qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22
  23#include "elf.h"
  24#include "hw/boards.h"
  25#include "hw/char/serial.h"
  26#include "hw/ide/pci.h"
  27#include "hw/ide/ahci.h"
  28#include "hw/loader.h"
  29#include "hw/loader-fit.h"
  30#include "hw/mips/bootloader.h"
  31#include "hw/mips/cps.h"
  32#include "hw/pci-host/xilinx-pcie.h"
  33#include "hw/qdev-clock.h"
  34#include "hw/qdev-properties.h"
  35#include "qapi/error.h"
  36#include "qemu/error-report.h"
  37#include "qemu/guest-random.h"
  38#include "qemu/log.h"
  39#include "chardev/char.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/sysemu.h"
  42#include "sysemu/qtest.h"
  43#include "sysemu/runstate.h"
  44#include "sysemu/reset.h"
  45
  46#include <libfdt.h>
  47#include "qom/object.h"
  48
  49#define TYPE_BOSTON "mips-boston"
  50typedef struct BostonState BostonState;
  51DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
  52                         TYPE_BOSTON)
  53
  54#define FDT_IRQ_TYPE_NONE       0
  55#define FDT_IRQ_TYPE_LEVEL_HIGH 4
  56#define FDT_GIC_SHARED          0
  57#define FDT_GIC_LOCAL           1
  58#define FDT_BOSTON_CLK_SYS      1
  59#define FDT_BOSTON_CLK_CPU      2
  60#define FDT_PCI_IRQ_MAP_PINS    4
  61#define FDT_PCI_IRQ_MAP_DESCS   6
  62
  63struct BostonState {
  64    SysBusDevice parent_obj;
  65
  66    MachineState *mach;
  67    MIPSCPSState cps;
  68    SerialMM *uart;
  69    Clock *cpuclk;
  70
  71    CharBackend lcd_display;
  72    char lcd_content[8];
  73    bool lcd_inited;
  74
  75    hwaddr kernel_entry;
  76    hwaddr fdt_base;
  77};
  78
  79enum {
  80    BOSTON_LOWDDR,
  81    BOSTON_PCIE0,
  82    BOSTON_PCIE1,
  83    BOSTON_PCIE2,
  84    BOSTON_PCIE2_MMIO,
  85    BOSTON_CM,
  86    BOSTON_GIC,
  87    BOSTON_CDMM,
  88    BOSTON_CPC,
  89    BOSTON_PLATREG,
  90    BOSTON_UART,
  91    BOSTON_LCD,
  92    BOSTON_FLASH,
  93    BOSTON_PCIE1_MMIO,
  94    BOSTON_PCIE0_MMIO,
  95    BOSTON_HIGHDDR,
  96};
  97
  98static const MemMapEntry boston_memmap[] = {
  99    [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
 100    [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
 101    [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
 102    [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
 103    [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
 104    [BOSTON_CM] =         { 0x16100000,       0x20000 },
 105    [BOSTON_GIC] =        { 0x16120000,       0x20000 },
 106    [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
 107    [BOSTON_CPC] =        { 0x16200000,        0x8000 },
 108    [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
 109    [BOSTON_UART] =       { 0x17ffe000,          0x20 },
 110    [BOSTON_LCD] =        { 0x17fff000,           0x8 },
 111    [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
 112    [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
 113    [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
 114    [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
 115};
 116
 117enum boston_plat_reg {
 118    PLAT_FPGA_BUILD     = 0x00,
 119    PLAT_CORE_CL        = 0x04,
 120    PLAT_WRAPPER_CL     = 0x08,
 121    PLAT_SYSCLK_STATUS  = 0x0c,
 122    PLAT_SOFTRST_CTL    = 0x10,
 123#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
 124    PLAT_DDR3_STATUS    = 0x14,
 125#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
 126#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
 127    PLAT_PCIE_STATUS    = 0x18,
 128#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
 129#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
 130#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
 131    PLAT_FLASH_CTL      = 0x1c,
 132    PLAT_SPARE0         = 0x20,
 133    PLAT_SPARE1         = 0x24,
 134    PLAT_SPARE2         = 0x28,
 135    PLAT_SPARE3         = 0x2c,
 136    PLAT_MMCM_DIV       = 0x30,
 137#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
 138#define PLAT_MMCM_DIV_INPUT_SHIFT       8
 139#define PLAT_MMCM_DIV_MUL_SHIFT         16
 140#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
 141    PLAT_BUILD_CFG      = 0x34,
 142#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
 143#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
 144#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
 145#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
 146    PLAT_DDR_CFG        = 0x38,
 147#define PLAT_DDR_CFG_SIZE               (0xf << 0)
 148#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
 149    PLAT_NOC_PCIE0_ADDR = 0x3c,
 150    PLAT_NOC_PCIE1_ADDR = 0x40,
 151    PLAT_NOC_PCIE2_ADDR = 0x44,
 152    PLAT_SYS_CTL        = 0x48,
 153};
 154
 155static void boston_lcd_event(void *opaque, QEMUChrEvent event)
 156{
 157    BostonState *s = opaque;
 158    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 159        qemu_chr_fe_printf(&s->lcd_display, "        ");
 160        s->lcd_inited = true;
 161    }
 162}
 163
 164static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 165                                unsigned size)
 166{
 167    BostonState *s = opaque;
 168    uint64_t val = 0;
 169
 170    switch (size) {
 171    case 8:
 172        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 173        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 174        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 175        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 176        /* fall through */
 177    case 4:
 178        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 179        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 180        /* fall through */
 181    case 2:
 182        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 183        /* fall through */
 184    case 1:
 185        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 186        break;
 187    }
 188
 189    return val;
 190}
 191
 192static void boston_lcd_write(void *opaque, hwaddr addr,
 193                             uint64_t val, unsigned size)
 194{
 195    BostonState *s = opaque;
 196
 197    switch (size) {
 198    case 8:
 199        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 200        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 201        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 202        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 203        /* fall through */
 204    case 4:
 205        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 206        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 207        /* fall through */
 208    case 2:
 209        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 210        /* fall through */
 211    case 1:
 212        s->lcd_content[(addr + 0) & 0x7] = val;
 213        break;
 214    }
 215
 216    qemu_chr_fe_printf(&s->lcd_display,
 217                       "\r%-8.8s", s->lcd_content);
 218}
 219
 220static const MemoryRegionOps boston_lcd_ops = {
 221    .read = boston_lcd_read,
 222    .write = boston_lcd_write,
 223    .endianness = DEVICE_NATIVE_ENDIAN,
 224};
 225
 226static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 227                                    unsigned size)
 228{
 229    BostonState *s = opaque;
 230    uint32_t gic_freq, val;
 231
 232    if (size != 4) {
 233        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 234        return 0;
 235    }
 236
 237    switch (addr & 0xffff) {
 238    case PLAT_FPGA_BUILD:
 239    case PLAT_CORE_CL:
 240    case PLAT_WRAPPER_CL:
 241        return 0;
 242    case PLAT_DDR3_STATUS:
 243        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 244    case PLAT_MMCM_DIV:
 245        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
 246        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 247        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 248        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 249        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 250        return val;
 251    case PLAT_BUILD_CFG:
 252        val = PLAT_BUILD_CFG_PCIE0_EN;
 253        val |= PLAT_BUILD_CFG_PCIE1_EN;
 254        val |= PLAT_BUILD_CFG_PCIE2_EN;
 255        return val;
 256    case PLAT_DDR_CFG:
 257        val = s->mach->ram_size / GiB;
 258        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 259        val |= PLAT_DDR_CFG_MHZ;
 260        return val;
 261    default:
 262        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 263                      addr & 0xffff);
 264        return 0;
 265    }
 266}
 267
 268static void boston_platreg_write(void *opaque, hwaddr addr,
 269                                 uint64_t val, unsigned size)
 270{
 271    if (size != 4) {
 272        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 273        return;
 274    }
 275
 276    switch (addr & 0xffff) {
 277    case PLAT_FPGA_BUILD:
 278    case PLAT_CORE_CL:
 279    case PLAT_WRAPPER_CL:
 280    case PLAT_DDR3_STATUS:
 281    case PLAT_PCIE_STATUS:
 282    case PLAT_MMCM_DIV:
 283    case PLAT_BUILD_CFG:
 284    case PLAT_DDR_CFG:
 285        /* read only */
 286        break;
 287    case PLAT_SOFTRST_CTL:
 288        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 289            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 290        }
 291        break;
 292    default:
 293        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 294                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 295        break;
 296    }
 297}
 298
 299static const MemoryRegionOps boston_platreg_ops = {
 300    .read = boston_platreg_read,
 301    .write = boston_platreg_write,
 302    .endianness = DEVICE_NATIVE_ENDIAN,
 303};
 304
 305static void mips_boston_instance_init(Object *obj)
 306{
 307    BostonState *s = BOSTON(obj);
 308
 309    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
 310    clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
 311}
 312
 313static const TypeInfo boston_device = {
 314    .name          = TYPE_BOSTON,
 315    .parent        = TYPE_SYS_BUS_DEVICE,
 316    .instance_size = sizeof(BostonState),
 317    .instance_init = mips_boston_instance_init,
 318};
 319
 320static void boston_register_types(void)
 321{
 322    type_register_static(&boston_device);
 323}
 324type_init(boston_register_types)
 325
 326static void gen_firmware(void *p, hwaddr kernel_entry, hwaddr fdt_addr)
 327{
 328    uint64_t regaddr;
 329
 330    /* Move CM GCRs */
 331    regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
 332    bl_gen_write_ulong(&p, regaddr,
 333                       boston_memmap[BOSTON_CM].base);
 334
 335    /* Move & enable GIC GCRs */
 336    regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
 337                                           + GCR_GIC_BASE_OFS),
 338    bl_gen_write_ulong(&p, regaddr,
 339                       boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
 340
 341    /* Move & enable CPC GCRs */
 342    regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
 343                                           + GCR_CPC_BASE_OFS),
 344    bl_gen_write_ulong(&p, regaddr,
 345                       boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
 346
 347    /*
 348     * Setup argument registers to follow the UHI boot protocol:
 349     *
 350     * a0/$4 = -2
 351     * a1/$5 = virtual address of FDT
 352     * a2/$6 = 0
 353     * a3/$7 = 0
 354     */
 355    bl_gen_jump_kernel(&p,
 356                       true, 0, true, (int32_t)-2,
 357                       true, fdt_addr, true, 0, true, 0,
 358                       kernel_entry);
 359}
 360
 361static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 362                                     const void *match_data, hwaddr *load_addr)
 363{
 364    BostonState *s = BOSTON(opaque);
 365    MachineState *machine = s->mach;
 366    const char *cmdline;
 367    int err;
 368    size_t ram_low_sz, ram_high_sz;
 369    size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
 370    g_autofree void *fdt = g_malloc0(fdt_sz);
 371    uint8_t rng_seed[32];
 372
 373    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 374    if (err) {
 375        fprintf(stderr, "unable to open FDT\n");
 376        return NULL;
 377    }
 378
 379    qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
 380    qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
 381
 382    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 383            ? machine->kernel_cmdline : " ";
 384    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 385    if (err < 0) {
 386        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 387        return NULL;
 388    }
 389
 390    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 391    ram_high_sz = machine->ram_size - ram_low_sz;
 392    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 393                        1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
 394                        1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
 395                        1, ram_high_sz);
 396
 397    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 398    qemu_fdt_dumpdtb(fdt, fdt_sz);
 399
 400    s->fdt_base = *load_addr;
 401
 402    return g_steal_pointer(&fdt);
 403}
 404
 405static const void *boston_kernel_filter(void *opaque, const void *kernel,
 406                                        hwaddr *load_addr, hwaddr *entry_addr)
 407{
 408    BostonState *s = BOSTON(opaque);
 409
 410    s->kernel_entry = *entry_addr;
 411
 412    return kernel;
 413}
 414
 415static const struct fit_loader_match boston_matches[] = {
 416    { "img,boston" },
 417    { NULL },
 418};
 419
 420static const struct fit_loader boston_fit_loader = {
 421    .matches = boston_matches,
 422    .addr_to_phys = cpu_mips_kseg0_to_phys,
 423    .fdt_filter = boston_fdt_filter,
 424    .kernel_filter = boston_kernel_filter,
 425};
 426
 427static inline XilinxPCIEHost *
 428xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 429                 hwaddr cfg_base, uint64_t cfg_size,
 430                 hwaddr mmio_base, uint64_t mmio_size,
 431                 qemu_irq irq)
 432{
 433    DeviceState *dev;
 434    MemoryRegion *cfg, *mmio;
 435
 436    dev = qdev_new(TYPE_XILINX_PCIE_HOST);
 437
 438    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 439    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 440    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 441    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 442    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 443
 444    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 445
 446    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 447    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 448
 449    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 450    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 451
 452    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 453
 454    return XILINX_PCIE_HOST(dev);
 455}
 456
 457
 458static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
 459                            hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
 460{
 461    int i;
 462    char *name, *intc_name;
 463    uint32_t intc_ph;
 464    uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
 465
 466    intc_ph = qemu_fdt_alloc_phandle(fdt);
 467    name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
 468    qemu_fdt_add_subnode(fdt, name);
 469    qemu_fdt_setprop_string(fdt, name, "compatible",
 470                            "xlnx,axi-pcie-host-1.00.a");
 471    qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
 472    qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
 473
 474    qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
 475    qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
 476    qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
 477
 478    qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
 479    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
 480                            FDT_IRQ_TYPE_LEVEL_HIGH);
 481
 482    qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
 483                            mmio_base, 0, mmio_size);
 484    qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
 485
 486
 487
 488    intc_name = g_strdup_printf("%s/interrupt-controller", name);
 489    qemu_fdt_add_subnode(fdt, intc_name);
 490    qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
 491    qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
 492    qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
 493    qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
 494
 495    qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
 496    for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
 497        uint32_t *irqmap = interrupt_map[i];
 498
 499        irqmap[0] = cpu_to_be32(0);
 500        irqmap[1] = cpu_to_be32(0);
 501        irqmap[2] = cpu_to_be32(0);
 502        irqmap[3] = cpu_to_be32(i + 1);
 503        irqmap[4] = cpu_to_be32(intc_ph);
 504        irqmap[5] = cpu_to_be32(i + 1);
 505    }
 506    qemu_fdt_setprop(fdt, name, "interrupt-map",
 507                     &interrupt_map, sizeof(interrupt_map));
 508
 509    g_free(intc_name);
 510    g_free(name);
 511}
 512
 513static const void *create_fdt(BostonState *s,
 514                              const MemMapEntry *memmap, int *dt_size)
 515{
 516    void *fdt;
 517    int cpu;
 518    MachineState *ms = s->mach;
 519    uint32_t platreg_ph, gic_ph, clk_ph;
 520    char *name, *gic_name, *platreg_name, *stdout_name;
 521    static const char * const syscon_compat[2] = {
 522        "img,boston-platform-regs", "syscon"
 523    };
 524
 525    fdt = create_device_tree(dt_size);
 526    if (!fdt) {
 527        error_report("create_device_tree() failed");
 528        exit(1);
 529    }
 530
 531    platreg_ph = qemu_fdt_alloc_phandle(fdt);
 532    gic_ph = qemu_fdt_alloc_phandle(fdt);
 533    clk_ph = qemu_fdt_alloc_phandle(fdt);
 534
 535    qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
 536    qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
 537    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
 538    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
 539
 540
 541    qemu_fdt_add_subnode(fdt, "/cpus");
 542    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
 543    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
 544
 545    for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
 546        name = g_strdup_printf("/cpus/cpu@%d", cpu);
 547        qemu_fdt_add_subnode(fdt, name);
 548        qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
 549        qemu_fdt_setprop_string(fdt, name, "status", "okay");
 550        qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
 551        qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
 552        qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
 553        g_free(name);
 554    }
 555
 556    qemu_fdt_add_subnode(fdt, "/soc");
 557    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
 558    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
 559    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
 560    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
 561
 562    fdt_create_pcie(fdt, gic_ph, 2,
 563                memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
 564                memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
 565
 566    fdt_create_pcie(fdt, gic_ph, 1,
 567                memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
 568                memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
 569
 570    fdt_create_pcie(fdt, gic_ph, 0,
 571                memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
 572                memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
 573
 574    /* GIC with it's timer node */
 575    gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
 576                                memmap[BOSTON_GIC].base);
 577    qemu_fdt_add_subnode(fdt, gic_name);
 578    qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
 579    qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
 580                            memmap[BOSTON_GIC].size);
 581    qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
 582    qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
 583    qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
 584
 585    name = g_strdup_printf("%s/timer", gic_name);
 586    qemu_fdt_add_subnode(fdt, name);
 587    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
 588    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
 589                            FDT_IRQ_TYPE_NONE);
 590    qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
 591    g_free(name);
 592    g_free(gic_name);
 593
 594    /* CDMM node */
 595    name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
 596    qemu_fdt_add_subnode(fdt, name);
 597    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
 598    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
 599                            memmap[BOSTON_CDMM].size);
 600    g_free(name);
 601
 602    /* CPC node */
 603    name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
 604    qemu_fdt_add_subnode(fdt, name);
 605    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
 606    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
 607                            memmap[BOSTON_CPC].size);
 608    g_free(name);
 609
 610    /* platreg and it's clk node */
 611    platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
 612                                   memmap[BOSTON_PLATREG].base);
 613    qemu_fdt_add_subnode(fdt, platreg_name);
 614    qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
 615                                 (char **)&syscon_compat,
 616                                 ARRAY_SIZE(syscon_compat));
 617    qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
 618                           memmap[BOSTON_PLATREG].base,
 619                           memmap[BOSTON_PLATREG].size);
 620    qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
 621
 622    name = g_strdup_printf("%s/clock", platreg_name);
 623    qemu_fdt_add_subnode(fdt, name);
 624    qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
 625    qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
 626    qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
 627    g_free(name);
 628    g_free(platreg_name);
 629
 630    /* reboot node */
 631    name = g_strdup_printf("/soc/reboot");
 632    qemu_fdt_add_subnode(fdt, name);
 633    qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
 634    qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
 635    qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
 636    qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
 637    g_free(name);
 638
 639    /* uart node */
 640    name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
 641    qemu_fdt_add_subnode(fdt, name);
 642    qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
 643    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
 644                            memmap[BOSTON_UART].size);
 645    qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
 646    qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
 647    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
 648                            FDT_IRQ_TYPE_LEVEL_HIGH);
 649    qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
 650
 651    qemu_fdt_add_subnode(fdt, "/chosen");
 652    stdout_name = g_strdup_printf("%s:115200", name);
 653    qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
 654    g_free(stdout_name);
 655    g_free(name);
 656
 657    /* lcd node */
 658    name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
 659    qemu_fdt_add_subnode(fdt, name);
 660    qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
 661    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
 662                            memmap[BOSTON_LCD].size);
 663    g_free(name);
 664
 665    name = g_strdup_printf("/memory@0");
 666    qemu_fdt_add_subnode(fdt, name);
 667    qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
 668    g_free(name);
 669
 670    return fdt;
 671}
 672
 673static void boston_mach_init(MachineState *machine)
 674{
 675    DeviceState *dev;
 676    BostonState *s;
 677    MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
 678    MemoryRegion *sys_mem = get_system_memory();
 679    XilinxPCIEHost *pcie2;
 680    PCIDevice *ahci;
 681    DriveInfo *hd[6];
 682    Chardev *chr;
 683    int fw_size, fit_err;
 684
 685    if ((machine->ram_size % GiB) ||
 686        (machine->ram_size > (2 * GiB))) {
 687        error_report("Memory size must be 1GB or 2GB");
 688        exit(1);
 689    }
 690
 691    dev = qdev_new(TYPE_BOSTON);
 692    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 693
 694    s = BOSTON(dev);
 695    s->mach = machine;
 696
 697    if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
 698        error_report("Boston requires CPUs which support CPS");
 699        exit(1);
 700    }
 701
 702    object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
 703    object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
 704                            &error_fatal);
 705    object_property_set_uint(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
 706                            &error_fatal);
 707    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
 708                          qdev_get_clock_out(dev, "cpu-refclk"));
 709    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
 710
 711    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
 712
 713    flash =  g_new(MemoryRegion, 1);
 714    memory_region_init_rom(flash, NULL, "boston.flash",
 715                           boston_memmap[BOSTON_FLASH].size, &error_fatal);
 716    memory_region_add_subregion_overlap(sys_mem,
 717                                        boston_memmap[BOSTON_FLASH].base,
 718                                        flash, 0);
 719
 720    memory_region_add_subregion_overlap(sys_mem,
 721                                        boston_memmap[BOSTON_HIGHDDR].base,
 722                                        machine->ram, 0);
 723
 724    ddr_low_alias = g_new(MemoryRegion, 1);
 725    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 726                             machine->ram, 0,
 727                             MIN(machine->ram_size, (256 * MiB)));
 728    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 729
 730    xilinx_pcie_init(sys_mem, 0,
 731                     boston_memmap[BOSTON_PCIE0].base,
 732                     boston_memmap[BOSTON_PCIE0].size,
 733                     boston_memmap[BOSTON_PCIE0_MMIO].base,
 734                     boston_memmap[BOSTON_PCIE0_MMIO].size,
 735                     get_cps_irq(&s->cps, 2));
 736
 737    xilinx_pcie_init(sys_mem, 1,
 738                     boston_memmap[BOSTON_PCIE1].base,
 739                     boston_memmap[BOSTON_PCIE1].size,
 740                     boston_memmap[BOSTON_PCIE1_MMIO].base,
 741                     boston_memmap[BOSTON_PCIE1_MMIO].size,
 742                     get_cps_irq(&s->cps, 1));
 743
 744    pcie2 = xilinx_pcie_init(sys_mem, 2,
 745                             boston_memmap[BOSTON_PCIE2].base,
 746                             boston_memmap[BOSTON_PCIE2].size,
 747                             boston_memmap[BOSTON_PCIE2_MMIO].base,
 748                             boston_memmap[BOSTON_PCIE2_MMIO].size,
 749                             get_cps_irq(&s->cps, 0));
 750
 751    platreg = g_new(MemoryRegion, 1);
 752    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 753                          "boston-platregs",
 754                          boston_memmap[BOSTON_PLATREG].size);
 755    memory_region_add_subregion_overlap(sys_mem,
 756                          boston_memmap[BOSTON_PLATREG].base, platreg, 0);
 757
 758    s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
 759                             get_cps_irq(&s->cps, 3), 10000000,
 760                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 761
 762    lcd = g_new(MemoryRegion, 1);
 763    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 764    memory_region_add_subregion_overlap(sys_mem,
 765                                        boston_memmap[BOSTON_LCD].base, lcd, 0);
 766
 767    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
 768    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 769    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 770                             boston_lcd_event, NULL, s, NULL, true);
 771
 772    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 773                                           PCI_DEVFN(0, 0), TYPE_ICH9_AHCI);
 774    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 775    ide_drive_get(hd, ahci_get_num_ports(ahci));
 776    ahci_ide_create_devs(ahci, hd);
 777
 778    if (machine->firmware) {
 779        fw_size = load_image_targphys(machine->firmware,
 780                                      0x1fc00000, 4 * MiB);
 781        if (fw_size == -1) {
 782            error_report("unable to load firmware image '%s'",
 783                          machine->firmware);
 784            exit(1);
 785        }
 786    } else if (machine->kernel_filename) {
 787        uint64_t kernel_entry, kernel_high;
 788        ssize_t kernel_size;
 789
 790        kernel_size = load_elf(machine->kernel_filename, NULL,
 791                           cpu_mips_kseg0_to_phys, NULL,
 792                           &kernel_entry, NULL, &kernel_high,
 793                           NULL, 0, EM_MIPS, 1, 0);
 794
 795        if (kernel_size > 0) {
 796            int dt_size;
 797            g_autofree const void *dtb_file_data = NULL;
 798            g_autofree const void *dtb_load_data = NULL;
 799            hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
 800            hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
 801
 802            s->kernel_entry = kernel_entry;
 803            if (machine->dtb) {
 804                dtb_file_data = load_device_tree(machine->dtb, &dt_size);
 805            } else {
 806                dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
 807            }
 808
 809            dtb_load_data = boston_fdt_filter(s, dtb_file_data,
 810                                              NULL, &dtb_vaddr);
 811
 812            /* Calculate real fdt size after filter */
 813            dt_size = fdt_totalsize(dtb_load_data);
 814            rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
 815            qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
 816                                rom_ptr(dtb_paddr, dt_size));
 817        } else {
 818            /* Try to load file as FIT */
 819            fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 820            if (fit_err) {
 821                error_report("unable to load kernel image");
 822                exit(1);
 823            }
 824        }
 825
 826        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 827                     s->kernel_entry, s->fdt_base);
 828    } else if (!qtest_enabled()) {
 829        error_report("Please provide either a -kernel or -bios argument");
 830        exit(1);
 831    }
 832}
 833
 834static void boston_mach_class_init(MachineClass *mc)
 835{
 836    mc->desc = "MIPS Boston";
 837    mc->init = boston_mach_init;
 838    mc->block_default_type = IF_IDE;
 839    mc->default_ram_size = 1 * GiB;
 840    mc->default_ram_id = "boston.ddr";
 841    mc->max_cpus = 16;
 842    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 843}
 844
 845DEFINE_MACHINE("boston", boston_mach_class_init)
 846