 809static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
 810{
 811    return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
 812}
 813
 814static void spapr_xive_class_init(ObjectClass *klass, void *data)
 815{
 816    DeviceClass *dc = DEVICE_CLASS(klass);
 817    XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
 818    SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
 819    XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
 820    SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
 821
 822    dc->desc    = "sPAPR XIVE Interrupt Controller";
 823    device_class_set_props(dc, spapr_xive_properties);
 824    device_class_set_parent_realize(dc, spapr_xive_realize,
 825                                    &sxc->parent_realize);
 826    dc->vmsd    = &vmstate_spapr_xive;
 827
 828    xrc->get_eas = spapr_xive_get_eas;
 829    xrc->get_pq  = spapr_xive_get_pq;
 830    xrc->set_pq  = spapr_xive_set_pq;
 831    xrc->get_end = spapr_xive_get_end;
 832    xrc->write_end = spapr_xive_write_end;
 833    xrc->get_nvt = spapr_xive_get_nvt;
 834    xrc->write_nvt = spapr_xive_write_nvt;
 835    xrc->get_block_id = spapr_xive_get_block_id;
 836
 837    sicc->activate = spapr_xive_activate;
 838    sicc->deactivate = spapr_xive_deactivate;
 839    sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
 840    sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
 841    sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
 842    sicc->claim_irq = spapr_xive_claim_irq;
 843    sicc->free_irq = spapr_xive_free_irq;
 844    sicc->set_irq = spapr_xive_set_irq;
 845    sicc->print_info = spapr_xive_print_info;
 846    sicc->dt = spapr_xive_dt;
 847    sicc->post_load = spapr_xive_post_load;
 848
 849    xpc->match_nvt  = spapr_xive_match_nvt;
 850    xpc->get_config = spapr_xive_presenter_get_config;
 851    xpc->in_kernel  = spapr_xive_in_kernel_xptr;
 852}
 853
 854static const TypeInfo spapr_xive_info = {
 855    .name = TYPE_SPAPR_XIVE,
 856    .parent = TYPE_XIVE_ROUTER,
 857    .instance_init = spapr_xive_instance_init,
 858    .instance_size = sizeof(SpaprXive),
 859    .class_init = spapr_xive_class_init,
 860    .class_size = sizeof(SpaprXiveClass),
 861    .interfaces = (InterfaceInfo[]) {
 862        { TYPE_SPAPR_INTC },
 863        { }
 864    },
 865};
 866
 867static void spapr_xive_register_types(void)
 868{
 869    type_register_static(&spapr_xive_info);
 870}
 871
 872type_init(spapr_xive_register_types)
 873
 874/*
 875 * XIVE hcalls
 876 *
 877 * The terminology used by the XIVE hcalls is the following :
 878 *
 879 *   TARGET vCPU number
 880 *   EQ     Event Queue assigned by OS to receive event data
 881 *   ESB    page for source interrupt management
 882 *   LISN   Logical Interrupt Source Number identifying a source in the
 883 *          machine
 884 *   EISN   Effective Interrupt Source Number used by guest OS to
 885 *          identify source in the guest
 886 *
 887 * The EAS, END, NVT structures are not exposed.
 888 */
 889
 890/*
 891 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
 892 * interrupts. So we only allow the guest to use priorities [0..6].
 893 */
 894static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
 895{
 896    return priority >= xive->hv_prio;
 897}
 898
 899/*
 900 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
 901 * real address of the MMIO page through which the Event State Buffer
 902 * entry associated with the value of the "lisn" parameter is managed.
 903 *
 904 * Parameters:
 905 * Input
 906 * - R4: "flags"
 907 *         Bits 0-63 reserved
 908 * - R5: "lisn" is per "interrupts", "interrupt-map", or
 909 *       "ibm,xive-lisn-ranges" properties, or as returned by the
 910 *       ibm,query-interrupt-source-number RTAS call, or as returned
 911 *       by the H_ALLOCATE_VAS_WINDOW hcall
 912 *
 913 * Output
 914 * - R4: "flags"
 915 *         Bits 0-59: Reserved
 916 *         Bit 60: H_INT_ESB must be used for Event State Buffer
 917 *                 management
 918 *         Bit 61: 1 == LSI  0 == MSI
 919 *         Bit 62: the full function page supports trigger
 920 *         Bit 63: Store EOI Supported
 921 * - R5: Logical Real address of full function Event State Buffer
 922 *       management page, -1 if H_INT_ESB hcall flag is set to 1.
 923 * - R6: Logical Real Address of trigger only Event State Buffer
 924 *       management page or -1.
 925 * - R7: Power of 2 page size for the ESB management pages returned in
 926 *       R5 and R6.
 927 */
 928
 929#define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
 930#define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
 931#define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
 932                                                    on same page */
 933#define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
 934
 935static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
 936                                          SpaprMachineState *spapr,
 937                                          target_ulong opcode,
 938                                          target_ulong *args)
 939{
 940    SpaprXive *xive = spapr->xive;
 941    XiveSource *xsrc = &xive->source;
 942    target_ulong flags  = args[0];
 943    target_ulong lisn   = args[1];
 944
 945    trace_spapr_xive_get_source_info(flags, lisn);
 946
 947    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 948        return H_FUNCTION;
 949    }
 950
 951    if (flags) {
 952        return H_PARAMETER;
 953    }
 954
 955    if (lisn >= xive->nr_irqs) {
 956        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 957                      lisn);
 958        return H_P2;
 959    }
 960
 961    if (!xive_eas_is_valid(&xive->eat[lisn])) {
 962        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 963                      lisn);
 964        return H_P2;
 965    }
 966
 967    /*
 968     * All sources are emulated under the main XIVE object and share
 969     * the same characteristics.
 970     */
 971    args[0] = 0;
 972    if (!xive_source_esb_has_2page(xsrc)) {
 973        args[0] |= SPAPR_XIVE_SRC_TRIGGER;
 974    }
 975    if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
 976        args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
 977    }
 978
 979    /*
 980     * Force the use of the H_INT_ESB hcall in case of an LSI
 981     * interrupt. This is necessary under KVM to re-trigger the
 982     * interrupt if the level is still asserted
 983     */
 984    if (xive_source_irq_is_lsi(xsrc, lisn)) {
 985        args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
 986    }
 987
 988    if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
 989        args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
 990    } else {
 991        args[1] = -1;
 992    }
 993
 994    if (xive_source_esb_has_2page(xsrc) &&
 995        !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
 996        args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
 997    } else {
 998        args[2] = -1;
 999    }
1000
1001    if (xive_source_esb_has_2page(xsrc)) {
1002        args[3] = xsrc->esb_shift - 1;
1003    } else {
1004        args[3] = xsrc->esb_shift;
1005    }
1006
1007    return H_SUCCESS;
1008}
1009
1010/*
1011 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1012 * Interrupt Source to a target. The Logical Interrupt Source is
1013 * designated with the "lisn" parameter and the target is designated
1014 * with the "target" and "priority" parameters.  Upon return from the
1015 * hcall(), no additional interrupts will be directed to the old EQ.
1016 *
1017 * Parameters:
1018 * Input:
1019 * - R4: "flags"
1020 *         Bits 0-61: Reserved
1021 *         Bit 62: set the "eisn" in the EAS
1022 *         Bit 63: masks the interrupt source in the hardware interrupt
1023 *       control structure. An interrupt masked by this mechanism will
1024 *       be dropped, but it's source state bits will still be
1025 *       set. There is no race-free way of unmasking and restoring the
1026 *       source. Thus this should only be used in interrupts that are
1027 *       also masked at the source, and only in cases where the
1028 *       interrupt is not meant to be used for a large amount of time
1029 *       because no valid target exists for it for example
1030 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1031 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1032 *       ibm,query-interrupt-source-number RTAS call, or as returned by
1033 *       the H_ALLOCATE_VAS_WINDOW hcall
1034 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1035 *       "ibm,ppc-interrupt-gserver#s"
1036 * - R7: "priority" is a valid priority not in
1037 *       "ibm,plat-res-int-priorities"
1038 * - R8: "eisn" is the guest EISN associated with the "lisn"
1039 *
1040 * Output:
1041 * - None
1042 */
1043
1044#define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1045#define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
1046
1047static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1048                                            SpaprMachineState *spapr,
1049                                            target_ulong opcode,
1050                                            target_ulong *args)
1051{
1052    SpaprXive *xive = spapr->xive;
1053    XiveEAS eas, new_eas;
1054    target_ulong flags    = args[0];
1055    target_ulong lisn     = args[1];
1056    target_ulong target   = args[2];
1057    target_ulong priority = args[3];
1058    target_ulong eisn     = args[4];
1059    uint8_t end_blk;
1060    uint32_t end_idx;
1061
1062    trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1063
1064    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1065        return H_FUNCTION;
1066    }
1067
1068    if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1069        return H_PARAMETER;
1070    }
1071
1072    if (lisn >= xive->nr_irqs) {
1073        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1074                      lisn);
1075        return H_P2;
1076    }
1077
1078    eas = xive->eat[lisn];
1079    if (!xive_eas_is_valid(&eas)) {
1080        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1081                      lisn);
1082        return H_P2;
1083    }
1084
1085    /* priority 0xff is used to reset the EAS */
1086    if (priority == 0xff) {
1087        new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1088        goto out;
1089    }
1090
1091    if (flags & SPAPR_XIVE_SRC_MASK) {
1092        new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1093    } else {
1094        new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1095    }
1096
1097    if (spapr_xive_priority_is_reserved(xive, priority)) {
1098        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1099                      " is reserved\n", priority);
1100        return H_P4;
1101    }
1102
1103    /*
1104     * Validate that "target" is part of the list of threads allocated
1105     * to the partition. For that, find the END corresponding to the
1106     * target.
1107     */
1108    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1109        return H_P3;
1110    }
1111
1112    new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1113    new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1114
1115    if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1116        new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1117    }
1118
1119    if (spapr_xive_in_kernel(xive)) {
1120        Error *local_err = NULL;
1121
1122        kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1123        if (local_err) {
1124            error_report_err(local_err);
1125            return H_HARDWARE;
1126        }
1127    }
1128
1129out:
1130    xive->eat[lisn] = new_eas;
1131    return H_SUCCESS;
1132}
1133
1134/*
1135 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1136 * target/priority pair is assigned to the specified Logical Interrupt
1137 * Source.
1138 *
1139 * Parameters:
1140 * Input:
1141 * - R4: "flags"
1142 *         Bits 0-63 Reserved
1143 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1144 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1145 *       ibm,query-interrupt-source-number RTAS call, or as
1146 *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1147 *
1148 * Output:
1149 * - R4: Target to which the specified Logical Interrupt Source is
1150 *       assigned
1151 * - R5: Priority to which the specified Logical Interrupt Source is
1152 *       assigned
1153 * - R6: EISN for the specified Logical Interrupt Source (this will be
1154 *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1155 */
1156static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1157                                            SpaprMachineState *spapr,
1158                                            target_ulong opcode,
1159                                            target_ulong *args)
1160{
1161    SpaprXive *xive = spapr->xive;
1162    target_ulong flags = args[0];
1163    target_ulong lisn = args[1];
1164    XiveEAS eas;
1165    XiveEND *end;
1166    uint8_t nvt_blk;
1167    uint32_t end_idx, nvt_idx;
1168
1169    trace_spapr_xive_get_source_config(flags, lisn);
1170
1171    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1172        return H_FUNCTION;
1173    }
1174
1175    if (flags) {
1176        return H_PARAMETER;
1177    }
1178
1179    if (lisn >= xive->nr_irqs) {
1180        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1181                      lisn);
1182        return H_P2;
1183    }
1184
1185    eas = xive->eat[lisn];
1186    if (!xive_eas_is_valid(&eas)) {
1187        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1188                      lisn);
1189        return H_P2;
1190    }
1191
1192    /* EAS_END_BLOCK is unused on sPAPR */
1193    end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1194
1195    assert(end_idx < xive->nr_ends);
1196    end = &xive->endt[end_idx];
1197
1198    nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1199    nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1200    args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1201
1202    if (xive_eas_is_masked(&eas)) {
1203        args[1] = 0xff;
1204    } else {
1205        args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1206    }
1207
1208    args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1209
1210    return H_SUCCESS;
1211}
1212
1213/*
1214 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1215 * address of the notification management page associated with the
1216 * specified target and priority.
1217 *
1218 * Parameters:
1219 * Input:
1220 * - R4: "flags"
1221 *         Bits 0-63 Reserved
1222 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1223 *       "ibm,ppc-interrupt-gserver#s"
1224 * - R6: "priority" is a valid priority not in
1225 *       "ibm,plat-res-int-priorities"
1226 *
1227 * Output:
1228 * - R4: Logical real address of notification page
1229 * - R5: Power of 2 page size of the notification page
1230 */
1231static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1232                                         SpaprMachineState *spapr,
1233                                         target_ulong opcode,
1234                                         target_ulong *args)
1235{
1236    SpaprXive *xive = spapr->xive;
1237    XiveENDSource *end_xsrc = &xive->end_source;
1238    target_ulong flags = args[0];
1239    target_ulong target = args[1];
1240    target_ulong priority = args[2];
1241    XiveEND *end;
1242    uint8_t end_blk;
1243    uint32_t end_idx;
1244
1245    trace_spapr_xive_get_queue_info(flags, target, priority);
1246
1247    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1248        return H_FUNCTION;
1249    }
1250
1251    if (flags) {
1252        return H_PARAMETER;
1253    }
1254
1255    /*
1256     * H_STATE should be returned if a H_INT_RESET is in progress.
1257     * This is not needed when running the emulation under QEMU
1258     */
1259
1260    if (spapr_xive_priority_is_reserved(xive, priority)) {
1261        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1262                      " is reserved\n", priority);
1263        return H_P3;
1264    }
1265
1266    /*
1267     * Validate that "target" is part of the list of threads allocated
1268     * to the partition. For that, find the END corresponding to the
1269     * target.
1270     */
1271    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1272        return H_P2;
1273    }
1274
1275    assert(end_idx < xive->nr_ends);
1276    end = &xive->endt[end_idx];
1277
1278    args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1279    if (xive_end_is_enqueue(end)) {
1280        args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1281    } else {
1282        args[1] = 0;
1283    }
1284
1285    return H_SUCCESS;
1286}
1287
1288/*
1289 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1290 * a given "target" and "priority".  It is also used to set the
1291 * notification config associated with the EQ.  An EQ size of 0 is
1292 * used to reset the EQ config for a given target and priority. If
1293 * resetting the EQ config, the END associated with the given "target"
1294 * and "priority" will be changed to disable queueing.
1295 *
1296 * Upon return from the hcall(), no additional interrupts will be
1297 * directed to the old EQ (if one was set). The old EQ (if one was
1298 * set) should be investigated for interrupts that occurred prior to
1299 * or during the hcall().
1300 *
1301 * Parameters:
1302 * Input:
1303 * - R4: "flags"
1304 *         Bits 0-62: Reserved
1305 *         Bit 63: Unconditional Notify (n) per the XIVE spec
1306 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1307 *       "ibm,ppc-interrupt-gserver#s"
1308 * - R6: "priority" is a valid priority not in
1309 *       "ibm,plat-res-int-priorities"
1310 * - R7: "eventQueue": The logical real address of the start of the EQ
1311 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1312 *
1313 * Output:
1314 * - None
1315 */
1316
1317#define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1318
1319static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1320                                           SpaprMachineState *spapr,
1321                                           target_ulong opcode,
1322                                           target_ulong *args)
1323{
1324    SpaprXive *xive = spapr->xive;
1325    target_ulong flags = args[0];
1326    target_ulong target = args[1];
1327    target_ulong priority = args[2];
1328    target_ulong qpage = args[3];
1329    target_ulong qsize = args[4];
1330    XiveEND end;
1331    uint8_t end_blk, nvt_blk;
1332    uint32_t end_idx, nvt_idx;
1333
1334    trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1335
1336    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1337        return H_FUNCTION;
1338    }
1339
1340    if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1341        return H_PARAMETER;
1342    }
1343
1344    /*
1345     * H_STATE should be returned if a H_INT_RESET is in progress.
1346     * This is not needed when running the emulation under QEMU
1347     */
1348
1349    if (spapr_xive_priority_is_reserved(xive, priority)) {
1350        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1351                      " is reserved\n", priority);
1352        return H_P3;
1353    }
1354
1355    /*
1356     * Validate that "target" is part of the list of threads allocated
1357     * to the partition. For that, find the END corresponding to the
1358     * target.
1359     */
1360
1361    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1362        return H_P2;
1363    }
1364
1365    assert(end_idx < xive->nr_ends);
1366    memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1367
1368    switch (qsize) {
1369    case 12:
1370    case 16:
1371    case 21:
1372    case 24:
1373        if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1374            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1375                          " is not naturally aligned with %" HWADDR_PRIx "\n",
1376                          qpage, (hwaddr)1 << qsize);
1377            return H_P4;
1378        }
1379        end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1380        end.w3 = cpu_to_be32(qpage & 0xffffffff);
1381        end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1382        end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1383        break;
1384    case 0:
1385        /* reset queue and disable queueing */
1386        spapr_xive_end_reset(&end);
1387        goto out;
1388
1389    default:
1390        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1391                      qsize);
1392        return H_P5;
1393    }
1394
1395    if (qsize) {
1396        hwaddr plen = 1 << qsize;
1397        void *eq;
1398
1399        /*
1400         * Validate the guest EQ. We should also check that the queue
1401         * has been zeroed by the OS.
1402         */
1403        eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1404                               MEMTXATTRS_UNSPECIFIED);
1405        if (plen != 1 << qsize) {
1406            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1407                          HWADDR_PRIx "\n", qpage);
1408            return H_P4;
1409        }
1410        address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1411    }
1412
1413    /* "target" should have been validated above */
1414    if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1415        g_assert_not_reached();
1416    }
1417
1418    /*
1419     * Ensure the priority and target are correctly set (they will not
1420     * be right after allocation)
1421     */
1422    end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1423        xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1424    end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1425
1426    if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1427        end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1428    } else {
1429        end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1430    }
1431
1432    /*
1433     * The generation bit for the END starts at 1 and The END page
1434     * offset counter starts at 0.
1435     */
1436    end.w1 = cpu_to_be32(END_W1_GENERATION) |
1437        xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1438    end.w0 |= cpu_to_be32(END_W0_VALID);
1439
1440    /*
1441     * TODO: issue syncs required to ensure all in-flight interrupts
1442     * are complete on the old END
1443     */
1444
1445out:
1446    if (spapr_xive_in_kernel(xive)) {
1447        Error *local_err = NULL;
1448
1449        kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1450        if (local_err) {
1451            error_report_err(local_err);
1452            return H_HARDWARE;
1453        }
1454    }
1455
1456    /* Update END */
1457    memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1458    return H_SUCCESS;
1459}
1460
1461/*
1462 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1463 * target and priority.
1464 *
1465 * Parameters:
1466 * Input:
1467 * - R4: "flags"
1468 *         Bits 0-62: Reserved
1469 *         Bit 63: Debug: Return debug data
1470 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1471 *       "ibm,ppc-interrupt-gserver#s"
1472 * - R6: "priority" is a valid priority not in
1473 *       "ibm,plat-res-int-priorities"
1474 *
1475 * Output:
1476 * - R4: "flags":
1477 *       Bits 0-61: Reserved
1478 *       Bit 62: The value of Event Queue Generation Number (g) per
1479 *              the XIVE spec if "Debug" = 1
1480 *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1481 * - R5: The logical real address of the start of the EQ
1482 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1483 * - R7: The value of Event Queue Offset Counter per XIVE spec
1484 *       if "Debug" = 1, else 0
1485 *
1486 */
1487
1488#define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1489
1490static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1491                                           SpaprMachineState *spapr,
1492                                           target_ulong opcode,
1493                                           target_ulong *args)
1494{
1495    SpaprXive *xive = spapr->xive;
1496    target_ulong flags = args[0];
1497    target_ulong target = args[1];
1498    target_ulong priority = args[2];
1499    XiveEND *end;
1500    uint8_t end_blk;
1501    uint32_t end_idx;
1502
1503    trace_spapr_xive_get_queue_config(flags, target, priority);
1504
1505    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1506        return H_FUNCTION;
1507    }
1508
1509    if (flags & ~SPAPR_XIVE_END_DEBUG) {
1510        return H_PARAMETER;
1511    }
1512
1513    /*
1514     * H_STATE should be returned if a H_INT_RESET is in progress.
1515     * This is not needed when running the emulation under QEMU
1516     */
1517
1518    if (spapr_xive_priority_is_reserved(xive, priority)) {
1519        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1520                      " is reserved\n", priority);
1521        return H_P3;
1522    }
1523
1524    /*
1525     * Validate that "target" is part of the list of threads allocated
1526     * to the partition. For that, find the END corresponding to the
1527     * target.
1528     */
1529    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1530        return H_P2;
1531    }
1532
1533    assert(end_idx < xive->nr_ends);
1534    end = &xive->endt[end_idx];
1535
1536    args[0] = 0;
1537    if (xive_end_is_notify(end)) {
1538        args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1539    }
1540
1541    if (xive_end_is_enqueue(end)) {
1542        args[1] = xive_end_qaddr(end);
1543        args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1544    } else {
1545        args[1] = 0;
1546        args[2] = 0;
1547    }
1548
1549    if (spapr_xive_in_kernel(xive)) {
1550        Error *local_err = NULL;
1551
1552        kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1553        if (local_err) {
1554            error_report_err(local_err);
1555            return H_HARDWARE;
1556        }
1557    }
1558
1559    /* TODO: do we need any locking on the END ? */
1560    if (flags & SPAPR_XIVE_END_DEBUG) {
1561        /* Load the event queue generation number into the return flags */
1562        args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1563
1564        /* Load R7 with the event queue offset counter */
1565        args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1566    } else {
1567        args[3] = 0;
1568    }
1569
1570    return H_SUCCESS;
1571}
1572
1573/*
1574 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1575 * reporting cache line pair for the calling thread.  The reporting
1576 * cache lines will contain the OS interrupt context when the OS
1577 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1578 * interrupt. The reporting cache lines can be reset by inputting -1
1579 * in "reportingLine".  Issuing the CI store byte without reporting
1580 * cache lines registered will result in the data not being accessible
1581 * to the OS.
1582 *
1583 * Parameters:
1584 * Input:
1585 * - R4: "flags"
1586 *         Bits 0-63: Reserved
1587 * - R5: "reportingLine": The logical real address of the reporting cache
1588 *       line pair
1589 *
1590 * Output:
1591 * - None
1592 */
1593static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1594                                                SpaprMachineState *spapr,
1595                                                target_ulong opcode,
1596                                                target_ulong *args)
1597{
1598    target_ulong flags   = args[0];
1599
1600    trace_spapr_xive_set_os_reporting_line(flags);
1601
1602    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1603        return H_FUNCTION;
1604    }
1605
1606    /*
1607     * H_STATE should be returned if a H_INT_RESET is in progress.
1608     * This is not needed when running the emulation under QEMU
1609     */
1610
1611    /* TODO: H_INT_SET_OS_REPORTING_LINE */
1612    return H_FUNCTION;
1613}
1614
1615/*
1616 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1617 * real address of the reporting cache line pair set for the input
1618 * "target".  If no reporting cache line pair has been set, -1 is
1619 * returned.
1620 *
1621 * Parameters:
1622 * Input:
1623 * - R4: "flags"
1624 *         Bits 0-63: Reserved
1625 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1626 *       "ibm,ppc-interrupt-gserver#s"
1627 * - R6: "reportingLine": The logical real address of the reporting
1628 *        cache line pair
1629 *
1630 * Output:
1631 * - R4: The logical real address of the reporting line if set, else -1
1632 */
1633static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1634                                                SpaprMachineState *spapr,
1635                                                target_ulong opcode,
1636                                                target_ulong *args)
1637{
1638    target_ulong flags   = args[0];
1639
1640    trace_spapr_xive_get_os_reporting_line(flags);
1641
1642    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1643        return H_FUNCTION;
1644    }
1645
1646    /*
1647     * H_STATE should be returned if a H_INT_RESET is in progress.
1648     * This is not needed when running the emulation under QEMU
1649     */
1650
1651    /* TODO: H_INT_GET_OS_REPORTING_LINE */
1652    return H_FUNCTION;
1653}
1654
1655/*
1656 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1657 * page for the input "lisn".  This hcall is only supported for LISNs
1658 * that have the ESB hcall flag set to 1 when returned from hcall()
1659 * H_INT_GET_SOURCE_INFO.
1660 *
1661 * Parameters:
1662 * Input:
1663 * - R4: "flags"
1664 *         Bits 0-62: Reserved
1665 *         bit 63: Store: Store=1, store operation, else load operation
1666 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1667 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1668 *       ibm,query-interrupt-source-number RTAS call, or as
1669 *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1670 * - R6: "esbOffset" is the offset into the ESB page for the load or
1671 *       store operation
1672 * - R7: "storeData" is the data to write for a store operation
1673 *
1674 * Output:
1675 * - R4: The value of the load if load operation, else -1
1676 */
1677
1678#define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1679
1680static target_ulong h_int_esb(PowerPCCPU *cpu,
1681                              SpaprMachineState *spapr,
1682                              target_ulong opcode,
1683                              target_ulong *args)
1684{
1685    SpaprXive *xive = spapr->xive;
1686    XiveEAS eas;
1687    target_ulong flags  = args[0];
1688    target_ulong lisn   = args[1];
1689    target_ulong offset = args[2];
1690    target_ulong data   = args[3];
1691    hwaddr mmio_addr;
1692    XiveSource *xsrc = &xive->source;
1693
1694    trace_spapr_xive_esb(flags, lisn, offset, data);
1695
1696    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1697        return H_FUNCTION;
1698    }
1699
1700    if (flags & ~SPAPR_XIVE_ESB_STORE) {
1701        return H_PARAMETER;
1702    }
1703
1704    if (lisn >= xive->nr_irqs) {
1705        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1706                      lisn);
1707        return H_P2;
1708    }
1709
1710    eas = xive->eat[lisn];
1711    if (!xive_eas_is_valid(&eas)) {
1712        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1713                      lisn);
1714        return H_P2;
1715    }
1716
1717    if (offset > (1ull << xsrc->esb_shift)) {
1718        return H_P3;
1719    }
1720
1721    if (spapr_xive_in_kernel(xive)) {
1722        args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1723                                     flags & SPAPR_XIVE_ESB_STORE);
1724    } else {
1725        mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1726
1727        if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1728                          (flags & SPAPR_XIVE_ESB_STORE),
1729                          MEMTXATTRS_UNSPECIFIED)) {
1730            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1731                          HWADDR_PRIx "\n", mmio_addr);
1732            return H_HARDWARE;
1733        }
1734        args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1735    }
1736    return H_SUCCESS;
1737}
1738
1739/*
1740 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1741 * ensure any in flight events for the input lisn are in the event
1742 * queue.
1743 *
1744 * Parameters:
1745 * Input:
1746 * - R4: "flags"
1747 *         Bits 0-63: Reserved
1748 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1749 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1750 *       ibm,query-interrupt-source-number RTAS call, or as
1751 *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1752 *
1753 * Output:
1754 * - None
1755 */
1756static target_ulong h_int_sync(PowerPCCPU *cpu,
1757                               SpaprMachineState *spapr,
1758                               target_ulong opcode,
1759                               target_ulong *args)
1760{
1761    SpaprXive *xive = spapr->xive;
1762    XiveEAS eas;
1763    target_ulong flags = args[0];
1764    target_ulong lisn = args[1];
1765
1766    trace_spapr_xive_sync(flags, lisn);
1767
1768    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1769        return H_FUNCTION;
1770    }
1771
1772    if (flags) {
1773        return H_PARAMETER;
1774    }
1775
1776    if (lisn >= xive->nr_irqs) {
1777        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1778                      lisn);
1779        return H_P2;
1780    }
1781
1782    eas = xive->eat[lisn];
1783    if (!xive_eas_is_valid(&eas)) {
1784        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1785                      lisn);
1786        return H_P2;
1787    }
1788
1789    /*
1790     * H_STATE should be returned if a H_INT_RESET is in progress.
1791     * This is not needed when running the emulation under QEMU
1792     */
1793
1794    /*
1795     * This is not real hardware. Nothing to be done unless when
1796     * under KVM
1797     */
1798
1799    if (spapr_xive_in_kernel(xive)) {
1800        Error *local_err = NULL;
1801
1802        kvmppc_xive_sync_source(xive, lisn, &local_err);
1803        if (local_err) {
1804            error_report_err(local_err);
1805            return H_HARDWARE;
1806        }
1807    }
1808    return H_SUCCESS;
1809}
1810
1811/*
1812 * The H_INT_RESET hcall() is used to reset all of the partition's
1813 * interrupt exploitation structures to their initial state.  This
1814 * means losing all previously set interrupt state set via
1815 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1816 *
1817 * Parameters:
1818 * Input:
1819 * - R4: "flags"
1820 *         Bits 0-63: Reserved
1821 *
1822 * Output:
1823 * - None
1824 */
1825static target_ulong h_int_reset(PowerPCCPU *cpu,
1826                                SpaprMachineState *spapr,
1827                                target_ulong opcode,
1828                                target_ulong *args)
1829{
1830    SpaprXive *xive = spapr->xive;
1831    target_ulong flags   = args[0];
1832
1833    trace_spapr_xive_reset(flags);
1834
1835    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1836        return H_FUNCTION;
1837    }
1838
1839    if (flags) {
1840        return H_PARAMETER;
1841    }
1842
1843    device_cold_reset(DEVICE(xive));
1844
1845    if (spapr_xive_in_kernel(xive)) {
1846        Error *local_err = NULL;
1847
1848        kvmppc_xive_reset(xive, &local_err);
1849        if (local_err) {
1850            error_report_err(local_err);
1851            return H_HARDWARE;
1852        }
1853    }
1854    return H_SUCCESS;
1855}
1856
1857void spapr_xive_hcall_init(SpaprMachineState *spapr)
1858{
1859    spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1860    spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1861    spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1862    spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1863    spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1864    spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1865    spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1866                             h_int_set_os_reporting_line);
1867    spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1868                             h_int_get_os_reporting_line);
1869    spapr_register_hypercall(H_INT_ESB, h_int_esb);
1870    spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1871    spapr_register_hypercall(H_INT_RESET, h_int_reset);
1872}
1873